Lecture 4: Fixed-Parameter Intractability (A Short Introduction to Parameterized Complexity)

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 17, 2025

Course overview

Monday, July 14 10.30 – 12.30	Tuesday, July 15 10.30 – 12.30	Wednesday, July 16 10.30 – 12.30	Thursday, July 17 10.30 – 12.30	Friday, July 18
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
Introduction & basic FPT results	Notions of bounded graph width	Algorithmic Meta-Theorems	FPT-Intractability Classes&Hierarchies	
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. width	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies	
				14.30 - 16.30
				examples, question hour

Overview

- Motivation for fixed-parameter intractability
- Fixed parameter reductions
- The classes para-NP and XP
- The class W[P]
- Logic preliminaries (continued)
- W-hierarchy
 - definitions
 - with Boolean circuits
 - as parameterized weighted Fagin definability problems
- A-hierarchy
 - definition as parameterized model-checking problems
- picture overview of these classes

QUERIES Instance: a relational database D, a conjunctive query α . Compute: answer to query α from database D.

QUERIES Instance: a relational database D, a conjunctive query α . Compute: answer to query α from database D.

► QUERIES ∈ NP-complete.

QUERIES Instance: a relational database D, a conjunctive query α . Compute: answer to query α from database D.

► QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $|\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

QUERIES Instance: a relational database D, a conjunctive query α . Compute: answer to query α from database D.

► QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $|\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

► LTL-MODEL-CHECKING ∈ PSPACE-complete.

Comparing their parameterizations

```
QUERIES

Instance: a relational database D, a conjunctive query \alpha.

Parameter: size k = |\alpha| of query \alpha

Compute: answer to query \alpha from database D.
```

► QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

► LTL-MODEL-CHECKING ∈ PSPACE-complete,

Comparing their parameterizations

```
QUERIES

Instance: a relational database D, a conjunctive query \alpha.

Parameter: size k = |\alpha| of query \alpha

Compute: answer to query \alpha from database D.
```

- ► QUERIES ∈ NP-complete.
- QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

► LTL-MODEL-CHECKING ∈ PSPACE-complete,

Comparing their parameterizations

```
QUERIES

Instance: a relational database D, a conjunctive query \alpha.

Parameter: size k = |\alpha| of query \alpha

Compute: answer to query \alpha from database D.
```

- ► QUERIES ∈ NP-complete.
- QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

- ► LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ▶ LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \mathsf{FPT}$ for $n = ||\mathcal{K}||$.

Fixed-parameter intractability

'The purpose [...] is to give evidence that certain problems are not fixed-parameter tractable (just as the main purpose of the theory of NP-completeness is to give evidence that certain problems are not polynomial time computable.)

In classical theory, the notion of NP-completeness is central to a nice, simple, and far-reaching theory for intractable problems.

Unfortunately, the world of parameterized intractability is more complex: There is a big variety of seemingly different classes of intractable parameterized problems.'

(Flum, Grohe [2])

Fixed-Parameter tractable

Definition

```
A parameterized problem \langle Q, \Sigma, \kappa \rangle is fixed-parameter tractable (is in FPT) if:
```

```
\exists f : \mathbb{N} \to \mathbb{N} computable \exists p \in \mathbb{N}[X] polynomial
```

 $\exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^*$

 $\forall x \in \Sigma^* \Big[\mathbb{A} \text{ decides whether } x \in Q \text{ holds} \\ \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \Big]$

Slices of parameterized problems

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

 $\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \}$.

Proposition (slices of FPT problems are in PTIME)

Let $\langle Q, \kappa \rangle$ be a parameterized problem, and $\ell \in \mathbb{N}$. If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

Proof

Let ℓ be fixed. Then for all $x \in \Sigma^*$: Decide $x \in Q$, $\kappa(x) = \ell$ in time $\leq f(\kappa(x)) \cdot p(|x|) = f(\ell) \cdot p(|x|) \in \mathsf{PTIME}$.

A problem not in FPT

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Slices of FPT problems are in PTIME If $\langle Q, \kappa \rangle \in \text{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \text{PTIME}$.

```
p-COLORABILITY

Instance: A graph \mathcal{G}, and \ell \in \mathbb{N}.

Parameter: \ell.

Problem: Decide whether \mathcal{G} is \ell-colorable.
```

Consequence: *p*-COLORABILITY ∉ FPT (unless P = NP).

It is well-known: 3-COLORABILITY \in NP-complete. Now since 3-COLORABILITY is the third slice of *p*-COLORABILITY, the proposition entails *p*-COLORABILITY \notin FPT unless P = NP.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R : \Sigma_1^* \to \Sigma_2^*$:

- **R1.** $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. *R* is computable by a polynomial-time algorithm: there is a polynomial p(X) such that *R* is computable in time p(|x|).

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R : \Sigma_1^* \to \Sigma_2^*$:

- **R1.** $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. *R* is computable by a polynomial-time algorithm: there is a polynomial p(X) such that *R* is computable in time p(|x|).
- $\langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq$

there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R : \Sigma_1^* \to \Sigma_2^*$:

- **R1.** $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. *R* is computable by a polynomial-time algorithm: there is a polynomial p(X) such that *R* is computable in time p(|x|).

 $\begin{array}{l} \langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq \\ \text{ there is a polynomial-time reduction from } \langle Q_1, \Sigma_1 \rangle \text{ to } \langle Q_2, \Sigma_2 \rangle. \end{array}$

Proposition

$$\begin{array}{ll} \text{If } \langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \text{, then:} & \langle Q_1, \Sigma_1 \rangle \in \mathsf{P} & \longleftarrow & \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}. \\ & \langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} & \Longrightarrow & \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}. \end{array}$$

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R : \Sigma_1^* \to \Sigma_2^*$:

- **R1.** $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. *R* is computable by a polynomial-time algorithm: there is a polynomial p(X) such that *R* is computable in time p(|x|).

 $\begin{array}{l} \langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq \\ \text{ there is a polynomial-time reduction from } \langle Q_1, \Sigma_1 \rangle \text{ to } \langle Q_2, \Sigma_2 \rangle. \end{array}$

Proposition

 $\begin{array}{ccc} \text{If } \langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle, \text{ then: } & \langle Q_1, \Sigma_1 \rangle \in \mathsf{P} & \longleftarrow & \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}. \\ & & \langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} & \Longrightarrow & \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}. \end{array}$

Let C be class of classical problems.

► $\langle Q, \Sigma \rangle$ is C-hard: if, for all $\langle Q', \Sigma' \rangle \in \mathbf{C}$, $\langle Q', \Sigma' \rangle \leq_{\mathsf{pol}} \langle Q, \Sigma \rangle$.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R : \Sigma_1^* \to \Sigma_2^*$:

- **R1.** $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. *R* is computable by a polynomial-time algorithm: there is a polynomial p(X) such that *R* is computable in time p(|x|).

 $\begin{array}{l} \langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq \\ \text{ there is a polynomial-time reduction from } \langle Q_1, \Sigma_1 \rangle \text{ to } \langle Q_2, \Sigma_2 \rangle. \end{array}$

Proposition

$$\begin{array}{ccc} \text{If } \langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle, \text{ then: } & \langle Q_1, \Sigma_1 \rangle \in \mathsf{P} & \longleftarrow & \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}. \\ & & \langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} & \Longrightarrow & \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}. \end{array}$$

Let C be class of classical problems.

- ► $\langle Q, \Sigma \rangle$ is C-hard: if, for all $\langle Q', \Sigma' \rangle \in \mathbf{C}$, $\langle Q', \Sigma' \rangle \leq_{\mathsf{pol}} \langle Q, \Sigma \rangle$.
- ► $\langle Q, \Sigma \rangle$ is C-complete: if $\langle Q, \Sigma \rangle$ is C-hard, and $\langle Q, \Sigma \rangle \in C$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R : \Sigma_1^* \to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

R2. *R* is computable by a fpt-algorithm (with respect to κ): there are *f* computable and *p*(*X*) polynomial such that *R* is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R : \Sigma_1^* \to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

- R2. *R* is computable by a fpt-algorithm (with respect to κ): there are *f* computable and p(X) polynomial such that *R* is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \leq g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $g : \mathbb{N} \to \mathbb{N}$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R : \Sigma_1^* \to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

- R2. *R* is computable by a fpt-algorithm (with respect to κ): there are *f* computable and p(X) polynomial such that *R* is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \leq g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $g : \mathbb{N} \to \mathbb{N}$.

 $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle \coloneqq$ there is an fpt-red. from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R : \Sigma_1^* \to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

- R2. *R* is computable by a fpt-algorithm (with respect to κ): there are *f* computable and p(X) polynomial such that *R* is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \leq g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $g : \mathbb{N} \to \mathbb{N}$.

 $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle \coloneqq$ there is an fpt-red. from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$.

Proposition

If $\langle Q_1, \kappa_1 \rangle \leq_{\mathsf{fpt}} \langle Q_2, \kappa_2 \rangle$, then: $\langle Q_1, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q_2, \kappa_2 \rangle \in \mathsf{FPT}$. $\langle Q_1, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q_2, \kappa_2 \rangle \notin \mathsf{FPT}$.

Comparing parameterizations (revisited)

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- $\kappa_1 \geq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* [g(\kappa_1(x)) \geq \kappa_2(x)].$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with $\kappa_1 \geq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT},$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}.$

Comparing parameterizations (revisited)

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- $\kappa_1 \geq \kappa_2 :\iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* [g(\kappa_1(x)) \geq \kappa_2(x)].$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with $\kappa_1 \geq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT},$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}.$

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with $Q \subseteq \Sigma^*$:

$$\kappa_1 \geq \kappa_2 \iff \langle Q, \kappa_1 \rangle \leq_{\mathsf{fpt}} \langle Q, \kappa_2 \rangle \text{ via } R : \Sigma^* \to \Sigma^*, x \mapsto x_1$$

Examples

- ▶ p-CLIQUE =_{fpt} p-INDEPENDENT-SET.
- ▶ *p*-DOMINATING-SET ≡_{fpt} *p*-HITTING-SET.

Examples

- ▶ p-CLIQUE =_{fpt} p-INDEPENDENT-SET.
- ▶ *p*-DOMINATING-SET ≡_{fpt} *p*-HITTING-SET.

Non-Example

For graphs $\mathcal{G} = \langle V, E \rangle$, and sets $X \subseteq V$:

X is independent set of $\mathcal{G} \iff V \smallsetminus X$ is a vertex cover of \mathcal{G}

yields a polynomial reduction between *p*-INDEPENDENT-SET and *p*-VERTEX-COVER, but does not yield an fpt-reduction.

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

 ⟨Q, κ⟩ is C-hard under fpt-reductions if every problem in C is fpt-reducible to ⟨Q, κ⟩

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

- ⟨Q,κ⟩ is C-hard under fpt-reductions if every problem in C is fpt-reducible to ⟨Q,κ⟩
- ► $\langle Q, \kappa \rangle$ is C-complete under fpt-reductions if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions,

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

- $\blacktriangleright \ \left[\left\langle Q, \kappa \right\rangle \right]^{\mathsf{fpt}} \coloneqq \left\{ \left\langle Q', \kappa' \right\rangle \mid \left\langle Q', \kappa' \right\rangle \leq_{\mathsf{fpt}} \left\langle Q, \kappa \right\rangle \right\}.$
- ► $[C]^{\text{fpt}} := \bigcup_{(Q,\kappa) \in C} [\langle Q, \kappa \rangle]^{\text{fpt}}$ is the *closure* of C under fpt-reductions.
- ⟨Q, κ⟩ is C-hard under fpt-reductions if every problem in C is fpt-reducible to ⟨Q, κ⟩
- ► $\langle Q, \kappa \rangle$ is C-complete under fpt-reductions if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions,

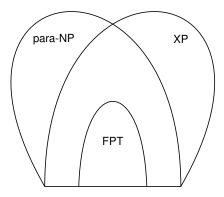
Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

- $\blacktriangleright \ \left[\left\langle Q, \kappa \right\rangle \right]^{\mathsf{fpt}} \coloneqq \left\{ \left\langle Q', \kappa' \right\rangle \mid \left\langle Q', \kappa' \right\rangle \leq_{\mathsf{fpt}} \left\langle Q, \kappa \right\rangle \right\}.$
- ► $[C]^{\text{fpt}} := \bigcup_{(Q,\kappa)\in C} [\langle Q,\kappa \rangle]^{\text{fpt}}$ is the *closure* of C under fpt-reductions.
- ⟨Q, κ⟩ is C-hard under fpt-reductions if every problem in C is fpt-reducible to ⟨Q, κ⟩ that is: C ⊆ [⟨Q, κ⟩]^{fpt}, and hence [C]^{fpt} ⊆ [⟨Q, κ⟩]^{fpt}.
- ► $\langle Q, \kappa \rangle$ is C-complete under fpt-reductions if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions, and then: $[\mathbb{C}]^{\text{fpt}} = [\langle Q, \kappa \rangle]^{\text{fpt}}$.

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

para-NP and XP



Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

para-NP is closed under fpt-reductions.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.

► FPT = para-NP if and only if PTIME = NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.

- ► FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem (Q, κ) is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of (Q, κ) is NP-complete.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.

- ► FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem (Q, κ) is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of (Q, κ) is NP-complete. Hence a non-trivial problem with at least one NP-complete slice is para-NP-complete.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

• A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Example

► *p*-CLIQUE, *p*-INDEPENDENT-SET, *p*-DOMINATING-SET, *p*-HITTING-SET, *p*-COLORABILITY ∈ para-NP.

- ► FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem (Q, κ) is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of (Q, κ) is NP-complete. Hence a non-trivial problem with at least one NP-complete slice is para-NP-complete.
 - ► *p*-COLORABILITY ∈ para-NP-complete.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems $\langle Q, \kappa \rangle$, whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems $\langle Q, \kappa \rangle$, whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems $\langle Q, \kappa \rangle$, whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

- But: XP_{nu} contains undecidable problems:
 - ▶ Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa : \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) \coloneqq \max\{1, |x|\}$. Then $\langle Q, \kappa \rangle \in \mathsf{XP}_{\mathsf{nu}}$.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems $\langle Q, \kappa \rangle$, whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

- But: XP_{nu} contains undecidable problems:
 - ▶ Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa : \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) \coloneqq \max\{1, |x|\}$. Then $\langle Q, \kappa \rangle \in \mathsf{XP}_{\mathsf{nu}}$.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in XP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that there is an algorithm \mathbb{A} such that:

• A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) + |x|^{f(\kappa(x))}$ steps;

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems $\langle Q, \kappa \rangle$, whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

- But: XP_{nu} contains undecidable problems:
 - ▶ Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa : \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) \coloneqq \max\{1, |x|\}$. Then $\langle Q, \kappa \rangle \in \mathsf{XP}_{\mathsf{nu}}$.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in XP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that there is an algorithm \mathbb{A} such that:

• A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) + |x|^{f(\kappa(x))}$ steps; equivalently, if in addition to computable $f : \mathbb{N} \to \mathbb{N}$ there are polynomials $p_k \in \mathbb{N}[X]$ for all $k \in \mathbb{N}$ such that:

• A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) \cdot p_{\kappa(x)}(|x|)$ steps.

Example

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.
- ▶ *p*-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME \neq NP, then para-NP \notin XP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.

▶ *p*-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME \neq NP, then para-NP \notin XP.

Proof.

If para-NP \subseteq XP, then *p*-COLORABILITY \in XP. But then it follows that 3-COLORABILITY \in PTIME, and as 3-COLORABILITY is NP-complete, that PTIME = NP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.

▶ *p*-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME \neq NP, then para-NP \notin XP.

Proof.

If para-NP \subseteq XP, then *p*-COLORABILITY \in XP. But then it follows that 3-COLORABILITY \in PTIME, and as 3-COLORABILITY is NP-complete, that PTIME = NP.

Proposition

 $\mathsf{FPT} \subsetneqq \mathsf{XP}$.

Model checking

The *model checking problem* for a class Φ of first-order formulas:

 $MC(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$. **Problem:** Decide whether $\mathcal{A} \models \varphi$ (that is, $\varphi(\mathcal{A}) \neq \emptyset$).

Theorem

MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where w is the width of the input formula φ (max. no. of free variables in a subformula of φ).

Model checking

The *model checking problem* for a class Φ of first-order formulas:

 $MC(\Phi)$

```
Instance: A structure \mathcal{A} and a formula \varphi \in \Phi.
Problem: Decide whether \mathcal{A} \models \varphi (that is, \varphi(\mathcal{A}) \neq \emptyset).
```

Theorem

MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where w is the width of the input formula φ (max. no. of free variables in a subformula of φ).

The parameterized model checking problem for a class Φ of formulas:

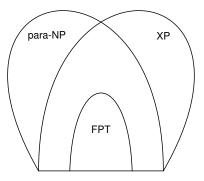
p-MC(Φ). **Instance:** A structure \mathcal{A} and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\mathcal{A} \models \varphi$.

Theorem

p-MC(Φ) \in XP.

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

FPT versus para-NP and XP



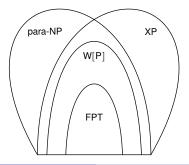
Proposition

- FPT ⊆ para-NP, and: FPT = para-NP if and only if PTIME = NP.
- ▶ para-NP \notin XP if PTIME \neq NP.
- ► FPT \subseteq XP.

'There is no definite single class that can be viewed as "the parameterized NP". Rather, there is a whole hierarchy of classes playing this role.

The class W[P] can be placed on top of this hierarchy. It is one of the most important parameterized complexity classes.'

(Flum, Grohe [2])



W[P] and limited non-determinism

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

$\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ (\forall x \in \Sigma^* ((x \in Q \iff \mathbb{M} \text{ accepts } x) \\ \land \text{ on input } x, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ \text{ at most } \leq f(|x|) \text{ are non-deterministic})$

W[P] and limited non-determinism

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine}$ $(\forall x \in \Sigma^* ((x \in Q \iff \mathbb{M} \text{ accepts } x)$ $\land \text{ on input } x, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which}$ $at most } \leq f(|x|) \text{ are non-deterministic})$

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f] \text{ for class of functions } \mathcal{F}.$

W[P] and limited non-determinism

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine}$ $(\forall x \in \Sigma^* ((x \in Q \iff \mathbb{M} \text{ accepts } x)$ $\land \text{ on input } x, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which}$ $at most } \leq f(|x|) \text{ are non-deterministic})$

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f] \text{ for class of functions } \mathcal{F}.$

Fact

$$\mathsf{NP}[\log n] = \mathsf{P}, \qquad \mathsf{NP}[n^{O(1)}] = \mathsf{NP}.$$

Definition

• Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization. A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is κ -restricted

Definition

• Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.

A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is κ -restricted if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a polynomial $p \in \mathbb{N}_0[x]$ such that on every run with input $x \in \Sigma^*$ the machine \mathbb{M} performs

▷ at most $f(\kappa(x)) \cdot p(|x|)$ steps,

Definition

• Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.

A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is *\kappa-restricted* if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a polynomial $p \in \mathbb{N}_0[x]$ such that on every run with input $x \in \Sigma^*$ the machine \mathbb{M} performs

- \triangleright at most $f(\kappa(x)) \cdot p(|x|)$ steps,
- ▷ at most $h(\kappa(x)) \cdot \log |x|$ of them being nondeterministic,

Definition

• Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.

A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is κ -restricted if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a polynomial $p \in \mathbb{N}_0[x]$ such that on every run with input $x \in \Sigma^*$ the machine \mathbb{M} performs

- ▷ at most $f(\kappa(x)) \cdot p(|x|)$ steps,
- ▷ at most $h(\kappa(x)) \cdot \log |x|$ of them being nondeterministic,
- W[P] contains all problems (Q, κ) that can be decided by a κ-restricted nondeterministic Turing machine.

W[P] (properties)

Theorems

- T1. FPT \subseteq W[P] \subseteq XP \cap para-NP
- T2. W[P] is closed under fpt-reductions.
- T3. *p*-CLIQUE, *p*-INDEPENDENT-SET, *p*-DOMINATING-SET, and *p*-HITTING-SET are in W[P].

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as *output node*.

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as *output node*.

A circuit C with n input nodes defines a function $C(\cdot) : \{0,1\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

Definition

We say that C is *k*-satisfiable if C is satisfied by a tuple of weight *k*.

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as *output node*.

A circuit C with n input nodes defines a function $C(\cdot) : \{0,1\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

• If C(x) = 1, for $x \in \{0, 1\}^n$, we say that x satisfies C.

Definition

We say that C is *k*-satisfiable if C is satisfied by a tuple of weight *k*.

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as *output node*.

A circuit C with n input nodes defines a function $C(\cdot) : \{0,1\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

- If C(x) = 1, for $x \in \{0,1\}^n$, we say that x satisfies C.
- The *weight* of a tuple $x = \langle x_1, \ldots, x_n \rangle \in \{0, 1\}^*$ is $\sum_{i=1}^n x_i$.

Definition

We say that C is *k*-satisfiable if C is satisfied by a tuple of weight *k*.

W[P] complete problems

```
p-WSAT(CIRC)
Instance: A circuit C and k \in \mathbb{N}
Parameter: k.
Problem: Decide whether C is k-satisfiable.
```

Theorem

p-WSAT(CIRC) is W[P]-complete under fpt-reductions.

Definition

The depth of the circuit is the max. length of a path from an input node to the output node. Small nodes have indegree at most 2 while large nodes have indegree > 2. The weft of a circuit is the max. number of large nodes on a path from an input node to the output node. We denote by $CIRC_{t,d}$ the class of circuits with weft $\leq t$ and depth $\leq d$.

Application

p-DOMINATING-SET \in W[P], since it reduces to *p*-WSAT(CIRC_{2,3}).

Limited non-determinism (classically)

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ (\forall x \in \Sigma^* ((x \in Q \iff \mathbb{M} \text{ accepts } x))$

∧ on input x, M halts in $\leq p(|x|)$ steps, of which

at most $\leq f(|x|)$ are non-deterministic)

Limited non-determinism (classically)

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ (\forall x \in \Sigma^* ((x \in Q \iff \mathbb{M} \text{ accepts } x) \\ \land \text{ on input } x, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ \text{ at most } \leq f(|x|) \text{ are non-deterministic})$

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f] \text{ for class of functions } \mathcal{F}.$

Limited non-determinism (classically)

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine}$ $(\forall x \in \Sigma^* ((x \in Q \iff \mathbb{M} \text{ accepts } x)$ $\land \text{ on input } x, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which}$ $at most } \leq f(|x|) \text{ are non-deterministic})$

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f] \text{ for class of functions } \mathcal{F}.$

Fact

$$\mathsf{NP}[\log n] = \mathsf{P}, \qquad \mathsf{NP}[n^{O(1)}] = \mathsf{NP}.$$

Theorem (Cai, Chen, 1997)

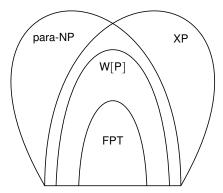
The following are equivalent:

(i) FPT = W[P].

(ii) There is a computable, nondecreasing, unbounded function $\iota : \mathbb{N} \to \mathbb{N}$ such that $\mathsf{P} = \mathsf{NP}[\iota(n) \cdot \log n]$.

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

FPT and W[P] versus para-NP and XP



Proposition $FPT \subseteq W[P] \subseteq XP \cap para-NP$.

Why is the theory of W[P]/W/A-hardness important?

- Prevents from wasting hours tackling a problem which is fundamentally difficult;
- Finding results on a problem is always a ping-pong game between trying to design a hardness/FPT result;
- There is a hierarchy on parameters and it is worth knowing which is the smallest one such that the problem remains FPT;
- There is a hierarchy on complexity classes and it is worth noting to which extent a problem is hard.

Logic preliminaries (continued)

- atomic formulas/atoms: a formula x = y or $Rx_1 \dots x_n$
- *literal*: an atom or a negated atom
- quantifier-free formula: a formula without quantifiers
- formula in negation-normal form: negations only occur in front of atoms
- Formula in prenex normal form: formula of the form Q₁x₁...Q_kx_kψ, where ψ is quantifier-free and Q₁,...,Q_k ∈ {∃, ∀}

Logic preliminaries (continued)

- atomic formulas/atoms: a formula x = y or $Rx_1 \dots x_n$
- *literal*: an atom or a negated atom
- quantifier-free formula: a formula without quantifiers
- formula in negation-normal form: negations only occur in front of atoms
- Formula in prenex normal form: formula of the form Q₁x₁...Q_kx_kψ, where ψ is quantifier-free and Q₁,...,Q_k ∈ {∃, ∀}
- Σ_0 and Π_0 : the class of quantifier-free formulas
- Σ_{t+1} : class of all formulas $\exists x_1 \dots \exists x_k \varphi$ where $\varphi \in \Pi_t$
- Π_{t+1} : class of all formulas $\forall x_1 \dots \forall x_k \varphi$ where $\varphi \in \Sigma_t$

Weighted Fagin definability

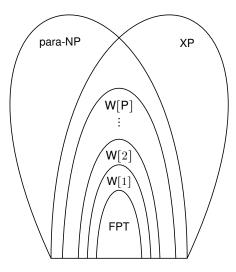
Let $\varphi(X)$ be a f-o formula with a free relation variable X with arity s. Let τ be a vocabulary for φ , plus a relation symbol R of arity s.

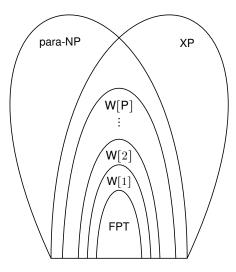
A solution for φ in a τ -structure \mathcal{A} is a relation $S \subseteq A^s$ such that $\mathcal{A} \models \varphi(\overline{S})$.

The weighted Fagin definability problem for $\varphi(X)$ is:

 WD_{φ} **Instance:** A structure \mathcal{A} and $k \in \mathbb{N}$. **Problem:** Decide whether there is a solution $S \subseteq A^s$ for φ of cardinality |S| = k.

 WD_{Φ} : the class of all problems WD_{φ} with $\varphi \in \Phi$, where Φ is a class of first-order formulas with free relation variable *X*.





p-WD $_{\varphi}$ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure \mathcal{A} and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality |S| = kwith $\mathcal{A} \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$, Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995) $W[t] := [p-WD-\Pi_t]^{\text{fpt}}$, for $t \ge 1$, form the *W*-hierarchy.

p-WD $_{\varphi}$ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure \mathcal{A} and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality |S| = kwith $\mathcal{A} \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

 $W[t] \coloneqq [p\text{-WD-}\Pi_t]^{\text{fpt}}$, for $t \ge 1$, form the *W*-hierarchy.

- ▶ *p*-CLIQUE ∈ W[1].
- p-Dominating-Set \in W[2].
- ▶ p-HITTING-SET \in W[2].

p-WD $_{\varphi}$ (φ a fo-formula with free relation variable X of arity s) Instance: A structure \mathcal{A} and $k \in \mathbb{N}$. Parameter: k. Problem: Is there a relation $S \subseteq A^s$ of cardinality |S| = kwith $\mathcal{A} \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

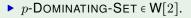
$$W[t] \coloneqq \left[p \text{-} WD \text{-} \Pi_t\right]^{\text{fpt}}$$
, for $t \ge 1$, form the *W*-hierarchy.

p-WD $_{\varphi}$ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure \mathcal{A} and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality |S| = kwith $\mathcal{A} \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$, Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995)

```
W[t] \coloneqq [p\text{-WD-}\Pi_t]^{\text{fpt}}, for t \ge 1, form the W-hierarchy.
```



p-WD $_{\varphi}$ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure \mathcal{A} and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality |S| = kwith $\mathcal{A} \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$, Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995)

```
W[t] \coloneqq [p\text{-WD-}\Pi_t]^{\text{fpt}}, for t \ge 1, form the W-hierarchy.
```

Examples

▶ p-HITTING-SET \in W[2].

Definition

```
(W-hierarchy) For t \ge 1, a parameterized problem \langle Q, \kappa \rangle belongs to the class W[t] if there is a parameterized reduction from \langle Q, \kappa \rangle to p-WSAT(CIRC<sub>t,d</sub>) (with parameter t) for some d \ge 1.
```

$\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \dots$

- ▶ *p*-CLIQUE, *p*-INDEPENDENT-SET are W[1]-Complete.
- ▶ *p*-DOMINATING-SET, *p*-HITTING-SET are W[2]-Complete.

Hypothesis: $W[1] \neq FPT$

Definition

```
(W-hierarchy) For t \ge 1, a parameterized problem \langle Q, \kappa \rangle belongs to the class W[t] if there is a parameterized reduction from \langle Q, \kappa \rangle to p-WSAT(CIRC<sub>t,d</sub>) (with parameter t) for some d \ge 1.
```

 $\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \dots$

- ▶ *p*-CLIQUE, *p*-INDEPENDENT-SET are W[1]-Complete.
- ▶ *p*-DOMINATING-SET, *p*-HITTING-SET are W[2]-Complete.

Hypothesis: W[1] ≠ FPT

Proposition

This definition of the W-hierarchy is equivalent to the one here before. That is, it holds, for all $t \ge 1$:

$$\mathsf{W}[t] = \left[\{p \text{-}\mathsf{WSAT}(\mathsf{CIRC}_{t,d}) \mid d \ge 1 \} \right]^{\mathsf{fpt}}$$

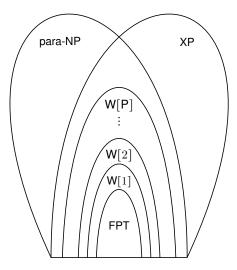
W-Hierarchy (properties)

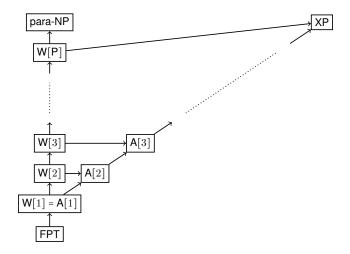
Immediate from definition follows: $[p-WD-FO]^{\text{fpt}} = \bigcup_{i=1}^{\infty} W[i]$.

Theorems

- T1. p-WD-FO \subseteq W[P], and hence W[t] \subseteq W[P] for all $t \ge 1$.
- **T2.** p-WD- $\Sigma_1 \subseteq$ FPT.
- T3. p-WD- $\Sigma_{t+1} \subseteq p$ -WD- Π_t , for all $t \ge 1$.
- T4. $W[t] = [p-WD-\Sigma_{t+1}]^{\text{fpt}}$ for all $t \ge 1$.

W-Hierarchy versus para-NP and XP





A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p-MC(\Sigma_t)]^{\text{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p-MC(\Sigma_t)]^{\text{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

- ▶ *p*-CLIQUE ∈ A[1].
- p-Dominating-Set $\in A[2]$.

A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p-MC(\Sigma_t)]^{\text{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p-MC(\Sigma_t)]^{\text{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

- ▶ p-HITTING-SET \in A[2].
- ▶ *p*-SUBGRAPH-ISOMORPHISM ∈ A[1].

A-Hierarchy (example 5)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq \left[p - \mathsf{MC}(\Sigma_t)\right]^{\mathsf{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

Examples

• p-Subgraph-Isomorphism $\in A[1]$.

 $\begin{array}{l} p\text{-}\mathsf{SUBGRAPH}\text{-}\mathsf{ISOMORPHISM}\\ \textbf{Instance:} \ \mathsf{Graphs}\ \mathcal{G} \ \mathsf{and}\ \mathcal{H}.\\ \textbf{Parameter:} \ \mathsf{The} \ \mathsf{number} \ \mathsf{of} \ \mathsf{vertices} \ \mathsf{of}\ \mathcal{H}.\\ \textbf{Problem:} \ \mathsf{Does}\ \mathcal{G} \ \mathsf{have} \ \mathsf{a} \ \mathsf{subgraph} \ \mathsf{isomorphic} \ \mathsf{to}\ \mathcal{H}. \end{array}$

A-Hierarchy (example 6)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p-\mathsf{MC}(\Sigma_t)]^{\mathsf{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

Examples

• p-VERTEX-DELETION $\in A[2]$.

p-VERTEX-DELETION
Instance: Graphs *G* and *H*, and *k* ∈ N.
Parameter: *k* + ℓ, where ℓ the number of vertices of *H*.
Problem: Is it possible to delete at most *k* vertices from *G* such that the resulting graph has no subgraph isomorphic to *H*?

A-Hierarchy (example 7)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** $|\varphi|$. **Problem:** Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p-\mathsf{MC}(\Sigma_t)]^{\mathsf{fpt}}$, for $t \ge 1$, form the *A*-hierarchy.

Examples

• p-CLIQUE-DOMINATING-SET \in A[2].

p-CLIQUE-DOMINATING-SET
Instance: Graphs G, and k, l ∈ N.
Parameter: k + l, where l the number of vertices of H.
Problem: Decide whether G contains a set of k vertices from G that dominates every clique of l elements.

A-Hierarchy (properties)

Theorems

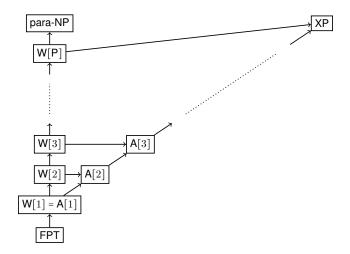
```
T1. A[1] \subseteq W[P].
```

- **T2.** $W[t] \subseteq A[t]$, for all $t \in \mathbb{N}$.
 - Unlikely: $A[t] \subseteq W[t]$, for t > 1.

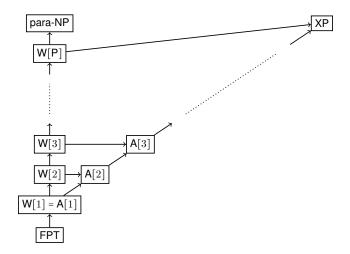
Reason:

- the A-hierarchy are parameterizations of problems that are complete for the levels of the polynomial hierarchy
- the W-hierarchy is a refinement of NP in parameterized complexity
- ► Unlikely: $[p-MC(FO)]^{\text{fpt}} = \bigcup_{i=1}^{\infty} A[i],$ contrasting with: $[p-WD-FO]^{\text{fpt}} = \bigcup_{i=1}^{\infty} W[i].$

W-Hierarchy and A-Hierarchy versus para-NP and XP



W-Hierarchy and A-Hierarchy versus para-NP and XP



Revisiting the two problems at start today

```
QUERIES

Instance: a relational database D, a conjunctive query \alpha.

Parameter: size k = |\alpha| of query \alpha

Compute: answer to query \alpha from database D.
```

- ► QUERIES ∈ NP-complete.
- QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

- ► LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ▶ LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \mathsf{FPT}$ for $n = ||\mathcal{K}||$.

Revisiting the two problems at start today

```
QUERIES

Instance: a relational database D, a conjunctive query \alpha.

Parameter: size k = |\alpha| of query \alpha

Compute: answer to query \alpha from database D.
```

- ► QUERIES ∈ NP-complete.
- QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.
- ▶ QUERIES ∈ W[1] (= strong evidence for it likely not to be in FPT).

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) \mathcal{K} , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

- ► LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ▶ LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \mathsf{FPT}$ for $n = ||\mathcal{K}||$.

Summary

- Motivation for fixed-parameter intractability
- Fixed parameter reductions
- The classes para-NP and XP
- The class W[P]
- Logic preliminaries (continued)
- W-hierarchy
 - definitions
 - with Boolean circuits
 - as parameterized weighted Fagin definability problems
- A-hierarchy
 - definition as parameterized model-checking problems
- picture overview of these classes

Course overview

Monday, July 14 10.30 – 12.30	Tuesday, July 15 10.30 – 12.30	Wednesday, July 16 10.30 – 12.30	Thursday, July 17 10.30 – 12.30	Friday, July 18
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
Introduction & basic FPT results	Notions of bounded graph width	Algorithmic Meta-Theorems	FPT-Intractability Classes&Hierarchies	
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. width	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies	
				14.30 - 16.30
				examples, question hour

Example suggestions

Examples

1. FPT results transfer backwards over fpt-reductions: If $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle$, then $Q_2 \in \text{FPT}$ implies $Q_1 \in \text{FPT}$.

2. Find the idea for:

p-DOMINATING-SET $\equiv_{fpt} p$ -HITTING-SET.

3.

References

- Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
 - Springer, 1st edition, 2015.
- Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.