Lecture 2: Graph width notions,
dynamical programming
An Introduction to Parameterized Complexity

Clemens Grabmayer

Ph.D. Program, Advanced Period
Gran Sasso Science Institute
LAquila, Italy

Tuesday, July 15, 2025

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rels summ Wed

Course overview

Monday, July 14
10.30 — 12.30

refs

Wednesday, July 16 Thursday, July 17

Friday, July 18

10.30 - 12.30 10.30 — 12.30
\ Algorithmic Techniques Formal-Method & Algorithmic Techniques \
Introduction Notions of bounded Algorithmic FPT-Intractability
& basic FPT results graph width Meta-Theorems Classes &Hierarchies

motivation for FPT
kernelization,
Crown Lemma,
Sunflower Lemma

path-, tree-, clique
width, FPT-results
by dynamic
programming,
transferring FPT
results betw. width

motivation for
FP-intractability results,
FPT-reductions, class
XP (slicewise
polynomial), W- and
A-Hierarchies, placing
problems on these
hierarchies

1st-order logic,
monadic 2nd-order
logic, FPT-results by
Courcelle’s Theorems
for tree and
clique-width

14.30 — 16.30

examples,
question hour

Clemens Grabmayer

Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Overview

» comparing parameterizations
» dynamical programming on trees, example:
» WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)
» path-width
» example: fpt-algorithm for bounded path-width
> tree-width
» example: fpt-algorithm for bounded path-width
» fpt-results for other problems, obtained similarly
» other notions of width

» clique-width
» using f-width to define:

» carving-width (and cut-width)
» branch-width
» rank-width

» comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Fixed-Parameter tractable

A parameterized problem is a triple (Q, X, k) (short: (Q, x)) where:
> @ c X7 is the set of (classical) problem instances,
> k:X* —> Nis a (general) function, the parameterization.

Parameterized problem (Q, X,)
Instance: x¢X*.
Parameter: x(zx).

Problem: IszcQ@Q?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Fixed-Parameter tractable

A parameterized problem is a triple (Q, X, k) (short: (Q, x)) where:
> @ c X7 is the set of (classical) problem instances,
> k:X* - Nis a (general) function, the parameterization.

Definition
A parameterized problem (Q, X, x) is fixed-parameter tractable
(is in FPT) if:
37 : N > N computable 3p € N[X] polynomial
JA algorithm, takes inputs in ©*

Va e $*[A decides whether z € @ holds
in time < f(x(z)) - p(|z])]

)y Assumptions for a robust fpt-theory

k() is polynomially computable, or itself fpt-computable: for all
x eX*intime < g(x(z)) - q(|z|) for g computable, g € N[X].

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Comparing parameterizations

Definition (computably bounded below)

Let k1, ko : ¥ — N parameterizations.
> k1 > Ky <= 3g:N— N computable Yz € %[g(r1(2)) > r2(z)]
P Kl NRKRy 1= Kl 2Ky N Rg ZK].

> K> Ky i< K1 =Ky A -(Ka>Ky).

Proposition

For all parameterized problems (Q, 1) and (Q, k2) with
parameterizations x1, ko : 3* - N with 1 > ko:

(Q,k1) e FPT «<— (Q,k2) € FPT
(Qa"{1> ¢ FPT — (QvKJQ) ¢ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Computably boundedness between notions of width
(from Sasak, [5])

g
wdy >wdy : < wd; > wdy

» FPT-results
transfer upwards (it
(and conversely to %)

(Maximum Induced metohing)

> (¢ FPT)-results
transfer downwards
(and along %)

ik + 5k + logk

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

You Always Walk Alone with your children)

Attivita motoria con i figli:

‘la possibilita di uscire con i figli minori & consentita a un solo genitore
per camminare purché questo avvenga in prossimita della propria
abitazione’

(Ministero dell’'Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph G = (V, E) with V' people who want to go for a
walk in the next hour in a radius of 200m of their home,
and edges in E between them if they live closer than
400m of each other. A number ¢ € N.

Problem: Is it possible that / or more people can go out in the next
hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Weighted Independent Set, and Vertex Cover

Let G = (V,E) agraph. Forall ScV:
Sisindependentsetin G :«<==Ve={u,v} e E(-(ueSAveS))
«—Ve={u,v}eE(u¢Svuve¢Ss))
WEIGHTED-INDEPENDENT-SET
Instance: A graph G = (V, E), and a weight function w : V' > R{.
Problem: What is the max. weight of an independent set of G?

Sis a vertex coverof G :«<=Ve={u,v} e E(ueSvuvels))
— Ve={u,v} e E(ugVSvuvgV~9))
< V \ Sis an independent set of G

VERTEX-COVER
Instance: A graph G = (V, E), and /e N.
Problem: Does G have a vertex cover of size at most ¢ ?

S ¢V is minimal vertex cover < V \ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET
= solution of VERTEX-COVER.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Weighted Ind. Set / Vertex Cover, width-parameterized

p*-WEIGHTED-INDEPENDENT-SET
Instance: A graph G = (V, E), and a weight function w : V - R}.
Parameter: path-width / tree-width £.
Problem: What is the max. weight of an independent set of G ?

p*-VERTEX-COVER
Instance: A graph G = (V, E), and (e N,
Parameter: path-width / tree-width £.
Problem: Does G have a vertex cover of size at most ¢ ?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET
Instance: Atree T = (T, F'), and a weight function w : T' —» R{.
Problem: What is the max. weight of an independent set of 7 ?

Obtain a directed tree T = (T, F, r) (pick a root r, orient edges away).
» A[v]:= max. weight of an independent set in subtree 7, at v,
» B[v]:= max. weight of an ind. set in 7, that does not contain v.

Computation of A[v] and B[v]:
> in leafs: B[v] =0, Alv] =w(v).
» for inner vertices v with children vy, ..., v,:

d q
Blv] =) Afvi], Alv] = max{B[v],w(v) + ZB[UZ]}
=1 i1
Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET
Instance: Atree 7 = (7, F'), and a weight function w : T' — R{.
Problem: What is the max. weight of an independent set of 7 ?

Theorem
On trees with n nodes,
WEIGHTED-INDEPENDENT-SET € DTIME(O(n)).

VERTEX-COVER
Instance: Atree 7 = (T, F), and /e N.
Problem: Does 7 have a vertex cover of size at most 7 ?

Corollary

On trees with n nodes,
VERTEX-COVER € DTIME(O(n)).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Path-decomposition (example)

<ES<F‘< “—®
®)

s

I (Y L) S Y Lo S o ey

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Path decompositions, and path-width

Definition (Robertson—Seymour, 1983)

A path decomposition of a graph G = (V, E) is a sequence
(B1,Ba,...,B,) of bags B; ¢ V such that:
(P1) V=Uj_; B; (every vertex of G is in some bag).
(P2) (VY{u,v}eE)(Fie{L,2,....,r)[{u,v} < B;]
(every edge of G is realized in some bag).
(P3) (YveV)(Ji,ke{l,...,r},i<k)[{jlveB;}=1[ik]]

(the list of bags that contains a vertex of G
is (B, ..., By) for some interval [, k])

The width of path decomp. (B1, Ba, ..., B,)ismax{|By|-1|1<t<r}.
The path-width pw(G) of a graph G = (V, E) is defined by:
pw(G) = minimal width of a path decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Path-decomposition (example)

<ES<F‘< “—®
®)

s

I (Y L) S Y Lo S o ey

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Path decomposition defines separations

Lemma
Let (B, Bs,...,B,) be a path decomposition of a graph G = (V, E).
Then for alli e {1,...,r -1} it holds:
> (U;'-=1 Bj,Uj_;.. Bj) is a separation of G with separator B; N B, ..
» J(Ujq Bj) € Bin Biy1.

» A pair (A, B) of subsets A, B ¢V is a separation of g if:
» V=AuB
» there is no edge between A\ B and B \ A.
An B is called the separator of a separation (A, B),
and |An B| is called its order.
» The border (set of border vertices))(A) ofa set AcV of
vertices consists of all vertices that have a neighbor in V' A.
Note that:

» J(A)=0(V NA).
» (A, (V~NA)ud(A))is aseparation of G, forall Ac V.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Path-decomposition (example)

<ES<F‘< “—®
®)

s

I (Y L) S Y Lo S o ey

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Caterpillar

Path-width?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Nice path decomposition

Definition
A path decomposition (B, Bs, ..., B,.) of a graph G = (V, E) is nice if:
» Bi=B,=¢

» Every index i > 1 is either of:

» introduce index: there is v € V such that B;+1 = B; u{v} and v ¢ B;,
» forget index: there is v € V' such that B;;1 = B; ~ {v} and v € B;.

(1)
7 \/\ /\ ; & Y
©—0O—=C 2

e /"v/ ’

(H 1)
6o Y g
\) \/\ %)

~@

&

‘:\.B,('HC.D.EHDAE‘FHD ¥ (;HD‘FI]H 01 HI.J.K ‘

Nice path decomposition:

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Nice path decomposition

Definition
A path decomposition (B, Bs, ..., B,.) of a graph G = (V, E) is nice if:
» Bi=B,=@

» Every index i > 1 is either of:

» introduce index: there is v € V such that B;+1 = B; u{v} and v ¢ B;,
» forget index: there is v € V such that B;+1 = B; ~ {v} and v € B;.

Lemma

From every path decomposition (By, Bs, ..., B,) ofagraph G = (V, E)
of width I a nice path decomposition (B, Bj, ..., B.,) of width . can
be constructed in time O(k* - max {r,n}) where n := |V]|.

[ABGHCDEHDEFHDFGHDFH LJK]

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Weighted Independent Set

Let G = (V, E) a graph.
S cVisindependent setin G :<= Ve = {u,v} (~(ueSAveSs)).

WEIGHTED-INDEPENDENT-SET
Instance: A graph G = (V, E), and a weight function w : V' > R{.
Parameter: path-width #.
Problem: What is the max. weight of an independent set of G?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Path-decomposition (example)

<ES<F‘< “—®
®)

s

I (Y L) S Y Lo S o ey

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let (By,..., B,) be a nice path decomposition of G = (V, E).
Then for every i € {1,...,r}, and every S c B;, we define:
—00 if S'is not independent

o[i, 5] = maximum possible weight of a setS such that
’ Sisindependent A ScScV;=U;, Bj A SnB; =8
if S is independent.

Recursive equations for computing ¢[4, S] for independent S:
» Casei=1: [1,8]=0
» Casei+1:
» i+ lintroduces v: Bi.1=B;u{v}andv¢ B;,
c[i+1,5] = C[Z.’S] it s,
cli, S~ {v}]+w(v) ifves;
» i+ 1forgetsv: Bjw1=B;~{v}andve B;,
c[i+1,8] = max{c[i,S], c[i, S u {v}]} .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let (By,..., B;) be a nice path dec. of G = (V, E) of width k.
Foreveryice{1,...,r}, and every independent S c B;, we define:
i, 5] maximum possible weight of a set S such that
’ Sisindependent A ScScVi=UL B; A SnB;=S

Time Complexity: Based on the values of ¢[i, S], the maximum
possible weight of an independent set S ¢ IV can be computed as:

= max c[r,S] =c[r,o]

Thenforallie{1,...,n}:

4 |B7,| <k+1,

» = number of values c[i, S] at index i: 2Bl = 2~+1,

» = adjacency/independence check for S ¢ B; possible in: O(k”)

using a datastructure computable in time O (k71 - 1),

» time for comp. a value at i, using map of values ati - 1: ~ O(k)

» time for comp. all values at 4, using values ati — 1: 2% - O(k?)
= the time for computing all values at r:

(21 0(k?)) -+ O(k°M .n) e O(2F - k9), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dynamical programming with path width (example)

Theorem
For every graph G = (V, E) with |V | = n and path-width pw(G) = k,
p*-WEIGHTED-INDEPENDENT-SET € DTIME(2" - .91 . p).

S is a minimal vertex cover
< V \ Sis a maximal independent set.

Corollary
For every graph G = (V, E) with |V| = n and path-width pw(G) = F,
p*VERTEX-COVER ¢ DTIME(2" - .91 .).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ

Tree decomposition (example)

r'\/ J\f (\/T\

b /——“”\F/ >/

The original graph G

Clemens Grabmayer

Wed refs

A, B
G EF B,C, D, H D. F, G
A tree-decompostion of width 3
A B B, C D
CEF C. D | D,F, G

A tree-decompostion of width 2

Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé—Brioschi, 1972, Halin, 1976, Robertson—Seymour, 1984)

A tree decomposition of a graph G = (V, E) is a pair (7, { Bt },.)
where T = (T, F') a (undirected, unrooted) tree, and B; ¢ V such that:
(T1) V =Uwer B: (every vertex of G is in some bag).
(T2) (V{u,v} e E)(3teT)[{u,v}cB]

(the vertices of every edge of G are realized in some bag).

(T3) (VveV)[subgraph of 7 defd. by {teT |ve B} is connected |
(the tree vertices (in 7)) whose bags contain some vertex of G
induce a subgraph of 7 that is connected).

The width of a tree decomposition (7, {B:},.) is
max {|By|—1|teT}.

The tree-width tw(G) of a graph G = (V, E) is defined by:
tw(G) = minimal width of a tree decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ

Tree decomposition (example)

r'\/ J\f (\/T\

b /——“”\F/ >/

The original graph G

Clemens Grabmayer

Wed refs

A, B
G EF B,C, D, H D. F, G
A tree-decompostion of width 3
A B B, C D
CEF C. D | D,F, G

A tree-decompostion of width 2

Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Tree decomposition defines separations

Lemma

Let (T ,{B:},.r) be a tree decomposition of a graph G = (V, E).
Lete = (a,b) be an edge of T. The T \ e is the union of a tree T,
containing a, and a tree T, containing b.
Then for A = Usey (7,) Bt @and B := Uev (7 By it holds:

> (A, B) is a separation of G with separator B, n By,.

» J(A),d(B) € B, n By.

Recall, for a graph G = (V, E):
> A pair (A, B) of subsets A, B ¢V is a separation of G if:
» V=AuB
» there is no edge between A\ B and B \ A.

An B is called the separator of a separation (A, B),
and |An B| is called its order.

» The border (vertices) O(A) ofa set A c V of vertices consists of
all vertices that have a neighbor in V'« A.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Computing tree-width

TREE-WIDTH
Instance: A graph G and k e N.
Problem: Decide whether tw(G) = k.

Theorem
TREE-WIDTH is NP-complete.

p-TREE-WIDTH
Instance: A graph G = (V,E) and k € N.
Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem

p-TREE-WIDTH is fixed-parameter tractable,
in time 27*) 1, where n. := |V/|.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Nice tree decomposition

Definition
A tree decomposition (T ,{B:},.;) of graph G = (V, E) is nice if it is
based on the choice of a leaf as root and the parent—children
relation away from » such that:
» B.=@,and B, = & for every leaf £ € T.
» Every non-leaf node ¢ € T'is of one of three types:
» introduce node: ¢ has exactly one child ¢ such that B; = By u {v};
we say v is introduced at ¢.
» forget node: ¢ has exactly one child ¢ such that B, = By \ {w} for

some w € By; we say w is forgotten at ¢.
» join node: a node ¢ with two children ¢, ¢> such that B, = By, = By, .

Lemma

From every tree decomposition (T ,{B:},.r) of agraph G = (V, E) of
width k a nice tree decomposition (T',{B;},.r.) of width k

and with 1 := |V (T)| € O(kn) vertices

can be constructed in time O(k* - max {r,n}) where n :=|V]|.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ

Tree decomposition (example)

r'\/ J\f (\/T\

b /——“”\F/ >/

The original graph G

Clemens Grabmayer

Wed refs

A, B
G EF B,C, D, H D. F, G
A tree-decompostion of width 3
A B B, C D
CEF C. D | D,F, G

A tree-decompostion of width 2

Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Weighted Independent Set

Let G = (V, E) a graph.
S cVisindependent setin G :<= Ve = {u,v} (~(ueSAveSs)).

WEIGHTED-INDEPENDENT-SET
Instance: A graph G = (V, E), and a weight function w : V' > R{.
Parameter: tree-width £.
Problem: What is the max. weight of an independent set of G?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs
Dynamical programming using tree-width (example)

For every node ¢ of a nice tree decomposition, and every S ¢ B;, we

define: —00 if S is not independent,

c[t, 5] = maximum possible weight of a setAS such that
7727 | Sisindependent A SCScV, A SNB, =S
if S is independent.

Recursive equations for computing c[t, S] for independent S

» leaf node ¢: ¢[t,5]=0
» introduction node ¢ of vertex v with child ¢ :
[t 5] :{c[t’,S] ifvgéSl
c[t',S~{v}]+w(v) otherwise
» forget node ¢ of vertex v with child ¢ :
clt,S] = max{c[t', S], c[t', Su {v}]}
» join node ¢ with children ¢; and ¢ :
c[t, S] = c[t1,S] + ¢[t2, S] - w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)

Let (7 = (T, F,r),{B:},.r) be anice tree decomposition of G = (V, E)
of width k. For every ¢t € T, and every independent S ¢ B;:
[t.5] maximum possible weight of a set S such that
’ S'is independent A S €SV, =Usr, Bs A SnB;=S
Time Complexity: Based on the values of ¢[¢, 5], the maximum
possible weight of an independent set S ¢ V' can be computed as:
= max c[r,S] =c[r,o]
ThenforallteT':
4 |Bt| <k+ 1,
» = number of values c[t, S] atindex ¢: 215 = 2#+1,
» = adjacency/independence check for S c B; possible in: O(k”)
using a datastructure computable in time O (k7" . 1),
» time for comp. a value at ¢, using map of values att—1: O(k)
» time for comp. all values at ¢, using values at t — 1: 281 . O(k?)
= the time for computing all values at the root r:
2F 1 0(k2)) - T+ O(kPM .n) e O(2F - kO 1), since |T| € O(k - n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dynamical programming with tree width (example)

Theorem
For every graph G = (V, E) with |V | =n and tree-width tw(G) = k,
p*-WEIGHTED-INDEPENDENT-SET € DTIME(2" - £7(1) .).

S is a minimal vertex cover
< V \ Sis a maximal independent set.

Corollary
For every graph G = (V, E) with |V| = n and tree-width tw(G) = k,
p*-VERTEX-COVER € DTIME(2F - V(1) . n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = (V, E) of size n and nice tree
decompositions (7 = (T, F,r), {B:},.r) of tree width /.
» Formulate a family of properties that can be restricted to
subtrees of 7 such that
» a solution of P can be obtained from the properties at the root of 7.
» Find recursion equations for bottom-up evaluation on 7.

» Prove correctness of these recursion equations by showing two
inequalities for each type of node:

» one relating an optimum solution for the node to some solutions for
its children,

» one relating optimum solutions for a node’s children to a solution
for the node.

» Obtain an estimate of the time needed to compute the properties
in a node t depending on n and .

» Sum up the time needed to compute the solution(s) at root » of 7.
» Add time needed to obtain the solution of P from properties at r.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dynamical programming: similar results (1)

Theorem
For every graph G = (V, E) with |V | =n and tw(G) = k,
» p*-VERTEX-COVER, INDEPENDENT-SET € DTIME (2" - k1) .),
» p*-DOMINATING-SET e DTIME(4* - kM) . 1),
» p*-ODD CYCLE TRAVERSAL € DTIME(3F - k91 .),
» p*-MAXCUT e DTIME(2F - k91 .),
» p*-g-COLORABILITY € DTIME(¢* - k9™ .).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Dynamical programming: similar results (I1)

Theorem

For every graph G = (V, E) with |V | =n and tw(G) = k, the following
problems are in DTIME (k™) . n) :

» p*-STEINER-TREE,

p*-FEEDBACK-VERTEX-SET,
p*-HAMILTONIAN-PATH and p*-LONGEST-PATH,
p*-HAMILTONIAN-CYCLE and p*-LONGEST-CYCLE,
p*-CHROMATIC-NUMBER,

p*-CYCLE-PACKING,
p*-CONNECTED-VERTEX-COVER,
p*-CONNECTED-FEEDBACK-VERTEX-SET.

vVVvVvyVvVVvyyvwvyy

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Clique width (example)

=

i
SR RN

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Clique-Width

For k € N, the k-expressions are defined by:

@, 1,02 u= 1 | edge;—;(¢) | recolori;(v) | (1 @ ¢2)
fori,j e [k] with i # j. k-expressions o generate graphs G():

> G(1) is the graph with a single vertex of color :.

> G(edge:—;(v)) results from G(¢) by adding edges between every vertex
of color ¢ and every vertex of color j.

> G(recolor;—;(¢)) results from G(¢) by recoloring every vertex of color i
by color j.
> G(p1 ® p2) is the disjoint union of G(1) and G(2).
Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])
The clique-width clw(G) of G = (V, E) is defined by:

clw(G) :=the least k € N such that, for some k-expression ¢,
G = G(¢) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Clique width (example)

Building a graph G of clique-width c/w(G) = 3:

=

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Cligue-Width (examples, properties, computability)

Example
» The class of cliques has clique-width 2.
» The class of stars has clique-width 2.
» The class of trees has clique-width 3.
» The class of n x n grids has clique-width ©(n).

» subgraphs/induced subgraphs:

» clique-width is preserved under taking induced subgraphs,
» clique-width is not preserved under taking subgraphs (e.g. minors).

> clw< tw:
» clw=tw: clw(G) <3291
» —(tw < clw): for example, ciw(K,,) =2, and tw(K,) =n - 1.
» Deciding whether c/w(G) < k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.
» Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

f-Width (of sets)

By a cut function or a connectivity function we mean a function
f:2Y - R{ such that:
fis symmetric: <= VX cU [f(X) = [(U~X)];
fis fair: <= f(@)=f(U)=0.

ab be

fi
eh hi

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Branch-Width

Definition
Let G = (V, E) be a graph. The border (vertices) of a set X c F of
edges is defined by:

O(X)={veV |Je1eX3ese EN X
[vis incident to e; and e]}

The branch-width bw(G) of a graph G = (G, E) is defined as
bw(G) =w;(E) for f:2F SRy, X = |0(X)|

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Rank-Width

Definition
Let G = (V, E) be a graph.
For X c V we define the GF(2)-matrix:

Bg(X) := (bg,y)zex,yev~x , Where, forallz e X,y e V \ X:

bpy=1<={z,y} € E.

(Bg(X) is the adjacency matrix of the bipartite graph induced by G between
Xand VX))
The rank-width rw(G) of a graph G = (G, E) is:

w(G):=w,. (E) for pg:2Y = Ny, X - rank of Bg(X)

Properties

> 'w(G) < tw(G).
» tree-width cannot be bounded functionally by rank-width:
w(K,) =1, but tw(K,,) =n-1.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs
Carving-Width and Cut-Width

Definition
Let G = (V, E) be a graph.
For X c V the edge-cut of X is:

cutg(X):={e={u,v} e Elue X,veVX}.
The carving-width carw(G) of a graph G = (G, E) is:
carwm(G) = we(E) for cut:2V — Ny, X v |cutg(X)] .
Definition

Let G = (V, E) be a graph with n = |[V|.
For a permutation 7 : {1,...,n} - V on V we define:

width(r) := max Cutg({/l (J)|1<j<i}).

The cut-width cutw(G) of G is:

cutw(G) := min, perm. of v Width(r) .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Coverage in Multi-Interface Networks

0 gl — A
y/ \lm

®r’.|

CMiI(p) (for p € N)

Instance: A graph G = (V, E), W :V — 2{L-e} gvailable-interface
allocation, c¢:{1,...,a} - R* interface cost function.

Solution: An allocation W, : V — 2{1:--4} of active interfaces
covering G such that W4 (v) € W(v), and [W4(v)| < p for
all v € V, if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,

C(WA) = Yoev ZiEWA(’U) 0(7')

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem
CMI(2) e NP-complete, also for graphs with max. node degree > 4.

p*-CMI(p) (for p € N)
Instance: A graph G = (V, E), W :V — 2{1a} gvailable-interface
allocation, c¢:{1,...,a} - R* interface cost function.
Parameter: path-width / carving-width %
Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(Wa) = Xoev Ziew s (v) (1)-

Theorem (Aloisio, Navarra, 2020, [1])

» For path-width pw(G) = F,
p*-CMI(2) € DTIME(n- (a + (5))"*).
» For carving-width carw(G) = k, p*-CMI(2) € DTIME(n - a*").

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem (Aloisio, Navarra, 2020, [1])
> For path-width pw(G) =k,
p*-CMI(2) e DTIME(n - (a + (;))“1).
» For carving-width carw(G) = k, p*-CMI(2) e DTIME(n - a*").

(p*)~CMI(p) (for p e N)
Instance: A graph G = (V, E), W :V — 2{1--2} available-interface
allocation, c¢:{1,...,a} — R* interface cost function.
Parameter: « + (path-width / carving-width %)
Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(Wa) =Xpev ZieWA(v) c(1).

Corollary
(p*)-CMI(p) € FPT.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Comparing parameterizations

Definition (computably bounded)

Let k1, ko : ¥ — N parameterizations.
> k1 > Ky <= 3g:N— N computable Yz € %[g(r1(2)) > r2(z)]
P Kl NRKRy 1= Kl 2Ky N Rg ZK].

> K> Ky i< K1 =Ky A -(Ka>Ky).

Proposition

For all parameterized problems (Q, 1) and (Q, k2) with
parameterizations x1, ko : 3* - N with 1 > ko:

(Q,k1) e FPT «<— (Q,k2) € FPT
(Qa'%l) ¢ FPT — (QvHQ) ¢ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Computably boundedness between notions of width

(from Sasak, [5])

g(k)
wdy >wds : < wdy — wds

» FPT-results
transfer upwards
(and conversely to)

(Dominating nuber) (Maximum Inducod matohing)

» (¢ FPT)-results
transfer downwards
(and along %)

ik + 5k + logk

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Summary

» comparing parameterizations
» dynamical programming on trees, example:
» WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)
» path-width
» example: fpt-algorithm for bounded path-width
> tree-width
» example: fpt-algorithm for bounded path-width
» fpt-results for other problems, obtained similarly
» other notions of width

» clique-width
» using f-width to define:

» carving-width (and cut-width)
» branch-width
» rank-width

» example problem: coverage in multi-interface networks
» comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt compparam’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Wednesday

Friday, July 18

Monday, July 14 Tuesday, July 15 Thursday, July 17
10.30 — 12.30 10.30 - 12.30 10.30 — 12.30
\ Algorithmic Techniques [Formal-Method & Algorithmic Techniques [
Introduction Notions of bounded Algorithmic FPT-Intractability
Meta-Theorems Classes &Hierarchies
| motivation for

graph width
1st-order logic,
FP-intractability results,

& basic FPT results
motivation for FPT path-, tree-, clique
kernelization, width, FPT-results monadic 2nd-order
Crown Lemma, by dynamic logic, FPT-results by FPT-reductions, class
Sunflower Lemma programming, Courcelle’s Theorems XP (slicewise
transferring FPT for tree and polynomial), W- and
results betw. width clique-width A-Hierarchies, placing
problems on these
hierarchies
14.30 — 16.30
examples,
question hour

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

Thursday

» recalling notions from logic:
» propositional, and first-order logic
» monadic second-order logic (MSO)

» Courcelle’s Theorem: obtaining FPT-results by

» model-checking of MSO-properties
on graphs and structures of bounded tree-/clique-width

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

References |

@ Alessandro Aloisio and Alfredo Navarra.
Constrained connectivity in bounded x-width multi-interface
networks.
Algorithms, 13(2), 2020.

[§ Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg.
Handle-rewriting hypergraph grammars.
Journal of Computer and System Sciences, 46(2):218 — 270,
1993.

@ Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh.

Parameterized Algorithms.
Springer, 1st edition, 2015.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpot comp param’s (extrees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel's summ Wed refs

References Il

@ Jorg Flum and Martin Grohe.
Parameterized Complexity Theory.
Springer, 2006.

ﬁ Rébert Sasak.
Comparing 17 graph parameters.
Master’s thesis, University of Bergen, Norway, 2010.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

	Overview
	Fpt-tractable
	Comparing parameterizations
	Dynamic programming on trees
	Path-Width
	Dynamic programming example
	Tree-Width
	Dynamic programming example
	Other results
	Clique-Width
	f-Width
	Branch-Width
	Rank-Width
	Carving-Width
	CMI
	Relationships
	Summary
	Tomorrow
	References

