
course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Lecture 5: Three More Models
Models of Computation

https://clegra.github.io/moc/moc.html

Clemens Grabmayer

Teaching Mobility Program (PNRR-TNE DESK)
University of Novi Sad

Novi Sad, Serbia

March ., 2026

Clemens Grabmayer Lecture 5: Three More Models

https://clegra.github.io/moc/moc.html


course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Course overview

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus Three more Models of

Computation

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

imperative
programming algebraic programming functional

programming

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Some Models of Computation
machine model mathematical model sort
Turing machine Combinatory Logic

classical

Post machine λ-calculus
register machine Herbrand–Gödel recursive functions

partial-recursive/µ-recursive functions
Post canonical system (tag system)

Post’s Correspondence Problem
Markov algorithms

Lindenmayer systems
Fractran less well known

cellular automata term rewrite systems

modern

neural networks interaction nets
logic-based models of computation
concurrency and process algebra

ς-calculus
evolutionary programming/genetic algorithms
abstract state machines

hypercomputation speculative
quantum computing

physics-/biology-
inspired

bio-computing
reversible computing

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Overview

▸ Post’s Correspondence Problem (by Emil Post, 1946, [6])

▸ Interaction Nets (by Yves Lafont, 1990, [4])

▸ Lambdascope (Vincent van Oostrom, 2003, [5])

▸ Lambdascope animation tool (Jan Rochel, 2010, [7])

▸ Compare computational power of models of computation

▸ Fractran (by John Horton Conway, 1987, [2])

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Post’s Correspondence Problem (PCP)

Emil Leon Post:
▸ ”A Variant of a Recursively Unsolvable Problem”

Bulletin of the American Mathematical Society, 1946.

Instance of PCP:

I = {⟨g1, g
′
1⟩, . . . , ⟨gk, g

′
k⟩}, where k ≥ 1, gi, g′i ∈ Σ

+ for i ∈ {1, . . . , k}.

Question: Is I solvable?
Do there exist n ≥ 1, and i1, . . . , in ∈ {1, . . . , k} such that:

gi1gi2 . . . gin = g
′
i1
g′i2 . . . g

′
in

?

Theorem
Codings of solvable instances of PCP:

{⟨

PCP instance I
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{⟨g1, g

′
1⟩, . . . , ⟨gk, g

′
k⟩ ∣ k ≥ 1, gi, g

′
i ∈ Σ

+} ⟩ ∣ I is solvable}

form a set that is recursively enumerable, but not recursive.

Clemens Grabmayer Lecture 5: Three More Models

https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-52/issue-4/A-variant-of-a-recursively-unsolvable-problem/bams/1183507843.pdf


course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Interaction Nets

Yves Lafont (1990) [4] (link pdf) proposed:
▸ a programming language with a simple graph rewriting semantics

An interaction net is specified by:
▸ a set of agents
▸ a set of interaction rules

Analogy with:

▸ electric circuits:
▸ agents ∧

= gates,
▸ edges ∧

= wires

▸ agents as computation entities:

▸ interaction rules specify behavior

Clemens Grabmayer Lecture 5: Three More Models

https://dl.acm.org/doi/pdf/10.1145/96709.96718


course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Comparing computational power via encodings

▸ Simulation of functions:
function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1 ∀f1 ∈ F1 f1 f2 ∃f2 ∈ F2 M2

▸ Simulation of models of computationM1 = ⟨D1,F1⟩,M2 = ⟨D2,F2⟩:
M2 can simulateM1 via ρ (M1 ≲ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2 (f2 simulates f1 via ρ)

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:
▸ informally computable/effective/mechanizable in principle
▸ computable with respect to a specific model (Turing machine, . . . )

Boker & Dershowitz [1]: want a ‘robust definition that does not itself depend
on the notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006 [1]])

(i) M1 ≲M2 if: there is an injective ρ such thatM1 ≲ρM2

(ii) M1 ≲bijectiveM2 if: there is a bijective ρ such thatM1 ≲ρM2

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Anomalies for decision models
However, we found anomalies of these definitions.

M= ⟨D,F⟩ is a decision model if {0,1} ⊆D, ∀f ∈F (f[D] ⊆ {0,1}).

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with {0,1} ⊆ Σ,Γ be alphabets.
Then for every countable decision modelM= ⟨Σ∗,F⟩, it holds:

M ≲ DFA(Γ) M ≲bijective DFA(Γ)

TMD(Σ) : class of Turing machine deciders with input alphabet Σ

Anomaly (example)

TMD(Σ) ≲bijective DFA(Γ)

These anomalies for decision models and bijective encodings:
▸ depend on uncomputable encodings
▸ can be extended to some moc’s with unbounded output domain
▸ but do not extend to all moc’s

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Simulations between models of computation

models M1 ∈ M1 and M2 ∈ M2 simulate each other with respect to
computable coding ⌜⋅⌝ ∶ IM1 → IM2 and decoding ‘ ⋅ ’ ∶ OM2 → OM1 if:

⋆M 1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

αM2
(x2) ∈ CM2

αM1
(x1) ∈ CM1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

⋆M 1

αM1
(x1) ∈ CM1

αM2
(x2) ∈ CM2

(defines a Galois connection)

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a classM of
machines/systems/. . . such that every M ∈ M it holds:

▷ M has a countable set IM of input objects, and a countable set
OM of output objects that are specific to the MoCM;

▷ M has a set CM of configurations of M , which contains the
subset ECM ⊆ CM of end-configurations of M ;

▷ M has an injective input function αM ∶ IM → CM , which maps
input objects of M to configurations of M ; αM is computable;

▷ M defines a one-step computation relation Z⇒M on the set CM ;
the transitive closure of Z⇒M is designated by Z⇒∗M ;

▷ M has a partial output function ωM ∶ ECM ⇀ OM, which maps
some end-configurations of M to output objects of M ;
ωM is computable, and membership of end-configurations
in dom(ωM) is decidable.

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Simulations between models of computation

models M1 ∈ M1 and M2 ∈ M2 simulate each other with respect to
computable coding ⌜⋅⌝ ∶ IM1 → IM2 and decoding ‘ ⋅ ’ ∶ OM2 → OM1 if:

⋆M 1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

αM2
(x2) ∈ CM2

αM1
(x1) ∈ CM1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

⋆M 1

αM1
(x1) ∈ CM1

αM2
(x2) ∈ CM2

(defines a Galois connection)

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Comparing Computational Power of MoC’s

Definition
LetM1 andM2 be MoC’s.

1 The computational power ofM1 is subsumed by that ofM2,
denoted symbolically byM1 ≤M2, if:

(∃a pair ⟨⌜⋅⌝, ‘ ⋅ ’⟩ of computable encoding and decoding func-
tions ⌜⋅⌝ ∶ IM1 → IM2 and ‘ ⋅ ’ ∶ OM2 → OM1

(∀M1 ∈ M1) (∃M2 ∈ M2)

[M1 and M2 simulate each other w.r.t. ⟨⌜⋅⌝, ‘ ⋅ ’⟩ ] .

2 The computational power ofM1 is equivalent to that ofM2,
denoted byM1 ∼M2, if bothM1 ≤M2 andM2 ≤M1 hold.

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Comparing Computational Power of MoC’s

Theorem
For all modelsM1 andM2, and encoding and decoding functions
⌜⋅⌝ ∶ IM1 → IM2 and ‘ ⋅ ’ ∶ OM2 → OM1 it holds:

M1 ≤⟨⌜⋅⌝,‘⋅’⟩M2 Ô⇒ F(M1) ⊆ { ‘ ⋅ ’ ○ f ○ ⌜⋅⌝ ∣ f ∈ F(M2) } .

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Turing completeness and equivalence

By TM(Σ) we mean the model of Turing machines over input
alphabet Σ.

Definition
LetM a model of computation.

M is Turing-complete if TM(Σ) ≤M for some alphabet Σ with Σ ≠ ∅.

M is Turing-equivalent ifM∼ TM(Σ) for some alphabet Σ ≠ ∅.

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Fractran

John Horton Conway:

▸ article:
▸ FRACTRAN:

A Simple Universal Programming Language for Arithmetic

▸ talk video:
▸ ”Fractran: A Ridiculous Logical Language”

Clemens Grabmayer Lecture 5: Three More Models

https://www.uctv.tv/shows/Fractran-A-Ridiculous-Logical-Language-with-John-Conway-23320


course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Summary

▸ Post’s Correspondence Problem (by Emil Post, 1946, [6])

▸ Interaction Nets (by Yves Lafont, 1990, [4])

▸ Compare computational power of models of computation

▸ Fractran (by John Horton Conway, 1987, [2])

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Some Models of Computation
machine model mathematical model sort
Turing machine Combinatory Logic

classical

Post machine λ-calculus
register machine Herbrand–Gödel recursive functions

partial-recursive/µ-recursive functions
Post canonical system (tag system)

Post’s Correspondence Problem
Markov algorithms

Lindenmayer systems
Fractran less well known

cellular automata term rewrite systems

modern

neural networks interaction nets
logic-based models of computation
concurrency and process algebra

ς-calculus
evolutionary programming/genetic algorithms
abstract state machines

hypercomputation speculative
quantum computing

physics-/biology-
inspired

bio-computing
reversible computing

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

Course overview

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus Three more Models of

Computation

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

imperative
programming algebraic programming functional

programming

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

References I

Udi Boker and Nachum Dershowitz.
Comparing computational power.
Logic Journal of the IGPL, 14(5):633–647, 10 2006.

John Horton Conway.
FRACTRAN: A Simple Universal Programming Language for
Arithmetic.
58(2):345–363, April 1936.

Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks.
Regularity-Preserving but not Reflecting Encodings.
In Proceedings of the 30th Annual ACM/IEEE Symposium on
Logic in Computer Science 2015 (Kyoto, Japan, July 6–10,
2015), pages 535–546, July 2015.

Yves Lafont.
Interaction Nets.
Proceedings of POPL’90, pages 95–108, 1990.

Clemens Grabmayer Lecture 5: Three More Models



course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

References II

Vincent van Oostrom, Kees-Jan van de Looij, and Marijn
Zwitserlood.
Lambdascope.
Extended Abstract, Workshop ALPS, Kyoto, April 10th 2004,
2004.
http://www.phil.uu.nl/˜oostrom/publication/pdf/
lambdascope.pdf.

Emil Leon Post.
A Variant of a Recursively Unsolvable Problem.
Bulletin of the American Mathematical Society, 52:264–268,
1946.

Clemens Grabmayer Lecture 5: Three More Models

http://www.phil.uu.nl/~oostrom/publication/pdf/lambdascope.pdf
http://www.phil.uu.nl/~oostrom/publication/pdf/lambdascope.pdf


course some MoCs ov PCP I-Nets how compare MoCs? abstract MoCs compare MoCs Fractran summ some MoCs course refs

References III

Jan Rochel.
graph-rewriting-lambdascope: Lambdascope, an optimal
evaluator of the lambda calculus.
Haskell package on Hackage, https://hackage.haskell.
org/package/graph-rewriting-lambdascope, 2010.
Lambdascope interaction-net animation tool.

Clemens Grabmayer Lecture 5: Three More Models

https://hackage.haskell.org/package/graph-rewriting-lambdascope
https://hackage.haskell.org/package/graph-rewriting-lambdascope

	Course overview
	Some Models of Computation
	Overview
	Post's Correspondence Problem
	Interaction Nets
	General Encodings
	Abstractly viewed MoCs
	Comparing MoCs
	Fractran
	Summary
	Some Models of Computation
	Course summary
	References

