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Overview

▸ Post’s Correspondence Problem (by Emil Post, 1946, [6])

▸ Interaction Nets (by Yves Lafont, 1990, [4])

▸ Lambdascope (Vincent van Oostrom, 2003, [5])

▸ Lambdascope animation tool (Jan Rochel, 2010, [7])

▸ Compare computational power of models of computation

▸ Fractran (by John Horton Conway, 1987, [2])
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Post’s Correspondence Problem (PCP)

Emil Leon Post:
▸ ”A Variant of a Recursively Unsolvable Problem”

Bulletin of the American Mathematical Society, 1946.

Instance of PCP:

I = {⟨g1, g
′
1⟩, . . . , ⟨gk, g

′
k⟩}, where k ≥ 1, gi, g′i ∈ Σ

+ for i ∈ {1, . . . , k}.

Question: Is I solvable?
Do there exist n ≥ 1, and i1, . . . , in ∈ {1, . . . , k} such that:

gi1gi2 . . . gin = g
′
i1
g′i2 . . . g

′
in

?

Theorem
Codings of solvable instances of PCP:

{⟨

PCP instance I
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{⟨g1, g

′
1⟩, . . . , ⟨gk, g

′
k⟩ ∣ k ≥ 1, gi, g

′
i ∈ Σ

+} ⟩ ∣ I is solvable}

form a set that is recursively enumerable, but not recursive.
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Interaction Nets

Yves Lafont (1990) [4] (link pdf) proposed:
▸ a programming language with a simple graph rewriting semantics

An interaction net is specified by:
▸ a set of agents
▸ a set of interaction rules

Analogy with:

▸ electric circuits:
▸ agents ∧

= gates,
▸ edges ∧

= wires

▸ agents as computation entities:

▸ interaction rules specify behavior
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Comparing computational power via encodings

▸ Simulation of functions:
function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1 ∀f1 ∈ F1 f1 f2 ∃f2 ∈ F2 M2

▸ Simulation of models of computationM1 = ⟨D1,F1⟩,M2 = ⟨D2,F2⟩:
M2 can simulateM1 via ρ (M1 ≲ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2 (f2 simulates f1 via ρ)
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Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:
▸ informally computable/effective/mechanizable in principle
▸ computable with respect to a specific model (Turing machine, . . . )

Boker & Dershowitz [1]: want a ‘robust definition that does not itself depend
on the notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006 [1]])

(i) M1 ≲M2 if: there is an injective ρ such thatM1 ≲ρM2

(ii) M1 ≲bijectiveM2 if: there is a bijective ρ such thatM1 ≲ρM2
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Anomalies for decision models
However, we found anomalies of these definitions.

M= ⟨D,F⟩ is a decision model if {0,1} ⊆D, ∀f ∈F (f[D] ⊆ {0,1}).

Theorem (Endrullis/G/Hendriks, [3])

Let Σ and Γ with {0,1} ⊆ Σ,Γ be alphabets.
Then for every countable decision modelM= ⟨Σ∗,F⟩, it holds:

M ≲ DFA(Γ) M ≲bijective DFA(Γ)

TMD(Σ) : class of Turing machine deciders with input alphabet Σ

Anomaly (example)

TMD(Σ) ≲bijective DFA(Γ)

These anomalies for decision models and bijective encodings:
▸ depend on uncomputable encodings
▸ can be extended to some moc’s with unbounded output domain
▸ but do not extend to all moc’s
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Simulations between models of computation

models M1 ∈ M1 and M2 ∈ M2 simulate each other with respect to
computable coding ⌜⋅⌝ ∶ IM1 → IM2 and decoding ‘ ⋅ ’ ∶ OM2 → OM1 if:

⋆M 1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

αM2
(x2) ∈ CM2

αM1
(x1) ∈ CM1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

⋆M 1

αM1
(x1) ∈ CM1

αM2
(x2) ∈ CM2

(defines a Galois connection)
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a classM of
machines/systems/. . . such that every M ∈ M it holds:

▷ M has a countable set IM of input objects, and a countable set
OM of output objects that are specific to the MoCM;

▷ M has a set CM of configurations of M , which contains the
subset ECM ⊆ CM of end-configurations of M ;

▷ M has an injective input function αM ∶ IM → CM , which maps
input objects of M to configurations of M ; αM is computable;

▷ M defines a one-step computation relation Z⇒M on the set CM ;
the transitive closure of Z⇒M is designated by Z⇒∗M ;

▷ M has a partial output function ωM ∶ ECM ⇀ OM, which maps
some end-configurations of M to output objects of M ;
ωM is computable, and membership of end-configurations
in dom(ωM) is decidable.
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Comparing Computational Power of MoC’s

Definition
LetM1 andM2 be MoC’s.

1 The computational power ofM1 is subsumed by that ofM2,
denoted symbolically byM1 ≤M2, if:

(∃a pair ⟨⌜⋅⌝, ‘ ⋅ ’⟩ of computable encoding and decoding func-
tions ⌜⋅⌝ ∶ IM1 → IM2 and ‘ ⋅ ’ ∶ OM2 → OM1

(∀M1 ∈ M1) (∃M2 ∈ M2)

[M1 and M2 simulate each other w.r.t. ⟨⌜⋅⌝, ‘ ⋅ ’⟩ ] .

2 The computational power ofM1 is equivalent to that ofM2,
denoted byM1 ∼M2, if bothM1 ≤M2 andM2 ≤M1 hold.
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Comparing Computational Power of MoC’s

Theorem
For all modelsM1 andM2, and encoding and decoding functions
⌜⋅⌝ ∶ IM1 → IM2 and ‘ ⋅ ’ ∶ OM2 → OM1 it holds:

M1 ≤⟨⌜⋅⌝,‘⋅’⟩M2 Ô⇒ F(M1) ⊆ { ‘ ⋅ ’ ○ f ○ ⌜⋅⌝ ∣ f ∈ F(M2) } .
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Turing completeness and equivalence

By TM(Σ) we mean the model of Turing machines over input
alphabet Σ.

Definition
LetM a model of computation.

M is Turing-complete if TM(Σ) ≤M for some alphabet Σ with Σ ≠ ∅.

M is Turing-equivalent ifM∼ TM(Σ) for some alphabet Σ ≠ ∅.
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Fractran

John Horton Conway:

▸ article:
▸ FRACTRAN:

A Simple Universal Programming Language for Arithmetic

▸ talk video:
▸ ”Fractran: A Ridiculous Logical Language”
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Summary

▸ Post’s Correspondence Problem (by Emil Post, 1946, [6])

▸ Interaction Nets (by Yves Lafont, 1990, [4])

▸ Compare computational power of models of computation

▸ Fractran (by John Horton Conway, 1987, [2])
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