
course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Lecture 4: Lambda Calculus
Models of Computation

https://clegra.github.io/moc/moc.html

Clemens Grabmayer

Teaching Mobility Program (PNRR-TNE DESK)
University of Novi Sad

Novi Sad, Serbia

March ., 2026

Clemens Grabmayer Lecture 4: Lambda Calculus

https://clegra.github.io/moc/moc.html

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Course overview

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus Three more Models of

Computation

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

imperative
programming algebraic programming functional

programming

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Today

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Today

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Today

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Today

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Today

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Today

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Church’s Thesis

Alonzo Church (1903 –1995)

Thesis (Church, 1936)

▸ Every total effectively calculable function is recursive.
▸ Every effectively calculable partial function is partial-recursive.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ

Notation conventions:

▸ omit outermost brackets

▸ x short for (x), and λx.x short for (λx.x)

▸ application associates to the left

▸ MNPQ is short for ((MN)P)Q

▸ abstraction associates to the right

▸ λxy.M is short for λx.(λy.M)

▸ scope of λ(⋅) is as big as possible

▸ λx.yx is short for λx.(yx)
▸ note: (λx.y)x is different from λx.yx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ

Notation conventions:

▸ omit outermost brackets

▸ x short for (x), and λx.x short for (λx.x)

▸ application associates to the left

▸ MNPQ is short for ((MN)P)Q

▸ abstraction associates to the right

▸ λxy.M is short for λx.(λy.M)

▸ scope of λ(⋅) is as big as possible

▸ λx.yx is short for λx.(yx)
▸ note: (λx.y)x is different from λx.yx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ

Notation conventions:
▸ omit outermost brackets

▸ x short for (x), and λx.x short for (λx.x)

▸ application associates to the left

▸ MNPQ is short for ((MN)P)Q

▸ abstraction associates to the right

▸ λxy.M is short for λx.(λy.M)

▸ scope of λ(⋅) is as big as possible

▸ λx.yx is short for λx.(yx)
▸ note: (λx.y)x is different from λx.yx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ

Notation conventions:
▸ omit outermost brackets

▸ x short for (x), and λx.x short for (λx.x)
▸ application associates to the left

▸ MNPQ is short for ((MN)P)Q

▸ abstraction associates to the right

▸ λxy.M is short for λx.(λy.M)

▸ scope of λ(⋅) is as big as possible

▸ λx.yx is short for λx.(yx)
▸ note: (λx.y)x is different from λx.yx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ

Notation conventions:
▸ omit outermost brackets

▸ x short for (x), and λx.x short for (λx.x)
▸ application associates to the left

▸ MNPQ is short for ((MN)P)Q
▸ abstraction associates to the right

▸ λxy.M is short for λx.(λy.M)

▸ scope of λ(⋅) is as big as possible

▸ λx.yx is short for λx.(yx)
▸ note: (λx.y)x is different from λx.yx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ

Notation conventions:
▸ omit outermost brackets

▸ x short for (x), and λx.x short for (λx.x)
▸ application associates to the left

▸ MNPQ is short for ((MN)P)Q
▸ abstraction associates to the right

▸ λxy.M is short for λx.(λy.M)
▸ scope of λ(⋅) is as big as possible

▸ λx.yx is short for λx.(yx)
▸ note: (λx.y)x is different from λx.yx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

β-reduction

Definition
▸ One-step β-reduction →β is defined as the application of the rule:

(λx.M)N →β M{x ∶= N}

in λ-terms C[(λx.M)N] formed by arbitrary λ-term contexts C[],
where is λx.MN called a redex, and furthermore:

M{x ∶= N} ∶= substitution of N for free occurrences of x in M
(using α-conversion to avoid variable capture)

▸ Many-step β-reduction →∗β is defined as the concatenation of
zero, one, or more →β-steps.

▸ A λ-term M is a normal form if it does not contain a redex.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

β-reduction

Definition
▸ One-step β-reduction →β is defined as the application of the rule:

(λx.M)N →β M{x ∶= N}

in λ-terms C[(λx.M)N] formed by arbitrary λ-term contexts C[],
where is λx.MN called a redex, and furthermore:

M{x ∶= N} ∶= substitution of N for free occurrences of x in M
(using α-conversion to avoid variable capture)

▸ Many-step β-reduction →∗β is defined as the concatenation of
zero, one, or more →β-steps.

▸ A λ-term M is a normal form if it does not contain a redex.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

β-reduction

Definition
▸ One-step β-reduction →β is defined as the application of the rule:

(λx.M)N →β M{x ∶= N}

in λ-terms C[(λx.M)N] formed by arbitrary λ-term contexts C[],
where is λx.MN called a redex, and furthermore:

M{x ∶= N} ∶= substitution of N for free occurrences of x in M
(using α-conversion to avoid variable capture)

▸ Many-step β-reduction →∗β is defined as the concatenation of
zero, one, or more →β-steps.

▸ A λ-term M is a normal form if it does not contain a redex.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Church numerals

Definition

For every n ∈ N, the Church numeral ⌜n⌝ for n is defined by:

⌜n⌝ ∶=λfx.fnx

=λfx.f(f(. . . (f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

x) . . .))

Examples.

⌜0⌝ = λfx.x
⌜1⌝ = λfx.fx
⌜2⌝ = λfx.f(fx)
. . .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Church numerals

Definition

For every n ∈ N, the Church numeral ⌜n⌝ for n is defined by:

⌜n⌝ ∶=λfx.fnx

=λfx.f(f(. . . (f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

x) . . .))

Examples.

⌜0⌝ = λfx.x
⌜1⌝ = λfx.fx
⌜2⌝ = λfx.f(fx)
. . .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Church numerals

Definition

For every n ∈ N, the Church numeral ⌜n⌝ for n is defined by:

⌜n⌝ ∶=λfx.fnx

=λfx.f(f(. . . (f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

x) . . .))

Examples.

⌜0⌝ = λfx.x
⌜1⌝ = λfx.fx
⌜2⌝ = λfx.f(fx)
. . .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Turing-computable (total) functions

Definition

A total function f ∶ Nk → N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl , F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:
▸ for all n1, . . . , nk ∈ N there exists q ∈ F such that:

q0⟨n1⟩bl ⟨n2⟩bl . . .bl ⟨nk⟩ ⊢∗M q⟨f(n1, . . . , nk)⟩

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable functions

Definition
▸ Let f ∶ Nn → N be total.

A λ-term Mf represents f if for all m1, . . . ,mn ∈ N:

Mf ⌜m1⌝. . .⌜mn⌝ →∗β ⌜f(m1, . . . ,mn)⌝

f is λ-definable if there exists a λ-term that represents f .

▸ Let f ∶ Nn ⇀ N be a partial function.
A λ-term Mf represents f if for all m1, . . . ,mn ∈ N:

f(m1, . . . ,mn)↓ Ô⇒ Mf ⌜m1⌝. . .⌜mn⌝ →∗β ⌜f(m1, . . . ,mn)⌝

f(m1, . . . ,mn)↑ Ô⇒ Mf ⌜m1⌝. . .⌜mn⌝ has no normal form

f is λ-definable if there exists a λ-term that represents f .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable functions

Definition
▸ Let f ∶ Nn → N be total.

A λ-term Mf represents f if for all m1, . . . ,mn ∈ N:

Mf ⌜m1⌝. . .⌜mn⌝ →∗β ⌜f(m1, . . . ,mn)⌝

f is λ-definable if there exists a λ-term that represents f .

▸ Let f ∶ Nn ⇀ N be a partial function.
A λ-term Mf represents f if for all m1, . . . ,mn ∈ N:

f(m1, . . . ,mn)↓ Ô⇒ Mf ⌜m1⌝. . .⌜mn⌝ →∗β ⌜f(m1, . . . ,mn)⌝

f(m1, . . . ,mn)↑ Ô⇒ Mf ⌜m1⌝. . .⌜mn⌝ has no normal form

f is λ-definable if there exists a λ-term that represents f .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable

Examples.

▸ successor: Msucc ∶= λnfx.f(nfx)

▸ addition: M+ ∶= λmnfx.mf(nfx)

▸ multiplication: M× ∶= λmnfx.m(nf)x

▸ exponentiation: ME ∶= λmnfx.mnfx

▸ unary constant zero function: MC1
0
= λm.⌜0⌝

▸ projection function: Mπk
i
= λn1 . . . nk.ni

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Pairs in λ-calculus

Definition

For all M,N ∈ Λ we define the pair ⟨M,N⟩ consisting of M and N :

⟨M,N⟩ ∶= λx.xMN

and the unpairing projections ρ1 and ρ2:

ρ1 ∶= λp.p(λxy.x)
ρ2 ∶= λp.p(λxy.y)

Proposition

For all M1,M2 ∈ Λ and i = 1,2:

ρi⟨M1, M2⟩ →∗β Mi

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

True, false, if-then-else, zero? in λ-calculus

Definition
true ∶= λxy.x
false ∶= λxy.y

if P then Q else R ∶= PQR

zero? ∶= λx.x(λy.false)true

Proposition
if true then Q else R →∗β Q

if false then Q else R →∗β R

zero? ⌜0⌝ →∗β true

zero? ⌜n + 1⌝ →∗β false

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

The Book

(reference [1]) Hendrik Pieter (Henk) Barendregt

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Exercises

(1) Describe all possible ways to reduce (λxy.x)((λx.xx)(λx.xx)) to
normal form.

(2) Find two distinct λ-terms representing the successor function on
Church-numerals (hint: think of n + 1 and 1 + n). Prove that your
λ-terms are not-β-equivalent.

(3) Try computing the normal form of the Y -combinator, i.e. of AA
where A = λam.m(aam), e.g. by each time selecting the leftmost
redex (reducible expression, i.e. subexpression of the shape
(λx.M)N).

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Primitive recursive functions (Nn ∪N0 → N)

Base functions:
▸ O ∶ N0 = {∅} → N , ∅ ↦ 0 (0-ary constant-0 function)
▸ succ ∶ N→ N , x↦ x + 1 (successor function)
▸ πn

i ∶ Nn → N , x⃗ = ⟨x1, . . . , xn⟩ ↦ xi (projection function)

Closed under operations:
▸ composition: if f ∶ Nk → N, and gi ∶ Nn → N are prim. rec.,

then so is h = f ○ (g1 × . . . × gk) ∶ Nn → N :
h(x⃗) = f(g1(x⃗), . . . , gk(x⃗))

▸ primitive recursion: if f ∶ Nn → N, g ∶ Nn+2 → N are prim. rec.,
then so is h = pr(f ; g) ∶ Nn+1 → N :

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Primitive recursive functions are λ-definable

Proposition

Every primitive recursive function is λ-definable.

Proof (The case of primitive recursion).

Let h ∶= pr(f ; g) ∶ Nn+1 → N for prim.rec. f ∶ Nn → N, g ∶ Nn+2 → N:

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Suppose that f and g are represented by Mf ,Mg ∈ Λ, respectively.

Init ∶= ⟨⌜0⌝, Mf x1. . .xn⟩
Step ∶= λp.⟨Msucc(ρ1p), Mgx1. . .xn(ρ2p)(ρ1p)⟩

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xnx.ρ2(xStep Init)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Primitive recursive functions are λ-definable

Proposition

Every primitive recursive function is λ-definable.

Proof (The case of primitive recursion).

Let h ∶= pr(f ; g) ∶ Nn+1 → N for prim.rec. f ∶ Nn → N, g ∶ Nn+2 → N:

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Suppose that f and g are represented by Mf ,Mg ∈ Λ, respectively.

Init ∶= ⟨⌜0⌝, Mf x1. . .xn⟩
Step ∶= λp.⟨Msucc(ρ1p), Mgx1. . .xn(ρ2p)(ρ1p)⟩

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xnx.ρ2(xStep Init)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Primitive recursive functions are λ-definable

Proposition

Every primitive recursive function is λ-definable.

Proof (The case of primitive recursion).

Let h ∶= pr(f ; g) ∶ Nn+1 → N for prim.rec. f ∶ Nn → N, g ∶ Nn+2 → N:

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Suppose that f and g are represented by Mf ,Mg ∈ Λ, respectively.

Init ∶= ⟨⌜0⌝, Mf x1. . .xn⟩
Step ∶= λp.⟨Msucc(ρ1p), Mgx1. . .xn(ρ2p)(ρ1p)⟩

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xnx.ρ2(xStep Init)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

µ-recursion, and partial recursive functions

Definition
A partial function f ∶ Nn ⇀ N is called partial recursive if it can be
specified from base functions (O, succ, πn

i) by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f ∶ Nn+1 ⇀ N partial. Then the partial function µ(f):

µ(f) ∶ Nn ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

↑ . . . ¬∃y (∧ f(x⃗, y) = 0∀z (0 ≤ z < y → (f(x⃗, z)↓))
z . . . ∧ f(x⃗, z) = 0∀y 0 ≤ y < z → (f(x⃗, y)↓ ≠ 0)

is called the unbounded minimisation of f .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

µ-recursion, and partial recursive functions

Definition
A partial function f ∶ Nn ⇀ N is called partial recursive if it can be
specified from base functions (O, succ, πn

i) by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f ∶ Nn+1 → N total. Then the partial function defined by:

µ(f) ∶ Nn ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

min({y ∣ f(x⃗, y) = 0}) . . . ∃y (f(x⃗, y) = 0)
↑ . . . else

is called the unbounded minimisation of f .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

µ-recursion, and partial recursive functions

Definition
A partial function f ∶ Nn ⇀ N is called partial recursive if it can be
specified from base functions (O, succ, πn

i) by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f ∶ Nn+1 ⇀ N partial. Then the partial function µ(f):

µ(f) ∶ Nn ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

↑ . . . ¬∃y (∧ f(x⃗, y) = 0∀z (0 ≤ z < y → (f(x⃗, z)↓))
z . . . ∧ f(x⃗, z) = 0∀y 0 ≤ y < z → (f(x⃗, y)↓ ≠ 0)

is called the unbounded minimisation of f .

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Reminder: Kleene’s normal form theorem

Theorem
For every partial recursive function h ∶ Nn → N there exist

primitive recursive functions f ∶ N→ N and g ∶ Nn+1 → N such that:

h(x1, . . . , xn) = (f ○ µ(g))(x1, . . . , xn)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

µ-recursive/partial recursive ⇒ λ-definable

Theorem
Every µ-recursive/partial recursive function is λ-definable.

Proof.

Let h ∶ Nn+1 → N be partial recursive.

Then by Kleene’s normal form theorem there exist g ∶ Nn+1 → N and
f ∶ N→ N such that:

h(x⃗) = f ○ µ(g)(x⃗) = f(µz.[g(x⃗, z) = 0])

Let Mf and Mg be λ-terms representing f and g, respectively. Let:

W ∶= λy.if (zero?Mgx1. . .xny) then (λw.Mfy) else (λw.w(Msuccy)w)

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xn.W ⌜0⌝W

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

µ-recursive/partial recursive ⇒ λ-definable

Theorem
Every µ-recursive/partial recursive function is λ-definable.

Proof.

Let h ∶ Nn+1 → N be partial recursive.
Then by Kleene’s normal form theorem there exist g ∶ Nn+1 → N and
f ∶ N→ N such that:

h(x⃗) = f ○ µ(g)(x⃗) = f(µz.[g(x⃗, z) = 0])

Let Mf and Mg be λ-terms representing f and g, respectively. Let:

W ∶= λy.if (zero?Mgx1. . .xny) then (λw.Mfy) else (λw.w(Msuccy)w)

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xn.W ⌜0⌝W

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

µ-recursive/partial recursive ⇒ λ-definable

Theorem
Every µ-recursive/partial recursive function is λ-definable.

Proof.

Let h ∶ Nn+1 → N be partial recursive.
Then by Kleene’s normal form theorem there exist g ∶ Nn+1 → N and
f ∶ N→ N such that:

h(x⃗) = f ○ µ(g)(x⃗) = f(µz.[g(x⃗, z) = 0])

Let Mf and Mg be λ-terms representing f and g, respectively. Let:

W ∶= λy.if (zero?Mgx1. . .xny) then (λw.Mfy) else (λw.w(Msuccy)w)

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xn.W ⌜0⌝W

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

A normalizing reduction strategy

Normal order reduction strategy
n→ :

only perform →β-steps in left-most positions.

Theorem
The normal order reduction strategy in is normalizing in λ-calculus,
that is:

M →∗β N ∧ N is a normal form Ô⇒ M
n→∗ N

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

A normalizing reduction strategy

Normal order reduction strategy
n→ :

only perform →β-steps in left-most positions.

Theorem
The normal order reduction strategy in is normalizing in λ-calculus,
that is:

M →∗β N ∧ N is a normal form Ô⇒ M
n→∗ N

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable ⇒ Turing-computable

Theorem
Every λ-definable function is Turing computable.

Idea of the Proof.
Let f ∶ Nn ⇀ N be a partial function that is λ-definable. Then there
exists a λ-term Mf that represents f .

To compute f , one can build a Turing machine M that, for given
m1, . . . ,mn ∈ N:
▸ simulates a normal order rewrite sequence on Mf ⌜m1⌝. . .⌜mn⌝

to obtain the normal form ⌜f(m1, . . . ,mn)⌝

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable ⇒ Turing-computable

Theorem
Every λ-definable function is Turing computable.

Idea of the Proof.
Let f ∶ Nn ⇀ N be a partial function that is λ-definable. Then there
exists a λ-term Mf that represents f .

To compute f , one can build a Turing machine M that, for given
m1, . . . ,mn ∈ N:
▸ simulates a normal order rewrite sequence on Mf ⌜m1⌝. . .⌜mn⌝

to obtain the normal form ⌜f(m1, . . . ,mn)⌝

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable ⇒ Turing-computable

Theorem
Every λ-definable function is Turing computable.

Idea of the Proof.
Let f ∶ Nn ⇀ N be a partial function that is λ-definable. Then there
exists a λ-term Mf that represents f .

To compute f , one can build a Turing machine M that, for given
m1, . . . ,mn ∈ N:
▸ simulates a normal order rewrite sequence on Mf ⌜m1⌝. . .⌜mn⌝

to obtain the normal form ⌜f(m1, . . . ,mn)⌝

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

λ-definable ⇒ Turing-computable

Theorem
Every λ-definable function is Turing computable.

Idea of the Proof.
Let f ∶ Nn ⇀ N be a partial function that is λ-definable. Then there
exists a λ-term Mf that represents f .

To compute f , one can build a Turing machine M that, for given
m1, . . . ,mn ∈ N:
▸ simulates a normal order rewrite sequence on Mf ⌜m1⌝. . .⌜mn⌝

to obtain the normal form ⌜f(m1, . . . ,mn)⌝

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Summary

Lambda calculus

▸ λ-calculus
▸ syntax
▸ reduction rules

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Suggested reading

▸ Interaction-Based Models of Computation:
Chapter 7, The Lambda Calculus of the book:

▸ Maribel Fernández [2]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.

▸ Post’s Correspondence Problem

▸ see paper link webpage

▸ Fractran

▸ see paper and video link webpage

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Suggested reading

▸ Interaction-Based Models of Computation:
Chapter 7, The Lambda Calculus of the book:

▸ Maribel Fernández [2]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.

▸ Post’s Correspondence Problem

▸ see paper link webpage

▸ Fractran

▸ see paper and video link webpage

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

Course overview

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus Three more Models of

Computation

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

imperative
programming algebraic programming functional

programming

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov λ-terms β-red. Ch-num’s λ-def. feat’s book ex prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. su read course refs

References

Henk Pieter Barendregt.
The Lambda Calculus (Its Syntax and Semantics), volume 103 of
Studies in Logic and the Foundations of Mathematics.
Elsevier, 1984.

Maribel Fernández.
Models of Computation (An Introduction to Computability
Theory).
Springer, Dordrecht Heidelberg London New York, 2009.

Clemens Grabmayer Lecture 4: Lambda Calculus

	Course summary
	Overview
	Lambda Terms
	Beta Reduction
	Church numerals
	Lambda Definable Functions
	Typical features of computationally complete MoC's
	Book
	Exercises
	Primitive recursive functions -definable functions
	Partial recursive functions -definable functions
	Lambda-definable Turing-computable
	Summary
	Reading suggested
	Course summary
	References

