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Calculable function?

Questions/Exercises

@ Let f: N - N defined by

0 ...n =0 & Goldbach’s conjecture is false
n—1{1 ...n =0 & Goldbach’s conjecture is true
n+l ...n>0

Is f calculable?
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Calculable function?

Questions/Exercises

@ Let f:N — N defined by

0 ...n =0 & Goldbach’s conjecture is false
n—1{1 ...n =0 & Goldbach’s conjecture is true
n+l ...n>0

Is f calculable?

Answer: Yes, because it is one of two calculable functions.
(We just do no know which one.)
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Summary

Recursive functions

» primitive recursive functions

» Godel-Herbrand(—Kleene) general recursive functions
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Summary

Recursive functions

» primitive recursive functions
» Godel-Herbrand(—Kleene) general recursive functions
» partial recursive functions
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Summary

Recursive functions

» primitive recursive functions
» Godel-Herbrand(—Kleene) general recursive functions
» partial recursive functions

» defined with p-recursion (unbounded minimisation)
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Summary

Recursive functions

» primitive recursive functions

v

Godel-Herbrand(—Kleene) general recursive functions

v

partial recursive functions

» defined with p-recursion (unbounded minimisation)

v

Partial recursive functions = Turing computable functions
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Summary

Recursive functions

» primitive recursive functions

v

Godel-Herbrand(—Kleene) general recursive functions

v

partial recursive functions

» defined with p-recursion (unbounded minimisation)

v

Partial recursive functions = Turing computable functions

v

Church’s thesis
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Summary

Recursive functions

» primitive recursive functions

v

Godel-Herbrand(—Kleene) general recursive functions

v

partial recursive functions

» defined with p-recursion (unbounded minimisation)

v

Partial recursive functions = Turing computable functions

v

Church’s thesis

» effectively calculable functions £ partial-recursive functions
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Summary

Recursive functions

» primitive recursive functions

v

Godel-Herbrand(—Kleene) general recursive functions

v

partial recursive functions

» defined with p-recursion (unbounded minimisation)

v

Partial recursive functions = Turing computable functions

v

Church’s thesis

» effectively calculable functions £ partial-recursive functions
» some debate
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Timeline: From logic to computability

1900
1910/12/13
1928

1929
1930
1931
1932
1933/34
1936

1937

Hilbert's 23 Problems in mathematics
Russell/Whitehead: Principia Mathematica

Hilbert/Ackermann: formulate completeness/decision problems
for the predicate calculus (the latter called ‘Entscheidungsproblen’)

Presburger: completeness/decidability of theory of addition on Z
Godel: completeness theorem of predicate calculus

Gddel: incompleteness theorems for first-order arithmetic
Church: A-calculus

Herbrand/Gddel: general recursive functions

Church/Kleene: M-definable ~ general recursive

Church Thesis: ‘effectively calculable’ be defined as either
Church shows: the ‘Entscheidungsproblem’ is unsolvable
Post: machine model; Church’s thesis as ‘working hypothesis’
Turing: convincing analysis of a ‘human computer’

leading to the ‘“Turing machine’
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Turing-computable (total) functions

Definition
A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N — X* such that:

» forall nq,...,n; € N there exists ¢ € F' such that:

qo{n1)B(na2)B ... B{(ng) =3, a(f(na, ..., nx))
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n

n+(m+1)=(Mm+m)+1
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0

n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n
n’=1
nm+1:nm.n
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’=1 0=1
n™t=p™ . p (n+)!=(n+1)-n!
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’ =1 0=1
n™t=p™ . p (n+)!=(n+1)-n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’ =1 0=1
n™t=p™ . p (n+)!=(n+1)-n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’ =1 0=1
n™t=p™ . p (n+)!=(n+1)-n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations

u-Recursive (partial recursive) functions:
extend the primitive recursive functions by a p-operator
that allows to obtain partial functions
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Rosza Péter

Rosza Péter (1905-1977)
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Primitive recursive functions (N* — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N-> N, z~z+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)
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Primitive recursive functions (N* — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—> N,z x+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)

Closed under operations:

» composition: if f : N*¥ - N, and ¢, : N® - N are prim. rec.,
thensoish=fo (g1 x...xgr):N* - N:

(@) = f(g1(2),- .., 91 ()

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course

Primitive recursive functions (N* — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—> N,z x+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)

Closed under operations:

» composition: if f:N* - N, and ¢; : N* - N are prim. rec.,
thensoish=fo(gy x...xg;):N*">N:

h(z) = f(g1(Z),- -, 91(Z))

» primitive recursion: if f : N* - N, ¢ : N"*2 - N are prim. rec.,
then sois = pr(f;g): N""! - N:

h(Z,0) = f(Z)
h(z,y+1) = g(2, (2, v),y)
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Primitive recursive functions (N — N/)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—-> N, z~ 2z +1 (successor function)
> 7' :N" >N, Z=(z1,...,2,) ~ x; (Projection function)
> forn>1: id":N” > N, Z = (xq,...,2,) — Z (n-ary identity f.)

Closed under operations:
» composition: if f:NF™ - N! and ¢; : N* - N™ are prim. rec.,
thensoish=fo (g x...xg.):N* > N':
hz) = f(91(Z),- -, 91(Z))

» primitive recursion: if f: N™ - N, g: N***1 . N are prim. rec.,
thensois h=pr(f;g) : N"*1 - Nt:

h(Z,0) = f(z)
W@,y +1) = g(2,h(Z,y),y)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course

Primitive recursive functions (exercises)

Exercise

Show that the following functions are primitive recursive:

addition

constant functions

multiplication

(positive) sign-function

the representing functions x- and x. for the predicates = and <.

vV V. v v Vv

Try-yourself-Examples

Show that the following functions are primitive recursive:
» exponentiation
» factorial
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Admissible operations for primitive recursive functions

Proposition
@ definition by case distinction:

HE) .. Pi(@)

f2(8) ... Py(E) A-P(T)
f(@)=1...
(@) . P(E)A-Pi1(B)A ... A=P(T)
frke1(@) o mP(@) A ... A-PL(E)

@ déefinition by bounded recursion:

Uy [P(Z1,. .., Zn,2)] =
z coe 2 P(x1,. . xp,1) for0<i<z <y,
and P(x1,...,%n,2)
y+1 ...ﬂEIz.(OSZSy/\P(xl,...,zn,z))
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Properties of primitive recursive functions
Proposition

@ Every primitive recursive function is total.
@ Every primitive recursive function is Turing-computable.
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Properties of primitive recursive functions

Proposition

@ Every primitive recursive function is total.
@ Every primitive recursive function is Turing-computable.

Proof.
For (2):
» the base functions are Turing-computable

» the Turing-computible functions are closed under the schemes
composition and primitive recursion
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Turing-computable (total) functions

Definition
A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N — X* such that:

» forall nq,...,n; € N there exists ¢ € F' such that:

qo{n1)B(na2)B ... B{(ng) =3, a(f(na, ..., nx))
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Features of computationally complete MoC’s present?

» storage (unbounded)

v

control (finite, given)

v

modification

» of (immediately accessible) stored data
» of control state

v

conditionals

v

loop (unbounded)

» stopping condition
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Features of computationally complete MoC’s present?

» storage (unbounded) \/
» control (finite, given) \/

» modification \/

» of (immediately accessible) stored data
» of control state

» conditionals \/

> loop \/ (unbounded)

» stopping condition \/
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Features of computationally complete MoC’s present?

» storage (unbounded) \/
» control (finite, given) \/

» modification \/

» of (immediately accessible) stored data
» of control state

» conditionals \/

> loop \/ (unbounded) X

» stopping condition \/
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Not primitive recursive (I)

Proposition

There exist calculable/Turing-computable functions
that are not primitive recursive.

Proof.
By diagonalisation. O
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Not primitive recursive (ll): Ackermann function

Wilhelm Ackermann (1896—1962)
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Not primitive recursive (ll): Ackermann function

Ackermann function A : N2 - N (simplified version by Rdsza Péter):
A(0,z) = Succ(z)
Az +1,0) = A(x,Succ(0))
Alz+1,y+1) =A(z,A(x +1,y))
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Not primitive recursive (ll): Ackermann function

Ackermann function A : N2 - N (simplified version by Rdsza Péter):
A(0,z) = Succ(z)
Az +1,0) = A(x,Succ(0))
Alz+1,y+1)=A(z,A(z+ 1,y))
A is not primitive recursive, it grows too fast:
A(0,n)=n+1
A(l,n)=n+2
A(2,n)=2n+3
A(3,n) = 2" -2

216
A(4,n)=2> -3

——
n
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Not primitive recursive (ll): Ackermann function

Ackermann function A : N? —» N (simplified version by Rosza Péter):

A(0,y) = Succ(y)
Az +1,0) = A(z,Succ(0))
Alz+1,y+1) =A(z,A(x + 1,y))

A grows faster than every primitive recursive function:
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Not primitive recursive (ll): Ackermann function

Ackermann function A : N2 - N (simplified version by Rdsza Péter):
A(0,y) = Succ(y)
Az +1,0) = A(x,Succ(0))
Alz+1,y+1) =A(z,A(x + 1,y))

A grows faster than every primitive recursive function:

Theorem

For every primitive recursive f : N — N there exists some i ¢ N
such that (i) < A(i,1).
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Jacques Herbrand

Jacques Herbrand (1908—-1931)
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Kurt Godel

Kurt Gédel (1906—-1978)
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Godel-Herbrand general recursive function

Defined by systems of recursion equations like that for the
Ackermann function:

A(0,y) = Succ(y)
A(Succ(x),0) = A(x, Succ(0))
A(Succ(x),Succ(y)) = A(x, A(Succ(x),y))
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Godel-Herbrand general recursive function

Defined by systems of recursion equations like that for the
Ackermann function:

A(0,y) = Succ(y)
A(Succ(x),0) = A(x, Succ(0))
A(Succ(x),Succ(y)) = A(x, A(Succ(x),y))

Numerals: (0) := 0, and (n) := Succ(...Succ(0)) for n > 1.

———
n

Definition
A function / : N* — N is called general recursive if it can be defined by
(such a) system S of recursion equations via a function symbol F' if

forall ny,...,n; €N, the expression F'({n),...,(nx)) evaluates
according to S to a unique numeral (n), and such that furthermore:

n= ,/‘(nla ©o0 'ank?)'
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Stephen Cole Kleene

Stephen Cole Kleene (1906—1994)
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Unbounded minimisation (u-recursion)

Let f: N**1 - N total. Then the partial function defined by:
p(f):N*~N

-, [min{yeN | f(z,y)=0} ...3y(f(Zy)=0)
) ... else

is called the unbounded minimisation of f.
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Unbounded minimisation (u-recursion)

Let f: N**1 - N total. Then the partial function defined by:
p(f):N*~N

-, [min{yeN | f(z,y)=0} ...3y(f(Zy)=0)
) ... else

is called the unbounded minimisation of f.
Let f: N¥*! —~ N partial. Then the partial function ,.( f):

p(f):NF =N

o[ @ =0 avy(0cy <z (@)L #0)
T =y (F(Ey) =0 A V2 (0<z<y > (f(Z,2)))

is called the unbounded minimisation of f.
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Partial, and total, recursive functions

Definition

A partial function f : N* -~ N! is called partial recursive if it can be
specified from base functions (O, succ, 7!, and id") by successive
applications of composition, primitive recursion, and unbounded
minimisation.

A partial recursive function is called (total) recursive if it is total.
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Partial, and total, recursive functions

Definition

A partial function f : N* -~ N! is called partial recursive if it can be
specified from base functions (O, succ, 7", and id") by successive

7
applications of composition, primitive recursion, and unbounded
minimisation.

A partial recursive function is called (total) recursive if it is total.

Proposition
Every partial recursive function is Turing-computable.
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Primitive recursive

» storage (unbounded) \/
» control (finite, given) \/

» modification \/

e of (immediately accessible) stored data
e of control state

» conditionals \/

> loop \/ (unbounded) X

» stopping condition \/
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Partial recursive = prim. rec. + unbounded minimization

» storage (unbounded) \/

v

control (finite, given) \/

v

modification \/

e of (immediately accessible) stored data
e of control state

conditionals \/

loop \/ (unbounded) \/

v

v

stopping condition \/

v
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Turing-computable functions

Definition

@ A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 4, q0, B, F') and a calculable coding
function (-) : N — 3* such that:

e forall ni,...,n, € N there exists g € F such that:
qo{n1)B(n2)B ... B(nx) —is o(f (01, ..., 1))
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Turing-computable functions

Definition

@ A partial function f : N* —~ N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N - X* such that:

o forall ni,...,nk eN:
M accepts (n)b(n2)B... B{n,) < [(ni,...,n.)!
o forall ni,...,n, € N there exists ¢ € F such that:
f(na,...,ne)l == qo(ni){n2)b...0{(ne) =3 ¢(f(n1,...,n))
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Turing-computable functions

Definition

@ A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 4, q0, B, F') and a calculable coding
function (-) : N — 3* such that:

e forall ni,...,n, € N there exists g € F such that:
qo{n1)B(n2)B ... B(nx) —is o(f (01, ..., 1))

@ A partial function f : N* —~ N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N - X* such that:

o forall ni,...,nk eN:
M accepts (n)b(n2)B... B{n,) < [(ni,...,n.)!
o forall ni,...,n, € N there exists ¢ € F such that:
f(na,...,ne)l == qo(ni){n2)b...0{(ne) =3 ¢(f(n1,...,n))
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene’s normal form theorem)

For every Turing-computable, partial function (and hence for every
partial recursive function) h.: N* — N there exist primitive recursive
functions f : N - N and ¢ : N**! - N such that:

W@y, xn) = (f o p(9)) (21, ..., 2n)
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene’s normal form theorem)

For every Turing-computable, partial function (and hence for every
partial recursive function) h: N* - N there exist primitive recursive
functions f : N - N and ¢ : N**! - N such that:

W@y, xn) = (f o p(9)) (21, ..., 2n)

Theorem

The Turing-computable (partial) functions coincide with
the partial recursive functions.
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Alonzo Church

Alonzo Church (1903 —1995)
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Effectively calculable functions

Alonzo Church (1936):

“We now define the notion [.. . ] of an effectively calculable
function of positive integers by identifying it with the notion
of a recursive function of positive integers (or a A-definable
function of positive integers). This definition is thought to be
Justified by the considerations which follow, so far as positive
Jjustification can ever be obtained for the selection of formal
definition to correspond to an intuitive notion.”
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Effectively calculable functions

Alonzo Church (1936):

“We now define the notion [.. . ] of an effectively calculable
function of positive integers by identifying it with the notion
of a recursive function of positive integers (or a A-definable
function of positive integers). This definition is thought to be
Justified by the considerations which follow, so far as positive
Jjustification can ever be obtained for the selection of formal
definition to correspond to an intuitive notion.”

Definition (Church)
For every total function f : N — N, and partial function ¢ : N — N,

f is effectively calculable : < f is recursive
g is effectively calculable : <= g is partial-recursive
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Church’s Thesis

Alonzo Church (1936):

“We now define the notion [.. . ] of an effectively calculable
function of positive integers by identifying it with the notion
of a recursive function of positive integers (or a A-definable
function of positive integers). This definition is thought to be
Justified by the considerations which follow, so far as positive
justification can ever be obtained for the selection of formal
definition to correspond to an intuitive notion.”

Definition (Church)
For every total function f : N — N, and partial function ¢ : N — N,

f is effectively calculable : < f is recursive
g is effectively calculable : <= g is partial-recursive
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A-calculus

Alonzo Church (1903 —1992)

Theorem (Kleene/Church, 1935)
Every \-definable function is general recursive, and vice versa.
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Recommended reading

@ Recursive and primitive-recursive functions:
Chapter 3, The Lambda Calculus of the book:

» Maribel Fernandez [2]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.
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Post’s ‘working hypothesis’

E.L. Post in his 1936 article (Post machines):

“The writer expects the present formulation to turn out to
be logically equivalent to recursiveness in the sense of the
Gddel-Church development. Its purpose, however, is not
only to present a system of a certain logical potency but also,
in its restricted field, of psychological fidelity. In the latter
sense wider and wider formulations are contemplated. On
the other hand, our aim will be to show that all such are logi-
cally reducible to formulation 1 [Post machines]. We offer this
conclusion at the present moment as a working hypothesis.
And to our mind such is Church’s identification of effective
calculability with recursiveness.”
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Church on Post’s ‘working hypothesis’

Alonzo Church in his review (1937) of Post’s 1936 article:

“The author proposes a definition of ’finite 1-process”
which is similar in formulation, and in fact equivalent, to com-
putation by a Turing machine (see the preceding review). He
does not, however, regard his formulation as certainly to be
identified with effectiveness in the ordinary sense, but takes
this identification as a "working hypothesis” in need of con-
tinual verification. To this the reviewer would object that ef-
fectiveness in the ordinary sense has not been given an ex-
act definition, and hence the working hypothesis in question
has not an exact meaning. To define effectiveness as com-
putability by an arbitrary machine, subject to restrictions of
finiteness, would seem to be an adequate representation of
the ordinary notion, and if this is done the need for a working
hypothesis disappears.”
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Church on Turing’s paper

A. Church in his review (1937) of Turing’s 1936 article:

“The author proposes as a criterion that an infinite se-
quence of digits 0 and 1 be "computable” that it shall be pos-
sible to devise a computing machine, occupying a finite space
and with working parts of finite size, which will write down the
sequence to any desired number of terms if allowed to run for
a sufficiently long time. As a matter of convenience, certain
further restrictions are imposed on the character of the ma-
chine, but these are of such a nature as obviously to cause
no loss of generality—in particular, a human calculator, pro-
vided with pencil and paper and explicit instructions, can be
regarded as a kind of Turing machine. It is thus immediately
clear that computability, so defined, can be identified with (es-
pecially, is no less general than) the notion of effectiveness as
it appears in certain mathematical problems [...].
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Summary

Recursive functions

» primitive recursive functions

v

Godel-Herbrand(—Kleene) general recursive functions

v

partial recursive functions

» defined with p-recursion (unbounded minimisation)

v

Partial recursive functions = Turing computable functions

v

Church’s thesis

» effectively calculable functions £ partial-recursive functions
» some debate
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Course overview

| intro

classic models | additional models |
Igg;::ﬁtalgirl‘it‘; Machine Models Recursive Functions Lambda Calculus Thre(e::"?';ﬁtl\anggsls @i
computation and Post Machines, primitive recursive A-terms, 3-reduction, | Post's Correspondence
decision problems, typical features, functions, A-definable functions, Problem,
from logic to Turing’s analysis of Gddel-Herbrand partial recursive Interaction-Nets,
computability, human computers, recursive functions, — \-definable Fractran
overview of models Turing machines, partial recursive funct's, | - Turing computable
of computation basic recursion theory ~ Partial recursive =
relevance of MoCs = Turing-computable,
Church’s Thesis
imperative . ) functional
programming EEIENE Pegmiilie programming
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