
Comparing the Computational Power
of Models of Computation

(Models of Computation Advanced Course, July 7–11, 2025)

Clemens Grabmayer

Department of Computer Science, Gran Sasso Science Institute

Abstract. For an abstract formulation of models of computations with
their constitutive features, we sketch definitions of the two relations ‘the
computational power of a model M1 {is subsumed by | is equivalent
to} that of a model M2’. Based on these relations we define ‘Turing-
completeness’ and ‘Turing-equivalence’ for models of computation.

1 Preliminaries

Let f : A ⇀ B be a partial function. For all a ∈ A, we indicate by f(a)↓ that f
is defined on a, and by f(a)↑ that f is undefined on a. By the domain of f we
mean the set dom(f) := {a ∈ A : f(a)↓} ⊆ A, and by the range of f we mean
the set ran(f) := {f(a) : a ∈ A, f(a)↓} ⊆ B. The partial function f is called
total if dom(f) = A, that is, if f is defined for all elements of A.

2 Models of Computations, viewed abstractly

Definition 1. A(n abstractly viewed) model of computation (MoC) is a class M
of machines/systems/. . . in which every member M ∈ M has the following
constitutive features:

– M has a countably infinite set IM of input objects, and a denumerable set OM
of output objects (note that both IM and OM are specific to the model M,
and do not depend on the specific member M ∈ M);

– M has a set CM of configurations, which contains the subset ECM ⊆ CM of
end-configurations of M ;

– M has an injective function αM : IM → CM , which maps input objects of M
to configurations of M , and is required to be intuitively computable easily;

– M defines a one-step computation relation Z⇒M on the set CM ; the transitive
closure of Z⇒M is designated by Z⇒∗

M ;
– M has a partial function ωM : ECM ⇀ OM , which maps some end-configu-

rations of M to output objects of M; the partial function ωM is ‘easily’ com-
putable, and furthermore, membership of end-configurations in dom(ωM ) is
required to be easily decidable intuitively.

We say that M is deterministic, if for all M ∈ M the one-step computation
relation Z⇒M is deterministic: for all configurations c ∈ CM there is at most one
configuration c′ ∈ CM such that c Z⇒M c′.



2 Clemens Grabmayer

Functions, and partial functions, defined by a member of a deterministic MoC
can be defined as follows.

Definition 2. Let M be a deterministic model of computation.
Let M ∈ M, and let f : IM ⇀ OM be a partial function. We say that M

computes f if the following two statements hold for all x ∈ IM:

f(x)↓ =⇒ ∃c ∈ ECM

[
αM (x) Z⇒∗

M c ∧ ωM (c)↓ ∧ ωM (c) = f(x)
]
,

f(x)↑ =⇒ ¬∃c ∈ ECM

[
αM (x) Z⇒∗

M c ∧ ωM (c)↓
]
.

The set of functions F(M) that are computable by M are then defined as:

F(M) :=
{
f : IM ⇀ OM

∣∣M computes f
}

Finally we define the set F(M) of computable functions of the MoC M by:

F(M) :=
⋃

M∈M
F(M) =

{
f : IM ⇀ OM

∣∣ (∃M ∈ M)
[
M computes f

] }
.

This definition also stipulates computability for total functions, namely as
the computability of partial functions that happen to be total. However, for
total functions the defining condition can obviously be simplified as stated by
the proposition below.

Proposition 3. Let M be a deterministic model of computation, and M ∈ M.
Let f : IM → OM be a function. Then M computes the function f if it holds:

∀x ∈ IM ∃c ∈ ECM

[
αM (x) Z⇒∗

M c ∧ ωM (c)↓ ∧ ωM (c) = f(x)
]
.

3 Reductions between MoC’s

Let IM1 and IM2 be the set of input objects, and OM1 and OM2 be the set of
output objects of two MoC’s M1 and M2, respectively. By a pair of coding and
decoding functions between M1 and M2 we mean a pair ⟨⌜·⌝, ‘ · ’⟩ that consists
of a bijective function ⌜·⌝ : IM1

→ IM2
from the input objects of M1 to input

objects of M2, and a bijective function ‘ · ’ : OM2
→ OM1

from the output
objects of M2 to the output objects of M1.

Now we define what it means that two machines/systems/. . . ‘simulate each
other’ with respect to given coding/encoding functions.

Definition 4. Let M1 and M2 be MoC’s. Let ⟨⌜·⌝, ‘ · ’⟩ be a pair of encoding
and decoding functions between M1 and M2. Let M1 ∈ M1 and M2 ∈ M2 be
machines/systems/. . . in these MoC’s.

We say that M1 and M2 simulate each other with respect to ⟨⌜·⌝, ‘ · ’⟩ if,
for all x1 ∈ IM1

, the ∀∃-statements hold that correspond to the following two
pictures:



Comparing the Computational Power of Models of Computation 3

⋆M 1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜·⌝

‘ · ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

αM2
(x2) ∈ CM2

αM1
(x1) ∈ CM1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜·⌝

‘ · ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

⋆M 1

αM1
(x1) ∈ CM1

αM2
(x2) ∈ CM2

(normal arrows signal assumed transitions, broken lines signal existence of tran-
sitions); more formally, the statement corresponding to the diagram on the left is:

∀x1 ∈ IM1

∀c1 ∈ ECM1

[
αM1

(x1) Z⇒∗
M1

c1 ∧ ωM1
(c1)↓ =⇒

∃c2 ∈ ECM2

(
αM2

(⌜x1⌝) Z⇒∗
M2

c2 ∧ ωM2
(c2)↓ ∧ ωM1

(c1) = ‘ωM2
(c2)’

)]
.

The statement corresponding to the diagram on the right is the following:

∀x1 ∈ IM1

∀c2 ∈ ECM2

[
αM2(⌜x1⌝) Z⇒∗

M2
c2 ∧ ωM2

(c2)↓ =⇒
∃c1 ∈ ECM1

(
αM1(x1) Z⇒∗

M1
c1 ∧ ωM1(c1)↓ ∧ ωM1(c1) = ‘ωM2(c2)’

)]
.

Using the notion of ‘back-and-forth simulation’ between members of MoC’s
formalised in Definition 4, we can now define a preorder relation that reduces/sub-
sumes the computational power of one MoC to/by that of another MoC.

Definition 5. For MoC’s M1 and M2 we define the following concepts of rel-
ative subsumption, subsumption, and equivalence of computational power:

(i) Let ⟨⌜·⌝, ‘ · ’⟩ be a pair of encoding and decoding functions between M1 and
M2. We say that the computational power of M1 is subsumed by that of M2

with respect to coding via ⌜·⌝ and decoding via ‘ · ’, denoted symbolically by
M1 ≤⟨⌜·⌝, ‘·’⟩ M2, if it holds:

(∀M1 ∈ M1) (∃M2 ∈ M2)[
M1 and M2 simulate each other with respect to ⟨⌜·⌝, ‘ · ’⟩

]
.

(ii) We say that the computational power of M1 is subsumed by that of M2,
denoted symbolically by M1 ≤ M2, if:

(∃ a pair ⟨⌜·⌝, ‘ · ’⟩ of informally computable encoding and decoding
functions from IM1

to IM2
, and from OM2

to OM1
)[

M1 ≤⟨⌜·⌝, ‘·’⟩ M2

]
.



4 Clemens Grabmayer

(iii) We say that the computational power of M1 is equivalent to that of M2,
denoted by M1 ∼ M2, if both M1 ≤ M2 and M2 ≤ M1 hold.

The following theorem guarantees that subsumption of computational power
between MoC’s preserves the computable functions up to coding and decoding.
More precisely the theorem states that whenever the computational power of
M1 is subsumed by that of M2 with respect to coding via ⌜·⌝ and decoding via
‘ · ’, then the functions that are computable by M1 are contained among the
functions that are computable by M2 up to coding via ⌜·⌝ and decoding via ‘ · ’.

Theorem 6. For all MoC’s M1 and M2, and pairs ⟨⌜·⌝, ‘ · ’⟩ of encoding and
decoding functions between M1 and M2 the follwing statement holds:

M1 ≤⟨⌜·⌝, ‘·’⟩ M2 =⇒ F(M1) ⊆
{
‘ · ’ ◦ f ◦ ⌜·⌝

∣∣ f ∈ F(M2)
}
.

4 Turing-completeness and Turing-equvalence of MoC’s

Using the notion of ‘computable reduction’ between MoCs formalised in Defi-
nition 5, we can now define the notions of ‘Turing-completeness’ and ‘Turing-
equivalence’ of a MoC.

As notation we will use the following. By TM(Σ) we mean the abstract
model of computation that arises from Turing machines with input alphabet Σ
by considering their features according to Definition 1 (and thus for example
with IM = OM = Σ∗, the words over Σ).

Definition 7. Let TM be the class of Turing machines, and M an MoC.
We say thatM is Turing-complete if TM(Σ) ≤ M for some alphabet Σ, that

is, if the computational power of Turing machines over input alphabet alphabet
Σ is subsumed by that of M.

We say that M is Turing-equivalent if M ∼ TM(Σ) for some alphabet Σ,
that is, if, for some alphabet Σ, both the computational power of Turing ma-
chines over input alphabet Σ is subsumed by that of M, and the computational
power of M is subsumed by that of Turing machines over input alphabet Σ.


