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Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power
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Some Models of Computation
machine model mathematical model sort
Turing machine Combinatory Logic

classical

Post machine λ-calculus
register machine Herbrand–Gödel recursive functions

partial-recursive/µ-recursive functions
Post canonical system (tag system)

Post’s Correspondence Problem
Markov algorithms

Lindenmayer systems
Fractran less well known

cellular automata term rewrite systems

modern

neural networks interaction nets
logic-based models of computation
concurrency and process algebra

ς-calculus
evolutionary programming/genetic algorithms
abstract state machines

hypercomputation speculative
quantum computing

physics-/biology-
inspired

bio-computing
reversible computing
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Overview

▸ Compare computational power of models of computation

▸ Post’s Correspondence Problem (by Emil Post, 1946, [4])

▸ Interaction Nets (by Yves Lafont, 1990, [3])

▸ Fractran (by John Horton Conway, 1987, [1])
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a classM of
machines/systems/. . . such that every M ∈M it holds:

▷ M has a countable set IM of input objects, and a countable set
OM of output objects that are specific to the MoCM;

▷ M has a set CM of configurations of M , which contains the
subset ECM ⊆ CM of end-configurations of M ;

▷ M has an injective input function αM ∶ IM → CM , which maps
input objects of M to configurations of M ;

▷ M defines a one-step computation relation Z⇒M on the set CM ;
the transitive closure of Z⇒M is designated by Z⇒∗M ;

▷ M has a partial output function ωM ∶ ECM ⇀ OM, which maps
some end-configurations of M to output objects of M ;
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Simulations between models of computation

models M1 ∈M1 and M2 ∈M2 simulate each other with respect to
coding ⌜⋅⌝ ∶ IM1

→ IM2 and decoding ‘ ⋅ ’ ∶ OM2 → OM1 if:

⋆M 1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

αM2
(x2) ∈ CM2

αM1
(x1) ∈ CM1

c2 ∈ ECM2
c1 ∈ ECM1

⋆M 2

αM1

ωM1

⌜⋅⌝

‘ ⋅ ’

αM2

ωM2

x1 ∈ IM1
x2 ∈ IM2

ωM1
(c1) ∈ OM1

ωM2
(c2) ∈ OM2

⋆M 1

αM1
(x1) ∈ CM1

αM2
(x2) ∈ CM2

(defines a Galois connection)
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Comparing Computational Power of MoC’s

Definition
LetM1 andM2 be MoC’s.

1 The computational power ofM1 is subsumed by that ofM2,
denoted symbolically byM1 ≤M2, if:

(∃a pair ⟨⌜⋅⌝, ‘ ⋅ ’⟩ of encoding and decoding functions
⌜⋅⌝ ∶ IM1 → IM2 and ‘ ⋅ ’ ∶ OM2 → OM1

(∀M1 ∈M1) (∃M2 ∈M2)
[M1 and M2 simulate each other w.r.t. ⟨⌜⋅⌝, ‘ ⋅ ’⟩ ] .

2 The computational power ofM1 is equivalent to that ofM2,
denoted byM1 ∼M2, if bothM1 ≤M2 andM2 ≤M1 hold.
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Comparing Computational Power of MoC’s

Theorem
For all modelsM1 andM2, and encoding and decoding functions
⌜⋅⌝ ∶ IM1 → IM2 and ‘ ⋅ ’ ∶ OM2 → OM1 it holds:

M1 ≤⟨⌜⋅⌝,‘⋅’⟩M2 Ô⇒ F(M1) ⊆ { ‘ ⋅ ’ ○ f ○ ⌜⋅⌝ ∣ f ∈ F(M2) } .
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Turing completeness and equivalence

By TM(Σ) we mean the model of Turing machines over input
alphabet Σ.

Definition
LetM a model of computation.

M is Turing-complete if TM(Σ) ≤M for some alphabet Σ with Σ ≠ ∅.

M is Turing-equivalent ifM ∼ TM(Σ) for some alphabet Σ ≠ ∅.
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Post’s Correspondence Problem
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Interaction Nets

Yves Lafont (1990) [3] proposed a programming language:
▸ a simple graph rewriting semantics,
▸
▸
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Fractran
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