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» Compare computational power of models of computation

» Post’s Correspondence Problem (by Emil Post, 1946, [4])
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Overview

» Compare computational power of models of computation
» Post’s Correspondence Problem (by Emil Post, 1946, [4])

» Interaction Nets (by Yves Lafont, 1990, [3])
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Overview

v

Compare computational power of models of computation

v

Post’s Correspondence Problem (by Emil Post, 1946, [4])

v

Interaction Nets (by Yves Lafont, 1990, [3])

v

Fractran (by John Horton Conway, 1987, [1])
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a class M of
machines/systems/... such that every 1/ € M it holds:

> M has a countable set I, of input objects, and a countable set
O\ of output objects that are specific to the MoC M;
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a class M of
machines/systems/... such that every 1/ € M it holds:

> M has a countable set I, of input objects, and a countable set
O\ of output objects that are specific to the MoC M;

> M has a set Cy; of configurations of /7, which contains the
subset EC,, c C,, of end-configurations of 17/;
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a class M of
machines/systems/... such that every 1/ € M it holds:

> M has a countable set I, of input objects, and a countable set
O\ of output objects that are specific to the MoC M;

> M has a set Cy; of configurations of /7, which contains the
subset EC,, c C,, of end-configurations of 17/;

> A has an injective input function ay; : In = Gy, which maps
input objects of 1/ to configurations of 17/;
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a class M of
machines/systems/... such that every 1/ € M it holds:

> M has a countable set I, of input objects, and a countable set
O\ of output objects that are specific to the MoC M;

> M has a set Cy; of configurations of /7, which contains the
subset EC,, c C,, of end-configurations of 17/;

> A has an injective input function ay; : In = Gy, which maps
input objects of 1/ to configurations of 17/;

> M defines a one-step computation relation =, on the set C;;
the transitive closure of =, is designated by =7 ,;
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Models of computation, viewed abstractly

A(n abstractly viewed) model of computation (MoC) is a class M of
machines/systems/... such that every 1/ € M it holds:

>

>

M has a countable set I, of input objects, and a countable set
O\ of output objects that are specific to the MoC M;

M has a set Cy; of configurations of 1/, which contains the
subset EC,, c C,, of end-configurations of 17/;

M has an injective input function «; : Iny — Cy;, which maps
input objects of 1/ to configurations of 17/;

M defines a one-step computation relation =, on the set C;;
the transitive closure of =, is designated by =7 ,;

M has a partial output function wy; : ECy; — Ony, Which maps
some end-configurations of 1/ to output objects of 1/;
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Simulations between models of computation

models 1| € My and M, € M, simulate each other with respect to
coding "' : I, = Iy, and decoding ‘-’ : Opq, = Opy, if:

wely, e mely,

Ost I{J{m
ay,(r1) € C) ai(z2) € Cy

MN M v

c1 € ECy/ e eECy

wa Wiy,
¥

wiy (c1) €Opp, = wyy,(e2) € Oy,
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Simulations between models of computation

models 1| € My and M, € M, simulate each other with respect to
coding "' : I, = Iy, and decoding ‘-’ : Opq, = Opy, if:

w1 €ly ———————— mely,

(Y\‘I I“’w
ay (1) €Cy ayr,(z2) € C

M vx MNY

c1 € ECy; c e ECyy,

Wi IW
¥

wiy (01) €Oy, =————Jwi () € Opy,
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Simulations between models of computation

models 1| € My and M, € M, simulate each other with respect to
coding "' : I, = Iy, and decoding ‘-’ : Opq, = Opy, if:

ra
1161.\4‘ — 1‘261.\4,,

ay, (z1) € Cy ay,(x2) eCy
MNP ,\/;Jvif*
c1 € ECy/

e eECy

" I o,
‘s ¥

wiy (c1) €Opp, = wyy,(e2) € Oy,

(defines a Galois connection)
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wiy (01) €Oy, =————Jwi () €Oy,

Lecture 5: Three More Models



course some MoCs ov abstract MoCs compare MoCs PCP I-Nets Fractran some MoCs course

Comparing Computational Power of MoC’s

Definition
Let M; and M, be MoC'’s.
@ The computational power of M is subsumed by that of Mo,
denoted symbolically by M < Mo, if:
(3 a palr (",°-’) of encoding and decoding functions
IMl —>[M2 and ‘-’IO/\/l2 —>OM1
(VM e My) (3M3 e My)
[/, and )/, simulate each other w.rt. ("7,¢-") ].
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Comparing Computational Power of MoC’s

Definition
Let M; and M, be MoC'’s.
@ The computational power of M is subsumed by that of Mo,
denoted symbolically by M < Mo, if:
(3 a palr (",°-’) of encoding and decoding functions
I/\/ll —>[M2 and "’IO/\/I2 —>OM1
(VM e My) (3M3 e My)
[/, and )/, simulate each other w.rt. ("7,¢-") ].

@ The computational power of M; is equivalent to that of Mo,
denoted by M; ~ M, if both M; < M5 and M5 < M; hold.
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Comparing Computational Power of MoC’s

Theorem

For all models M, and M, and encoding and decoding functions
"Iy, > Iy, and 7 Opng, = Oy, it holds:

/\/l1 S(r,".,) M2 —_— ]:(Ml) g{sgoforﬂ

fEf(MQ)}
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Turing completeness and equivalence

By TM(X) we mean the model of Turing machines over input
alphabet X..

Definition

Let M a model of computation.

M is Turing-complete if TM(X) < M for some alphabet ¥ with ¥ # &.
M is Turing-equivalent if M ~ TM(X) for some alphabet ¥ + &.
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Interaction Nets

Yves Lafont (1990) [3] proposed a programming language:
» a simple graph rewriting semantics,
>
| 4
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