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Overview

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov λ-terms β-red. C-num’s λ-def. MoC feat’s prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. summ reading course ex refs

Overview

▸
▸
▸
▸
▸
▸ ▸ ▸

▸

▸ ▸

▸

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov λ-terms β-red. C-num’s λ-def. MoC feat’s prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. summ reading course ex refs

Today

Lambda calculus

▸ basics

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov λ-terms β-red. C-num’s λ-def. MoC feat’s prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. summ reading course ex refs

Today

Lambda calculus

▸ basics

▸ λ-definable functions

▸ primitive recursive functions are λ-definable

▸ µ-recursive/partial recursive functions are λ-definable

▸ λ-definable functions are Turing computable

▸ Hence: λ-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov λ-terms β-red. C-num’s λ-def. MoC feat’s prim.rec.⇒λ-def. part.rec.⇒λ-def. λ-def.⇒ T-comp. summ reading course ex refs

Church’s Thesis

Alonzo Church (1903 –1995)

Thesis (Church, 1936)

Every effectively calculable function is general recursive.
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λ-terms

Definition
▸ variables: x, y, z, x1, y1, z1, . . . ∈ Λ
▸ λ-abstraction: x a variable, M ∈ Λ Ô⇒ (λx.M ∈ Λ)
▸ application: M,N ∈ Λ Ô⇒ (MN) ∈ Λ
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β-reduction

Definition
▸ One-step β-reduction →β is defined as the application of the rule:

(λx.M)N →β M[x ∶= N]

in λ-terms C[(λx.M)N] formed by arbitrary λ-term contexts C[],
where is λx.MN called a redex, and furthermore:

M[x ∶= N] ∶= substitution of N for free occurrences of x in M
(using α-conversion to avoid variable capture)

▸ Many-step β-reduction↠β is defined as the concatenation of
zero, one, or more →β-steps.

▸ A λ-term M is a normal form if it does not contain a redex.
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Church numerals

Definition

For every n ∈ N, the Church numeral ⌜n⌝ for n is defined by:

⌜n⌝ ∶=λfx.fnx

=λfx.f(f(. . . (f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

x) . . .))

Examples.

⌜0⌝ = λfx.x
⌜1⌝ = λfx.fx
⌜2⌝ = λfx.f(fx)
. . .
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Pairs in λ-calculus

Definition

For all M,N ∈ Λ we define the pair ⟨M,N⟩ consisting of M and N :

⟨M,N⟩ ∶= λx.xMN

and the unpairing projections ρ1 and ρ2:

ρ1 ∶= λp.p(λxy.x)
ρ2 ∶= λp.p(λxy.y)

Proposition

For all M1,M2 ∈ Λ and i = 1,2:

ρi⟨M1, M2⟩ ↠β Mi
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True, false, if-then-else, zero? in λ-calculus

Definition
true ∶= λxy.x
false ∶= λxy.y

if P then Q else R ∶= PQR

zero? ∶= λx.x(λy.false)true

Proposition
if true then Q else R↠β Q

if false then Q else R↠β R

zero? ⌜0⌝ ↠β true

zero? ⌜n + 1⌝ ↠β false
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λ-definable functions

Definition
1 Let f ∶ Nn → N be total.

A λ-term Mf represents f if for all m1, . . . ,mk ∈ N:

Mf ⌜m1⌝. . .⌜mn⌝ ↠β ⌜f(m1, . . . ,mn)⌝

f is λ-definable if there exists a λ-term that represents f .

2 Let f ∶ Nn ⇀ N be a partial function.
A λ-term Mf represents f if for all m1, . . . ,mn ∈ N:

f(m1, . . . ,mn)↓ Ô⇒ Mf ⌜m1⌝. . .⌜mn⌝ ↠β ⌜f(m1, . . . ,mn)⌝

f(m1, . . . ,mn)↑ Ô⇒ Mf ⌜m1⌝. . .⌜mn⌝ has no normal form

f is λ-definable if there exists a λ-term that represents f .
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λ-definable

Examples.

▸ successor: Msucc ∶= λnfx.f(nfx)

▸ addition: M+ ∶= λmnfx.mf(nfx)

▸ multiplication: M× ∶= λmnfx.m(nf)x

▸ exponentiation: ME ∶= λmnfx.mnfx

▸ unary constant zero function: MC1
0
= λm.⌜0⌝

▸ projection function: Mπk
i
= λn1 . . . nk.ni
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Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop

▸ stopping condition
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Exercises

(i) Try to find all possible ways to reduce (λxy.x)(λx.xx)(λx.xx) to
normal form.

(ii) Find two distinct λ-terms representing the successor function on
Church-numerals (hint: think of n + 1 and 1 + n). Prove that your
λ-terms are not-β-equivalent.

(iii) Try computing the normal form of the Y -combinator, i.e. of AA
where A = λam.m(aam), e.g. by each time selecting the leftmost
redex (reducible expression, i.e. subexpression of the shape
(λx.M)N ).
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Primitive recursive functions are λ-definable

Proposition

Every primitive recursive function is λ-definable.

Proof (The case of primitive recursion).

Let h ∶= pr(f ; g) ∶ Nn+1 → N for prim.rec. f ∶ Nn → N, g ∶ Nn+2 → N:

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Suppose that f and g are represented by Mf ,Mg ∈ Λ, respectively.

Init ∶= ⟨⌜0⌝, Mf x1. . .xn⟩
Step ∶= λp.⟨Msucc(ρ1p), Mgx1. . .xn(ρ2p)(ρ1p)⟩

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xnx.ρ2(xStep Init )
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Primitive recursive functions (Nn ∪N0 → N)

Base functions:
▸ O ∶ N0 = {∅} → N , ∅ ↦ 0 (0-ary constant-0 function)
▸ succ ∶ N→ N , x↦ x + 1 (successor function)
▸ πn

i ∶ Nn → N , x⃗ = ⟨x1, . . . , xn⟩ ↦ xi (projection function)

Closed under operations:
▸ composition: if f ∶ Nk → N, and gi ∶ Nn → N are prim. rec.,

then so is h = f ○ (g1 × . . . × gk) ∶ Nn → N :
h(x⃗) = f(g1(x⃗), . . . , gk(x⃗))

▸ primitive recursion: if f ∶ Nn → N, g ∶ Nn+2 → N are prim. rec.,
then so is h = pr(f ; g) ∶ Nn+1 → N :

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)
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µ-recursion, and partial recursive functions

Definition
A partial function f ∶ Nn ⇀ N is called partial recursive if it can be
specified from base functions (O, succ, πn

i ) by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f ∶ Nn+1 ⇀ N partial. Then the partial function µ(f):

µ(f) ∶ Nn ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

↑ . . . ¬∃y (∧ f(x⃗, y) = 0∀z (0 ≤ z < y → (f(x⃗, z)↓))
z . . . ∧ f(x⃗, z) = 0∀y 0 ≤ y < z → (f(x⃗, y)↓ ≠ 0)

is called the unbounded minimisation of f .
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µ-recursion, and partial recursive functions

Definition
A partial function f ∶ Nn ⇀ N is called partial recursive if it can be
specified from base functions (O, succ, πn

i ) by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f ∶ Nn+1 → N total. Then the partial function defined by:

µ(f) ∶ Nn ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

min({y ∣ f(x⃗, y) = 0}) . . . ∃y (f(x⃗, y) = 0)
↑ . . . else

is called the unbounded minimisation of f .
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Reminder: Kleene’s normal form theorem

Theorem
For every partial recursive function h ∶ Nn → N there exist primitive
recursive functions f ∶ N→ N and g ∶ Nn+1 → N such that:

h(x1, . . . , xn) = (f ○ µ(g))(x1, . . . , xn)
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µ-recursive/partial recursive ⇒ λ-definable

Theorem
Every µ-recursive/partial recursive function is λ-definable.

Proof.

Let h ∶ Nn+1 → N be partial recursive.

Then by Kleene’s normal form theorem there exist g ∶ Nn+1 → N and
f ∶ N→ N such that:

h(x⃗) = f ○ µ(g)(x⃗) = f(µz.[g(x⃗, z) = 0])

Let Mf and Mg be λ-terms representing f and g, respectively. Let:

W ∶= λy.if (zero?Mgx1. . .xny) then (λw.Mfy) else (λw.w(Msuccy)w)

Then the following λ-term Mh represents h:

Mh ∶= λx1 . . . xn.W ⌜0⌝W
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A normalizing reduction strategy

Normal order reduction strategy
n→:

only perform →β-steps in left-most positions.

Theorem
The normal order reduction strategy in is normalizing in λ-calculus,
that is:

M ↠β N ∧ N is a normal form Ô⇒ M
n↠ N
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λ-definable ⇒ Turing-computable

Theorem
Every λ-definable function is Turing computable.

Idea of the Proof.
Let f ∶ Nn ⇀ N be a partial function that is λ-definable. Then there
exists a λ-term Mf that represents f .

To compute f , one can build a Turing machine M that, for given
m1, . . . ,mn ∈ N:
▸ simulates a normal order rewrite sequence on Mf ⌜m1⌝. . .⌜mn⌝

to obtain the normal form ⌜f(m1, . . . ,mn)⌝
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Summary

▸
▸
▸
▸
▸
▸ ▸ ▸

▸

▸ ▸

▸
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Suggested reading

1 Interaction-Based Models of Computation:
Chapter 7, The Lambda Calculus of the book:

▸ Maribel Fernández [1]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.
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Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power
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Example suggestions

Examples

1. FPT results transfer backwards over fpt-reductions:
If ⟨Q1, κ1⟩ ≤fpt ⟨Q2, κ2⟩, then Q2 ∈ FPT implies Q1 ∈ FPT.

2. Find the idea for:
p-DOMINATING-SET ≡fpt p-HITTING-SET.

3.
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