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Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Friday, July 11
10.30 — 12.30 10.30 — 12.30 10.30 — 12.30
| intro classic models | additional models |
Introduction to n n )
Computability Machine Models Recursive Functions Lambda Calculus
computation and Post Machines, primitive recursive A-terms, 3-reduction,
decision problems, typical features, functions, A-definable functions,
from logic to Turing’s analysis of Godel-Herbrand partial recursive
computability, human computers, recursive functions, — \-definable
overview of models Turing machines, partial recursive funct's, | - Turing computable
of computation basic recursion theory ~ Partial recursive =
relevance of MoCs = Turing-computable,
Church’s Thesis
imperative ; ) functional
y algebraic programming .
programming programming
[ [ [ \ 14.30 — 16.30 |
Three more Models of
Computation
Post’s Correspondence
Problem,
Interaction-Nets,
Fractran
comparing
computational power
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Today

Lambda calculus

» basics

v

\-definable functions

» primitive recursive functions are A-definable

v

u-recursive/partial recursive functions are A-definable

v

A-definable functions are Turing computable
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Today

Lambda calculus

» basics

v

\-definable functions

» primitive recursive functions are A-definable

v

u-recursive/partial recursive functions are A-definable

v

A-definable functions are Turing computable

v

Hence: \-definable = partial recursive = Turing-computable
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Church’s Thesis

Alonzo Church (1903 —1995)

Thesis (Church, 1936)
Every effectively calculable function is general recursive.
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A-terms

Definition
» variables: x,y, z,z1,vy1,21,..- € A
» \-abstraction: z a variable, M e A — (Az.M € A)
» application: M,Ne A —> (MN)eA
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SB-reduction

Definition
» One-step f-reduction — 4 is defined as the application of the rule:

(M. M)N —5 M[xz:=N]

in A\-terms C[(A\z.M)N ] formed by arbitrary A-term contexts C[],
where is A\z. M N called a redex, and furthermore:

Mz := N] := substitution of N for free occurrences of z in M
(using a-conversion to avoid variable capture)
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SB-reduction

Definition
» One-step f-reduction — 4 is defined as the application of the rule:

(M. M)N —5 M[xz:=N]

in A\-terms C[(A\z.M)N ] formed by arbitrary A-term contexts C[],
where is A\z. M N called a redex, and furthermore:

Mz := N] := substitution of N for free occurrences of z in M
(using a-conversion to avoid variable capture)

» Many-step -reduction -5 is defined as the concatenation of
zero, one, or more — 3-steps.
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SB-reduction

Definition
» One-step f-reduction — 4 is defined as the application of the rule:

(M. M)N —5 M[xz:=N]

in A\-terms C[(A\z.M)N ] formed by arbitrary A-term contexts C[],
where is A\z. M N called a redex, and furthermore:

Mz := N] := substitution of N for free occurrences of z in M
(using a-conversion to avoid variable capture)

» Many-step -reduction -5 is defined as the concatenation of
zero, one, or more — 3-steps.

» A \-term M is a normal form if it does not contain a redex.
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Church numerals
Definition
For every n € N, the Church numeral "n" for n is defined by:

n'=Afr. flz
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Church numerals

Definition
For every n € N, the Church numeral "n" for n is defined by:

n'=Afr. flz
=Afx. f(f(...(fz)...)

—_—
n
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Church numerals

Definition
For every n € N, the Church numeral "n" for n is defined by:
n' =M. flx
Mz f(f(...(fz)...))

——
Examples.
0" =\fz.x
1" =Afz. fz

2" = Afe.f(fz)
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Pairs in A-calculus
Definition
For all M, N € A we define the pair (M, N) consisting of M and N:
(M,N):=X x.cMN
and the unpairing projections p; and ps:

p1 = Ap.p(Ary.x)
p2 = Ap.p(Ary.y)

Proposition
Forall My,Ms e A andi=1,2:

pi{ My, Ma) »p5 M,

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov X-terms [-red. C-num's X\-def. MoC feat’s prim.rec.= X\-def. part.rec.= X\-def. \-def = T-comp. summ reading course ex re

True, false, if-then-else, zero? in \-calculus

Definition
true := \xy.x
false := Axy.y
if P then Q else R := PQR
zero? := \z.x(\y.false)true
Proposition

if true then Q else R »3 Q)
if false then Q else R -3 R
zero? 0" —»g true
zero? 'n+ 1" >4 false
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A-definable functions

Definition

@ Let /:N" - N be total.
A \-term M, represents f if for all mq,...,my e N:

Mp'mq'..."'my, > " f(ma, ... ,my)

f is A-definable if there exists a A-term that represents f.
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A-definable functions

Definition

@ Let /:N" - N be total.
A \-term M, represents f if for all mq,...,my e N:

Mr'mq'..."my," > " f(ma,...,my)"

f is A-definable if there exists a A-term that represents f.

@ Let /:N" — N be a partial function.
A Mterm M, represents f if for all mq,...,m, € N:

flma,....mp)l = My 'mq'..."my," —>g "f(ma,...,my)’

f(ma,...,mp)t = M;"m;"..."m,,” has no normal form

/ is A\-definable if there exists a A-term that represents .
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M-definable

Examples.
> successor: Mg := Anfz. f(nfz)

addition: M, = dmnfz.mf(nfz)

v

v

multiplication: My := Amnfx.m(nf)z
» exponentiation: Mg := Amnfz.mnfz

> unary constant zero function: Mc; = Am."0"

v

projection function: M.« = Any ... ng.n;
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)

» control (finite, given)
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification
e of (immediately accessible) stored data
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification

e of (immediately accessible) stored data
e of control state
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Typical features of ‘computationally complete’ MoC’s

v

storage (unbounded)

v

control (finite, given)

v

modification

e of (immediately accessible) stored data
e of control state

v

conditionals
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Typical features of ‘computationally complete’ MoC’s

v

storage (unbounded)

v

control (finite, given)

v

modification

e of (immediately accessible) stored data
e of control state

v

conditionals

> loop
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification

e of (immediately accessible) stored data
e of control state

» conditionals
> loop

» stopping condition
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Exercises

(i) Try to find all possible ways to reduce (Azy.z)(Az.xx)(Az.zz) to
normal form.

(i) Find two distinct A-terms representing the successor function on
Church-numerals (hint: think of n + 1 and 1 + n). Prove that your
A-terms are not-5-equivalent.

(iii) Try computing the normal form of the Y-combinator, i.e. of AA
where A = Aam.m(aam), €.g. by each time selecting the leftmost
redex (reducible expression, i.e. subexpression of the shape
(Az.M)N).
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Primitive recursive functions are \-definable

Proposition
Every primitive recursive function is \-definable.
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Primitive recursive functions are \-definable
Proposition
Every primitive recursive function is \-definable.

Proof (The case of primitive recursion).
Let h:=pr(f:g): N**! > N for prim.rec. f :N* - N, g:N"*2 > N:

h(Z,0) = f(Z)
h(Z,y +1) = g(Z,M(Z,v),y)

Suppose that f and g are represented by M, M, € A, respectively.
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Primitive recursive functions are \-definable

Proposition
Every primitive recursive function is \-definable.

Proof (The case of primitive recursion).
Let h:=pr(f:g): N**! > N for prim.rec. f :N* - N, g:N"*2 > N:

h(%,0) = f(Z)
h(Z,y+1) = g(2,h(Z,y),y)
Suppose that f and g are represented by M, M, € A, respectively.

Init := ("0", My z1...2p)
Step = Ap.Msuec(p1P), My21. . .20 (p2p) (p1P))

Then the following A-term A/, represents h:

My, := Axq ... Tz p2(z Step Init)
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Primitive recursive functions (N* u N — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—> N,z x+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)

Closed under operations:

» composition: if f:N* - N, and ¢; : N* - N are prim. rec.,
thensoish=fo (g1 x...xg;):N* - N:

(@) = f(g1(2),- .., 91 (2))

» primitive recursion: if f : N* - N, ¢ : N"*2 - N are prim. rec.,
then sois = pr(f;g): N""! - N:

h(Z,0) = f(Z)
h(z,y +1) = g(2, (2, v),y)
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p-recursion, and partial recursive functions

Definition

A partial function f : N — N is called partial recursive if it can be
specified from base functions (O, succ, ") by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.
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p-recursion, and partial recursive functions

Definition

A partial function f : N — N is called partial recursive if it can be
specified from base functions (O, succ, ") by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f: N"*! - N total. Then the partial function defined by:
p(f):N*~N
- {min({y [ [(@9)=0)) ... 3y(f (@) =0)
T

...else

is called the unbounded minimisation of f.
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p-recursion, and partial recursive functions

Definition

A partial function f : N — N is called partial recursive if it can be
specified from base functions (O, succ, ") by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let /: N"*! ~ N partial. Then the partial function ;.(f):
p(f):N"—~N

o =3y (A f(Zy) =0V2 (0<z <y = (f(E,2))))
z o ANf(B,2)=0Vy0<y <z > (f(Z,y)l £0)

is called the unbounded minimisation of f.
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Reminder: Kleene’s normal form theorem

Theorem

For every partial recursive function h : N™ — N there exist primitive
recursive functions f :N - N and ¢ : N**! - N such that:

(1, xn) = (f o uw(g))(z1,...,zp)

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov X-terms [-red. C-num's X\-def. MoC feat’s prim.rec.= X\-def. part.rec.= X\-def. \-def = T-comp. summ reading course ex re

p-recursive/partial recursive = \-definable

Theorem

Every u-recursive/partial recursive function is \-definable.

Proof.

Let »: N"*! — N be partial recursive.
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p-recursive/partial recursive = \-definable

Theorem
Every u-recursive/partial recursive function is \-definable.
Proof.

Let »: N"*! — N be partial recursive.

Then by Kleene’s normal form theorem there exist ¢ : N**! - N and
/N — N such that:

h(Z) = f o u(9)(Z) = f(uz.[9(Z,2) = 0])
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p-recursive/partial recursive = \-definable

Theorem
Every u-recursive/partial recursive function is \-definable.

Proof.

Let »: N"*! — N be partial recursive.
Then by Kleene’s normal form theorem there exist ¢ : N**! - N and
/N — N such that:

hZ) = f o u(9)(Z) = f(pz.[9(Z,2) =0])
Let M, and M, be A-terms representing f and g, respectively. Let:
W := \y.if (zero? M,z . .xz,y) then (\w.M;y) else (Aw.w(Msyecy)w)
Then the following A-term 17, represents h:

A\/;, = Al’l $nWr01W
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A normalizing reduction strategy

Normal order reduction strategy 5
only perform —g-steps in left-most positions.

Clemens Grabmayer Lecture 4: Lambda Calculus



course ov X-terms [-red. C-num’s X\-def. MoC feat’s prim.rec. = X\-def. partrec.= X\-def. \-def. = T-comp. summ reading course ex re

A normalizing reduction strategy

Normal order reduction strategy 5
only perform —g-steps in left-most positions.

Theorem

The normal order reduction strategy in is normalizing in A-calculus,
thatis:

M -5 N A N is anormal form — M > N
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A-definable = Turing-computable

Theorem
Every \-definable function is Turing computable.
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A-definable = Turing-computable

Theorem
Every \-definable function is Turing computable.

Idea of the Proof.

Let /: N™ — N be a partial function that is A-definable. Then there
exists a A\-term M that represents f.
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A-definable = Turing-computable

Theorem
Every \-definable function is Turing computable.

Idea of the Proof.

Let /: N™ — N be a partial function that is A-definable. Then there
exists a A\-term 1, that represents f.

To compute /, one can build a Turing machine M that, for given
mi,...,my € N:

» simulates a normal order rewrite sequence on My "m;..."my,’
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A-definable = Turing-computable

Theorem
Every \-definable function is Turing computable.

Idea of the Proof.

Let /: N™ — N be a partial function that is A-definable. Then there
exists a A\-term 1, that represents f.

To compute /, one can build a Turing machine M that, for given
mi,...,my € N:

» simulates a normal order rewrite sequence on My "m;..."my,’
to obtain the normal form "/ (my,...,m,)’ O
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Suggested reading

@ |Interaction-Based Models of Computation:
Chapter 7, The Lambda Calculus of the book:

» Maribel Fernandez [1]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.
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Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10
10.30 — 12.30 10.30 — 12.30 10.30 — 12.30 10.30 - 12.30
| intro classic models | additional models |
Introduction to n n )
Computability Machine Models Recursive Functions Lambda Calculus
computation and Post Machines, primitive recursive A-terms, 3-reduction,
decision problems, typical features, functions, A-definable functions,
from logic to Turing’s analysis of Godel-Herbrand partial recursive
computability, human computers, recursive functions, = A-definable
overview of models Turing machines, partial recursive funct's, | - Turing computable
of computation basic recursion theory ~ Partial recursive =
relevance of MoCs = Turing-computable,
Church’s Thesis
imperative ; ) functional
y algebraic programming .
programming programming
[ [ [ \ 14.30 — 16.30 |
Three more Models of
Computation
Post’s Correspondence
Problem,
Interaction-Nets,
Fractran
comparing
computational power
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Example suggestions

Examples

1. FPT results transfer backwards over fpt-reductions:
If (Q1, k1) <tpt (@2, K2), then Q, € FPT implies Q, € FPT.

2. Find the idea for:
p-DOMINATING-SET =g p-HITTING-SET.
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References

[@ Maribel Fernandez.
Models of Computation (An Introduction to Computability
Theory).
Springer, Dordrecht Heidelberg London New York, 2009.
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