Lecture 4: Lambda Calculus

Models of Computation

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 10, 2025

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models			additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran
				comparing computational power

Overview

Overview

Today

Lambda calculus

- basics
- λ -definable functions
- primitive recursive functions are λ-definable
- μ -recursive/partial recursive functions are λ -definable
- λ -definable functions are Turing computable

Today

Lambda calculus

- basics
- λ-definable functions
- primitive recursive functions are λ-definable
- μ -recursive/partial recursive functions are λ -definable
- λ-definable functions are Turing computable
- Hence: λ -definable = partial recursive = Turing-computable

Church's Thesis

Alonzo Church (1903 – 1995)

Thesis (Church, 1936)

Every effectively calculable function is general recursive.

λ -terms

Definition

- variables: $x, y, z, x_1, y_1, z_1, \ldots \in \Lambda$
- λ -abstraction: x a variable, $M \in \Lambda \implies (\lambda x. M \in \Lambda)$
- application: $M, N \in \Lambda \implies (MN) \in \Lambda$

β -reduction

Definition

• One-step β -reduction \rightarrow_{β} is defined as the application of the rule:

$$(\lambda x.M)N \rightarrow_{\beta} M[x \coloneqq N]$$

in λ -terms $C[(\lambda x.M)N]$ formed by arbitrary λ -term contexts C[], where is $\lambda x.MN$ called a redex, and furthermore:

 $M[x \coloneqq N] \coloneqq$ substitution of N for free occurrences of x in M(using α -conversion to avoid variable capture)

β -reduction

Definition

• One-step β -reduction \rightarrow_{β} is defined as the application of the rule:

 $(\lambda x.M)N \rightarrow_{\beta} M[x \coloneqq N]$

in λ -terms $C[(\lambda x.M)N]$ formed by arbitrary λ -term contexts C[], where is $\lambda x.MN$ called a redex, and furthermore:

 $M[x \coloneqq N] \coloneqq$ substitution of N for free occurrences of x in M(using α -conversion to avoid variable capture)

Many-step β-reduction →_β is defined as the concatenation of zero, one, or more →_β-steps.

β -reduction

Definition

• One-step β -reduction \rightarrow_{β} is defined as the application of the rule:

$$(\lambda x.M)N \rightarrow_{\beta} M[x \coloneqq N]$$

in λ -terms $C[(\lambda x.M)N]$ formed by arbitrary λ -term contexts C[], where is $\lambda x.MN$ called a redex, and furthermore:

 $M[x \coloneqq N] \coloneqq$ substitution of N for free occurrences of x in M(using α -conversion to avoid variable capture)

- Many-step β-reduction →_β is defined as the concatenation of zero, one, or more →_β-steps.
- A λ -term M is a normal form if it does not contain a redex.

Church numerals

Definition

For every $n \in \mathbb{N}$, the Church numeral [n] for n is defined by:

$$n := \lambda f x. f^n x$$

Church numerals

Definition

For every $n \in \mathbb{N}$, the Church numeral $\lceil n \rceil$ for *n* is defined by:

$$\begin{bmatrix} n^{n} := \lambda f x. f^{n} x \\ = \lambda f x. \underbrace{f(f(\dots (f x) \dots))}_{T} \end{bmatrix}$$

Church numerals

Definition

For every $n \in \mathbb{N}$, the Church numeral $\lceil n \rceil$ for *n* is defined by:

$$n' := \lambda f x. f^n x$$
$$= \lambda f x. \underbrace{f(f(\dots(f x) \dots))}_n$$

Examples.

$$[0] = \lambda f x. x$$
$$[1] = \lambda f x. f x$$
$$[2] = \lambda f x. f (f x)$$

. . .

Pairs in λ -calculus

Definition

For all $M, N \in \Lambda$ we define the pair (M, N) consisting of M and N:

 $\langle M, N \rangle \coloneqq \lambda x. x M N$

and the unpairing projections ρ_1 and ρ_2 :

 $\rho_1 \coloneqq \lambda p. p(\lambda xy. x)$ $\rho_2 \coloneqq \lambda p. p(\lambda xy. y)$

Proposition

For all $M_1, M_2 \in \Lambda$ and i = 1, 2:

```
\rho_i \langle M_1, M_2 \rangle \twoheadrightarrow_\beta M_i
```

 $\textit{course ov } \lambda \textit{-terms } \beta \textit{-red. } C\textit{-num's } \lambda \textit{-def. } MoC \textit{feat's prim.rec.} \Rightarrow \lambda \textit{-def. } part.rec. \Rightarrow \lambda \textit{-def. } \lambda \textit{-def.} \Rightarrow T \textit{-comp. summ reading course ex rediction}$

True, false, if-then-else, **zero?** in λ -calculus

 $true := \lambda xy.x$ false := $\lambda xy.y$ if P then Q else R := PQR zero? := $\lambda x.x(\lambda y.false)true$

Proposition

Definition

if true then Q else $R \twoheadrightarrow_{\beta} Q$ if false then Q else $R \twoheadrightarrow_{\beta} R$ zero? $"0" \twoheadrightarrow_{\beta}$ true zero? $"n + 1" \twoheadrightarrow_{\beta}$ false

λ -definable functions

λ -definable functions

λ -definable

Examples.

- Successor: $M_{succ} \coloneqq \lambda nfx.f(nfx)$
- addition: $M_+ := \lambda mnfx.mf(nfx)$
- multiplication: $M_{\times} \coloneqq \lambda mnfx.m(nf)x$
- exponentiation: $M_{\mathsf{E}} \coloneqq \lambda mnfx.mnfx$
- unary constant zero function: $M_{C_0^1} = \lambda m. [0]$
- projection function: $M_{\pi_i^k} = \lambda n_1 \dots n_k . n_i$

storage (unbounded)

- storage (unbounded)
- control (finite, given)

- storage (unbounded)
- control (finite, given)
- modification

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop
- stopping condition

Exercises

- (i) Try to find all possible ways to reduce $(\lambda xy.x)(\lambda x.xx)(\lambda x.xx)$ to normal form.
- (ii) Find two distinct λ -terms representing the successor function on Church-numerals (hint: think of n + 1 and 1 + n). Prove that your λ -terms are not- β -equivalent.
- (iii) Try computing the normal form of the *Y*-combinator, i.e. of *AA* where $A = \lambda am.m(aam)$, e.g. by each time selecting the leftmost redex (reducible expression, i.e. subexpression of the shape $(\lambda x.M)N$).

Primitive recursive functions are λ -definable

Proposition

Every primitive recursive function is λ -definable.

Primitive recursive functions are λ -definable

Proposition

Every primitive recursive function is λ -definable.

Proof (The case of primitive recursion).

Let $h := pr(f;g) : \mathbb{N}^{n+1} \to \mathbb{N}$ for prim.rec. $f : \mathbb{N}^n \to \mathbb{N}, g : \mathbb{N}^{n+2} \to \mathbb{N}$:

$$h(\vec{x},0) = f(\vec{x})$$
$$h(\vec{x},y+1) = g(\vec{x},h(\vec{x},y),y)$$

Suppose that f and g are represented by $M_f, M_g \in \Lambda$, respectively.

Primitive recursive functions are λ -definable

Proposition

Every primitive recursive function is λ -definable.

Proof (The case of primitive recursion).

Let $h := pr(f;g) : \mathbb{N}^{n+1} \to \mathbb{N}$ for prim.rec. $f : \mathbb{N}^n \to \mathbb{N}, g : \mathbb{N}^{n+2} \to \mathbb{N}$:

$$h(\vec{x},0) = f(\vec{x})$$
$$h(\vec{x},y+1) = g(\vec{x},h(\vec{x},y),y)$$

Suppose that f and g are represented by $M_f, M_g \in \Lambda$, respectively.

$$\begin{aligned} \text{Init} &:= \langle {}^{r}0{}^{n}, M_{f} x_{1} \dots x_{n} \rangle \\ \\ \text{Step} &:= \lambda p. \langle M_{\text{succ}}(\rho_{1}p), M_{g} x_{1} \dots x_{n}(\rho_{2}p)(\rho_{1}p) \rangle \end{aligned}$$

Then the following λ -term M_h represents h:

 $M_h \coloneqq \lambda x_1 \dots x_n x . \rho_2(x \operatorname{Step Init})$

Primitive recursive functions $(\mathbb{N}^n \cup \mathbb{N}^0 \to \mathbb{N})$

Base functions:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0$ (0-ary constant-0 function)
- succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- $\pi_i^n : \mathbb{N}^n \to \mathbb{N}, \ \vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i \ \text{(projection function)}$

Closed under operations:

- ► composition: if $f : \mathbb{N}^k \to \mathbb{N}$, and $g_i : \mathbb{N}^n \to \mathbb{N}$ are prim. rec., then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}$: $h(\vec{x}) = f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$
- ▶ primitive recursion: if $f : \mathbb{N}^n \to \mathbb{N}$, $g : \mathbb{N}^{n+2} \to \mathbb{N}$ are prim. rec., then so is $h = pr(f;g) : \mathbb{N}^{n+1} \to \mathbb{N}$:

$$h(\vec{x},0) = f(\vec{x})$$
$$h(\vec{x},y+1) = g(\vec{x},h(\vec{x},y),y)$$

μ -recursion, and partial recursive functions

Definition

A partial function $f : \mathbb{N}^n \to \mathbb{N}$ is called partial recursive if it can be specified from base functions (\mathcal{O} , succ, π_i^n) by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

μ -recursion, and partial recursive functions

Definition

A partial function $f : \mathbb{N}^n \to \mathbb{N}$ is called partial recursive if it can be specified from base functions (\mathcal{O} , succ, π_i^n) by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let
$$f : \mathbb{N}^{n+1} \to \mathbb{N}$$
 total. Then the partial function defined by:

$$\mu(f) : \mathbb{N}^n \to \mathbb{N}$$
$$\vec{x} \mapsto \begin{cases} \min(\{y \mid f(\vec{x}, y) = 0\}) & \dots & \exists y (f(\vec{x}, y) = 0) \\ \uparrow & \dots & \mathsf{else} \end{cases}$$

is called the unbounded minimisation of f.

μ -recursion, and partial recursive functions

Definition

A partial function $f : \mathbb{N}^n \to \mathbb{N}$ is called partial recursive if it can be specified from base functions (\mathcal{O} , succ, π_i^n) by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let
$$f : \mathbb{N}^{n+1} \to \mathbb{N}$$
 partial. Then the partial function $\mu(f)$:

$$\mu(f): \mathbb{N}^n \to \mathbb{N}$$
$$\vec{x} \mapsto \begin{cases} \uparrow & \dots & \neg \exists y \left(\land f(\vec{x}, y) = 0 \forall z \left(0 \le z < y \to (f(\vec{x}, z) \downarrow \right) \right) \\ z & \dots & \land f(\vec{x}, z) = 0 \forall y \, 0 \le y < z \to (f(\vec{x}, y) \downarrow \neq 0) \end{cases}$$

is called the unbounded minimisation of f.

Reminder: Kleene's normal form theorem

Theorem

For every partial recursive function $h : \mathbb{N}^n \to \mathbb{N}$ there exist primitive recursive functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N}^{n+1} \to \mathbb{N}$ such that:

$$h(x_1,\ldots,x_n) = (f \circ \mu(g))(x_1,\ldots,x_n)$$

μ -recursive/partial recursive $\Rightarrow \lambda$ -definable

Theorem

Every μ -recursive/partial recursive function is λ -definable.

Proof.

Let $h : \mathbb{N}^{n+1} \to \mathbb{N}$ be partial recursive.

μ -recursive/partial recursive $\Rightarrow \lambda$ -definable

Theorem

Every μ -recursive/partial recursive function is λ -definable.

Proof.

Let $h : \mathbb{N}^{n+1} \to \mathbb{N}$ be partial recursive. Then by Kleene's normal form theorem there exist $g : \mathbb{N}^{n+1} \to \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$ such that:

$$h(\vec{x}) = f \circ \mu(g)(\vec{x}) = f(\mu z.[g(\vec{x}, z) = 0])$$

μ -recursive/partial recursive $\Rightarrow \lambda$ -definable

Theorem

Every μ -recursive/partial recursive function is λ -definable.

Proof.

Let $h : \mathbb{N}^{n+1} \to \mathbb{N}$ be partial recursive. Then by Kleene's normal form theorem there exist $g : \mathbb{N}^{n+1} \to \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$ such that:

$$h(\vec{x}) = f \circ \mu(g)(\vec{x}) = f(\mu z.[g(\vec{x}, z) = 0])$$

Let M_f and M_g be λ -terms representing f and g, respectively. Let:

 $W \coloneqq \lambda y.$ if (zero? $M_g x_1...x_n y$) then $(\lambda w. M_f y)$ else $(\lambda w. w(M_{succ} y)w)$

Then the following λ -term M_h represents h:

$$M_h \coloneqq \lambda x_1 \dots x_n . W \ 0 \ W$$

 $\textit{course ov } \lambda \textit{-terms } \beta \textit{-red. } C\textit{-num's } \lambda \textit{-def. MoC feat's prim.rec.} \Rightarrow \lambda \textit{-def. part.rec.} \Rightarrow \lambda \textit{-def. } \lambda \textit{-def. } \lambda \textit{-def. } \Rightarrow T\textit{-comp. summ reading course ex reduced to the second se$

A normalizing reduction strategy

Normal order reduction strategy $\stackrel{n}{\rightarrow}$:

only perform \rightarrow_{β} -steps in left-most positions.

 $\textit{course ov } \lambda \textit{-terms } \beta \textit{-red. } C\textit{-num's } \lambda \textit{-def. MoC feat's prim.rec.} \Rightarrow \lambda \textit{-def. part.rec.} \Rightarrow \lambda \textit{-def. } \lambda \textit{-def. } \lambda \textit{-def. } \Rightarrow T\textit{-comp. summ reading course ex reduced to the second se$

A normalizing reduction strategy

Normal order reduction strategy \xrightarrow{n} : only perform \rightarrow_{β} -steps in left-most positions.

Theorem

The normal order reduction strategy in is normalizing in λ -calculus, that is:

 $M \twoheadrightarrow_{\beta} N \wedge N$ is a normal form $\implies M \xrightarrow{n} N$

Theorem

Every λ -definable function is Turing computable.

Theorem

Every λ -definable function is Turing computable.

Idea of the Proof.

Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function that is λ -definable. Then there exists a λ -term M_f that represents f.

Theorem

Every λ -definable function is Turing computable.

Idea of the Proof.

Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function that is λ -definable. Then there exists a λ -term M_f that represents f.

To compute f, one can build a Turing machine M that, for given $m_1, \ldots, m_n \in \mathbb{N}$:

▶ simulates a normal order rewrite sequence on M_f $[m_1] \dots [m_n]$

Theorem

Every λ -definable function is Turing computable.

Idea of the Proof.

Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function that is λ -definable. Then there exists a λ -term M_f that represents f.

To compute f, one can build a Turing machine M that, for given $m_1, \ldots, m_n \in \mathbb{N}$:

• simulates a normal order rewrite sequence on M_f ' m_1 '...' m_n '

to obtain the normal form $f(m_1, \ldots, m_n)$

Summary

Suggested reading

Interaction-Based Models of Computation: Chapter 7, The Lambda Calculus of the book:

> Maribel Fernández [1]: Models of Computation (An Introduction to Computability Theory), Springer-Verlag London, 2009.

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models			additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran
				comparing computational power

Example suggestions

Examples

1. FPT results transfer backwards over fpt-reductions: If $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle$, then $Q_2 \in \text{FPT}$ implies $Q_1 \in \text{FPT}$.

2. Find the idea for:

p-DOMINATING-SET $\equiv_{fpt} p$ -HITTING-SET.

3.

References

Maribel Fernández.

Models of Computation (An Introduction to Computability Theory). Springer, Dordrecht Heidelberg London New York, 2009.