course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Lecture 4: Lambda Calculus
Models of Computation

https://clegra.github.io/moc/moc.html

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period
Gran Sasso Science Institute
LAquila, Italy

July 10, 2025

Clemens Grabmayer Lecture 4: Lambda Calculus

https://clegra.github.io/moc/moc.html

course ov \-terms [-red. Ch-num’s X-def.

feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Course overview

‘ Monday, July 7

Tuesday, July 8 Wednesday, July 9 Friday, July 11
10.30 — 12.30 10.30 — 12.30 10.30 — 12.30
intro classic models | additional models |
Introduction to n n)
Computability Machine Models Recursive Functions Lambda Calculus
computation and Post Machines, primitive recursive A-terms, 3-reduction,
decision problems, typical features, functions, A-definable functions,
from logic to Turing’s analysis of Godel-Herbrand partial recursive
computability, human computers, recursive functions, = A-definable
overview of models Turing machines, partial recursive funct's, | - Turing computable
of computation basic recursion theory ~ Partial recursive =
relevance of MoCs = Turing-computable,
Church’s Thesis
imperative ;) functional
y algebraic programming .
programming programming
[[[\ 14.30 — 16.30 |
Three more Models of
Computation
Post’s Correspondence
Problem,
Interaction-Nets,
Fractran
comparing
computational power

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Today

Lambda calculus

» \-calculus

» syntax
» reduction rules

v

\-definable functions

» primitive recursive functions are A-definable

v

u-recursive/partial recursive functions are \-definable

v

A-definable functions are Turing computable

v

Hence: A-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. part.rec.= \-def. \-def. = T-comp. su read course refs

Church’s Thesis

Alonzo Church (1903 —1995)

Thesis (Church, 1936)
» Every total effectively calculable function is recursive.
» Every effectively calculable partial function is partial-recursive.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

A-terms

Definition
» variables: x,y, z,z1,vy1,21,..- € A
» \-abstraction: z a variable, M e A — (Az.M € A)
» application: M,Ne A —> (MN)eA

Notation conventions:
» omit outermost brackets
» z short for (z), and Az.z short for (Az.x)
» application associates to the left
» MNPQ is shortfor ((MN)P)Q
» abstraction associates to the right
» A\xy.M is shortfor Az.(\y.M)
» scope of A(-) is as big as possible

» Az.yzx is short for Az.(yx)
» note: (A\z.y)z is different from Az.yzx

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def = T-comp. su read course refs

SB-reduction

Definition
» One-step f-reduction — 4 is defined as the application of the rule:

(Ae.M)N -5 M{xz:=N}

in A\-terms C[(A\z.M)N] formed by arbitrary A-term contexts C[],
where is A\z. M N called a redex, and furthermore:

M{z := N} := substitution of N for free occurrences of z in M
(using a-conversion to avoid variable capture)

» Many-step S-reduction —7 is defined as the concatenation of
zero, one, or more — 3-steps.

» A \-term M is a normal form if it does not contain a redex.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Church numerals

Definition
For every n € N, the Church numeral "n" for n is defined by:
n' =M. flx
Mz f(f(...(fz)...))

——
Examples.
0" =\fz.x
1" =Afz. fz

2" = Afe.f(fz)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Turing-computable (total) functions

Definition
A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N — X* such that:

» forall nq,...,n; € N there exists ¢ € F' such that:

qo{n1)B(na2)B ... B{(ng) =3, a(f(na, ..., nx))

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def = T-comp. su read course refs

A-definable functions

Definition
» Let /:N" - N be total.
A Mterm M represents f if for all mq,...,m, € N:

5

My "my’."my" —=p f(ma,...,my)
/ is A\-definable if there exists a A-term that represents .

» Let /:N™ —~ N be a partial function.
A \-term M, represents f if for all mq,...,m, e N:

e = My my = (e m)’

f(ma, ..
"m, has no normal form

f(ma,...,mp)t = M;"mq ...

[is A-definable if there exists a A-term that represents f.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

M-definable

Examples.
> successor: Mg := Anfz. f(nfz)

addition: M, = dmnfz.mf(nfz)

v

v

multiplication: My := Amnfx.m(nf)z
» exponentiation: Mg := Amnfz.mnfz

> unary constant zero function: Mc; = Am."0"

v

projection function: M.« = Any ... ng.n;

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Pairs in A-calculus
Definition
For all M, N € A we define the pair (M, N) consisting of M and N:
(M,N):=X x.cMN
and the unpairing projections p; and ps:

p1 = Ap.p(Ary.x)
p2 = Ap.p(Ary.y)

Proposition
Forall My,Ms e A andi=1,2:

pi{ My, Ma) »5 M;

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. part.rec.= \-def. \-def. = T-comp. su read course refs

True, false, if-then-else, zero? in \-calculus

Definition
true := \xy.x
false := Axy.y
if P then Q else R := PQR
zero? := \z.x(\y.false)true
Proposition

if true then Q else R -~ Q
if false then Q else R -3 R
zero? ‘0’ —} true
zero? n+1" —>Z; false

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def = T-comp. su read course refs

Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification

» of (immediately accessible) stored data
» of control state

» conditionals
> loop

» stopping condition

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [(-red. Ch-num’s X-def. feat's book ex prim.rec.= X\-def. part.rec.= \-def. \-def. = T-comp. su read course

The Book

STUDIES IN LOGIC
AND
THE FOUNDATIONS OF MATHEMATICS

VOLUME 10

3 BARWISE /D KAPLAN / W J KEISLER / F. SUPPES / A S TROELSTRA
EDITORS

The Lambda
Caleulus
Its Syntax and Semanties

REVISED EDITION

H.P. BARENDREGT

NORTH-HOLLAND
AMSTERDAM ® NEW YORK ® OXFORD

(reference [1]) Hendrik Pieter (Henk) Barendregt

Clemens Grabmayer

Lecture 4: Lambda Calculus

refs

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def = T-comp. su read course refs

Exercises

(1) Describe all possible ways to reduce (\zy.x)((Az.xz)(Az.zx)) to
normal form.

(2) Find two distinct A-terms representing the successor function on
Church-numerals (hint: think of n + 1 and 1 + n). Prove that your
A-terms are not-5-equivalent.

(3) Try computing the normal form of the Y-combinator, i.e. of AA
where A = Aam.m(aam), €.g. by each time selecting the leftmost
redex (reducible expression, i.e. subexpression of the shape
(Az.M)N).

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Primitive recursive functions (N* u N — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—> N,z x+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)

Closed under operations:

» composition: if f:N* - N, and ¢; : N* - N are prim. rec.,
thensoish=fo (g1 x...xg;):N* - N:

(@) = f(g1(2),- .., 91 (2))

» primitive recursion: if f : N* - N, ¢ : N"*2 - N are prim. rec.,
then sois = pr(f;g): N""! - N:

h(Z,0) = f(Z)
h(z,y +1) = g(2, (2, v),y)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. part.rec.= \-def. \-def. = T-comp. su read course refs

Primitive recursive functions are \-definable

Proposition
Every primitive recursive function is \-definable.

Proof (The case of primitive recursion).
Let h:=pr(f:g): N**! > N for prim.rec. f:N" > N, g : N**2 > N:

h(z,0) = f(Z)
h’(ji'7y + 1) = f/(:ﬁ h(f7y)7y)

Suppose that f and g are represented by M, M, € A, respectively.

Init := ("0", My z1...2,)
Step :=)‘p-<Msucc(plp)7 Z\[qscl . ~$n(p2p)(p1p)>

Then the following A-term A1, represents h:

My, := Ax1 ... Tz po(z Step Init)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

p-recursion, and partial recursive functions

Definition

A partial function f : N — N is called partial recursive if it can be
specified from base functions (O, succ, ") by successive applications
of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Let f: N"*! - N total. Then the partial function defined by:
p(f):N*~N
- {min({y [[(@9)=0)) ... 3y(f (@) =0)
T

...else

is called the unbounded minimisation of f.

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Reminder: Kleene’s normal form theorem

Theorem

For every partial recursive function h.: N™ — N there exist
primitive recursive functions f : N - N and ¢ : N**! — N such that:

(1, s2n) = (f o m(9))(@1,. - Tn)

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. part.rec.= \-def. \-def. = T-comp. su read course refs

p-recursive/partial recursive = \-definable

Theorem
Every u-recursive/partial recursive function is \-definable.

Proof.

Let »: N"*! — N be partial recursive.
Then by Kleene’s normal form theorem there exist ¢ : N**! - N and
/N — N such that:

hZ) = f o u(9)(Z) = f(pz.[9(Z,2) =0])
Let M, and M, be A-terms representing f and g, respectively. Let:
W := \y.if (zero? M,z . .xz,y) then (\w.M;y) else (Aw.w(Msyecy)w)
Then the following A-term 17, represents h:

A\/;, = Al’l $nWr01W

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

A normalizing reduction strategy

Normal order reduction strategy 5
only perform —g-steps in left-most positions.

Theorem

The normal order reduction strategy in is normalizing in A-calculus,
that is:

M % N AN is a normal form = M >* N

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def = T-comp. su read course refs

A-definable = Turing-computable

Theorem
Every \-definable function is Turing computable.

Idea of the Proof.

Let /: N™ — N be a partial function that is A-definable. Then there
exists a A\-term 1, that represents f.

To compute /, one can build a Turing machine M that, for given
mi,...,my € N:

» simulates a normal order rewrite sequence on My "m;..."my,’
to obtain the normal form "/ (my,...,m,)’ O

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Summary

Lambda calculus

»)\-calculus

» syntax
» reduction rules

v

A-definable functions

» primitive recursive functions are A-definable

v

u-recursive/partial recursive functions are \-definable

v

A-definable functions are Turing computable

v

Hence: A-definable = partial recursive = Turing-computable

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Suggested reading

» Interaction-Based Models of Computation:
Chapter 7, The Lambda Calculus of the book:

» Maribel Fernandez [2]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.

» Post’s Correspondence Problem
» see paper link webpage

» Fractran

» see paper and video link webpage

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov \-terms [-red. Ch-num’s X-def.

feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10
10.30 — 12.30 10.30 — 12.30 10.30 — 12.30 10.30 — 12.30
| intro classic models | additional models |
Introduction to n n)
Computability Machine Models Recursive Functions

Lambda Calculus
computation and

Post Machines,
decision problems,

primitive recursive
typical features,

A-terms, 3-reduction,

functions, A-definable functions,
from logic to Turing’s analysis of Godel-Herbrand partial recursive
computability, human computers, recursive functions, — \-definable
overview of models Turing machines, partial recursive funct's, | - Turing computable
of computation basic recursion theory ~ Partial recursive =
relevance of MoCs = Turing-computable,
Church’s Thesis
imperative ;) functional
y algebraic programming .
programming programming

14.30 — 16.30 |
Three more Models of
Computation
Post’s Correspondence
Problem,
Interaction-Nets,
Fractran
comparing
computational power

Clemens Grabmayer Lecture 4: Lambda Calculus

course ov X-terms [-red. Ch-num's X-def. feat's book ex prim.rec.= \-def. partrec.= \-def. \-def. = T-comp. su read course refs

References

[@ Henk Pieter Barendregt.
The Lambda Calculus (Its Syntax and Semantics), volume 103 of
Studies in Logic and the Foundations of Mathematics.
Elsevier, 1984.

[d Maribel Fernandez.
Models of Computation (An Introduction to Computability
Theory).
Springer, Dordrecht Heidelberg London New York, 2009.

Clemens Grabmayer Lecture 4: Lambda Calculus

	Course summary
	Overview
	Lambda Terms
	Beta Reduction
	Church numerals
	Lambda Definable Functions
	Typical features of computationally complete MoC's
	Book
	Exercises
	Primitive recursive functions -definable functions
	Partial recursive functions -definable functions
	Lambda-definable Turing-computable
	Summary
	Reading suggested
	Course summary
	References

