Lecture 3: Recursive Functions

Models of Computation

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 9, 2025

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro		additional models		
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets,
				Fractran
				comparing computational power

Recursive functions

primitive recursive functions

- primitive recursive functions
- Gödel–Herbrand(–Kleene) general recursive functions

- primitive recursive functions
- Gödel–Herbrand(–Kleene) general recursive functions
- partial recursive functions

- primitive recursive functions
- Gödel–Herbrand(–Kleene) general recursive functions
- partial recursive functions
 - defined with μ -recursion (unbounded minimisation)

- primitive recursive functions
- Gödel–Herbrand(–Kleene) general recursive functions
- partial recursive functions
 - defined with μ -recursion (unbounded minimisation)
- Partial recursive functions = Turing computable functions

Timeline: From logic to computability

- 1900 Hilbert's 23 Problems in mathematics
- 1910/12/13 Russell/Whitehead: Principia Mathematica
- 1928 Hilbert/Ackermann: formulate completeness/decision problems for the predicate calculus (the latter called 'Entscheidungsproblem')
- 1929 Presburger: completeness/decidability of theory of addition on \mathbb{Z}
- 1930 Gödel: completeness theorem of predicate calculus
- 1931 Gödel: incompleteness theorems for first-order arithmetic
- 1932 Church: λ -calculus
- 1933/34 Herbrand/Gödel: general recursive functions
- 1936 Church/Kleene: λ-definable ~ general recursive Church Thesis: 'effectively calculable' be defined as either Church shows: the 'Entscheidungsproblem' is unsolvable Post: machine model; Church's thesis as 'working hypothesis'
 1937 Turing: convincing analysis of a 'human computer' leading to the 'Turing machine'

Turing-computable (total) functions

Definition

A total function $f: \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{k}, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

Functions defined by recursive equations:

like e.g. functions $+, \cdot, (\cdot)^{\cdot} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

n + 0 = nn + (m + 1) = (n + m) + 1

Functions defined by recursive equations:

like e.g. functions $+, \cdot, (\cdot)^{\cdot} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

n + 0 = n $n \cdot 0 = 0$ n + (m + 1) = (n + m) + 1 $n \cdot (m + 1) = n \cdot m + n$

Functions defined by recursive equations: like e.g. functions $+, \cdot, (\cdot) : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

 $n + 0 = n \qquad n \cdot 0 = 0$ $n + (m + 1) = (n + m) + 1 \qquad n \cdot (m + 1) = n \cdot m + n$ $n^{0} = 1$ $n^{m+1} = n^{m} \cdot n$

Functions defined by recursive equations: like e.g. functions $+, \cdot, (\cdot)^{\cdot} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

$$n + 0 = n n \cdot 0 = 0$$

$$n + (m + 1) = (n + m) + 1 n \cdot (m + 1) = n \cdot m + n$$

$$n^{0} = 1 0! = 1$$

$$n^{m+1} = n^{m} \cdot n (n + 1)! = (n + 1) \cdot n!$$

Functions defined by recursive equations: like e.g. functions $+, \cdot, (\cdot)^{:} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

$$n + 0 = n n \cdot 0 = 0$$

$$n + (m + 1) = (n + m) + 1 n \cdot (m + 1) = n \cdot m + n$$

$$n^{0} = 1 0! = 1$$

$$n^{m+1} = n^{m} \cdot n (n + 1)! = (n + 1) \cdot n!$$

Primitive recursive functions: defined by such equations (termination of the evaluation process guaranteed)

Functions defined by recursive equations:

like e.g. functions $+, \cdot, (\cdot)^{\cdot} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

 $n + 0 = n n \cdot 0 = 0$ $n + (m + 1) = (n + m) + 1 n \cdot (m + 1) = n \cdot m + n$ $n^{0} = 1 0! = 1$ $n^{m+1} = n^{m} \cdot n (n + 1)! = (n + 1) \cdot n!$

Primitive recursive functions: defined by such equations (termination of the evaluation process guaranteed)

General recursive functions: defined by more general systems of equations

Functions defined by recursive equations:

like e.g. functions $+, \cdot, (\cdot)^{\cdot} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $(\cdot)! : \mathbb{N} \to \mathbb{N}$:

 $n + 0 = n n \cdot 0 = 0$ $n + (m + 1) = (n + m) + 1 n \cdot (m + 1) = n \cdot m + n$ $n^{0} = 1 0! = 1$ $n^{m+1} = n^{m} \cdot n (n + 1)! = (n + 1) \cdot n!$

Primitive recursive functions: defined by such equations (termination of the evaluation process guaranteed)

General recursive functions: defined by more general systems of equations

 μ -Recursive (partial recursive) functions: extend the primitive recursive functions by a μ -operator that allows to construct partial functions

Rósza Péter

Rósza Péter (1905–1977)

Primitive recursive functions $(\mathbb{N}^k \to \mathbb{N})$

Base functions:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0$ (0-ary constant-0 function)
- succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- $\pi_i^n : \mathbb{N}^n \to \mathbb{N}, \ \vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i \text{ (projection function)}$

Primitive recursive functions $(\mathbb{N}^k \to \mathbb{N})$

Base functions:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0$ (0-ary constant-0 function)
- succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- $\pi_i^n : \mathbb{N}^n \to \mathbb{N}, \ \vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i$ (projection function)

Closed under operations:

▶ composition: if $f : \mathbb{N}^k \to \mathbb{N}$, and $g_i : \mathbb{N}^n \to \mathbb{N}$ are prim. rec., then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}$: $h(\vec{x}) = f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$

Primitive recursive functions $(\mathbb{N}^k \to \mathbb{N})$

Base functions:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0$ (0-ary constant-0 function)
- succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- $\pi_i^n : \mathbb{N}^n \to \mathbb{N}, \ \vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i$ (projection function)

Closed under operations:

- ▶ composition: if $f : \mathbb{N}^k \to \mathbb{N}$, and $g_i : \mathbb{N}^n \to \mathbb{N}$ are prim. rec., then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}$: $h(\vec{x}) = f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$
- ▶ primitive recursion: if $f : \mathbb{N}^n \to \mathbb{N}$, $g : \mathbb{N}^{n+2} \to \mathbb{N}$ are prim. rec., then so is $h = pr(f;g) : \mathbb{N}^{n+1} \to \mathbb{N}$:

$$h(\vec{x},0) = f(\vec{x})$$
$$h(\vec{x},y+1) = g(\vec{x},h(\vec{x},y),y)$$

Primitive recursive functions $(\mathbb{N}^n \to \mathbb{N}^l)$

Base functions:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0$ (0-ary constant-0 function)
- succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function)
- $\pi_i^n : \mathbb{N}^n \to \mathbb{N}, \ \vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i$ (projection function)
- ▶ for n > 1: $id^n : \mathbb{N}^n \to \mathbb{N}^n$, $\vec{x} = \langle x_1, \dots, x_n \rangle \mapsto \vec{x}$ (*n*-ary identity f.)

Closed under operations:

- ► composition: if $f : \mathbb{N}^{km} \to \mathbb{N}^l$, and $g_i : \mathbb{N}^n \to \mathbb{N}^m$ are prim. rec., then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}^l$: $h(\vec{x}) = f(g_1(\vec{x}), \ldots, g_k(\vec{x}))$
- ▶ primitive recursion: if $f : \mathbb{N}^n \to \mathbb{N}^l$, $g : \mathbb{N}^{n+l+1} \to \mathbb{N}^l$ are prim. rec., then so is $h = pr(f;g) : \mathbb{N}^{n+1} \to \mathbb{N}^l$:

$$h(\vec{x},0) = f(\vec{x})$$
$$h(\vec{x},y+1) = g(\vec{x},h(\vec{x},y),y)$$

Primitive recursive functions (exercises)

Exercise

Show that the following functions are primitive recursive:

- addition
- constant functions
- multiplication
- (positive) sign-function
- the representing functions $\chi_{=}$ and $\chi_{<}$ for the predicates = and <.

Try-yourself-Examples

Show that the following functions are primitive recursive:

- exponentiation
- factorial

Admissible operations for primitive recursive functions

Proposition

definition by case distinction:

$$f(\vec{x}) := \begin{cases} f_1(\vec{x}) & \dots P_1(\vec{x}) \\ f_2(\vec{x}) & \dots \wedge P_2(\vec{x}) \neg P_1(\vec{x}) \\ \dots \\ f_k(\vec{x}) & \dots \wedge P_k(\vec{x}) \wedge \neg P_{k-1}(\vec{x}) \wedge \dots \neg P_1(\vec{x}) \\ f_{k+1}(\vec{x}) & \dots \wedge \neg P_k(\vec{x}) \wedge \dots \neg P_1(\vec{x}) \end{cases}$$

2 definition by bounded recursion:

$$\mu z_{\leq y}. \left[P(x_1, \dots, x_n, z) \right] \coloneqq$$

$$\begin{cases} z \qquad \dots \neg P(x_1, \dots, x_n, i) \text{ for } 0 \leq i < z \leq y, \\ and P(x_1, \dots, x_n, z) \\ y+1 \qquad \dots \neg \exists z. \land 0 \leq z \leq y P(x_1, \dots, x_n, z) \end{cases}$$

Properties of primitive recursive functions

Proposition

- Every primitive recursive function is total.
- 2 Every primitive recursive function is Turing-computable.

Properties of primitive recursive functions

Proposition

- Every primitive recursive function is total.
- 2 Every primitive recursive function is Turing-computable.

Proof.

For (2):

- the base functions are Turing-computable
- the Turing-computible functions are closed under the schemes composition and primitive recursion

Turing-computable (total) functions

Definition

A total function $f: \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{k}, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

Features of computationally complete MoC's present?

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop (unbounded)
- stopping condition

Features of computationally complete MoC's present?

- storage (unbounded)
- control (finite, given) $\sqrt{}$
- modification $\sqrt{}$
 - of (immediately accessible) stored data
 - of control state
- conditionals
- ▶ loop √ (unbounded)
- stopping condition

Features of computationally complete MoC's present?

- storage (unbounded)
- control (finite, given) $\sqrt{}$
- modification $\sqrt{}$
 - of (immediately accessible) stored data
 - of control state
- conditionals
- ▶ loop √ (unbounded) ×
- stopping condition

Not primitive recursive (I)

Proposition

There exist calculable/Turing-computable functions that are not primitive recursive.

Proof.

By diagonalisation.

Not primitive recursive (II): Ackermann function

Wilhelm Ackermann (1896–1962)

Gödel–Herbrand recursive

Ackermann function $A : \mathbb{N}^2 \to \mathbb{N}$ (simplified version by Rósza Péter):

reading

$$A(0, x) = Succ(x)$$
$$A(x + 1, 0) = A(x, Succ(0))$$
$$A(x + 1, y + 1) = A(x, A(x + 1, y))$$

A is not primitive recursive, it grows too fast:

primitive recursive

feature lacking

$$A(0, n) = n + 1$$

$$A(1, n) = n + 2$$

$$A(2, n) = 2n + 3$$

$$A(3, n) = 2^{n+3} - 2$$

$$A(4, n) = 2^{2^{2} - 3} - 3$$

Gödel-Herbrand recursive

Ackermann function $A : \mathbb{N}^2 \to \mathbb{N}$ (simplified version by Rósza Péter):

partial recursive

MoC features

summ

reading

A(0,x) = Succ(x)A(x+1,0) = A(x, Succ(0))A(x+1,y+1) = A(x, A(x+1,y))

A grows faster than every primitive recursive function:

Theorem

primitive recursive

feature lacking

For every primitive recursive $f : \mathbb{N} \to \mathbb{N}$ there exists some $i \in \mathbb{N}$ such that f(i) < A(i, i).

Jacques Herbrand

Jacques Herbrand (1908–1931)

Kurt Gödel

Kurt Gödel (1906–1978)

Clemens Grabmayer Lecture 3: Recursive Functions

Gödel–Herbrand general recursive function

Defined by systems of recursion equations like that for the Ackermann function:

A(0, x) = Succ(x)A(Succ(x), 0) = A(x, Succ(0))A(Succ(x), Succ(y)) = A(x, A(Succ(x), y))

feature lacking

Gödel-Herbrand recursive

partial recursive

MoC features summ

reading

Gödel–Herbrand general recursive function

Defined by systems of recursion equations like that for the Ackermann function:

> A(0,x) = Succ(x)A(Succ(x), 0) = A(x, Succ(0))A(Succ(x), Succ(y)) = A(x, A(Succ(x), y))

Numerals:
$$\langle 0 \rangle \coloneqq 0$$
, and $\langle n \rangle \coloneqq Succ(\dots Succ(0))$ for $n > 1$.

n

Definition

A function $f: \mathbb{N}^k \to \mathbb{N}$ is called general recursive if it can be defined by (such a) system S of recursion equations via a function symbol F if for all $n_1, \ldots, n_k \in \mathbb{N}$, the expression $F(\langle n_1 \rangle, \ldots, \langle n_k \rangle)$ evaluates according to S to a unique numeral $\langle n \rangle$, and such that furthermore: $n = f(n_1, \ldots, n_k).$

Stephen Cole Kleene

Stephen Cole Kleene (1906–1994)

Unbounded minimisation (μ -recursion)

feature lacking

course

primitive recursive

Let $f : \mathbb{N}^{k+1} \to \mathbb{N}$ total. Then the partial function defined by:

$$\mu(f) : \mathbb{N}^k \to \mathbb{N}$$
$$\vec{x} \mapsto \begin{cases} \min\{y \mid f(\vec{x}, y) = 0\} & \dots \exists y (f(\vec{x}, y) = 0) \\ \uparrow & \dots \text{ else} \end{cases}$$

Gödel-Herbrand recursive partial recursive MoC features summ reading

ex-suaa

is called the unbounded minimisation of f.

Unbounded minimisation (μ -recursion)

primitive recursive

feature lacking

Let $f : \mathbb{N}^{k+1} \to \mathbb{N}$ total. Then the partial function defined by:

Gödel–Herbrand recursive partial recursive

MoC features

summ

reading

$$\mu(f) : \mathbb{N}^k \to \mathbb{N}$$
$$\vec{x} \mapsto \begin{cases} \min\{y \mid f(\vec{x}, y) = 0\} & \dots \exists y (f(\vec{x}, y) = 0) \\ \uparrow & \dots \text{ else} \end{cases}$$

is called the unbounded minimisation of f. Let $f : \mathbb{N}^{k+1} \to \mathbb{N}$ partial. Then the partial function $\mu(f)$:

$$\mu(f) : \mathbb{N}^k \to \mathbb{N}$$
$$\vec{x} \mapsto \begin{cases} z & \dots & f(\vec{x}, z) = 0 \land \forall y \left(0 \le y < z \to (f(\vec{x}, y) \downarrow \neq 0) \right) \\ \uparrow & \dots & \neg \exists y \left(f(\vec{x}, y) = 0 \land \forall z \left(0 \le z < y \to (f(\vec{x}, z) \downarrow \right) \right) \end{cases}$$

is called the unbounded minimisation of f.

Partial, and total, recursive functions

Definition

A partial function $f : \mathbb{N}^n \to \mathbb{N}^l$ is called partial recursive if it can be specified from base functions (\mathcal{O} , succ, π_i^n , and id^n) by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Partial, and total, recursive functions

Definition

A partial function $f : \mathbb{N}^n \to \mathbb{N}^l$ is called partial recursive if it can be specified from base functions (\mathcal{O} , succ, π_i^n , and id^n) by successive applications of composition, primitive recursion, and unbounded minimisation.

A partial recursive function is called (total) recursive if it is total.

Proposition

Every partial recursive function is Turing-computable.

Turing-computable functions

Definition

- A total function $f : \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{k}, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

Turing-computable functions

Definition

- 2 A partial function *f* : N^k → N is Turing-computable if there exists a Turing machine *M* = ⟨*Q*, Σ, Γ, δ, *q*₀, 𝔅, *F*⟩ and a calculable coding function ⟨·⟩ : N → Σ^{*} such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$:

 $M \text{ accepts } \langle n_1 \rangle \not \! b \langle n_2 \rangle \not \! b \dots \not \! b \langle n_k \rangle \iff f(n_1, \dots, n_k) \downarrow$

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

 $f(n_1,\ldots,n_k)\downarrow \implies q_0\langle n_1\rangle \not b \langle n_2\rangle \not b \ldots \not b \langle n_k\rangle \vdash^*_M q \langle f(n_1,\ldots,n_k)\rangle$

Turing-computable functions

Definition

- A total function $f : \mathbb{N}^k \to \mathbb{N}$ is Turing-computable if there exists a Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{b}, F \rangle$ and a calculable coding function $\langle \cdot \rangle : \mathbb{N} \to \Sigma^*$ such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

- ② A partial function *f* : N^k → N is Turing-computable if there exists a Turing machine *M* = ⟨*Q*, Σ, Γ, δ, *q*₀, 𝔅, *F*⟩ and a calculable coding function ⟨·⟩ : N → Σ* such that:
 - for all $n_1, \ldots, n_k \in \mathbb{N}$:

 $M \text{ accepts } \langle n_1 \rangle \not \!\!\! b \!\!\! (n_2 \rangle \not \!\!\! b \!\!\! \dots \not \!\!\! b \!\!\! (n_k) \iff f(n_1, \dots, n_k) \!\!\!\downarrow$

• for all $n_1, \ldots, n_k \in \mathbb{N}$ there exists $q \in F$ such that:

 $f(n_1,\ldots,n_k)\downarrow \implies q_0\langle n_1\rangle \not b \langle n_2\rangle \not b \ldots \not b \langle n_k\rangle \vdash^*_M q \langle f(n_1,\ldots,n_k)\rangle$

Partial recursive vs. Turing-computable functions

Lemma

Every Turing-computable function is partial recursive.

Partial recursive vs. Turing-computable functions

Lemma

Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene's normal form theorem)

For every Turing-computable, partial function (and hence for every partial recursive function) $h : \mathbb{N}^k \to \mathbb{N}$ there exist primitive recursive functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N}^{k+1} \to \mathbb{N}$ such that:

 $h(x_1,\ldots,x_n) = (f \circ \mu(g))(x_1,\ldots,x_n)$

Partial recursive vs. Turing-computable functions

Lemma

Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene's normal form theorem)

For every Turing-computable, partial function (and hence for every partial recursive function) $h : \mathbb{N}^k \to \mathbb{N}$ there exist primitive recursive functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N}^{k+1} \to \mathbb{N}$ such that:

$$h(x_1,\ldots,x_n) = (f \circ \mu(g))(x_1,\ldots,x_n)$$

Theorem

The Turing-computable (partial) functions coincide with the partial recursive functions.

Church's Thesis

Alonzo Church (1903 – 1995)

Thesis (Church, 1936)

Every effectively calculable function is general recursive.

λ -calculus

Alonzo Church (1903 - 1992)

Theorem (Kleene/Church, 1935)

Every λ -definable function is general recursive, and vice versa.

Typical features of 'computationally complete' MoC's

storage (unbounded)

- storage (unbounded)
- control (finite, given)

- storage (unbounded)
- control (finite, given)
- modification

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop
- stopping condition

Summary

- •
- .
- .
- •
- ►
- •
- A-hierarchy

Recommended reading

Recursive and primitive-recursive functions: Chapter 3, The Lambda Calculus of the book:

> Maribel Fernández [1]: Models of Computation (An Introduction to Computability Theory), Springer-Verlag London, 2009.

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro		additional models		
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets,
				Fractran
				comparing computational power

Example suggestions

1. 2. 3.	Examples			
2. 3.	1.			
3.	2.			
	3.			

References

Maribel Fernández.

Models of Computation (An Introduction to Computability Theory). Springer, Dordrecht Heidelberg London New York, 2009.