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Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power
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Today

Recursive functions

▸ primitive recursive functions

▸ Gödel–Herbrand(–Kleene) general recursive functions

▸ partial recursive functions

▸ defined with µ-recursion (unbounded minimisation)

▸ Partial recursive functions = Turing computable functions
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▸ Gödel–Herbrand(–Kleene) general recursive functions

▸ partial recursive functions

▸ defined with µ-recursion (unbounded minimisation)

▸ Partial recursive functions = Turing computable functions

Clemens Grabmayer Lecture 3: Recursive Functions
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Timeline: From logic to computability
1900 Hilbert’s 23 Problems in mathematics
1910/12/13 Russell/Whitehead: Principia Mathematica
1928 Hilbert/Ackermann: formulate completeness/decision problems

for the predicate calculus (the latter called ’Entscheidungsproblem’)
1929 Presburger: completeness/decidability of theory of addition on Z
1930 Gödel: completeness theorem of predicate calculus
1931 Gödel: incompleteness theorems for first-order arithmetic
1932 Church: λ-calculus
1933/34 Herbrand/Gödel: general recursive functions
1936 Church/Kleene: λ-definable ∼ general recursive

Church Thesis: ‘effectively calculable’ be defined as either
Church shows: the ‘Entscheidungsproblem’ is unsolvable
Post: machine model; Church’s thesis as ‘working hypothesis’

1937 Turing: convincing analysis of a ‘human computer’
leading to the ‘Turing machine’
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Turing-computable (total) functions

Definition

A total function f ∶ Nk → N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:
▸ for all n1, . . . , nk ∈ N there exists q ∈ F such that:

q0⟨n1⟩bl⟨n2⟩bl . . .bl⟨nk⟩ ⊢∗M q⟨f(n1, . . . , nk)⟩
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +, ⋅, (⋅)⋅ ∶ N ×N→ N, and (⋅)! ∶ N→ N :

n + 0 = n

n ⋅ 0 = 0

n + (m + 1) = (n +m) + 1

n ⋅ (m + 1) = n ⋅m + n

n0 = 1 0! = 1
nm+1 = nm ⋅ n (n + 1)! = (n + 1) ⋅ n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations

µ-Recursive (partial recursive) functions: extend the primitive
recursive functions by a µ-operator that allows to construct partial
functions
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course primitive recursive feature lacking Gödel–Herbrand recursive partial recursive MoC features summ reading course ex-sugg refs

Recursive Functions

Functions defined by recursive equations:
like e.g. functions +, ⋅, (⋅)⋅ ∶ N ×N→ N, and (⋅)! ∶ N→ N :

n + 0 = n n ⋅ 0 = 0
n + (m + 1) = (n +m) + 1 n ⋅ (m + 1) = n ⋅m + n

n0 = 1 0! = 1
nm+1 = nm ⋅ n (n + 1)! = (n + 1) ⋅ n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations

µ-Recursive (partial recursive) functions: extend the primitive
recursive functions by a µ-operator that allows to construct partial
functions

Clemens Grabmayer Lecture 3: Recursive Functions
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Rósza Péter

Rósza Péter (1905–1977)
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Primitive recursive functions (Nk → N)

Base functions:
▸ O ∶ N0 = {∅}→ N , ∅↦ 0 (0-ary constant-0 function)
▸ succ ∶ N→ N , x↦ x + 1 (successor function)
▸ πn

i ∶ Nn → N , x⃗ = ⟨x1, . . . , xn⟩↦ xi (projection function)

Closed under operations:
▸ composition: if f ∶ Nk → N, and gi ∶ Nn → N are prim. rec.,

then so is h = f ○ (g1 × . . . × gk) ∶ Nn → N :
h(x⃗) = f(g1(x⃗), . . . , gk(x⃗))

▸ primitive recursion: if f ∶ Nn → N, g ∶ Nn+2 → N are prim. rec.,
then so is h = pr(f ; g) ∶ Nn+1 → N :

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)
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Primitive recursive functions (Nn → Nl)

Base functions:
▸ O ∶ N0 = {∅}→ N , ∅↦ 0 (0-ary constant-0 function)
▸ succ ∶ N→ N , x↦ x + 1 (successor function)
▸ πn

i ∶ Nn → N , x⃗ = ⟨x1, . . . , xn⟩↦ xi (projection function)
▸ for n > 1: idn ∶ Nn → Nn , x⃗ = ⟨x1, . . . , xn⟩↦ x⃗ (n-ary identity f.)

Closed under operations:
▸ composition: if f ∶ Nkm → Nl, and gi ∶ Nn → Nm are prim. rec.,

then so is h = f ○ (g1 × . . . × gk) ∶ Nn → Nl :
h(x⃗) = f(g1(x⃗), . . . , gk(x⃗))

▸ primitive recursion: if f ∶ Nn → Nl, g ∶ Nn+l+1 → Nl are prim. rec.,
then so is h = pr(f ; g) ∶ Nn+1 → Nl :

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Clemens Grabmayer Lecture 3: Recursive Functions
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Primitive recursive functions (exercises)

Exercise
Show that the following functions are primitive recursive:
▸ addition
▸ constant functions
▸ multiplication
▸ (positive) sign-function
▸ the representing functions χ= and χ< for the predicates = and <.

Try-yourself-Examples

Show that the following functions are primitive recursive:
▸ exponentiation
▸ factorial
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Admissible operations for primitive recursive functions

Proposition

1 definition by case distinction:

f(x⃗) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x⃗) . . . P1(x⃗)
f2(x⃗) . . . ∧ P2(x⃗)¬P1(x⃗)
. . .

fk(x⃗) . . . ∧ Pk(x⃗)∧ ¬Pk−1(x⃗)∧ . . .¬P1(x⃗)
fk+1(x⃗) . . . ∧ ¬Pk(x⃗)∧ . . .¬P1(x⃗)

2 definition by bounded recursion:

µz≤y. [P (x1, . . . , xn, z)] ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z . . . ¬P (x1, . . . , xn, i) for 0 ≤ i < z ≤ y,
and P (x1, . . . , xn, z)

y + 1 . . .¬∃z. ∧ 0 ≤ z ≤ yP (x1, . . . , xn, z)
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Properties of primitive recursive functions

Proposition

1 Every primitive recursive function is total.
2 Every primitive recursive function is Turing-computable.

Proof.
For (2):
▸ the base functions are Turing-computable
▸ the Turing-computible functions are closed under the schemes

composition and primitive recursion
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Turing-computable (total) functions

Definition

A total function f ∶ Nk → N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:
▸ for all n1, . . . , nk ∈ N there exists q ∈ F such that:

q0⟨n1⟩bl⟨n2⟩bl . . .bl⟨nk⟩ ⊢∗M q⟨f(n1, . . . , nk)⟩
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Features of computationally complete MoC’s present?

▸ storage (unbounded)

✓

▸ control (finite, given)

✓

▸ modification

✓

of (immediately accessible) stored data
of control state

▸ conditionals

✓

▸ loop (unbounded)

▸ stopping condition

✓
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Not primitive recursive (I)

Proposition

There exist calculable/Turing-computable functions that are
not primitive recursive.

Proof.
By diagonalisation.
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Not primitive recursive (II): Ackermann function

Wilhelm Ackermann (1896–1962)

Clemens Grabmayer Lecture 3: Recursive Functions
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Not primitive recursive (II): Ackermann function

Ackermann function A ∶ N2 → N (simplified version by Rósza Péter):

A(0, x) = Succ(x)

A(x + 1,0) = A(x,Succ(0))

A(x + 1, y + 1) = A(x,A(x + 1, y))

A is not primitive recursive, it grows too fast:

A(0, n) = n + 1

A(1, n) = n + 2

A(2, n) = 2n + 3

A(3, n) = 2n+3 − 2

A(4, n) = 22

⋱ 216

²
n

−3

. . .
Clemens Grabmayer Lecture 3: Recursive Functions
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Not primitive recursive (II): Ackermann function

Ackermann function A ∶ N2 → N (simplified version by Rósza Péter):

A(0, x) = Succ(x)

A(x + 1,0) = A(x,Succ(0))

A(x + 1, y + 1) = A(x,A(x + 1, y))

A grows faster than every primitive recursive function:

Theorem
For every primitive recursive f ∶ N→ N there exists some i ∈ N
such that f(i) < A(i, i).
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Jacques Herbrand

Jacques Herbrand (1908–1931)
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Kurt Gödel

Kurt Gödel (1906–1978)

Clemens Grabmayer Lecture 3: Recursive Functions
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Gödel–Herbrand general recursive function

Defined by systems of recursion equations like that for the
Ackermann function:

A(0, x) = Succ(x)

A(Succ(x),0) = A(x,Succ(0))

A(Succ(x),Succ(y)) = A(x,A(Succ(x), y))

Numerals: ⟨0⟩ ∶= 0, and ⟨n⟩ ∶= Succ(. . .Succ(0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

for n > 1.

Definition

A function f ∶ Nk → N is called general recursive if it can be defined by
(such a) system S of recursion equations via a function symbol F if
for all n1, . . . , nk ∈ N, the expression F (⟨n1⟩, . . . , ⟨nk⟩) evaluates
according to S to a unique numeral ⟨n⟩, and such that furthermore:
n = f(n1, . . . , nk).
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Stephen Cole Kleene

Stephen Cole Kleene (1906–1994)
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Unbounded minimisation (µ-recursion)

Let f ∶ Nk+1 → N total. Then the partial function defined by:

µ(f) ∶ Nk ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

min{y ∣ f(x⃗, y) = 0} . . . ∃y (f(x⃗, y) = 0)
↑ . . . else

is called the unbounded minimisation of f .

Let f ∶ Nk+1 ⇀ N partial. Then the partial function µ(f):

µ(f) ∶ Nk ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

z . . . f(x⃗, z) = 0 ∧ ∀y (0 ≤ y < z → (f(x⃗, y)↓ ≠ 0))
↑ . . . ¬∃y (f(x⃗, y) = 0 ∧ ∀z (0 ≤ z < y → (f(x⃗, z)↓)

is called the unbounded minimisation of f .
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Unbounded minimisation (µ-recursion)

Let f ∶ Nk+1 → N total. Then the partial function defined by:

µ(f) ∶ Nk ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

min{y ∣ f(x⃗, y) = 0} . . . ∃y (f(x⃗, y) = 0)
↑ . . . else

is called the unbounded minimisation of f .

Let f ∶ Nk+1 ⇀ N partial. Then the partial function µ(f):

µ(f) ∶ Nk ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

z . . . f(x⃗, z) = 0 ∧ ∀y (0 ≤ y < z → (f(x⃗, y)↓ ≠ 0))
↑ . . . ¬∃y (f(x⃗, y) = 0 ∧ ∀z (0 ≤ z < y → (f(x⃗, z)↓)

is called the unbounded minimisation of f .

Clemens Grabmayer Lecture 3: Recursive Functions
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Partial, and total, recursive functions

Definition

A partial function f ∶ Nn ⇀ Nl is called partial recursive if it can be
specified from base functions (O, succ, πn

i , and idn) by successive
applications of composition, primitive recursion, and unbounded
minimisation.

A partial recursive function is called (total) recursive if it is total.

Proposition

Every partial recursive function is Turing-computable.
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Turing-computable functions

Definition
1 A total function f ∶ Nk → N is Turing-computable if there exists a

Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:

for all n1, . . . , nk ∈ N there exists q ∈ F such that:
q0⟨n1⟩bl⟨n2⟩bl . . .bl⟨nk⟩ ⊢

∗

M q⟨f(n1, . . . , nk)⟩

2 A partial function f ∶ Nk ⇀ N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:

for all n1, . . . , nk ∈ N:
M accepts ⟨n1⟩bl⟨n2⟩bl . . .bl⟨nk⟩ ⇐⇒ f(n1, . . . , nk)↓

for all n1, . . . , nk ∈ N there exists q ∈ F such that:
f(n1, . . . , nk)↓ Ô⇒ q0⟨n1⟩bl⟨n2⟩bl . . .bl⟨nk⟩ ⊢

∗

M q⟨f(n1, . . . , nk)⟩

Clemens Grabmayer Lecture 3: Recursive Functions
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene’s normal form theorem)

For every Turing-computable, partial function (and hence for every
partial recursive function) h ∶ Nk → N there exist primitive recursive
functions f ∶ N→ N and g ∶ Nk+1 → N such that:

h(x1, . . . , xn) = (f ○ µ(g))(x1, . . . , xn)

Theorem
The Turing-computable (partial) functions coincide with
the partial recursive functions.
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Church’s Thesis

Alonzo Church (1903 –1995)

Thesis (Church, 1936)

Every effectively calculable function is general recursive.
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λ-calculus

Alonzo Church (1903 –1992)

Theorem (Kleene/Church, 1935)

Every λ-definable function is general recursive, and vice versa.
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Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals

▸ loop

▸ stopping condition
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Summary

▸
▸
▸
▸
▸
▸
▸ A-hierarchy

▸
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Recommended reading

1 Recursive and primitive-recursive functions:
Chapter 3, The Lambda Calculus of the book:

▸ Maribel Fernández [1]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.
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Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power
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Example suggestions

Examples

1.
2.
3.
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