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Today

Recursive functions
» primitive recursive functions

» Godel-Herbrand(—Kleene) general recursive functions
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Today

Recursive functions
» primitive recursive functions
» Godel-Herbrand(—Kleene) general recursive functions

» partial recursive functions
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Today

Recursive functions
» primitive recursive functions
» Godel-Herbrand(—Kleene) general recursive functions

» partial recursive functions
» defined with p-recursion (unbounded minimisation)
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Today

Recursive functions

» primitive recursive functions

v

Godel-Herbrand(—Kleene) general recursive functions

v

partial recursive functions
» defined with p-recursion (unbounded minimisation)

v

Partial recursive functions = Turing computable functions
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Timeline: From logic to computability

1900
1910/12/13
1928

1929
1930
1931
1932
1933/34
1936

1937

Hilbert's 23 Problems in mathematics
Russell/Whitehead: Principia Mathematica

Hilbert/Ackermann: formulate completeness/decision problems
for the predicate calculus (the latter called ‘Entscheidungsproblen’)

Presburger: completeness/decidability of theory of addition on Z
Godel: completeness theorem of predicate calculus

Gddel: incompleteness theorems for first-order arithmetic
Church: A-calculus

Herbrand/Gddel: general recursive functions

Church/Kleene: M-definable ~ general recursive

Church Thesis: ‘effectively calculable’ be defined as either
Church shows: the ‘Entscheidungsproblem’ is unsolvable
Post: machine model; Church’s thesis as ‘working hypothesis’
Turing: convincing analysis of a ‘human computer’

leading to the ‘“Turing machine’
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Turing-computable (total) functions

Definition
A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N — X* such that:

» forall nq,...,n; € N there exists ¢ € F' such that:

qo{n1 ) Bna) 8. .. Bny) =5, a(f (- mk))
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n

n+(m+1)=(Mm+m)+1
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0

n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n
n’=1
nm+1:nm.n
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n
n+(m+1)=(n+m)+1
n’=1

nm+1 :nm .n

Clemens Grabmayer

n-0=0
n-(m+1)=n-m+n
0'=1
(n+)!=(n+1)-n!
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’ =1 0=1
n™t=p™ . p (n+)!=(n+1)-n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

Clemens Grabmayer Lecture 3: Recursive Functions



course  primitive recursive  feature lacking ~ Godel-Herbrand recursive  partial recursive  MoC features summ  reading course ex-sugg refs

Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’ =1 0=1
n™t=p™ . p (n+)!=(n+1)-n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations
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Recursive Functions

Functions defined by recursive equations:
like e.g. functions +,-, (1) :NxN - N, and (-)!: N —> N:

n+0=n n-0=0
n+(m+1)=(n+m)+1 n-(m+1l)=n-m+n

n’ =1 0=1
n™t=p™ . p (n+)!=(n+1)-n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations

u-Recursive (partial recursive) functions: extend the primitive
recursive functions by a p-operator that allows to construct partial
functions
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Rosza Péter

Rosza Péter (1905-1977)
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Primitive recursive functions (N* — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N-> N, z~z+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)
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Primitive recursive functions (N* — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—> N,z x+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)

Closed under operations:

» composition: if f : N*¥ - N, and ¢, : N® - N are prim. rec.,
thensoish=fo (g1 x...xgr):N* - N:

(@) = f(g1(2),- .., 91 ()
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Primitive recursive functions (N* — N)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—> N,z x+1 (successor function)
> 7 :N" >N, Z=(x1,...,2,) ~ x; (projection function)

Closed under operations:

» composition: if f:N* - N, and ¢; : N* - N are prim. rec.,
thensoish=fo(gy x...xg;):N*">N:

h(z) = f(g1(Z),- -, 91(Z))

» primitive recursion: if f : N* - N, ¢ : N"*2 - N are prim. rec.,
then sois = pr(f;g): N""! - N:

h(Z,0) = f(Z)
h(z,y+1) = g(2, (2, v),y)
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Primitive recursive functions (N — N/)

Base functions:
» 0:N°={g} >N, g+~ 0 (0-ary constant-0 function)
» succ:N—-> N, z~ 2z +1 (successor function)
> 7' :N" >N, Z=(z1,...,2,) ~ x; (Projection function)
> forn>1: id":N” > N, Z = (xq,...,2,) — Z (n-ary identity f.)

Closed under operations:
» composition: if f:NF™ - N! and ¢; : N* - N™ are prim. rec.,
thensoish=fo (g x...xg.):N* > N':
hz) = f(91(Z),- -, 91(Z))

» primitive recursion: if f: N™ - N, g: N***1 . N are prim. rec.,
thensois h=pr(f;g) : N"*1 - Nt:

h(Z,0) = f(z)
W@,y +1) = g(2,h(Z,y),y)
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Primitive recursive functions (exercises)

Exercise

Show that the following functions are primitive recursive:

addition

constant functions

multiplication

(positive) sign-function

the representing functions x- and x. for the predicates = and <.

vV V. v v Vv

Try-yourself-Examples

Show that the following functions are primitive recursive:
» exponentiation
» factorial
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Admissible operations for primitive recursive functions

Proposition
@ definition by case distinction:
f1(2) ... Pi(Z)

f2(2) ... A Py(2)-P (%)
f(@):=1...

(@) . AP(Z)A-Ppa(Z)A .. .~ Pi(Z)
fri1(Z) A =P(@)A ...~ P(Z)

@ déefinition by bounded recursion:

Uy [P(Z1,. .., Zn,2)] =

z coo 2 P(x1,... 1) for0<i<z<y,
and P(x1,...,%n,2)
y+1 ...=32. A0 z<yP(x1,...,%n,2)
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Properties of primitive recursive functions
Proposition

@ Every primitive recursive function is total.
@ Every primitive recursive function is Turing-computable.

Clemens Grabmayer Lecture 3: Recursive Functions
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Properties of primitive recursive functions

Proposition

@ Every primitive recursive function is total.
@ Every primitive recursive function is Turing-computable.

Proof.
For (2):
» the base functions are Turing-computable

» the Turing-computible functions are closed under the schemes
composition and primitive recursion
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Turing-computable (total) functions

Definition
A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N — X* such that:

» forall nq,...,n; € N there exists ¢ € F' such that:

qo{n1 ) Bna) 8. .. Bny) =5, a(f (- mk))
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Features of computationally complete MoC’s present?

» storage (unbounded)

v

control (finite, given)

v

modification

e of (immediately accessible) stored data
e of control state

v

conditionals

v

loop (unbounded)

» stopping condition
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Features of computationally complete MoC’s present?

» storage (unbounded) \/
» control (finite, given) \/

» modification \/

e of (immediately accessible) stored data
e of control state

» conditionals \/

> loop \/ (unbounded)

» stopping condition \/
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Features of computationally complete MoC’s present?

» storage (unbounded) \/
» control (finite, given) \/

» modification \/

e of (immediately accessible) stored data
e of control state

» conditionals \/

> loop \/ (unbounded) X

» stopping condition \/
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Not primitive recursive (I)

Proposition

There exist calculable/Turing-computable functions that are
not primitive recursive.

Proof.
By diagonalisation. O

Clemens Grabmayer Lecture 3: Recursive Functions
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Not primitive recursive (ll): Ackermann function

Wilhelm Ackermann (1896—1962)
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Not primitive recursive (ll): Ackermann function

Ackermann function A : N2 - N (simplified version by Rdsza Péter):
A(0,z) = Succ(z)
Az +1,0) = A(x,Succ(0))
Alz+1,y+1)=A(z,A(z+ 1,y))
A is not primitive recursive, it grows too fast:
A(0,n)=n+1
A(l,n)=n+2
A(2,n)=2n+3
A(3,n) = 2" -2

216
A(4,n)=2> -3

——
n

Clemens Grabmayer Lecture 3: Recursive Functions
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Not primitive recursive (ll): Ackermann function

Ackermann function A : N2 - N (simplified version by Rdsza Péter):
A(0,z) = Succ(z)
Az +1,0) = A(x,Succ(0))
Alz+1,y+1) =A(z,A(x + 1,y))

A grows faster than every primitive recursive function:

Theorem

For every primitive recursive f : N — N there exists some i ¢ N
such that (i) < A(i,1).
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Jacques Herbrand

Jacques Herbrand (1908—-1931)
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Kurt Godel

Kurt Gédel (1906—-1978)
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Godel-Herbrand general recursive function

Defined by systems of recursion equations like that for the
Ackermann function:

A(0,z) = Succ(z)
A(Succ(x),0) = A(x, Succ(0))
A(Succ(x),Succ(y)) = A(x, A(Succ(x),y))

Clemens Grabmayer Lecture 3: Recursive Functions
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Godel-Herbrand general recursive function

Defined by systems of recursion equations like that for the
Ackermann function:

A(0,z) = Succ(z)
A(Succ(x),0) = A(x, Succ(0))
A(Succ(x),Succ(y)) = A(x, A(Succ(x),y))

Numerals: (0) := 0, and (n) := Succ(...Succ(0)) for n > 1.

———
n

Definition
A function / : N* — N is called general recursive if it can be defined by
(such a) system S of recursion equations via a function symbol F' if

forall ny,...,n; €N, the expression F'({n),...,(nx)) evaluates
according to S to a unique numeral (n), and such that furthermore:

n= ,/‘(nla ©o0 'ank?)'
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Stephen Cole Kleene

Stephen Cole Kleene (1906—1994)
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Unbounded minimisation (u-recursion)

Let f: N**1 - N total. Then the partial function defined by:
p(f):NF =N

2o min{y [ /@) =0} .. 3y (/(3,y) =0)
0 ...else

is called the unbounded minimisation of f.

Clemens Grabmayer Lecture 3: Recursive Functions
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Unbounded minimisation (u-recursion)

Let f: N**1 - N total. Then the partial function defined by:

p(f):NF~N
2o min{y [ /@) =0} .. 3y (/(3,y) =0)
0 ...else

is called the unbounded minimisation of f.
Let f: N*¥*! —~ N partial. Then the partial function ,.( f):

p(f):NF =N

L E i@ =0 Ay (0<y <z o (f(E )L #0)
T =y (F(Ey) =0 A V2 (0<z<y > (f(Z,2)))

is called the unbounded minimisation of f.
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Partial, and total, recursive functions

Definition

A partial function f : N* -~ N! is called partial recursive if it can be
specified from base functions (O, succ, 7!, and id") by successive
applications of composition, primitive recursion, and unbounded
minimisation.

A partial recursive function is called (total) recursive if it is total.

Clemens Grabmayer Lecture 3: Recursive Functions
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Partial, and total, recursive functions

Definition

A partial function f : N* -~ N! is called partial recursive if it can be
specified from base functions (O, succ, 7", and id") by successive

7
applications of composition, primitive recursion, and unbounded
minimisation.

A partial recursive function is called (total) recursive if it is total.

Proposition
Every partial recursive function is Turing-computable.

Clemens Grabmayer Lecture 3: Recursive Functions
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Turing-computable functions

Definition

@ A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 4, q0, B F') and a calculable coding
function (-) : N — 3* such that:

e forall ni,...,n, € N there exists g € F such that:
qo{n1)ln2)B. .. Bn) =3 q{f (1, ..., nk))

Clemens Grabmayer Lecture 3: Recursive Functions
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Turing-computable functions

Definition

@ A partial function f : N* —~ N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N - X* such that:

o forall ni,...,nk eN:
M accepts (ni)n2)b. .. Bny) < [(ni,...,n,)l
o forall ni,...,n, € N there exists ¢ € F such that:
f(na,...,ne)d = qo(ni)(n2)B... Bng) =1 g(f(na, ... nk))

Clemens Grabmayer Lecture 3: Recursive Functions



course  primitive recursive  feature lacking ~ Godel-Herbrand recursive  partial recursive  MoC features summ  reading course ex-sugg refs

Turing-computable functions

Definition

@ A total function f : N* - N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 4, q0, B F') and a calculable coding
function (-) : N — 3* such that:

e forall ni,...,n, € N there exists g € F such that:
qo{n1)ln2)B. .. Bn) =3 q{f (1, ..., nk))

@ A partial function f : N* —~ N is Turing-computable if there exists a
Turing machine M = (Q, %, T, 6, q0, B, F') and a calculable coding
function (-) : N - X* such that:

o forall ni,...,nk eN:
M accepts (ni)n2)b. .. Bny) < [(ni,...,n,)l
o forall ni,...,n, € N there exists ¢ € F such that:
f(na,...,ne)d = qo(ni)(n2)B... Bng) =1 g(f(na, ... nk))
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Clemens Grabmayer Lecture 3: Recursive Functions
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene’s normal form theorem)

For every Turing-computable, partial function (and hence for every
partial recursive function) h.: N* — N there exist primitive recursive
functions f : N - N and ¢ : N**! - N such that:

W@y, xn) = (f o p(9)) (21, ..., 2n)

Clemens Grabmayer Lecture 3: Recursive Functions
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Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene’s normal form theorem)

For every Turing-computable, partial function (and hence for every
partial recursive function) h: N* - N there exist primitive recursive
functions f : N - N and ¢ : N**! - N such that:

W@y, xn) = (f o p(9)) (21, ..., 2n)

Theorem

The Turing-computable (partial) functions coincide with
the partial recursive functions.
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Church’s Thesis

Alonzo Church (1903 —1995)

Thesis (Church, 1936)
Every effectively calculable function is general recursive.
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A-calculus

Alonzo Church (1903 —1992)

Theorem (Kleene/Church, 1935)
Every \-definable function is general recursive, and vice versa.
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)

Clemens Grabmayer Lecture 3: Recursive Functions
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)

» control (finite, given)

Clemens Grabmayer Lecture 3: Recursive Functions
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification

Clemens Grabmayer Lecture 3: Recursive Functions
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Typical features of ‘computationally complete’ MoC’s

» storage (unbounded)
» control (finite, given)

» modification
» of (immediately accessible) stored data
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» of control state

v

conditionals

> loop

Clemens Grabmayer Lecture 3: Recursive Functions



course  primitive recursive  feature lacking ~ Godel-Herbrand recursive  partial recursive  MoC features summ  reading course ex-sugg refs

Typical features of ‘computationally complete’ MoC’s

v

storage (unbounded)

v

control (finite, given)

v

modification

» of (immediately accessible) stored data
» of control state

v

conditionals

> loop

v

stopping condition
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Recommended reading

@ Recursive and primitive-recursive functions:
Chapter 3, The Lambda Calculus of the book:

» Maribel Fernandez [1]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.
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Course overview
‘ Monday, July 7 Tuesday, July 8 Wednesday, July 9
10.30 — 12.30 10.30 — 12.30 10.30 — 12.30
| intro classic models | additional models |
Igtor;‘:aﬁ:girl‘it‘; Machine Models Recursive Functions Lambda Calculus
computation and Post Machines, primitive recursive A-terms, 3-reduction,
decision problems, typical features, functions, A-definable functions,
from logic to Turing’s analysis of Godel-Herbrand partial recursive
computability, human computers, recursive functions, = A-definable
overview of models Turing machines, partial recursive funct's, | - Turing computable
of computation basic recursion theory ~ Partial recursive =
relevance of MoCs = Turing-computable,
Church’s Thesis
imperative ; ) functional
programming algebraic programming orogramming
[ \ 14.30 — 16.30 |
Three more Models of
Computation
Post’s Correspondence
Problem,
Interaction-Nets,
Fractran
comparing
computational power
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