
course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Lecture 3: Recursive Functions
Models of Computation

https://clegra.github.io/moc/moc.html

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period
Gran Sasso Science Institute

L’Aquila, Italy

July 9, 2025

Clemens Grabmayer Lecture 3: Recursive Functions

https://clegra.github.io/moc/moc.html


course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Calculable function?

Questions/Exercises
1 Suppose P (a, b) is a calculable predicate.

Why does (∃x)P (a, x) not have to be calculable?

2 Let f ∶ N→ N defined by

nz→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 . . . n = 0 & Goldbach’s conjecture is false
1 . . . n = 0 & Goldbach’s conjecture is true
n + 1 . . . n > 0

Is f calculable?

3 Can computation problems for mappings F ∶ Nn → Nm always be
represented by decision problems?

Answer: Yes, because it is one of two calculable functions.
(We just do no know which one.)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Summary

Recursive functions

▸ primitive recursive functions

▸ Gödel–Herbrand(–Kleene) general recursive functions

▸ partial recursive functions

▸ defined with µ-recursion (unbounded minimisation)

▸ Partial recursive functions = Turing computable functions

▸ Church’s thesis

▸ effectively calculable functions ∧

= partial-recursive functions
▸ some debate

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Timeline: From logic to computability
1900 Hilbert’s 23 Problems in mathematics
1910/12/13 Russell/Whitehead: Principia Mathematica
1928 Hilbert/Ackermann: formulate completeness/decision problems

for the predicate calculus (the latter called ’Entscheidungsproblem’)
1929 Presburger: completeness/decidability of theory of addition on Z
1930 Gödel: completeness theorem of predicate calculus
1931 Gödel: incompleteness theorems for first-order arithmetic
1932 Church: λ-calculus
1933/34 Herbrand/Gödel: general recursive functions
1936 Church/Kleene: λ-definable ∼ general recursive

Church Thesis: ‘effectively calculable’ be defined as either
Church shows: the ‘Entscheidungsproblem’ is unsolvable
Post: machine model; Church’s thesis as ‘working hypothesis’

1937 Turing: convincing analysis of a ‘human computer’
leading to the ‘Turing machine’

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Turing-computable (total) functions

Definition

A total function f ∶ Nk → N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl , F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:
▸ for all n1, . . . , nk ∈ N there exists q ∈ F such that:

q0⟨n1⟩bl ⟨n2⟩bl . . .bl ⟨nk⟩ ⊢∗M q⟨f(n1, . . . , nk)⟩

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Recursive Functions

Functions defined by recursive equations:
like e.g. functions +, ⋅, (⋅)⋅ ∶ N ×N→ N, and (⋅)! ∶ N→ N :

n + 0 = n n ⋅ 0 = 0
n + (m + 1) = (n +m) + 1 n ⋅ (m + 1) = n ⋅m + n

n0 = 1 0! = 1
nm+1 = nm ⋅ n (n + 1)! = (n + 1) ⋅ n!

Primitive recursive functions: defined by such equations (termination
of the evaluation process guaranteed)

General recursive functions: defined by more general systems of
equations

µ-Recursive (partial recursive) functions:
extend the primitive recursive functions by a µ-operator

that allows to obtain partial functions

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Rósza Péter

Rósza Péter (1905–1977)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Primitive recursive functions (Nk → N)

Base functions:
▸ O ∶ N0 = {∅}→ N , ∅↦ 0 (0-ary constant-0 function)
▸ succ ∶ N→ N , x↦ x + 1 (successor function)
▸ πn

i ∶ Nn → N , x⃗ = ⟨x1, . . . , xn⟩↦ xi (projection function)

Closed under operations:
▸ composition: if f ∶ Nk → N, and gi ∶ Nn → N are prim. rec.,

then so is h = f ○ (g1 × . . . × gk) ∶ Nn → N :
h(x⃗) = f(g1(x⃗), . . . , gk(x⃗))

▸ primitive recursion: if f ∶ Nn → N, g ∶ Nn+2 → N are prim. rec.,
then so is h = pr(f ; g) ∶ Nn+1 → N :

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Primitive recursive functions (Nn → Nl)

Base functions:
▸ O ∶ N0 = {∅}→ N , ∅↦ 0 (0-ary constant-0 function)
▸ succ ∶ N→ N , x↦ x + 1 (successor function)
▸ πn

i ∶ Nn → N , x⃗ = ⟨x1, . . . , xn⟩↦ xi (projection function)
▸ for n > 1: idn ∶ Nn → Nn , x⃗ = ⟨x1, . . . , xn⟩↦ x⃗ (n-ary identity f.)

Closed under operations:
▸ composition: if f ∶ Nkm → Nl, and gi ∶ Nn → Nm are prim. rec.,

then so is h = f ○ (g1 × . . . × gk) ∶ Nn → Nl :
h(x⃗) = f(g1(x⃗), . . . , gk(x⃗))

▸ primitive recursion: if f ∶ Nn → Nl, g ∶ Nn+l+1 → Nl are prim. rec.,
then so is h = pr(f ; g) ∶ Nn+1 → Nl :

h(x⃗,0) = f(x⃗)
h(x⃗, y + 1) = g(x⃗, h(x⃗, y), y)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Primitive recursive functions (exercises)

Exercise
Show that the following functions are primitive recursive:
▸ addition
▸ constant functions
▸ multiplication
▸ (positive) sign-function
▸ the representing functions χ= and χ< for the predicates = and <.

Try-yourself-Examples

Show that the following functions are primitive recursive:
▸ exponentiation
▸ factorial

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Admissible operations for primitive recursive functions

Proposition

1 definition by case distinction:

f(x⃗) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x⃗) . . . P1(x⃗)
f2(x⃗) . . . P2(x⃗) ∧ ¬P1(x⃗)
. . .

fk(x⃗) . . . Pk(x⃗) ∧ ¬Pk−1(x⃗) ∧ . . . ∧ ¬P1(x⃗)
fk+1(x⃗) . . .¬Pk(x⃗) ∧ . . . ∧ ¬P1(x⃗)

2 definition by bounded recursion:

µz≤y. [P (x1, . . . , xn, z)] ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z . . . ¬P (x1, . . . , xn, i) for 0 ≤ i < z ≤ y,
and P (x1, . . . , xn, z)

y + 1 . . .¬∃z.(0 ≤ z ≤ y ∧ P (x1, . . . , xn, z))

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Properties of primitive recursive functions

Proposition

1 Every primitive recursive function is total.
2 Every primitive recursive function is Turing-computable.

Proof.
For (2):
▸ the base functions are Turing-computable
▸ the Turing-computible functions are closed under the schemes

composition and primitive recursion

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Turing-computable (total) functions

Definition

A total function f ∶ Nk → N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl , F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:
▸ for all n1, . . . , nk ∈ N there exists q ∈ F such that:

q0⟨n1⟩bl ⟨n2⟩bl . . .bl ⟨nk⟩ ⊢∗M q⟨f(n1, . . . , nk)⟩

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Features of computationally complete MoC’s present?

▸ storage (unbounded)✓
▸ control (finite, given)✓
▸ modification✓

▸ of (immediately accessible) stored data
▸ of control state

▸ conditionals✓
▸ loop (unbounded)

▸ stopping condition✓

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Not primitive recursive (I)

Proposition

There exist calculable/Turing-computable functions
that are not primitive recursive.

Proof.
By diagonalisation.

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Not primitive recursive (II): Ackermann function

Wilhelm Ackermann (1896–1962)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Not primitive recursive (II): Ackermann function

Ackermann function A ∶ N2 → N (simplified version by Rósza Péter):

A(0, x) = Succ(x)

A(x + 1,0) = A(x,Succ(0))

A(x + 1, y + 1) = A(x,A(x + 1, y))

A is not primitive recursive, it grows too fast:

A(0, n) = n + 1

A(1, n) = n + 2

A(2, n) = 2n + 3

A(3, n) = 2n+3 − 2

A(4, n) = 22

⋱ 216

²
n

−3

. . .
Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Not primitive recursive (II): Ackermann function

Ackermann function A ∶ N2 → N (simplified version by Rósza Péter):

A(0, y) = Succ(y)

A(x + 1,0) = A(x,Succ(0))

A(x + 1, y + 1) = A(x,A(x + 1, y))

A grows faster than every primitive recursive function:

Theorem
For every primitive recursive f ∶ N→ N there exists some i ∈ N
such that f(i) < A(i, i).

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Jacques Herbrand

Jacques Herbrand (1908–1931)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Kurt Gödel

Kurt Gödel (1906–1978)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Gödel–Herbrand general recursive function

Defined by systems of recursion equations like that for the
Ackermann function:

A(0, y) = Succ(y)

A(Succ(x),0) = A(x,Succ(0))

A(Succ(x),Succ(y)) = A(x,A(Succ(x), y))

Numerals: ⟨0⟩ ∶= 0, and ⟨n⟩ ∶= Succ(. . .Succ(0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

for n > 1.

Definition

A function f ∶ Nk → N is called general recursive if it can be defined by
(such a) system S of recursion equations via a function symbol F if
for all n1, . . . , nk ∈ N, the expression F (⟨n1⟩, . . . , ⟨nk⟩) evaluates
according to S to a unique numeral ⟨n⟩, and such that furthermore:
n = f(n1, . . . , nk).

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Stephen Cole Kleene

Stephen Cole Kleene (1906–1994)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Unbounded minimisation (µ-recursion)

Let f ∶ Nk+1 → N total. Then the partial function defined by:

µ(f) ∶ Nk ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

min{y ∈ N ∣ f(x⃗, y) = 0} . . . ∃y (f(x⃗, y) = 0)
↑ . . . else

is called the unbounded minimisation of f .

Let f ∶ Nk+1 ⇀ N partial. Then the partial function µ(f):

µ(f) ∶ Nk ⇀ N

x⃗↦
⎧⎪⎪⎨⎪⎪⎩

z . . . f(x⃗, z) = 0 ∧ ∀y (0 ≤ y < z → (f(x⃗, y)↓ ≠ 0))
↑ . . . ¬∃y (f(x⃗, y) = 0 ∧ ∀z (0 ≤ z < y → (f(x⃗, z)↓)

is called the unbounded minimisation of f .

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Partial, and total, recursive functions

Definition

A partial function f ∶ Nn ⇀ Nl is called partial recursive if it can be
specified from base functions (O, succ, πn

i , and idn) by successive
applications of composition, primitive recursion, and unbounded
minimisation.

A partial recursive function is called (total) recursive if it is total.

Proposition

Every partial recursive function is Turing-computable.

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Primitive recursive

▸ storage (unbounded)✓
▸ control (finite, given)✓
▸ modification✓

of (immediately accessible) stored data
of control state

▸ conditionals✓
▸ loop (unbounded)

▸ stopping condition✓

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Turing-computable functions

Definition
1 A total function f ∶ Nk → N is Turing-computable if there exists a

Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl , F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:

for all n1, . . . , nk ∈ N there exists q ∈ F such that:
q0⟨n1⟩bl ⟨n2⟩bl . . .bl ⟨nk⟩ ⊢

∗

M q⟨f(n1, . . . , nk)⟩

2 A partial function f ∶ Nk ⇀ N is Turing-computable if there exists a
Turing machine M = ⟨Q,Σ,Γ, δ, q0,bl , F ⟩ and a calculable coding
function ⟨⋅⟩ ∶ N→ Σ∗ such that:

for all n1, . . . , nk ∈ N:
M accepts ⟨n1⟩bl ⟨n2⟩bl . . .bl ⟨nk⟩ ⇐⇒ f(n1, . . . , nk)↓

for all n1, . . . , nk ∈ N there exists q ∈ F such that:
f(n1, . . . , nk)↓ Ô⇒ q0⟨n1⟩bl ⟨n2⟩bl . . .bl ⟨nk⟩ ⊢

∗

M q⟨f(n1, . . . , nk)⟩

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Partial recursive vs. Turing-computable functions

Lemma
Every Turing-computable function is partial recursive.

Proof by arithmetization of Turing machines, showing:

Theorem (Kleene’s normal form theorem)

For every Turing-computable, partial function (and hence for every
partial recursive function) h ∶ Nk → N there exist primitive recursive
functions f ∶ N→ N and g ∶ Nk+1 → N such that:

h(x1, . . . , xn) = (f ○ µ(g))(x1, . . . , xn)

Theorem
The Turing-computable (partial) functions coincide with
the partial recursive functions.

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Alonzo Church

Alonzo Church (1903 –1995)

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Effectively calculable functions

Alonzo Church (1936):

“We now define the notion [. . . ] of an effectively calculable
function of positive integers by identifying it with the notion
of a recursive function of positive integers (or a λ-definable
function of positive integers). This definition is thought to be
justified by the considerations which follow, so far as positive
justification can ever be obtained for the selection of formal
definition to correspond to an intuitive notion.”

Definition (Church)

For every total function f ∶ N→ N, and partial function g ∶ N⇀ N,

f is effectively calculable ∶ ⇐⇒ f is recursive
g is effectively calculable ∶ ⇐⇒ g is partial-recursive

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Effectively calculable functions

Alonzo Church (1936):

“We now define the notion [. . . ] of an effectively calculable
function of positive integers by identifying it with the notion
of a recursive function of positive integers (or a λ-definable
function of positive integers). This definition is thought to be
justified by the considerations which follow, so far as positive
justification can ever be obtained for the selection of formal
definition to correspond to an intuitive notion.”

Definition (Church)

For every total function f ∶ N→ N, and partial function g ∶ N⇀ N,

f is effectively calculable ∶ ⇐⇒ f is recursive
g is effectively calculable ∶ ⇐⇒ g is partial-recursive

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

λ-calculus

Alonzo Church (1903 –1992)

Theorem (Kleene/Church, 1935)

Every λ-definable function is general recursive, and vice versa.

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Recommended reading

1 Recursive and primitive-recursive functions:
Chapter 3, The Lambda Calculus of the book:

▸ Maribel Fernández [2]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Post’s ‘working hypothesis’

E.L. Post in his 1936 article (Post machines):

“The writer expects the present formulation to turn out to
be logically equivalent to recursiveness in the sense of the
Gödel–Church development. Its purpose, however, is not
only to present a system of a certain logical potency but also,
in its restricted field, of psychological fidelity. In the latter
sense wider and wider formulations are contemplated. On
the other hand, our aim will be to show that all such are logi-
cally reducible to formulation 1 [Post machines]. We offer this
conclusion at the present moment as a working hypothesis.
And to our mind such is Church’s identification of effective
calculability with recursiveness.”

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Church on Post’s ‘working hypothesis’

Alonzo Church in his review (1937) of Post’s 1936 article:

“The author proposes a definition of ”finite 1-process”
which is similar in formulation, and in fact equivalent, to com-
putation by a Turing machine (see the preceding review). He
does not, however, regard his formulation as certainly to be
identified with effectiveness in the ordinary sense, but takes
this identification as a ”working hypothesis” in need of con-
tinual verification. To this the reviewer would object that ef-
fectiveness in the ordinary sense has not been given an ex-
act definition, and hence the working hypothesis in question
has not an exact meaning. To define effectiveness as com-
putability by an arbitrary machine, subject to restrictions of
finiteness, would seem to be an adequate representation of
the ordinary notion, and if this is done the need for a working
hypothesis disappears.”

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Church on Turing’s paper

A. Church in his review (1937) of Turing’s 1936 article:

“The author proposes as a criterion that an infinite se-
quence of digits 0 and 1 be ”computable” that it shall be pos-
sible to devise a computing machine, occupying a finite space
and with working parts of finite size, which will write down the
sequence to any desired number of terms if allowed to run for
a sufficiently long time. As a matter of convenience, certain
further restrictions are imposed on the character of the ma-
chine, but these are of such a nature as obviously to cause
no loss of generality—in particular, a human calculator, pro-
vided with pencil and paper and explicit instructions, can be
regarded as a kind of Turing machine. It is thus immediately
clear that computability, so defined, can be identified with (es-
pecially, is no less general than) the notion of effectiveness as
it appears in certain mathematical problems [. . . ].

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Summary

Recursive functions

▸ primitive recursive functions

▸ Gödel–Herbrand(–Kleene) general recursive functions

▸ partial recursive functions

▸ defined with µ-recursion (unbounded minimisation)

▸ Partial recursive functions = Turing computable functions

▸ Church’s thesis

▸ effectively calculable functions ∧

= partial-recursive functions
▸ some debate

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power

Clemens Grabmayer Lecture 3: Recursive Functions



course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

References I

Alonzo Church.
An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58(2):345–363, April 1936.

Maribel Fernández.
Models of Computation (An Introduction to Computability
Theory).
Springer, Dordrecht Heidelberg London New York, 2009.

Emil Leon Post.
Finite Combinatory Processes – Formulation 1.
Journal of Symbolic Logic, 1(3):103–105, 1936.
https://www.wolframscience.com/prizes/tm23/
images/Post.pdf.

Clemens Grabmayer Lecture 3: Recursive Functions

https://www.wolframscience.com/prizes/tm23/images/Post.pdf
https://www.wolframscience.com/prizes/tm23/images/Post.pdf


course ex ov primitive recursive all features? GH-recursive partial recursive all features eff. calc. Church’s Thesis reading debate su course refs

References II

Alan M. Turing.
On Computable Numbers, with an Application to the
Entscheidungsproblem.
Proceedings of the London Mathematical Society,
42(2):230–265, 1936.
http://www.wolframscience.com/prizes/tm23/
images/Turing.pdf.

Clemens Grabmayer Lecture 3: Recursive Functions

http://www.wolframscience.com/prizes/tm23/images/Turing.pdf
http://www.wolframscience.com/prizes/tm23/images/Turing.pdf

	Overview
	Exercise
	Overview
	Primitive recursive functions
	Lacking feature
	Gödel–Herbrand recursive functions
	Partial recursive functions
	Lacking feature
	Effectively calculable
	Church's Thesis
	Reading recommended
	Debate
	Summary
	Course summary
	References

