

Lecture 2: Machine Models, Basic Computability Theory Models of Computation

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 8, 2025

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Cou	rse c	verview							

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro		classic models		additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran
				comparing computational power

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Ove	rview	/							

Reading recommended (for today)

MoC features

Post machine: Page 1 + first paragraph on page 2 of:

- Emil Post: Finite Combinatory Processes Formulation 1, Journal of Symbolic Logic (1936), [2].
- Turing machine motivation: Turing's analysis of a human computer: Part I of Section 9, pp. 249–252 of:
 - Alan M. Turing's: On computable numbers, with an application to the Entscheidungsproblem', Proceedings of the London Mathematical Society (1936), [3].

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
En	nil Post	t							

Emil Leon Post (1897-1954)

... a result of his from 1921 similar to the Incompleteness Theorem:

Theorem (Gödel, 1931 (paraphrased here))

Every axiomatisable, consistent first-order-logic system of number theory is incomplete: it contains true, but unprovable formulas.

"For full generality a complete analysis would have to be given of all possible ways in which the human mind could set up finite processes for generating sequences."

Emil Post: *Finite Combinatory Processes – Formulation 1* (1936), Journal of Symbolic Logic, [2].

(a) Marking the box he is in (assumed empty),

- (a) Marking the box he is in (assumed empty),
- (b) Erasing the mark in the box he is in (assumed marked),

- (a) Marking the box he is in (assumed empty),
- (b) Erasing the mark in the box he is in (assumed marked),
- (c) Moving to the box on his right,

- (a) Marking the box he is in (assumed empty),
- (b) Erasing the mark in the box he is in (assumed marked),
- (c) Moving to the box on his right,
- (d) Moving to the box on his left,

- (a) Marking the box he is in (assumed empty),
- (b) Erasing the mark in the box he is in (assumed marked),
- (c) Moving to the box on his right,
- (d) Moving to the box on his left,
- (e) Determining whether the box he is in, is or is not marked."

Start at the starting point and follow direction 1.

- Start at the starting point and follow direction 1.
- Then a finite number of directions numbered 1, 2, 3, ..., n, where the *i*-th has one of the following forms:

- Start at the starting point and follow direction 1.
- Then a finite number of directions numbered 1, 2, 3, ..., n, where the *i*-th has one of the following forms:

(A) Perform operation $O_i \in \{(a), (b), (c), (d)\}$, then follow direction j_i .

- Start at the starting point and follow direction 1.
- Then a finite number of directions numbered 1, 2, 3, ..., n, where the *i*-th has one of the following forms:
 - (A) Perform operation $O_i \in \{(a), (b), (c), (d)\}$, then follow direction j_i .
 - (B) Perform operation (e) and according as the answer is yes or no correspondingly follow direction j'_i or j''_i.

- Start at the starting point and follow direction 1.
- Then a finite number of directions numbered 1, 2, 3, ..., n, where the *i*-th has one of the following forms:
 - (A) Perform operation $O_i \in \{(a), (b), (c), (d)\}$, then follow direction j_i .
 - (B) Perform operation (e) and according as the answer is yes or no correspondingly follow direction j'_i or j''_i .
 - (C) Stop.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Exer	cise								

Exercise

Construct a Post machine that adds one to a natural number in unary representation.

storage (unbounded)

- storage (unbounded)
- control (finite, given)

- storage (unbounded)
- control (finite, given)
- modification

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data

Typical features of 'computationally complete' MoC's

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state

Typical features of 'computationally complete' MoC's

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals

Typical features of 'computationally complete' MoC's

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop (unbounded)

Typical features of 'computationally complete' MoC's

- storage (unbounded)
- control (finite, given)
- modification
 - of (immediately accessible) stored data
 - of control state
- conditionals
- loop (unbounded)
- stopping condition

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Turing computability

Alan Turing (1912-1954)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

refs

Turing's analysis of a human 'computer'

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

- A direct appeal to intuition in analysing human computation:
 - paper is divided into squares

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

paper is divided into squares

MoC features

one-dimensional paper ('tape' divided into squares)

MoC features Turing's analysis of a human 'computer'

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

- paper is divided into squares
- one-dimensional paper ('tape' divided into squares) ►
- ► number of symbols is finite

Turing's analysis of a human 'computer'

MoC features

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

- paper is divided into squares
- one-dimensional paper ('tape' divided into squares)
- number of symbols is finite
- behaviour of computer at any time is determined by:

rrse Post MoC features Turing compu

nputer

summ

ex-sugg

refs

Turing's analysis of a human 'computer'

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

- paper is divided into squares
- one-dimensional paper ('tape' divided into squares)
- number of symbols is finite
- behaviour of computer at any time is determined by:
 - observed symbols

refs

Turing's analysis of a human 'computer'

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

- paper is divided into squares
- one-dimensional paper ('tape' divided into squares)
- number of symbols is finite
- behaviour of computer at any time is determined by:
 - observed symbols
 - her/his 'state of mind'

MoC features

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

- paper is divided into squares
- one-dimensional paper ('tape' divided into squares)
- number of symbols is finite
- behaviour of computer at any time is determined by:
 - observed symbols
 - her/his 'state of mind'
- bound B on the number of symbols/squares the computer can observe at any moment

MoC features

Section 9 in Turing's 1937 paper 'On computable numbers, with an application to the Entscheidungsproblem' [3].

A direct appeal to intuition in analysing human computation:

- paper is divided into squares
- one-dimensional paper ('tape' divided into squares)
- number of symbols is finite
- behaviour of computer at any time is determined by:
 - observed symbols
 - her/his 'state of mind'
- bound B on the number of symbols/squares the computer can observe at any moment
- number of 'states of mind' of the computer is finite
modification of tape symbols

MoC features

- in a simple operation only one symbol is altered
- only 'observed' symbols can be altered
- modification of observed squares
 - new observed squares are within *L* squares of a previously observed square
 - other directly observable squares? T. argues: not necessary
- modification of 'state of mind'

ex-sugg

simple operations must include:

- simple operations must include:
 - (a) change of a symbol on one of the observed squares
 - (b) change of one of the squares observed to another square within *L* squares of a previously observed one.

Turing's analysis of a human 'computer'

- simple operations must include:
 - (a) change of a symbol on one of the observed squares
 - (b) change of one of the squares observed to another square within *L* squares of a previously observed one.
- most general simple operations:

simple operations must include:

MoC features

- (a) change of a symbol on one of the observed squares
- (b) change of one of the squares observed to another square within L squares of a previously observed one.

ex-sugg

- most general simple operations:
 - (A) A change (a) of symbol with a possible change of state of mind
 - (B) A change (b) of observed square, together with a possible change of state of mind.

simple operations must include:

MoC features

- (a) change of a symbol on one of the observed squares
- (b) change of one of the squares observed to another square within L squares of a previously observed one.

ex-sugg

- most general simple operations:
 - (A) A change (a) of symbol with a possible change of state of mind
 - (B) A change (b) of observed square, together with a possible change of state of mind.

"It is my contention that these operations include all those which are used in the computation of a number."

memory tape

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Chu	rch—	Turing T	hesis						

Thesis (Church–Turing, 1937)

Every effectively calculable function is computable by a Turing-machine.

—			1						
course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

A Turing machine is a tuple $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{b}, F \rangle$ where:

Q is a finite set of states;

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

- Q is a finite set of states;
- Σ is the input alphabet;

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

- Q is a finite set of states;
- Σ is the input alphabet;
- Γ is the tape alphabet that is finite and $\Gamma \supseteq \Sigma \cup \{b\}$ holds;

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

- Q is a finite set of states;
- Σ is the input alphabet;
- Γ is the tape alphabet that is finite and $\Gamma \supseteq \Sigma \cup \{b\}$ holds;
- δ: (Q \ F) × Γ → Q × Γ × {L, R} is a partial function, called the transition function;

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

- Q is a finite set of states;
- Σ is the input alphabet;
- Γ is the tape alphabet that is finite and $\Gamma \supseteq \Sigma \cup \{b\}$ holds;
- δ: (Q \ F) × Γ → Q × Γ × {L, R} is a partial function, called the transition function;
- b is a designated blank symbol not contained in Σ;

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

- Q is a finite set of states;
- Σ is the input alphabet;
- Γ is the tape alphabet that is finite and $\Gamma \supseteq \Sigma \cup \{b\}$ holds;
- δ: (Q \ F) × Γ → Q × Γ × {L, R} is a partial function, called the transition function;
- *b* is a designated blank symbol not contained in Σ ;
- $q_0 \in Q$ is called the initial state;

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Definition

- Q is a finite set of states;
- Σ is the input alphabet;
- Γ is the tape alphabet that is finite and $\Gamma \supseteq \Sigma \cup \{b\}$ holds;
- δ: (Q \ F) × Γ → Q × Γ × {L, R} is a partial function, called the transition function;
- *b* is a designated blank symbol not contained in Σ ;
- $q_0 \in Q$ is called the initial state;
- $F \subseteq Q$ is the set of final or accepting states.

- ·									
course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, b, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from b

Turing		abina. a	lafiniti		iana				
course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, b, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from h

• uqav' with $a \in \Sigma$ is an end-configuration if $\delta(q, a)$ is undefined.

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, b, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from h

- uqav' with $a \in \Sigma$ is an end-configuration if $\delta(q, a)$ is undefined.
- uqv' is accepting configuration if $q \in F$.

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{b}, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from h

- uqav' with $a \in \Sigma$ is an end-configuration if $\delta(q, a)$ is undefined.
- uqv' is accepting configuration if $q \in F$.
- \vdash_M ... next-move-relation
- $\vdash_M^* \ldots$ reflexive, and transitive closure of \vdash_M

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{b}, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from /

- uqav' with $a \in \Sigma$ is an end-configuration if $\delta(q, a)$ is undefined.
- uqv' is accepting configuration if $q \in F$.
- \vdash_M ... next-move-relation
- \vdash^*_M ... reflexive, and transitive closure of \vdash_M

Let $w \in \Sigma^*$.

▶ *M* halts on (input) *w* if $q_0w \vdash_M^* uqv$ for some end-config. uqv.

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{b}, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from /

- uqav' with $a \in \Sigma$ is an end-configuration if $\delta(q, a)$ is undefined.
- uqv' is accepting configuration if $q \in F$.
- \vdash_M ... next-move-relation
- \vdash^*_M ... reflexive, and transitive closure of \vdash_M

Let $w \in \Sigma^*$.

- ▶ *M* halts on (input) *w* if $q_0w \vdash_M^* uqv$ for some end-config. uqv.
- *M* accepts *w* if $q_0 w \vdash_M^* uqv$ for some accepting config. *uqv*.

Turing machine: definition notions

Definition

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \mathbf{b}, F \rangle$ be a Turing machine.

A configuration of M is elements $w_1qw_2 \in \Gamma^* \times Q \times \Gamma^*$ such that the first letter in w_1 and the last letter in w_2 are different from /

- uqav' with $a \in \Sigma$ is an end-configuration if $\delta(q, a)$ is undefined.
- uqv' is accepting configuration if $q \in F$.
- \vdash_M ... next-move-relation
- \vdash^*_M ... reflexive, and transitive closure of \vdash_M

Let $w \in \Sigma^*$.

- ▶ *M* halts on (input) *w* if $q_0w \vdash_M^* uqv$ for some end-config. uqv.
- *M* accepts *w* if $q_0 w \vdash_M^* uqv$ for some accepting config. *uqv*.

 $L(M) \coloneqq \{w \in \Sigma^* \mid M \text{ accepts } w\}$ is the language accepted by M.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
--------	------	--------------	--------	----------	------	---------	---------	--------	------

Recursively enumerable/recursive languages

Definition

Let $L \subseteq \Sigma^*$ a language.

- L is called recursively enumerable if
 - L = L(M) for some Turing machine M with input symbols Σ .

L is called recursive if

 \blacktriangleright there is a Turing machine M with input symbols Σ such that

$$\bigcirc L = L(M)$$

2 M halts on all of its inputs.

course

Post

MoC features

computer

summ

n ex-sugg

refs

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Exer	cises	5							

Exercise

Construct a Turing machine that adds one to a natural number in binary representation.

(In the film this Turing machine is executed five times consecutively.)

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Exer	cise	S							

Exercise

Construct a Turing machine that adds one to a natural number in binary representation.

(In the film this Turing machine is executed five times consecutively.)

Exercise

Construct a Turing machine that, if started on the empty tape, writes the sequence

010110111011110111110...

on the tape, but does not halt.

(Compare your machine with Turing's machine for this purpose.)

MoC features ex-sugg

- Variants of Turing machines
 - TM's with semi-infinite tapes (infinite in only one direction)
 - TM's with multiple tapes
 - Input/Output Turing machines (with input- and output tapes)
 - non-deterministic TM's: $\delta \subseteq ((Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\}))$
 - tape-bounded TM's (by f(n) for inputs of length n)
 - oracle Turing machines
 - Turing machines with advice
 - alternating Turing machines
 - ...
 - interactive/reactive TM's

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Anι	unsol	vable pr	oblen	า					

$$L_d \coloneqq \{ w \mid w = \langle M \rangle, w \notin L(M) \}$$

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Anι	insol	vable pr	oblen	า					

$$L_d \coloneqq \{ w \mid w = \langle M \rangle, w \notin L(M) \}$$

Proposition

 L_d is not recursively enumerable.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
An ui	nsolv	able pro	blem						

$$L_d \coloneqq \{ w \mid w = \langle M \rangle, w \notin L(M) \}$$

Proposition

 L_d is not recursively enumerable.

Proof.

By diagonalisation.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
An	unsol	vable pr	oblen	า					

$$L_d \coloneqq \{ w \mid w = \langle M \rangle, w \notin L(M) \}$$

Proposition L_d is not recursively enumerable.

Proof.

By diagonalisation.

Membership in the diagonalisation language

Instance: w a binary word. Question: Does $w \in L_d$ hold? (Does Tm. M with $\langle M \rangle = w$ accept w?)

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
An	unsol	vable pr	oblen	า					

$$L_d \coloneqq \{ w \mid w = \langle M \rangle, w \notin L(M) \}$$

Proposition L_d is not recursively enumerable.

Proof.

By diagonalisation.

Membership in the diagonalisation language

Instance: w a binary word. *Question*: Does $w \in L_d$ hold? (Does Tm. M with $\langle M \rangle = w$ accept w?)

Theorem

There exist unsolvable decision problems.
course Post MoC features Turing computer summ ex-sugg reading course refs Exercise: Halting Problem

Exercise

Try to adapt the diagonalisation argument to show that for the Halting Problem

$$H = \{w \mid w = \langle w_n, w_m \rangle, M_n \text{ halts on input } w_m \}$$

it holds:

H is not recursive

and show that:

▶ *H* is recursively enumerable

Properties of r.e./recursive sets (I)

For $L \subseteq \Sigma^*$, $\overline{L} := \Sigma^* \setminus L$ is called the complement of L.

Proposition

If L is recursive, then \overline{L} is recursive.

For $L \subseteq \Sigma^*$, $\overline{L} \coloneqq \Sigma^* \setminus L$ is called the complement of L.

Proposition

If L is recursive, then \overline{L} is recursive.

Proof.

Let *M* be such that L = L(M).

First idea: Swap the accepting states of M with the non-accepting states of M in which computations may halt.

Properties of r.e./recursive sets (I)

For $L \subseteq \Sigma^*$, $\overline{L} \coloneqq \Sigma^* \setminus L$ is called the complement of L.

Proposition

If L is recursive, then \overline{L} is recursive.

Proof.

Let *M* be such that L = L(M).

MoC features

First idea: Swap the accepting states of M with the non-accepting states of M in which computations may halt.

M is modified as follows to obtain \overline{M} :

1 the accepting states of M are made non-accepting in \overline{M} .

- 2 \overline{M} has a new accepting state r.
- **3** for each $q \in Q$ and tape symbol $s \in \Gamma$ such that $\delta_M(q, s)$ is undefined, add the transition $\delta_{\overline{M}}(q, s) = \langle r, s, R \rangle$.

For $L \subseteq \Sigma^*$, $\overline{L} := \Sigma^* \smallsetminus L$ is called the complement of L.

Proposition

If \underline{L} is recursive, then $\overline{\underline{L}}$ is recursive.

Proof.

Let *M* be such that L = L(M).

MoC features

First idea: Swap the accepting states of M with the non-accepting states of M in which computations may halt.

M is modified as follows to obtain \overline{M} :

1 the accepting states of M are made non-accepting in \overline{M} .

- 2 \overline{M} has a new accepting state r.
- **③** for each *q* ∈ *Q* and tape symbol *s* ∈ Γ such that $\delta_M(q, s)$ is undefined, add the transition $\delta_{\overline{M}}(q, s) = \langle r, s, R \rangle$.

It follows that $\overline{L} = L(\overline{M})$, and that \overline{M} halts on all inputs.

Properties of r.e./recursive sets (II)

Proposition

If both of \underline{L} and $\overline{\underline{L}}$ is r.e., then \underline{L} is recursive.

MoC features

Proposition

If both of \underline{L} and $\overline{\underline{L}}$ is r.e., then \underline{L} is recursive.

Proof.

Let M_1 and M_2 be Tm's such that $L = L(M_1)$ and $\overline{L} = L(M_2)$.

To decide, for a given $w \in \Sigma^*$, whether $w \in L$, build a Tm M that executes M_1 and M_2 on w in parallel, and such that:

- if M_1 accepts w, then also M accepts w.
- if M_2 accepts w, then also M halts, but does not accept w.

Hence *M* accepts *w* iff $w \in L(M_1) = L$. Thus L(M) = L.

MoC features

Proposition

If both of \underline{L} and $\overline{\underline{L}}$ is r.e., then \underline{L} is recursive.

Proof.

Let M_1 and M_2 be Tm's such that $L = L(M_1)$ and $\overline{L} = L(M_2)$.

To decide, for a given $w \in \Sigma^*$, whether $w \in L$, build a Tm M that executes M_1 and M_2 on w in parallel, and such that:

- if M_1 accepts w, then also M accepts w.
- if M_2 accepts w, then also M halts, but does not accept w.

Hence *M* accepts *w* iff $w \in L(M_1) = L$. Thus L(M) = L.

Since for all w, either $w \in L$ or $w \in \overline{L}$, it follows that either M_1 or M_2 halts on w, and hence M halts on all inputs.

Hence L = L(M) is recursive.

$$L_{u} \coloneqq \{ \langle v, w \rangle \mid v = \langle M \rangle, w \in L(M) \}$$

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Univ	rsa	I langua	ge						

$$\underline{L_u} \coloneqq \{ \langle v, w \rangle \mid v = \langle M \rangle, w \in L(M) \}$$

Theorem

 L_u is r.e., but not recursive.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Univ	versa	l langua	ge						

$$\underline{L_u} \coloneqq \{ \langle v, w \rangle \mid v = \langle M \rangle, w \in L(M) \}$$

Theorem

 L_u is r.e., but not recursive.

Proof.

1 L_u is r.e.: $L_u = L(M_u)$ for an universal machine M_u .

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Un	iversa	l langua	ge						

$$\underline{L_{u}} \coloneqq \{ \langle v, w \rangle \mid v = \langle M \rangle, w \in L(M) \}$$

Theorem

 L_u is r.e., but not recursive.

Proof.

• L_u is r.e.: $L_u = L(M_u)$ for an universal machine M_u .

2 L_u is not recursive:

Suppose that L_u is recursive. Then $\overline{L_u}$ is recursive, and hence there exists a Tm. M such that $\overline{L_u} = L(M)$.

M can be used to build a Tm. M' that accepts the diagonalisation language L_d , entailing $L_u = L(M')$.

[picture of M' to be given]

But then L_u would actually be r.e., in contradiction with what we proved last time.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs

Finite-state automaton

Formal-languages Chomsky hierarchy

uncom	putable	
Turing machines	Phrase structure	⊂ a complex
Linear-bounded automata	Context- sensitive	
Push-down automata	Context-free	
Finite state automata	Regular	
machines	grammars	

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Sun	nmar	У							

<

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Exa	mple	sugges	tions						

1.	
2.	
3.	

 Recursive and primitive-recursive functions: Chapter 4, Recursive Functions of the book:

> Maribel Fernández [1]: Models of Computation (An Introduction to Computability Theory), Springer-Verlag London, 2009.

course	Post	MoC features	Turing	computer	summ	ex-sugg	reading	course	refs
Cou	rse c	verview							

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro		classic models		additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran
				comparing computational power

Maribel Fernández.

Models of Computation (An Introduction to Computability Theory).

Springer, Dordrecht Heidelberg London New York, 2009.

Emil L. Post.

Finite Combinatory Processes – Formulation 1. Journal of Symbolic Logic, 1(3):103–105, 1936. https://www.wolframscience.com/prizes/tm23/

images/Post.pdf.

Alan M. Turing.

On Computable Numbers, with an Application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

http://www.wolframscience.com/prizes/tm23/
images/Turing.pdf.