
course Post MoC features Turing computer summ ex-sugg reading course refs

Lecture 2: Machine Models,
Basic Computability Theory
Models of Computation

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period
Gran Sasso Science Institute

L’Aquila, Italy

July 8, 2025

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Overview

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Reading recommended (for today)

1 Post machine: Page 1 + first paragraph on page 2 of:

▸ Emil Post: Finite Combinatory Processes – Formulation 1,
Journal of Symbolic Logic (1936), [2].

2 Turing machine motivation:
Turing’s analysis of a human computer:

Part I of Section 9, pp. 249–252 of:

▸ Alan M. Turing’s: On computable numbers, with an application to
the Entscheidungsproblem’, Proceedings of the London
Mathematical Society (1936), [3].

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Emil Post

Emil Leon Post (1897–1954)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post about . . .

. . . a result of his from 1921 similar to the Incompleteness Theorem:

Theorem (Gödel, 1931 (paraphrased here))

Every axiomatisable, consistent first-order-logic system of number
theory is incomplete: it contains true, but unprovable formulas.

“For full generality a complete analysis would have to be
given of all possible ways in which the human mind could
set up finite processes for generating sequences.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

Emil Post: Finite Combinatory Processes – Formulation 1 (1936),
Journal of Symbolic Logic, [2].

(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

“The worker is assumed to be capable of performing the following
primitive acts:

(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

“The worker is assumed to be capable of performing the following
primitive acts:
(a) Marking the box he is in (assumed empty),

(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

“The worker is assumed to be capable of performing the following
primitive acts:
(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),

(c) Moving to the box on his right,
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

“The worker is assumed to be capable of performing the following
primitive acts:
(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,

(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

“The worker is assumed to be capable of performing the following
primitive acts:
(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,
(d) Moving to the box on his left,

(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

“The worker is assumed to be capable of performing the following
primitive acts:
(a) Marking the box he is in (assumed empty),
(b) Erasing the mark in the box he is in (assumed marked),
(c) Moving to the box on his right,
(d) Moving to the box on his left,
(e) Determining whether the box he is in, is or is not marked.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

‘Directions’ (instructions):

▸ Start at the starting point and follow direction 1.

▸ Then a finite number of directions numbered 1, 2, 3, . . . , n,
where the i-th has one of the following forms:

(A) Perform operation Oi ∈ {(a), (b), (c), (d)}, then follow direction ji.
(B) Perform operation (e) and according as the answer is yes or no

correspondingly follow direction j′i or j′′i .
(C) Stop.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

‘Directions’ (instructions):

▸ Start at the starting point and follow direction 1.
▸ Then a finite number of directions numbered 1, 2, 3, . . . , n,

where the i-th has one of the following forms:

(A) Perform operation Oi ∈ {(a), (b), (c), (d)}, then follow direction ji.
(B) Perform operation (e) and according as the answer is yes or no

correspondingly follow direction j′i or j′′i .
(C) Stop.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

‘Directions’ (instructions):

▸ Start at the starting point and follow direction 1.
▸ Then a finite number of directions numbered 1, 2, 3, . . . , n,

where the i-th has one of the following forms:
(A) Perform operation Oi ∈ {(a), (b), (c), (d)}, then follow direction ji.

(B) Perform operation (e) and according as the answer is yes or no
correspondingly follow direction j′i or j′′i .

(C) Stop.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

‘Directions’ (instructions):

▸ Start at the starting point and follow direction 1.
▸ Then a finite number of directions numbered 1, 2, 3, . . . , n,

where the i-th has one of the following forms:
(A) Perform operation Oi ∈ {(a), (b), (c), (d)}, then follow direction ji.
(B) Perform operation (e) and according as the answer is yes or no

correspondingly follow direction j′i or j′′i .

(C) Stop.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Post machine (1936)

‘Directions’ (instructions):

▸ Start at the starting point and follow direction 1.
▸ Then a finite number of directions numbered 1, 2, 3, . . . , n,

where the i-th has one of the following forms:
(A) Perform operation Oi ∈ {(a), (b), (c), (d)}, then follow direction ji.
(B) Perform operation (e) and according as the answer is yes or no

correspondingly follow direction j′i or j′′i .
(C) Stop.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Exercise

Exercise
Construct a Post machine that adds one to a natural number
in unary representation.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data

of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Typical features of ‘computationally complete’ MoC’s

▸ storage (unbounded)

▸ control (finite, given)

▸ modification

of (immediately accessible) stored data
of control state

▸ conditionals

▸ loop (unbounded)

▸ stopping condition

(Credits due to: Vincent van Oostrom)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://profiles.sussex.ac.uk/p624321-vincent-van-oostrom


course Post MoC features Turing computer summ ex-sugg reading course refs

Turing computability

Alan Turing (1912 –1954)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares

▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)

▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite

▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols

her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment

▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

Section 9 in Turing’s 1937 paper ‘On computable numbers, with an
application to the Entscheidungsproblem’ [3].

A direct appeal to intuition in analysing human computation:

▸ paper is divided into squares
▸ one-dimensional paper (‘tape’ divided into squares)
▸ number of symbols is finite
▸ behaviour of computer at any time is determined by:

observed symbols
her/his ‘state of mind’

▸ bound B on the number of symbols/squares the computer can
observe at any moment
▸ number of ‘states of mind’ of the computer is finite

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

▸ modification of tape symbols
in a simple operation only one symbol is altered
only ‘observed’ symbols can be altered

▸ modification of observed squares
new observed squares are within L squares of a previously
observed square
other directly observable squares? – T. argues: not necessary

▸ modification of ‘state of mind’

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

▸ simple operations must include:

(a) change of a symbol on one of the observed squares
(b) change of one of the squares observed to another square within L

squares of a previously observed one.

▸ most general simple operations:

(A) A change (a) of symbol with a possible change of state of mind
(B) A change (b) of observed square, together with a possible change

of state of mind.

“It is my contention that these operations include all those
which are used in the computation of a number.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

▸ simple operations must include:
(a) change of a symbol on one of the observed squares
(b) change of one of the squares observed to another square within L

squares of a previously observed one.

▸ most general simple operations:

(A) A change (a) of symbol with a possible change of state of mind
(B) A change (b) of observed square, together with a possible change

of state of mind.

“It is my contention that these operations include all those
which are used in the computation of a number.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

▸ simple operations must include:
(a) change of a symbol on one of the observed squares
(b) change of one of the squares observed to another square within L

squares of a previously observed one.

▸ most general simple operations:

(A) A change (a) of symbol with a possible change of state of mind
(B) A change (b) of observed square, together with a possible change

of state of mind.

“It is my contention that these operations include all those
which are used in the computation of a number.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

▸ simple operations must include:
(a) change of a symbol on one of the observed squares
(b) change of one of the squares observed to another square within L

squares of a previously observed one.

▸ most general simple operations:
(A) A change (a) of symbol with a possible change of state of mind
(B) A change (b) of observed square, together with a possible change

of state of mind.

“It is my contention that these operations include all those
which are used in the computation of a number.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing’s analysis of a human ‘computer’

▸ simple operations must include:
(a) change of a symbol on one of the observed squares
(b) change of one of the squares observed to another square within L

squares of a previously observed one.

▸ most general simple operations:
(A) A change (a) of symbol with a possible change of state of mind
(B) A change (b) of observed square, together with a possible change

of state of mind.

“It is my contention that these operations include all those
which are used in the computation of a number.”

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Church–Turing Thesis

Thesis (Church–Turing, 1937)

Every effectively calculable function is computable by a
Turing-machine.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;

▸ Σ is the input alphabet;
▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;
▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,

called the transition function;
▸ bl is a designated blank symbol not contained in Σ;
▸ q0 ∈ Q is called the initial state;
▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;
▸ Σ is the input alphabet;

▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;
▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,

called the transition function;
▸ bl is a designated blank symbol not contained in Σ;
▸ q0 ∈ Q is called the initial state;
▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;
▸ Σ is the input alphabet;
▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;

▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,
called the transition function;
▸ bl is a designated blank symbol not contained in Σ;
▸ q0 ∈ Q is called the initial state;
▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;
▸ Σ is the input alphabet;
▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;
▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,

called the transition function;

▸ bl is a designated blank symbol not contained in Σ;
▸ q0 ∈ Q is called the initial state;
▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;
▸ Σ is the input alphabet;
▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;
▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,

called the transition function;
▸ bl is a designated blank symbol not contained in Σ;

▸ q0 ∈ Q is called the initial state;
▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;
▸ Σ is the input alphabet;
▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;
▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,

called the transition function;
▸ bl is a designated blank symbol not contained in Σ;
▸ q0 ∈ Q is called the initial state;

▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: formal definition

Definition

A Turing machine is a tuple M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ where:
▸ Q is a finite set of states;
▸ Σ is the input alphabet;
▸ Γ is the tape alphabet that is finite and Γ ⊇ Σ ∪ {bl} holds;
▸ δ ∶ (Q ∖ F ) × Γ⇀ Q × Γ × {L,R} is a partial function,

called the transition function;
▸ bl is a designated blank symbol not contained in Σ;
▸ q0 ∈ Q is called the initial state;
▸ F ⊆ Q is the set of final or accepting states.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.

▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.
▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M
Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.
▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.
▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.

▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M
Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.
▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.
▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.
▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M
Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.
▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.
▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.
▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M

Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.
▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.
▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.
▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M
Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.

▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.
▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.
▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M
Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.
▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Turing machine: definition notions

Definition

Let M = ⟨Q,Σ,Γ, δ, q0,bl, F ⟩ be a Turing machine.

A configuration of M is elements w1qw2 ∈ Γ
∗ ×Q × Γ∗ such that

the first letter in w1 and the last letter in w2 are different from bl.
▸ uqav′ with a ∈ Σ is an end-configuration if δ(q, a) is undefined.
▸ uqv′ is accepting configuration if q ∈ F .

⊢M . . . next-move-relation
⊢∗M . . . reflexive, and transitive closure of ⊢M
Let w ∈ Σ∗.
▸ M halts on (input) w if q0w ⊢∗M uqv for some end-config. uqv.
▸ M accepts w if q0w ⊢∗M uqv for some accepting config. uqv.

L(M) ∶= {w ∈ Σ∗ ∣ M accepts w} is the language accepted by M .

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Recursively enumerable/recursive languages

Definition
Let L ⊆ Σ∗ a language.

L is called recursively enumerable if
▸ L = L(M) for some Turing machine M with input symbols Σ.

L is called recursive if
▸ there is a Turing machine M with input symbols Σ such that

1 L = L(M)
2 M halts on all of its inputs.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Mike Davey’s Turing machine (link)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

http://www.youtube.com/watch?v=E3keLeMwfHY


course Post MoC features Turing computer summ ex-sugg reading course refs

Mike Davey’s Turing machine (link)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

http://www.youtube.com/watch?v=E3keLeMwfHY


course Post MoC features Turing computer summ ex-sugg reading course refs

Mike Davey’s Turing machine (link)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

http://www.youtube.com/watch?v=E3keLeMwfHY


course Post MoC features Turing computer summ ex-sugg reading course refs

Mike Davey’s Turing machine (link)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

http://www.youtube.com/watch?v=E3keLeMwfHY


course Post MoC features Turing computer summ ex-sugg reading course refs

Mike Davey’s Turing machine (link)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

http://www.youtube.com/watch?v=E3keLeMwfHY


course Post MoC features Turing computer summ ex-sugg reading course refs

Exercises

Exercise
Construct a Turing machine that adds one to a natural number
in binary representation.

(In the film this Turing machine is executed five times consecutively.)

Exercise
Construct a Turing machine that, if started on the empty tape, writes
the sequence

010110111011110111110 . . .

on the tape, but does not halt.

(Compare your machine with Turing’s machine for this purpose.)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Exercises

Exercise
Construct a Turing machine that adds one to a natural number
in binary representation.

(In the film this Turing machine is executed five times consecutively.)

Exercise
Construct a Turing machine that, if started on the empty tape, writes
the sequence

010110111011110111110 . . .

on the tape, but does not halt.

(Compare your machine with Turing’s machine for this purpose.)

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Variants of Turing machines

▸ TM’s with semi-infinite tapes (infinite in only one direction)

▸ TM’s with multiple tapes

Input/Output Turing machines (with input- and output tapes)

▸ non-deterministic TM’s: δ ⊆ ((Q × Γ) × (Q × Γ × {L,R}))

▸ tape-bounded TM’s (by f(n) for inputs of length n)

▸ oracle Turing machines

▸ Turing machines with advice

▸ alternating Turing machines

▸ . . .

▸ interactive/reactive TM’s

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

An unsolvable problem

The diagonalisation language:

Ld ∶= {w ∣ w = ⟨M⟩, w ∉ L(M)}

Proposition

Ld is not recursively enumerable.

Proof.
By diagonalisation.

Membership in the diagonalisation language
Instance: w a binary word.
Question: Does w ∈ Ld hold? (Does Tm. M with ⟨M⟩ = w accept w?)

Theorem
There exist unsolvable decision problems.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

An unsolvable problem

The diagonalisation language:

Ld ∶= {w ∣ w = ⟨M⟩, w ∉ L(M)}

Proposition

Ld is not recursively enumerable.

Proof.
By diagonalisation.

Membership in the diagonalisation language
Instance: w a binary word.
Question: Does w ∈ Ld hold? (Does Tm. M with ⟨M⟩ = w accept w?)

Theorem
There exist unsolvable decision problems.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

An unsolvable problem

The diagonalisation language:

Ld ∶= {w ∣ w = ⟨M⟩, w ∉ L(M)}

Proposition

Ld is not recursively enumerable.

Proof.
By diagonalisation.

Membership in the diagonalisation language
Instance: w a binary word.
Question: Does w ∈ Ld hold? (Does Tm. M with ⟨M⟩ = w accept w?)

Theorem
There exist unsolvable decision problems.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

An unsolvable problem

The diagonalisation language:

Ld ∶= {w ∣ w = ⟨M⟩, w ∉ L(M)}

Proposition

Ld is not recursively enumerable.

Proof.
By diagonalisation.

Membership in the diagonalisation language
Instance: w a binary word.
Question: Does w ∈ Ld hold? (Does Tm. M with ⟨M⟩ = w accept w?)

Theorem
There exist unsolvable decision problems.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

An unsolvable problem

The diagonalisation language:

Ld ∶= {w ∣ w = ⟨M⟩, w ∉ L(M)}

Proposition

Ld is not recursively enumerable.

Proof.
By diagonalisation.

Membership in the diagonalisation language
Instance: w a binary word.
Question: Does w ∈ Ld hold? (Does Tm. M with ⟨M⟩ = w accept w?)

Theorem
There exist unsolvable decision problems.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Exercise: Halting Problem

Exercise
Try to adapt the diagonalisation argument to show that for the
Halting Problem

H = {w ∣ w = ⟨wn,wm⟩, Mn halts on input wm}

it holds:
▸ H is not recursive

and show that:
▸ H is recursively enumerable

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (I)

For L ⊆ Σ∗, L̄ ∶= Σ∗ ∖L is called the complement of L.

Proposition

If L is recursive, then L̄ is recursive.

Proof.

Let M be such that L = L(M).

First idea: Swap the accepting states of M with the non-accepting
states of M in which computations may halt.

M is modified as follows to obtain M̄ :
1 the accepting states of M are made non-accepting in M̄ .
2 M̄ has a new accepting state r.
3 for each q ∈ Q and tape symbol s ∈ Γ such that δM(q, s) is

undefined, add the transition δM̄(q, s) = ⟨r, s,R⟩.

It follows that L̄ = L(M̄), and that M̄ halts on all inputs.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (I)

For L ⊆ Σ∗, L̄ ∶= Σ∗ ∖L is called the complement of L.

Proposition

If L is recursive, then L̄ is recursive.

Proof.

Let M be such that L = L(M).

First idea: Swap the accepting states of M with the non-accepting
states of M in which computations may halt.

M is modified as follows to obtain M̄ :
1 the accepting states of M are made non-accepting in M̄ .
2 M̄ has a new accepting state r.
3 for each q ∈ Q and tape symbol s ∈ Γ such that δM(q, s) is

undefined, add the transition δM̄(q, s) = ⟨r, s,R⟩.

It follows that L̄ = L(M̄), and that M̄ halts on all inputs.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (I)

For L ⊆ Σ∗, L̄ ∶= Σ∗ ∖L is called the complement of L.

Proposition

If L is recursive, then L̄ is recursive.

Proof.

Let M be such that L = L(M).

First idea: Swap the accepting states of M with the non-accepting
states of M in which computations may halt.

M is modified as follows to obtain M̄ :
1 the accepting states of M are made non-accepting in M̄ .
2 M̄ has a new accepting state r.
3 for each q ∈ Q and tape symbol s ∈ Γ such that δM(q, s) is

undefined, add the transition δM̄(q, s) = ⟨r, s,R⟩.

It follows that L̄ = L(M̄), and that M̄ halts on all inputs.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (I)

For L ⊆ Σ∗, L̄ ∶= Σ∗ ∖L is called the complement of L.

Proposition

If L is recursive, then L̄ is recursive.

Proof.

Let M be such that L = L(M).

First idea: Swap the accepting states of M with the non-accepting
states of M in which computations may halt.

M is modified as follows to obtain M̄ :
1 the accepting states of M are made non-accepting in M̄ .
2 M̄ has a new accepting state r.
3 for each q ∈ Q and tape symbol s ∈ Γ such that δM(q, s) is

undefined, add the transition δM̄(q, s) = ⟨r, s,R⟩.

It follows that L̄ = L(M̄), and that M̄ halts on all inputs.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (II)

Proposition

If both of L and L̄ is r.e., then L is recursive.

Proof.

Let M1 and M2 be Tm’s such that L = L(M1) and L̄ = L(M2).

To decide, for a given w ∈ Σ∗, whether w ∈ L, build a Tm M that
executes M1 and M2 on w in parallel, and such that:
▸ if M1 accepts w, then also M accepts w.
▸ if M2 accepts w, then also M halts, but does not accept w.

Hence M accepts w iff w ∈ L(M1) = L. Thus L(M) = L.

Since for all w, either w ∈ L or w ∈ L̄, it follows that either M1 or M2

halts on w, and hence M halts on all inputs.

Hence L = L(M) is recursive.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (II)

Proposition

If both of L and L̄ is r.e., then L is recursive.

Proof.

Let M1 and M2 be Tm’s such that L = L(M1) and L̄ = L(M2).

To decide, for a given w ∈ Σ∗, whether w ∈ L, build a Tm M that
executes M1 and M2 on w in parallel, and such that:
▸ if M1 accepts w, then also M accepts w.
▸ if M2 accepts w, then also M halts, but does not accept w.

Hence M accepts w iff w ∈ L(M1) = L. Thus L(M) = L.

Since for all w, either w ∈ L or w ∈ L̄, it follows that either M1 or M2

halts on w, and hence M halts on all inputs.

Hence L = L(M) is recursive.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Properties of r.e./recursive sets (II)

Proposition

If both of L and L̄ is r.e., then L is recursive.

Proof.

Let M1 and M2 be Tm’s such that L = L(M1) and L̄ = L(M2).

To decide, for a given w ∈ Σ∗, whether w ∈ L, build a Tm M that
executes M1 and M2 on w in parallel, and such that:
▸ if M1 accepts w, then also M accepts w.
▸ if M2 accepts w, then also M halts, but does not accept w.

Hence M accepts w iff w ∈ L(M1) = L. Thus L(M) = L.

Since for all w, either w ∈ L or w ∈ L̄, it follows that either M1 or M2

halts on w, and hence M halts on all inputs.

Hence L = L(M) is recursive.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Universal language
The universal language:

Lu ∶= {⟨v,w⟩ ∣ v = ⟨M⟩, w ∈ L(M)}

Theorem
Lu is r.e., but not recursive.

Proof.

1 Lu is r.e.: Lu = L(Mu) for an universal machine Mu.

2 Lu is not recursive:

Suppose that Lu is recursive. Then L̄u is recursive, and hence
there exists a Tm. M such that L̄u = L(M).

M can be used to build a Tm. M ′ that accepts the
diagonalisation language Ld, entailing Lu = L(M

′).
[picture of M ′ to be given]

But then Lu would actually be r.e., in contradiction with
what we proved last time.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Universal language
The universal language:

Lu ∶= {⟨v,w⟩ ∣ v = ⟨M⟩, w ∈ L(M)}

Theorem
Lu is r.e., but not recursive.

Proof.

1 Lu is r.e.: Lu = L(Mu) for an universal machine Mu.

2 Lu is not recursive:

Suppose that Lu is recursive. Then L̄u is recursive, and hence
there exists a Tm. M such that L̄u = L(M).

M can be used to build a Tm. M ′ that accepts the
diagonalisation language Ld, entailing Lu = L(M

′).
[picture of M ′ to be given]

But then Lu would actually be r.e., in contradiction with
what we proved last time.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Universal language
The universal language:

Lu ∶= {⟨v,w⟩ ∣ v = ⟨M⟩, w ∈ L(M)}

Theorem
Lu is r.e., but not recursive.

Proof.
1 Lu is r.e.: Lu = L(Mu) for an universal machine Mu.

2 Lu is not recursive:

Suppose that Lu is recursive. Then L̄u is recursive, and hence
there exists a Tm. M such that L̄u = L(M).

M can be used to build a Tm. M ′ that accepts the
diagonalisation language Ld, entailing Lu = L(M

′).
[picture of M ′ to be given]

But then Lu would actually be r.e., in contradiction with
what we proved last time.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Universal language
The universal language:

Lu ∶= {⟨v,w⟩ ∣ v = ⟨M⟩, w ∈ L(M)}

Theorem
Lu is r.e., but not recursive.

Proof.
1 Lu is r.e.: Lu = L(Mu) for an universal machine Mu.

2 Lu is not recursive:

Suppose that Lu is recursive. Then L̄u is recursive, and hence
there exists a Tm. M such that L̄u = L(M).

M can be used to build a Tm. M ′ that accepts the
diagonalisation language Ld, entailing Lu = L(M

′).
[picture of M ′ to be given]

But then Lu would actually be r.e., in contradiction with
what we proved last time.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Finite-state automaton

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Formal-languages Chomsky hierarchy

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Summary

▸

▸

▸

▸

▸

▸ ▸ ▸

▸

▸ ▸
▸

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Example suggestions

Examples

1.
2.
3.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Recommended reading

1 Recursive and primitive-recursive functions:
Chapter 4, Recursive Functions of the book:

▸ Maribel Fernández [1]: Models of Computation (An Introduction to
Computability Theory), Springer-Verlag London, 2009.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

Course overview

Monday, July 7 Tuesday, July 8 Wednesday, July 9 Thursday, July 10 Friday, July 11
10.30 – 12.30 10.30 – 12.30 10.30 – 12.30 10.30 – 12.30

intro classic models additional models
Introduction to
Computability Machine Models Recursive Functions Lambda Calculus

computation and
decision problems,

from logic to
computability,

overview of models
of computation

relevance of MoCs

Post Machines,
typical features,

Turing’s analysis of
human computers,
Turing machines,

basic recursion theory

primitive recursive
functions,

Gödel–Herbrand
recursive functions,

partial recursive funct’s,
partial recursive =
= Turing-computable,

Church’s Thesis

λ-terms, β-reduction,
λ-definable functions,
partial recursive
= λ-definable
= Turing computable

imperative
programming algebraic programming functional

programming
14.30 – 16.30

Three more Models of
Computation

Post’s Correspondence
Problem,

Interaction-Nets,
Fractran

comparing
computational power

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory



course Post MoC features Turing computer summ ex-sugg reading course refs

References

Maribel Fernández.
Models of Computation (An Introduction to Computability
Theory).
Springer, Dordrecht Heidelberg London New York, 2009.

Emil L. Post.
Finite Combinatory Processes – Formulation 1.
Journal of Symbolic Logic, 1(3):103–105, 1936.
https://www.wolframscience.com/prizes/tm23/
images/Post.pdf.

Alan M. Turing.
On Computable Numbers, with an Application to the
Entscheidungsproblem.
Proceedings of the London Mathematical Society,
42(2):230–265, 1936.
http://www.wolframscience.com/prizes/tm23/
images/Turing.pdf.

Clemens Grabmayer Lecture 2: Machine Models, and Basic Computability Theory

https://www.wolframscience.com/prizes/tm23/images/Post.pdf
https://www.wolframscience.com/prizes/tm23/images/Post.pdf
http://www.wolframscience.com/prizes/tm23/images/Turing.pdf
http://www.wolframscience.com/prizes/tm23/images/Turing.pdf

	Course overview
	Post
	Typical features of computationally complete MoC's
	Turing
	Turing's analysis of a human computer
	Summary
	Example suggestions
	Reading recommended
	Course overview
	References

