Lecture 1: Introduction to Computability Models of Computation

https://clegra.github.io/moc/moc.html

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

July 7, 2025

e book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models			additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	$\begin{array}{ll} \lambda\text{-terms, }\beta\text{-reduction,}\\ \lambda\text{-definable functions,}\\ \text{partial recursive}\\ = \lambda\text{-definable}\\ = \text{Turing computable} \end{array}$	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran comparing computational power

se book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Today

- What is computation?
 - questions where the answer may depend on computation
 - algorithm examples
 - unsolvable problems
- from logic to computability
- some models of computation
- example relevance: calculator
- fields for which models of computation are important
- recommended reading
- references

e book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Book

Q's where the A's depend (somehow) on computation

- Q: Is $2^{20} > 10000000$?
- A: Yes. (Check by computing $2^{20} = \underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{20} = 1048576$).
- Q: When was the last leap year before 1903?
- A: 1896. (Use the rule: leap years are divisible by 4, but not divisible by 100 with the exception of those divisible by 400.)
- Q: Given a day d in the second week of July 2025, will the sunshine percentage in L'Aquila on day d exceed 70%?
- A: ??
- Q: Will the rise in sea level until 2100 (worldwide yearly average) be more than 0.5 m?
- A: ? A 2010 Dutch study (KNMI) projected 0.47 m. In the meantime already ~ 1 m is being projected.

Q's where the A's depend (somehow) on computation

Q: What number comes next in the series 10, 9, 60, 90, 70, 66?

A: ?

Q: Is the diophantine equation 15x + 9y + 12 = 0 solvable?

A: ? (... to be given in a moment...)

Q: Is $((p \rightarrow q) \rightarrow p) \rightarrow p$ a tautology of propositional calculus?

A: Yes (Peirce's law).

Q: Given a formula ϕ of propositional logic, is ϕ a tautology?

A: Yes, if the truth table for ϕ contains (in the row for ϕ) only "T"; no otherwise.

(Comput.) Yes-or-no-questions/Decision problems

Example

Tautology Problem for the propositional calculus

Instance: A formula ϕ of propositional logic.

Question: Is ϕ a tautology?

Suppose $A \subseteq E$, where E a set of finitely describable objects.

A decision method for A in E is a method by which, given an element $a \in E$, we can decide in a finite number of steps whether or not $a \in A$.

Decision problem for A in E: Find a decision method for A in E, or show that no such method can exist.

The decision problem for A in E is solvable (the set A in E is (effectively) calculable) if there exists a decision method for A in E.

(Comput.) What-questions/Computation Problems

Example

Computing the greatest common divisor

Instance: a pair (a, b) of numbers $a, b \in \mathbb{N}$ with a, b > 0.

Question: What is gcd(a, b), the greatest common divisor of a and b?

Suppose $F: A \rightarrow B$ is a mapping, where the elements of A, B are finitely describable objects.

A computation method for F is a method by which, given an element $a \in A$, we can obtain solution F(a) in a finite number of steps.

Computation problem for F: Find a computation method for F, or show that no such method can exist.

A mapping F is calculable if there exists a computation method for F.

Representing function

Let $P(a_1, \ldots, a_n)$ be an *n*-ary number-theoretic predicate.

The representing function f of P:

$$f(a_1,\ldots,a_n)\coloneqq egin{cases} 1 & \ldots P(a_1,\ldots,a_n) \text{ is true} \\ 0 & \ldots P(a_1,\ldots,a_n) \text{ is false} \end{cases}$$

Hence:

A decision procedure can be handled as a computation procedure f by taking '0' for 'yes', and '1' for 'no'.

book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Decision/Computation procedures (steps)

What is a computation method (procedure) more precisely, with respect to its steps?

- A mechanical, algorithmic computation procedure that:
 - ► can be carried out by a machine M (ideal, not limited by resource problems, mechanical breakdown, etc.).
 - for computing a function F on an argument a,
 - a is placed on the input device of the M,
 - which then produces F(a) after finitely many steps.
 - for computing a function F,
 - the machine M that is chosen for obtaining F(a) may not be different for different arguments a
- Similar for a decision methods.

what Qs

yes-or-no Qs

Q: Is the diophantine equation 15x + 9y + 12 = 0 solvable? (I.e. solvable for $x, y \in \mathbb{Z}$?)

From elementary number theory we know:

$$ax + by + c = 0$$
 solvable in $\mathbb{Z} \iff \gcd(a, b) \mid c$ (*)

Using Euclid's algorithm we calculate gcd(15,9):

$$15 : 9 = 1 \text{ rem } 6$$

 $9 : 6 = 1 \text{ rem } 3$
 $6 : 3 = 2 \text{ rem } 0$

We find: gcd(15, 9) = 3.

Due to $3 \mid 12$ and (*) we conclude:

A: Yes. (Infinitely many solutions, e.g. x = 4 and y = -8.)

book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Not effectively calculable

Examples (Shoenfield)

- methods that involve chance procedures: tossing a coin
- methods involving magic: asking a fortune teller
- methods that require (unformalised, unmechanised) insight

Effectively calculable? - No!

Example

Hilbert's 10th Problem

Instance: An equation $p(x_1, ..., x_n) = 0$, where p a polynomial with integer coefficients.

Question: Is the equation solvable for $x_1, \ldots, x_n \in \mathbb{Z}$?

Instances based on quadratic polynomials are of the form $ax^2 + bxy + cy^2 + dx + ey + f = 0$ with $a, b, c, d, e, f \in \mathbb{Z}$.

Theorem (Matijasevic, 1970)

Hilbert's 10th Problem is unsolvable.

book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

David Hilbert (1862–1943)

Hilbert

Problem (Entscheidungsproblem, 1928)

Is there a method for deciding, given a formula ϕ of the predicate calculus, whether or not ϕ is a tautology?

Timeline: From logic to computability

1900	Hilbert's 23 Problems in mathematics
1921	Schönfinkel: Combinatory logic
1928	Hilbert/Ackermann: formulate completeness/decision problems for the predicate calculus (the latter called 'Entscheidungsproblem')
1929	Presburger: completeness/decidability of theory of addition on $\ensuremath{\mathbb{Z}}$
1930	Gödel: completeness theorem of predicate calculus
1931	Gödel: incompleteness theorems for first-order arithmetic
1932	Church: λ -calculus
1933/34	Herbrand/Gödel: general recursive functions
1936	Church/Kleene: λ -definable \sim general recursive
	Church Thesis: 'effectively calculable' be defined as either
	Church shows: the 'Entscheidungsproblem' is unsolvable
1937	Post: machine model; Church's thesis as 'working hypothesis'
	Turing: convincing analysis of a 'human computer'
	leading to the 'Turing machine'

Calculable functions?

Questions/Exercises

- **1** Suppose P(a,b) is a calculable predicate. Why does $(\exists x)P(a,x)$ not have to be calculable?
- 2 Let $f: \mathbb{N} \to \mathbb{N}$ defined by

$$n \longmapsto \begin{cases} 0 & \dots n = 0 \ \& \ \text{Goldbach's conjecture is false} \\ 1 & \dots n = 0 \ \& \ \text{Goldbach's conjecture is true} \\ n+1 & \dots n > 0 \end{cases}$$

Is f calculable?

3 Can computation problems for mappings $F: \mathbb{N}^n \to \mathbb{N}^m$ always be represented by decision problems?

ok Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Some Models of Computation

machine model	mathematical model	sort
Turing machine	Combinatory Logic	
Post machine	Post machine λ -calculus	
register machine	Herbrand–Gödel recursive functions	
	partial-recursive/ μ -recursive functions	
	Post canonical system (tag system)	
	Post's Correspondence Problem	
Markov algorithms		
	Lindenmayer systems	
	Fractran	less well known
cellular automata	term rewrite systems	
neural networks	al networks interaction nets	
	logic-based models of computation	
concurrency and process algebra		modern
	ς -calculus	
evolutionary programming/genetic algorithms		
abstract state machines		
hypercomputation		speculative
quantum computing		physics /biology
	physics-/biology- inspired	
	mapheu	

ok Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Some Models of Computation

machine model	mathematical model	sort
Turing machine	Combinatory Logic	
Post machine	ost machine λ -calculus	
register machine	Herbrand–Gödel recursive functions	
	partial-recursive/ μ -recursive functions	
	Post canonical system (tag system)	
	Post's Correspondence Problem	
	Markov algorithms	
	Lindenmayer systems	
	Fractran	less well known
cellular automata	cellular automata term rewrite systems	
neural networks	interaction nets	
	logic-based models of computation	
	concurrency and process algebra	
	ς-calculus	
	evolutionary programming/genetic algorithms	
	abstract state machines	
	hypercomputation	speculative
quantum computing		physics /biology
	physics-/biology- inspired	
	irispireu	

Example MoC relevance: Calculator (1/5)

iOS

Android

book Os yes-or-no Os what Os compute/decide timeline ex some MoCs calculator relevance reading course refs

Calculator (2/5): constructive real numbers

subclasses of real numbers R

Calculator (3/5): constructive real numbers

approximating π within 0.01

approximating 2π within 0.01

Definition

A real number $x \in \mathbb{R}$ is constructive if:

▶ there exists a program P_x that for every bound $0 < \delta \in \mathbb{Q}$ returns a rational approximation $P_x(\delta) \in \mathbb{Q}$ of x with $|x - P_x(\delta)| < \delta$.

ook Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course re

Calculator (4/5): constructive real numbers

Undecidable problem

In computability theory and computational complexity theory, an **undecidable problem** is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run [1]

- ▶ How to recognize that 2 constructive reals x and y are the same?
- ▶ Does there exist an program Compare that given P_x and P_y decides whether x = y?
- No! This problem is undecidable.
- ▶ Therefore x y = 0 can not always be decided.

book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course n

Calculator (5/5): Böhm's full precision calculator

Rational

Can only represent fractions Exact and easy to work with

RRA

Can represent any computable real Inexact and impossible to check equality

- Hans-Jürgen Böhm's Android full precision calculator
- uses products of:
 - full-precision rational arithmetic,
 - either of:
 - (a) symbolic representations of π , e, and natural numbers, such \sqrt{x} , e^x , $\ln(x)$, $\log_{10}(x)$, $\sin(\pi x)$, $\tan(\pi x)$ for $x \in \mathbb{Q}$.
 - (b) constructive real numbers
- Equality of products with symbolic representations can be decided!
 (But not equality of products with at least one constructive real number)
- Credits: tech-blogger Chad Nauseam (link) for post "A calculator app? Anyone could make that." (link) [2].

book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Some fields in which MoC's are important (I)

Complexity theory

- recognize problems as being decidable
- study the computational complexity of decidable problems (classification of problems into hierarchies)

Recursion theory

■ a theory of computability for sets and functions on N (including degrees of unsolvability of decidable problems)

Logic and Philosophy

MoC's important for studying un-/decidability of logical theories

Rewriting

study in a systematic way the operational and denotational aspects of MoC's like λ-calculus, CL, string rewriting, term rewriting, interaction nets book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Some fields in which MoC's are important (II)

Computer Science

• e.g. functional programming: using/implementing λ -calculus

Neuro-psychology, Cognitive Modelling

• e.g. developing formal platforms for studying human cognition

Artificial Intelligence

- use knowledge of human mind to model it in an artificial system
- modeling by machines to better understand the human mind
- understand the inherent complexity of problems (un-/decidable?)

Linguistics

 e.g. formal calculi for discovering the structure of human languages related to subclasses in the Chomsky hierarchy

Recommended reading

- Post machine: Page 1 + first paragraph on page 2 of:
 - ► Emil Post: Finite Combinatory Processes Formulation 1, Journal of Symbolic Logic (1936), [3], https: //www.wolframscience.com/prizes/tm23/images/Post.pdf.
- 2 Turing machine motivation: Turing's analysis of a human computer: Part I of Section 9, pp. 249–252 of:
 - ▶ Alan M. Turing's: On computable numbers, with an application to the Entscheidungsproblem', Proceedings of the London Mathematical Society (1936), [4], http://www.wolframscience.com/prizes/tm23/images/Turing.pdf.

e book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

Course overview

Monday, July 7 10.30 – 12.30	Tuesday, July 8 10.30 – 12.30	Wednesday, July 9 10.30 – 12.30	Thursday, July 10 10.30 – 12.30	Friday, July 11
intro	classic models			additional models
Introduction to Computability	Machine Models	Recursive Functions	Lambda Calculus	
computation and decision problems, from logic to computability, overview of models of computation relevance of MoCs	Post Machines, typical features, Turing's analysis of human computers, Turing machines, basic recursion theory	primitive recursive functions, Gödel-Herbrand recursive functions, partial recursive funct's, partial recursive = = Turing-computable, Church's Thesis	λ -terms, β -reduction, λ -definable functions, partial recursive = λ -definable = Turing computable	
	imperative programming	algebraic programming	functional programming	
				14.30 – 16.30
				Three more Models of Computation
				Post's Correspondence Problem, Interaction-Nets, Fractran comparing computational power

References I

Maribel Fernández.

Models of Computation (An Introduction to Computability Theory).

Springer, Dordrecht Heidelberg London New York, 2009.

Chad Nauseam.

A calculator app? Anyone could make that.".

https://chadnauseam.com/coding/random/calculator-app, 2025.

Accessed: 29 June 2025.

Emil Leon Post.

Finite Combinatory Processes - Formulation 1.

Journal of Symbolic Logic, 1(3):103-105, 1936.

https://www.wolframscience.com/prizes/tm23/ images/Post.pdf. e book Qs yes-or-no Qs what Qs compute/decide timeline ex some MoCs calculator relevance reading course refs

References II

Alan M. Turing.

On Computable Numbers, with an Application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

http://www.wolframscience.com/prizes/tm23/images/Turing.pdf.