From Partial Recursive to λ -Definable Functions

(Models of Computation Advanced Course, July 7-11, 2025)

Clemens Grabmayer

Department of Computer Science, Gran Sasso Science Institute

Abstract. Adapting the presentation by Sørensen en Urzyczyn in [1] to the definitions used in the lecture, we show that partial recursive functions are λ -definable.

1 Primitive recursive and partial recursive functions

We start with the definition of primitive recursive functions on the natural numbers $\mathbb{N} := \{0, 1, 2, ...\}$ including 0.

Definition 1. The class \mathcal{PR} of *primitive recursive functions* with values in \mathbb{N} is the smallest class \mathcal{C} of functions contained in $\{h \mid h : \mathbb{N}^n \to \mathbb{N}, n \in \mathbb{N}\}$ that contains the *base functions*:

- $\mathcal{O}: \mathbb{N}^0 = \{\emptyset\} \to \mathbb{N}, \emptyset \mapsto 0 \text{ (0-ary constant-0 function)};$
- Succ : $\mathbb{N} \to \mathbb{N}$, $x \mapsto x + 1$ (successor function);
- $-\pi_i^n: \mathbb{N}^n \to \mathbb{N}, \ \vec{x} = \langle x_1, \dots, x_n \rangle \mapsto x_i \ (\text{projection function}).$

and is closed under the operations composition and primitive recursion:

- Composition: if $f : \mathbb{N}^k \to \mathbb{N}$, and $g_i : \mathbb{N}^n \to \mathbb{N}$ are in \mathcal{C} , then so is $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}$ defined by

$$h(\vec{x}) = f(g_1(\vec{x}), \dots, g_k(\vec{x})) \,.$$

- Primitive recursion: if $f : \mathbb{N}^n \to \mathbb{N}, g : \mathbb{N}^{n+2} \to \mathbb{N}$ are in \mathcal{C} then so is $h = \mathsf{pr}(f;g) : \mathbb{N}^{n+1} \to \mathbb{N}$ defined by:

$$h(\vec{x}, 0) = f(\vec{x}) h(\vec{x}, y+1) = g(\vec{x}, h(\vec{x}, y), y) .$$

A function belonging to \mathcal{PR} is called *primitive recursive*.

Next, we give the definition of the classes of partial recursive, and of total recursive, functions. For a partial function $f: \mathbb{N}^n \to \mathbb{N}$, and for $\vec{x} = \langle x_1, \ldots, n_n \rangle \in \mathbb{N}^n$ we write $f(\vec{x}) \downarrow$ if $f(\vec{x})$ is defined, and $f(\vec{x}) \uparrow$ if $f(\vec{x})$ is undefined.

¹ Note that possible partiality of f is indicated by using the harpoon symbol " \rightarrow " instead of the symbol " \rightarrow " in the expression $f : \mathbb{N}^n \to \mathbb{N}$.

Definition 2. The class \mathcal{P} of *partial recursive functions*² with values in \mathbb{N} is the smallest class \mathcal{C} of partial functions contained in $\{h \mid h : \mathbb{N}^n \to \mathbb{N}, n \in \mathbb{N}\}$ that contains the base functions (see Definition 1), and is closed under the operations of composition and primitive recursion (see Definition 1) as well as of unbounded minimisation (μ -recursion):

- Unbounded minimisation: if $g: \mathbb{N}^{n+1} \to \mathbb{N}$ is in \mathcal{C} , then so is $\mu(g)$ defined by:

$$\begin{split} \mu(g) : \mathbb{N}^n & \to \mathbb{N} \\ \vec{x} & \mapsto \mu z. [g(\vec{x}, z) = 0] := \\ \begin{cases} z & \dots & g(\vec{x}, z) = 0 \land \forall y \left(0 \leq y < g(z) \to (g(\vec{x}, y) \downarrow \neq 0) \right) \\ \uparrow & \dots & \neg \exists y \left(g(\vec{x}, y) = 0 \land \forall z \left(0 \leq z < y \to (g(\vec{x}, z) \downarrow \right) \right) \end{cases} \end{split}$$

We denote by \mathcal{R} the class of functions that consists of all partial functions in \mathcal{P} that are total, that is, of all functions in \mathcal{P} that are defined for all $n \in \mathbb{N}$.

Functions in \mathcal{P} are called *partial recursive*, and functions in \mathcal{R} are called *(total) recursive*.

The Kleene Normal Form Theorem below (due to Stephen Cole Kleene) states that every partial recursive function can be factorised into the composition of a primitive recursive function with the unbounded minimisation of a (second) primitive recursive function.

Theorem 3 (Kleene's Normal Form Theorem). For every partial recursive function $h : \mathbb{N}^n \to \mathbb{N}$ there exist primitive recursive functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N}^{n+1} \to \mathbb{N}$ such that:

$$h(x_1, \dots, x_n) = (f \circ \mu(g))(x_1, \dots, x_n) \cdot \\ = f(\mu(g)(x_1, \dots, x_n))$$

2 λ -definable functions

Г

In order to 'code' natural numbers in λ -calculus as pure λ -terms, on which λ -terms that mimic functions on natural numbers are then able to operate (by application of λ -terms), we define the 'Church numerals' (due to Alonzo Church).

Definition 4. For every $n \in \mathbb{N}$, the *Church numeral* $\lceil n \rceil$ for *n* is defined by:

$$n^{\neg} := \lambda f x. f^n x$$

= $\lambda f x. \underbrace{f(f(\dots(f) x) \dots))}_n$

Example 5. We find: $\lceil 0 \rceil = \lambda f x. x$, $\lceil 1 \rceil = \lambda f x. f x$, $\lceil 2 \rceil = \lambda f x. f(f x)$.

 $^{^2\,}$ As mentioned in the lecture, "recursive, partial functions" would be a more adequate name.

Based on Church numerals we now give the definition of definability in λ -calculus of total, and of partial, functions on natural numbers.

Definition 6. (i) Let $f : \mathbb{N}^n \to \mathbb{N}$ be total. A λ -term M_f represents f if for all $m_1, \ldots, m_k \in \mathbb{N}$:

$$M_f \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \twoheadrightarrow_{\beta} \ulcorner f(m_1, \dots, m_n) \urcorner$$
.

f is called λ -definable if there exists a λ -term that represents f.

(ii) Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function. A λ -term M_f represents f if for all $m_1, \ldots, m_n \in \mathbb{N}$:

$$f(m_1, \dots, m_n) \downarrow \implies M_f \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \twoheadrightarrow_{\beta} \ulcorner f(m_1, \dots, m_n) \urcorner,$$

$$f(m_1, \dots, m_n) \uparrow \implies M_f \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \text{ has no normal form }.$$

f is called λ -definable if there exists a λ -term that represents f.

Example 7. We give a few examples of λ -terms representing operations on natural numbers:

- successor: $M_{Succ} := \lambda n f x. f(n f x)$
- addition: $M_+ := \lambda mnfx.mf(nfx)$
- multiplication: $M_{\times} := \lambda mnfx.m(nf)x$
- exponentiation: $M_{\mathsf{E}} := \lambda mnfx.mnfx$
- unary constant zero function: $M_{\mathsf{C}_0^1} = \lambda m. \ulcorner 0 \urcorner$
- projection function: $M_{\pi_i^n} = \lambda m_1 \dots m_n . m_i$

For recognising that M_{Succ} indeed represents the successor function, we find that for all $n \in \mathbb{N}$ the following \rightarrow_{β} -rewrite sequence:

$$M_{\mathsf{Succ}} \ulcorner n \urcorner = (\lambda n f x. f(n f x)) \ulcorner n \urcorner$$

$$\rightarrow_{\beta} \lambda f x. f(\ulcorner n \urcorner f x)$$

$$= \lambda f x. f((\lambda f x. f^{n} x) f x)$$

$$\rightarrow_{\beta} \lambda f x. f((\lambda x. f^{n} x) x)$$

$$\rightarrow_{\beta} \lambda f x. f(f^{n} x)$$

$$= \lambda f x. f^{n+1} x$$

$$= \ulcorner n + 1 \urcorner .$$
(1)

3 Primitive recursive functions are λ -definable

In this section we verify that all primitive recursive functions are λ -definable.

For use in the proofs below, we start by defining how pairs of λ -terms can be coded as λ -terms.

Definition 8. For all λ -terms M, N we define the λ -term pair $\langle M, N \rangle$ representing M and N by:

$$\langle M, N \rangle := \lambda x. x M N$$

and the unpairing projections ρ_1 and ρ_2 by:

$$\rho_1 := \lambda p. p(\lambda x y. x)$$
$$\rho_2 := \lambda p. p(\lambda x y. y)$$

Based on this definition, the following proposition is easy to check.

Proposition 9. For all λ -terms M_1, M_2 and i = 1, 2 it holds:

$$\rho_i \langle M_1, M_2 \rangle \twoheadrightarrow_\beta M_i$$

Having assembled some essential tools, we can now formulate, and then prove, the statement on λ -definability of the primitive recursive functions.

Theorem 10. Every primitive recursive function is λ -definable.

Proof. We show the theorem by proving that the class of primitive recursive functions is contained in the class of λ -definable total functions.

First we have to show that the class of λ -definable functions contains the base functions of Definition 1:

- \triangleright The 0-ary function \mathcal{O} can be represented by $\lceil 0 \rceil$, the Church numeral for 0.
- ▷ The successor function Succ can be represented by the λ -term $M_{Succ} := \lambda n f x. f(n f x)$, as we saw above in (1).
- \triangleright Every projection function $\pi_i^n : \mathbb{N}^n \to \mathbb{N}$, can be represented by the λ -term $M_{\pi_i^n} = \lambda m_1 \dots m_n . m_i$, as is straightforward to check.

Second, we have to show that the class of λ -definable total functions is closed under composition. For this we let $f : \mathbb{N}^k \to \mathbb{N}$, and $g_i : \mathbb{N}^n \to \mathbb{N}$, for all $i \in \{1, \ldots, k\}$, be arbitrary λ -definable functions. We have to show that $h = f \circ (g_1 \times \ldots \times g_k) : \mathbb{N}^n \to \mathbb{N}$ is λ -definable as well. Suppose that f and g_1, \ldots, g_k are represented by the λ -terms $M_f, M_{g_1}, \ldots, M_{g_k}$, respectively. Then it is easy to check that the λ -term:

$$M_h := \lambda x_1 \dots x_n M_f(M_{q_1} x_1 \dots x_n) \dots (M_{q_k} x_1 \dots x_n)$$

represents h.

Finally, we have to establish that the class of λ -definable total functions is closed under primitive recursion. For this, let $f : \mathbb{N}^n \to \mathbb{N}$ and $g : \mathbb{N}^{n+2} \to \mathbb{N}$ be arbitrary λ -definable (total) functions. Suppose that f and g are represented by λ -terms M_f, M_g , respectively. We have to show that the function $h := \operatorname{pr}(f; g) :$ $\mathbb{N}^{n+1} \to \mathbb{N}$ defined by:

$$h(\vec{x}, 0) = f(\vec{x}) h(\vec{x}, y+1) = g(\vec{x}, h(\vec{x}, y), y)$$

5

is λ -definable as well.

In order to establish this, we let:

$$\begin{aligned} \text{Init} &:= \langle \ulcorner0\urcorner, M_f x_1 \dots x_n \rangle \\ \text{Step} &:= \lambda p. \langle M_{\text{Succ}}(\rho_1 p), M_g x_1 \dots x_n(\rho_2 p)(\rho_1 p) \rangle \end{aligned}$$

and will show that the λ -term M_h defined by:

$$M_h := \lambda x_1 \dots x_n x \cdot \rho_2(x \operatorname{Step Init})$$

represents h.

Let $m_1, \ldots, m_n \in \mathbb{N}$ be arbitrary.

For establishing that M_h faithfully represents applications $h(m_1, \ldots, m_n, 0)$ for all tuples $\langle m_1, \ldots, m_n, 0 \rangle \in \mathbb{N}^{n+1}$ for which the base case of the definition of h by primitive recursion applies, we find the rewrite sequence:

$$\begin{split} &M_{h}^{\dagger} m_{1}^{\dagger} \dots^{\dagger} m_{n} \text{ " } 0^{\dagger} \\ & \twoheadrightarrow_{\beta} \rho_{2}(\lceil 0 \rceil (\mathsf{Step}[x_{1} := \lceil m_{1} \rceil, \dots, x_{n} := \lceil m_{n} \rceil]) (\mathsf{Init}[x_{1} := \lceil m_{1} \rceil, \dots, x_{n} := \lceil m_{n} \rceil])) \\ &= \rho_{2}(\lceil 0 \rceil (\mathsf{Step}[x_{1} := \lceil m_{1} \rceil, \dots, x_{n} := \lceil m_{n} \rceil]) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle) \\ &= \rho_{2}((\lambda f x. x) (\mathsf{Step}[x_{1} := \lceil m_{1} \rceil, \dots, x_{n} := \lceil m_{n} \rceil]) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle) \\ & \to_{\beta} \rho_{2}((\lambda x. x) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle) \\ & \to_{\beta} \rho_{2} \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle \\ & \twoheadrightarrow_{\beta} M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \\ & \twoheadrightarrow_{\beta} \lceil f(m_{1}, \dots, m_{n}, 0) \rceil \end{split}$$

For establishing that M_h faithfully represents applications $h(m_1, \ldots, m_n, 1)$ for all tuples $(m_1, \ldots, m_n, 1) \in \mathbb{N}^{n+1}$, we find the rewrite sequence:

$$\begin{split} &M_{h} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rceil 1 \rceil \\ & \twoheadrightarrow_{\beta} \rho_{2} (\lceil 1 \rceil \operatorname{Step}[x_{1} := \lceil m_{1} \rceil, \dots, x_{n} := \lceil m_{n} \rceil] \operatorname{Init}[x_{1} := \lceil m_{1} \rceil, \dots, x_{n} := \lceil m_{n} \rceil]) \\ &= \rho_{2} (\lceil 1 \rceil \langle \lambda p. \langle M_{\operatorname{Succ}}(\rho_{1}p), M_{g} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \langle \rho_{2}p)(\rho_{1}p) \rangle) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle) \\ &= \rho_{2} (\langle \lambda f x. f x \rangle \langle \lambda p. \langle \dots, \dots \rangle) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle) \\ & \twoheadrightarrow_{\beta} \rho_{2} (\lambda p. \langle \dots, \dots \rangle) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle \\ & \twoheadrightarrow_{\beta} \rho_{2} (\lambda p. \langle \dots, \dots \rangle) \langle \lceil 0 \rceil, M_{f} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \rangle) \\ &= \rho_{2} (\langle \lambda p. \langle M_{\operatorname{Succ}}(\rho_{1}p), M_{g} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \langle \rho_{2}p)(\rho_{1}p) \rangle) \langle \lceil 0 \rceil, \lceil h(m_{1}, \dots, m_{n}, 0) \rceil \rangle \\ &= \rho_{2} (\langle \lambda p. \langle M_{\operatorname{Succ}}(\rho_{1}p), M_{g} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \langle \rho_{2}p)(\rho_{1}p) \rangle) \langle \lceil 0 \rceil, \lceil h(m_{1}, \dots, m_{n}, 0) \rceil \rangle \\ & \to_{\beta} \rho_{2} \langle \dots, M_{g} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \langle \rho_{2} \langle \lceil 0 \rceil, \lceil h(m_{1}, \dots, m_{n}, 0) \rceil \rangle)) \langle \rho_{1} \langle \lceil 0 \rceil, \lceil h(m_{1}, \dots, m_{n}, 0) \rceil \rangle) \rangle \\ & \twoheadrightarrow_{\beta} M_{g} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \langle \rho_{2} \langle \lceil 0 \rceil, \lceil h(m_{1}, \dots, m_{n}, 0) \rceil \rangle) \rangle \\ & \to_{\beta} M_{g} \lceil m_{1} \rceil \dots \lceil m_{n} \rceil \lceil h(m_{1}, \dots, m_{n}, 0) \rceil \rceil$$

6 Clemens Grabmayer

For tuples $\langle m_1, \ldots, m_n, k \rangle \in \mathbb{N}^{n+1}$ with k > 1 the argument is similar, making use of rewrite sequences:

$$\begin{split} & \lceil k \rceil \operatorname{Step}[x_1 := \lceil m_1 \rceil, \dots, x_n := \lceil m_n \rceil] \operatorname{Init}[x_1 := \lceil m_1 \rceil, \dots, x_n := \lceil m_n \rceil] \\ &= \lceil k \rceil \langle \lambda p. \langle M_{\operatorname{Succ}}(\rho_1 p), M_g \ulcorner m_1 \rceil \dots \ulcorner m_n \urcorner (\rho_2 p)(\rho_1 p) \rangle) \langle \ulcorner 0 \urcorner, M_f \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \rangle \\ &= (\lambda f x. f^k x)(\dots) \langle \dots, \dots \rangle \\ & \twoheadrightarrow_{\beta} \langle \ulcorner k \urcorner, \ulcorner h(m_1, \dots, m_n, k) \urcorner \rangle \,, \end{split}$$

the existence of which can be shown by an easy induction on k, to obtain, for all $k \in \mathbb{N}, k \ge 1$, rewrite sequences:

$$\begin{split} M_h \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \lor k \urcorner \\ \twoheadrightarrow_{\beta} \ulcorner k \urcorner \operatorname{Step}[x_1 := \ulcorner m_1 \urcorner, \dots, x_n := \ulcorner m_n \urcorner] \operatorname{Init}[x_1 := \ulcorner m_1 \urcorner, \dots, x_n := \ulcorner m_n \urcorner] \\ &= (\lambda f x. f^k x) \operatorname{Step}[x_1 := \ulcorner m_1 \urcorner, \dots, x_n := \ulcorner m_n \urcorner] \operatorname{Init}[x_1 := \ulcorner m_1 \urcorner, \dots, x_n := \ulcorner m_n \urcorner] \\ \twoheadrightarrow_{\beta} \langle k, \ulcorner h(m_1, \dots, m_n, k) \urcorner \rangle. \end{split}$$

In this way we establish that M_h represents h.

Having established that the class of primitive recursive functions is contained in the class of λ -definable total functions, we have shown the theorem. \Box

4 Partial recursive functions are λ -definable

In this section we prove that all partial recursive functions are λ -definable.

For use in the proof below, we define codings of the Boolean truth values, a test function for equality with zero, and the if-then-else construct in λ -calculus.

Definition 11. For representing the Boolean truth values "true" and "false" we define λ -terms **true** and **false**, and for representing a predicate that tests on λ -terms for being equal to the Church numeral $\lceil 0 \rceil$ we define the λ -term **zero**? as follows:

true := $\lambda xy.x$ false := $\lambda xy.y$ zero? := $\lambda x.x(\lambda y.false)$ true

Furthermore we define, for all λ -terms P, Q, and R, the λ -term **if** P **then** Q **else** R as follows:

$$\mathbf{if} \ P \ \mathbf{then} \ Q \ \mathbf{else} \ R := PQR$$

Proposition 12. For all λ -terms Q and R, and for all $n \in \mathbb{N}$ it holds:

 $\begin{array}{l} \text{if true then } Q \text{ else } R \twoheadrightarrow_{\beta} Q \\ \text{if false then } Q \text{ else } R \twoheadrightarrow_{\beta} R \\ \text{ zero? } \ulcorner0\urcorner \twoheadrightarrow_{\beta} \text{ true} \\ \text{ zero? } \ulcornern+1\urcorner \twoheadrightarrow_{\beta} \text{ false} \end{array}$

Proof. These properties are easy to verify by using β -reduction.

We now set out to proving λ -definability for all partial recursive functions.

Theorem 13. Every partial recursive function is λ -definable.

Proof. Let $h : \mathbb{N}^{n+1} \to \mathbb{N}$ be an arbitrary partial recursive function. Then by Theorem 3, Kleene's normal form theorem, there exist $g : \mathbb{N}^{n+1} \to \mathbb{N}$ and $f : \mathbb{N} \to \mathbb{N}$ such that:

$$h(\vec{x}) = f \circ \mu(g)(\vec{x}) = f(\mu z.[g(\vec{x}, z) = 0]).$$

Let M_f and M_g be λ -terms representing f and g, respectively. Let:

$$W := \lambda y.$$
if (zero? $M_q x_1...x_n y$) then $(\lambda w. M_f y)$ else $(\lambda w. w(M_{Succ} y)w)$.

We will show that the following λ -term M_h represents h:

$$M_h := \lambda x_1 \dots x_n . W \, \lceil 0 \, \rceil \, W$$

For this we first observe:

$$M_h \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \twoheadrightarrow_{\beta} W' \ulcorner 0 \urcorner W' \tag{2}$$

for $W' := W[x_1 := \lceil m_1 \rceil] \dots [x_n := \lceil m_n \rceil].$

Furthermore, for $\vec{m} = \langle m_1, \ldots, m_n \rangle \in \mathbb{N}^n$ and $l \in \mathbb{N}$ such that $g(\vec{m}, l) = 0$ we find the rewrite sequence:

$$W' \ulcorner l \urcorner W' \rightarrow_{\beta} (\text{zero?} \underbrace{M_{g} \ulcorner m_{1} \urcorner \dots \ulcorner m_{n} \urcorner \ulcorner l \urcorner}_{\xrightarrow{\twoheadrightarrow_{\beta} \ulcorner g(m_{1}, \dots, m_{n}, l) \urcorner = \ulcorner 0 \urcorner}})(\lambda w. M_{f} \ulcorner l \urcorner)(\lambda w. w(M_{\mathsf{Succ}} \ulcorner l \urcorner)w)W'$$

$$\xrightarrow{\xrightarrow{\twoheadrightarrow_{\beta} 𝔅 true}}_{\xrightarrow{\twoheadrightarrow_{\beta} 𝔅 true}} (\lambda w. M_{f} \ulcorner l \urcorner)(\lambda w. w(M_{\mathsf{Succ}} \ulcorner l \urcorner)w)W'$$

$$\xrightarrow{\twoheadrightarrow_{\beta} (\lambda w. M_{f} \ulcorner l \urcorner)}W'$$

$$\xrightarrow{\rightarrow_{\beta} 𝔅 f(l) \urcorner}. (3)$$

For $\vec{m} = \langle m_1, \ldots, m_n \rangle \in \mathbb{N}^n$ and $l \in \mathbb{N}$ such that $g(\vec{m}, l) \neq 0$, we find:

$$W' \ulcorner l \urcorner W' \rightarrow_{\beta} (\text{zero?} \underbrace{M_{g} \ulcorner m_{1} \urcorner \dots \ulcorner m_{n} \urcorner \ulcorner l \urcorner}_{\xrightarrow{\rightarrow_{\beta} \ulcorner g(m_{1}, \dots, m_{n}, l) \urcorner \neq \ulcorner 0 \urcorner}})(\lambda w. M_{f} \ulcorner l \urcorner)(\lambda w. w(M_{\mathsf{Succ}} \ulcorner l \urcorner)w)W'$$

$$\xrightarrow{\rightarrow_{\beta} false} \xrightarrow{\rightarrow_{\beta} false} (\lambda w. M_{f} \ulcorner l \urcorner)(\lambda w. w(M_{\mathsf{Succ}} \ulcorner l \urcorner)w)W'$$

$$\xrightarrow{\rightarrow_{\beta} (\lambda w. w(M_{\mathsf{Succ}} \ulcorner l \urcorner)w)W'}$$

$$\xrightarrow{\rightarrow_{\beta} W' \ulcorner l + 1 \urcorner W'}. (4)$$

Let now $m_1, \ldots, m_n \in \mathbb{N}$ be arbitrary.

8 Clemens Grabmayer

Suppose that $h(m_1, \ldots, m_n) \downarrow$. Then it follows that $\mu(g)(m_1, \ldots, m_n) \downarrow$, and hence there exists $m \in \mathbb{N}$ such that $g(m_1, \ldots, m_n, m) = 0$ and such that $g(m_1, \ldots, m_n, l) \downarrow \neq 0$ for all $l \in \mathbb{N}$ with l < m. Then by (2) and by repeated application of the statement corresponding to (4) followed by a single application of the statement corresponding to (3), we obtain:

$$\begin{split} M_{h} \ulcorner m_{1} \urcorner \dots \ulcorner m_{n} \urcorner \twoheadrightarrow_{\beta} W' \ulcorner 0 \urcorner W' \twoheadrightarrow_{\beta} W' \ulcorner 1 \urcorner W' \twoheadrightarrow_{\beta} \dots \twoheadrightarrow_{\beta} W' \ulcorner m \urcorner W' \\ \twoheadrightarrow_{\beta} \ulcorner f(m) \urcorner = \ulcorner f(\mu(g)(m_{1}, \dots, m_{n})) \urcorner \\ = \ulcorner h(m_{1}, \dots, m_{n}) \urcorner. \end{split}$$

Suppose now that $h(m_1, \ldots, m_n)\uparrow$. Then it follows that $\mu(g)(m_1, \ldots, m_n)\uparrow$, and hence for all $m \in \mathbb{N}$ it holds that $g(m_1, \ldots, m_n, m) \neq 0$. Then it follows by (2) and by repeated application of the statement connected to (4) that there is the following infinite rewrite sequence:

$$\begin{split} M_h \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner \twoheadrightarrow_{\beta} W' \ulcorner 0 \urcorner W' \twoheadrightarrow_{\beta} W' \ulcorner 1 \urcorner W' \twoheadrightarrow_{\beta} \dots \\ \twoheadrightarrow_{\beta} W' \ulcorner n \urcorner W' \twoheadrightarrow_{\beta} W' \ulcorner n + 1 \urcorner W' \twoheadrightarrow_{\beta} \dots . \end{split}$$

Since this rewrite sequence is a maximal left-most rewrite sequence, and since maximal left-most rewrite sequences in λ -calculus are known to be normalizing (that is, they always lead to a normal form whenever there exists one), it follows that $M_h \ulcorner m_1 \urcorner \dots \ulcorner m_n \urcorner$ has no normal form.

By what we showed in particular in the last two paragraphs, we have established that M_h indeed represents h.

References

1. Morten Heine Sørensen and Paweł Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.