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Abstract. Adapting the presentation by Sgrensen en Urzyczyn in [1]
to the definitions used in the lecture, we show that partial recursive
functions are A-definable.

1 Primitive recursive and partial recursive functions
We start with the definition of primitive recursive functions on the natural num-
bers N:={0,1,2,...} including 0.

Definition 1. The class PR of primitive recursive functions with values in N
is the smallest class C of functions contained in {h | h : N* — N, n € N} that
contains the base functions:

— O:N'={0} - N, )~ 0 (0-ary constant-0 function);
— Succ:N— N, z— x4+ 1 (successor function);
— ' N* - N, &= (21,...,2,) — z; (projection function).

and is closed under the operations composition and primitive recursion:

— Composition: if f : N¥ - N, and ¢; : N* — N are in C, then so is h =
fol(grx...xgg):N* = N defined by

W) = f(g1(D),..., g (T)) -

— Primitive recursion: if f : N — N, g : N**2 — N are in C then so is
h=pr(f;g) : N**' — N defined by:

A function belonging to PR is called primitive recursive.

Next, we give the definition of the classes of partial recursive, and of total re-
cursive, functions. For a partial function® f : N* — N, and for & = (z1,...,n,) €
N™ we write f(Z)] if f(Z) is defined, and f(Z)1 if f(F) is undefined.

! Note that possible partiality of f is indicated by using the harpoon symbol “—”
instead of the symbol “—” in the expression f: N — N.
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Definition 2. The class P of partial recursive functions?® with values in N is the
smallest class C of partial functions contained in {h | h : N* — N, n € N} that
contains the base functions (see Definition 1), and is closed under the operations
of composition and primitive recursion (see Definition 1) as well as of unbounded
minimisation (u-recursion):

— Unbounded minimisation: if g : N**1 — N is in C, then so is u(g) defined by:

u(g) : N* =N
T pzlg(Z, z) =0] =

b g3 =0 AV (0 <y < g() - (9(Fp) £ 0))
T oTy (9(Ey) =0AV2(0< 2 <y — (9(F,2))))

We denote by R the class of functions that consists of all partial functions in P
that are total, that is, of all functions in P that are defined for all n € N.

Functions in P are called partial recursive, and functions in R are called
(total) recursive.

The Kleene Normal Form Theorem below (due to Stephen Cole Kleene) states
that every partial recursive function can be factorised into the composition of
a primitive recursive function with the unbounded minimisation of a (second)
primitive recursive function.

Theorem 3 (Kleene’s Normal Form Theorem). For every partial recursive
function h : N* — N there exist primitive recursive functions f : N — N and
g : N"t1 & N such that:

hxy, ... xn) = (f o u(g))(x1,...,zn) -
= f(u(g) (w1, 20))

2 A-definable functions

In order to ‘code’ natural numbers in A-calculus as pure A-terms, on which
A-terms that mimic functions on natural numbers are then able to operate (by
application of A-terms), we define the ‘Church numerals’ (due to Alonzo Church).

Definition 4. For every n € N, the Church numeral "n™ for n is defined by:
n:=Afx. Mz
=Afa. f(f(...(fx)...).
———

Ezample 5. We find: "0 = Afz.x, "17= Afz.fz, "27 = Afx. f(fx).

2 As mentioned in the lecture, “recursive, partial functions” would be a more adequate
name.
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Based on Church numerals we now give the definition of definability in
A-calculus of total, and of partial, functions on natural numbers.

Definition 6. (i) Let f: N" — N be total. A M\-term My represents f if for all
mi,...,mip € N:

My™mi 7 Tmy T =g T, my) T

f is called A-definable if there exists a A-term that represents f.
(ii) Let f: N® — N be a partial function. A A-term M; represents f if for all

mi,...,my, € N:
flma,...,mp)l = My"™mi . .Tmy T > T f(ma, ..., my)7,
f(ma,...,my)t = My"my"..."m, " has no normal form.

f is called A-definable if there exists a A-term that represents f.

Ezxample 7. We give a few examples of \-terms representing operations on nat-
ural numbers:

— successor: Msyec := Anfzx.f(nfx)

— addition: My = dmnfz.mf(nfzx)

— maltiplication: My := Amnfx.m(nf)z

— exponentiation: Mg := dmnfr.mnfx

— unary constant zero function: Mecy = Am."0™
— projection function: Mzn = Amy ... m,.m;

For recognising that Ms,. indeed represents the successor function, we find that
for all n € N the following — g-rewrite sequence:

Msye™n = (Anfa. f(nfz)) n”
—g Afz. f(Tnfx)
=Mz f(Afz. frz)fz)
=g AMfz.f(Ax. fhx)x)
—p Mz f(f"x)
= Nz f"
=n+17. (1)

3 Primitive recursive functions are A-definable

In this section we verify that all primitive recursive functions are A-definable.
For use in the proofs below, we start by defining how pairs of A-terms can
be coded as A-terms.
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Definition 8. For all A-terms M, N we define the A-term pair (M, N) repre-
senting M and N by:
(M,N) :=Mx.aMN

and the unpairing projections p; and ps by:

p1 = Ap.p(Azy.x)
p2 = Ap-p(Azry.y)

Based on this definition, the following proposition is easy to check.
Proposition 9. For all A-terms My, My and i1 = 1,2 it holds:
piMu, Ma) —»p5 M; .

Having assembled some essential tools, we can now formulate, and then prove,
the statement on A-definability of the primitive recursive functions.

Theorem 10. FEvery primitive recursive function is A-definable.

Proof. We show the theorem by proving that the class of primitive recursive
functions is contained in the class of A-definable total functions.

First we have to show that the class of A-definable functions contains the
base functions of Definition 1:

> The 0-ary function O can be represented by "0, the Church numeral for 0.

> The successor function Succ can be represented by the A-term Mgy =
Anfx. f(nfz), as we saw above in (1).

> Every projection function 7' : N* — N, can be represented by the A-term
M,r;L = Amq ... My.my, as is straightforward to check.

Second, we have to show that the class of A-definable total functions is closed
under composition. For this we let f : N¥ — N, and g; : N* — N, for all
i € {1,...,k}, be arbitrary A-definable functions. We have to show that h =
fol(gr x...xgg): N* = N is A-definable as well. Suppose that f and ¢y, ...,
gr are represented by the A-terms My, My , ..., Mg, , respectively. Then it is
easy to check that the A-term:

My = Axy ... xn Mp(Mg, a1, .. 2p). .. (Mg, 21...2y)

represents h.

Finally, we have to establish that the class of A-definable total functions is
closed under primitive recursion. For this, let f: N — N and g : N**2 — N be
arbitrary A-definable (total) functions. Suppose that f and g are represented by
A-terms My, My, respectively. We have to show that the function h := pr(f;g) :
N"*t! — N defined by:
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is A-definable as well.
In order to establish this, we let:

Init := ("07, My x1...2p)
Step := Ap. <MSucc(p1p)a Mgwl- . -xn(p2p)(P1P)>
and will show that the A-term M), defined by:
My, := Az ... xpx.po(x Step Init)

represents h.

Let mq,...,m, € N be arbitrary.
For establishing that M, faithfully represents applications h(mz, ..., m,,0)
for all tuples (myq, ..., m,,0) € N**! for which the base case of the definition of

h by primitive recursion applies, we find the rewrite sequence:

My my .. Tmy, 707

—5 p2(T07(Step[zy :="m1 7, ..., 2y = Tmy ) (Init[zy :="ma Lz =Ty )
= pa(T07(Steplz1 :="m1 7, ..., xn ="M, ) (T07, My Tmy L Tmy, )
= po((Afz.z)(Step[zq :="m1 7, ...,z i="m,, ) (T07, My Tmy . Tmy, )

—5 p2((Az.z)(T07, My "m0 Ty, )
—g p2("07, My ™m0 Tm,, )

B Mf rmlj . .'_T)’Lnj
—>->B ’_f(ml, e ,mn)—'
="h(mq,...,my,0)"

For establishing that M), faithfully represents applications h(my,...,my,,1) for
all tuples (my,...,my,,1) € N**1 we find the rewrite sequence:

Mp"™mq7. . Tmy,, 1T

—g p2(T17Step[zy :="ma ", .. 2y =Ty Initfzy i=Tma T, 2 =My )
= p2(T17(Ap. (Msyec(p1p), MgTma .. .Tmy, (p2p) (p1p)) ) (07, M Tmq ™. ."my, ™))
= p2((Mfz. fe)Ap. (..., .. )07, My ™my .. ."m,, 7))

=g p2(Ap. (.., )0, My Tmy T Tmy, )

=g p2(Ap. (..., .. )0, T f(ma,...,my)7)

— 020 (Msuee(prp), My rn™...F i (pap) (01p))) (07, ", .. 1, 0)7)

=g p2(.... MgTmqa ™. .Tmy, (p2(T07, Th(ma, ..., my, 0) M) (p1(707, Th(ma, ..., m,,0)7)))
—g Mg"mi 7. Tmy (p2(T07, Th(ma, ..., my, 0) ) (p1(T07, Th(ma, ... ,mp,0)7))

—g My"mi 7. Tmy, Th(ma, ..., my, 0)7707

—g Tg(mi,...,mp, h(m1,...,m,,0),0)7

B rh’(mh ceey M, 1)_‘
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For tuples (m1,...,my, k) € N**! with £ > 1 the argument is similar, making
use of rewrite sequences:
FE7Steplxy :="mq ..,z = Tmy ] Init[zy = "my 7, @, = Ty,
="k (Ap. (Msuce(p1p), Mg"ma .. .Fma (p2p) (p1p))) ("0, My Tma .. .Tmy, ™)
=Mz ffe)( ),
B <I—k—l7 I—h(mlv <oy M, k)—l> )

the existence of which can be shown by an easy induction on k, to obtain, for
all £ € N, k > 1, rewrite sequences:

Mp"™mq 7 Tmy, TR

— k7 Steplxy :="ma . 2, = Tmy ] Initfzg = Tma L my i= Ty, )

= (A fa.ffz) Steplzy == "my 7, ... @y o= Tmy, ) itz =m0, 2y, o= Tmy, T
B (k,"h(ma,...,mn, k)7) .

In this way we establish that Mj, represents h.

Having established that the class of primitive recursive functions is contained
in the class of A-definable total functions, we have shown the theorem. a0

4 Partial recursive functions are A-definable

In this section we prove that all partial recursive functions are A-definable.
For use in the proof below, we define codings of the Boolean truth values, a
test function for equality with zero, and the if-then-else construct in A-calculus.

Definition 11. For representing the Boolean truth values “true” and “false”
we define A-terms true and false, and for representing a predicate that tests on
A-terms for being equal to the Church numeral "0 we define the A-term zero?
as follows:

true := \zy.x false := Azy.y zero? := \x.z()\y.false)true

Furthermore we define, for all A-terms P, @, and R, the A-term if P then @) else R
as follows:

if P then @ else R := PQR
Proposition 12. For all A-terms Q and R, and for all n € N it holds:

if true then Q) else R —3 @
if false then () else R -3 R
zero? "0 =3 true

zero? "n + 17 —3 false
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Proof. These properties are easy to verify by using g-reduction.
We now set out to proving A-definability for all partial recursive functions.
Theorem 13. FEvery partial recursive function is A-definable.

Proof. Let h : N**! — N be an arbitrary partial recursive function. Then by
Theorem 3, Kleene’s normal form theorem, there exist g : N**1 — N and f :
N — N such that:

WE) = [ o u(g)(F) = f(pz.[9(T,z) = 0]) .

Let My and M, be A-terms representing f and g, respectively. Let:

W = Ay.if (zero? Mgz, .. .x,y) then (Aw.M;y) else (Aw.w(Msyccy)w) .
We will show that the following A-term M, represents h:

My, =X x1...2, WIOT'W .
For this we first observe:
My™my 7 Tmy, T g WTOT W (2)

for W' :=Wizy :="mq7]...[xn :="m, .

Furthermore, for m = (m4,...,m,) € N® and | € N such that g(ni,l) = 0

we find the rewrite sequence:

W' TIOW' =5 (zero? My mq 7. .."m, 717 ) (Aw. M) (Aw.w(Msyec™ ) w) W'

=g g(ma,...;mn, )7 =707

—g true
— 5 true(Aw. M7 (Aw.w(Msye 1) w) W'
o (w. My U)W
—B Mfrl—'
—g "f(D)7. 3)
For m = (my,...,my,) € N* and [ € N such that g(m,1) # 0, we find:

W' TIOW' =5 (zero? My mq 7. .."m, 717 ) (Aw. M) (Aw.w(Msyec ) w) W'

g g(ma,...;mn, )7 # 707

- false
— 5 false(Aw. M ™17) (Aw.w(Msyc I )w) W’
=5 (Aw.w(Msye I w)W’
—g WITT+17W'. (4)

Let now my,...,m, € N be arbitrary.
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Suppose that h(mq,...,my)}. Then it follows that u(g)(mq,...,m,)], and
hence there exists m € N such that g(mq,...,m,,m) = 0 and such that
g(ma,...,my, 1)} # 0 for all | € N with | < m. Then by (2) and by repeated ap-
plication of the statement corresponding to (4) followed by a single application
of the statement corresponding to (3), we obtain:

My"my . Tmy =g WTOTW =g W IITW =g . =g W T W
=5 T f(m)? =" f(u(g)(my,...,my))"
= '_h(ml, ce ,mn)—‘ .

Suppose now that h(myq,...,my)T. Then it follows that u(g)(mq,...,my)T,
and hence for all m € N it holds that g(mq,...,m,, m) # 0.. Then it follows by
(2) and by repeated application of the statement connected to (4) that there is
the following infinite rewrite sequence:

Mh'—mf'. .. I_’Innj 3 W/ 0™ W/ 3 I/V/'_l~| W/ B ...
s W nIW g W n 4 10W 5 ...

Since this rewrite sequence is a maximal left-most rewrite sequence, and since
maximal left-most rewrite sequences in A-calculus are known to be normalizing
(that is, they always lead to a normal form whenever there exists one), it follows
that My, "m1"..."m, " has no normal form.

By what we showed in particular in the last two paragraphs, we have estab-
lished that M}, indeed represents h. a
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