
From Partial Recursive to λ-Definable Functions
(Models of Computation Advanced Course, July 7–11, 2025)

Clemens Grabmayer

Department of Computer Science, Gran Sasso Science Institute

Abstract. Adapting the presentation by Sørensen en Urzyczyn in [1]
to the definitions used in the lecture, we show that partial recursive
functions are λ-definable.

1 Primitive recursive and partial recursive functions

We start with the definition of primitive recursive functions on the natural num-
bers N := {0, 1, 2, . . .} including 0.

Definition 1. The class PR of primitive recursive functions with values in N
is the smallest class C of functions contained in {h | h : Nn → N, n ∈ N} that
contains the base functions:

– O : N0 = {∅} → N , ∅ 7→ 0 (0-ary constant-0 function);
– Succ : N → N , x 7→ x+ 1 (successor function);
– πn

i : Nn → N , x⃗ = ⟨x1, . . . , xn⟩ 7→ xi (projection function).

and is closed under the operations composition and primitive recursion:

– Composition: if f : Nk → N, and gi : Nn → N are in C, then so is h =
f ◦ (g1 × . . .× gk) : Nn → N defined by

h(x⃗) = f(g1(x⃗), . . . , gk(x⃗)) .

– Primitive recursion: if f : Nn → N, g : Nn+2 → N are in C then so is
h = pr(f ; g) : Nn+1 → N defined by:

h(x⃗, 0) = f(x⃗)

h(x⃗, y+1) = g(x⃗, h(x⃗, y), y) .

A function belonging to PR is called primitive recursive.

Next, we give the definition of the classes of partial recursive, and of total re-
cursive, functions. For a partial function1 f : Nn ⇀ N, and for x⃗ = ⟨x1, . . . , nn⟩ ∈
Nn we write f(x⃗)↓ if f(x⃗) is defined, and f(x⃗)↑ if f(x⃗) is undefined.

1 Note that possible partiality of f is indicated by using the harpoon symbol “⇀”
instead of the symbol “→” in the expression f : Nn ⇀ N.

2 Clemens Grabmayer

Definition 2. The class P of partial recursive functions2 with values in N is the
smallest class C of partial functions contained in {h | h : Nn ⇀ N, n ∈ N} that
contains the base functions (see Definition 1), and is closed under the operations
of composition and primitive recursion (see Definition 1) as well as of unbounded
minimisation (µ-recursion):

– Unbounded minimisation: if g : Nn+1 ⇀ N is in C, then so is µ(g) defined by:

µ(g) : Nn ⇀ N
x⃗ 7→ µz.[g(x⃗, z) = 0] :={

z . . . g(x⃗, z) = 0 ∧ ∀y
(
0 ≤ y < g(z) → (g(x⃗, y)↓ ̸= 0)

)
↑ . . . ¬∃y

(
g(x⃗, y) = 0 ∧ ∀z (0 ≤ z < y → (g(x⃗, z)↓)

)
We denote by R the class of functions that consists of all partial functions in P
that are total, that is, of all functions in P that are defined for all n ∈ N.

Functions in P are called partial recursive, and functions in R are called
(total) recursive.

The Kleene Normal Form Theorem below (due to Stephen Cole Kleene) states
that every partial recursive function can be factorised into the composition of
a primitive recursive function with the unbounded minimisation of a (second)
primitive recursive function.

Theorem 3 (Kleene’s Normal Form Theorem). For every partial recursive
function h : Nn → N there exist primitive recursive functions f : N → N and
g : Nn+1 → N such that:

h(x1, . . . , xn) = (f ◦ µ(g))(x1, . . . , xn) .

= f(µ(g)(x1, . . . , xn))

2 λ-definable functions

In order to ‘code’ natural numbers in λ-calculus as pure λ-terms, on which
λ-terms that mimic functions on natural numbers are then able to operate (by
application of λ-terms), we define the ‘Church numerals’ (due to Alonzo Church).

Definition 4. For every n ∈ N, the Church numeral ⌜n⌝ for n is defined by:

⌜n⌝ := λfx.fnx

= λfx.f(f(. . . (f︸ ︷︷ ︸
n

x) . . .)) .

Example 5. We find: ⌜0⌝ = λfx.x, ⌜1⌝ = λfx.fx, ⌜2⌝ = λfx.f(fx).

2 As mentioned in the lecture, “recursive, partial functions” would be a more adequate
name.

From partial recursive to λ-definable functions 3

Based on Church numerals we now give the definition of definability in
λ-calculus of total, and of partial, functions on natural numbers.

Definition 6. (i) Let f : Nn → N be total. A λ-term Mf represents f if for all
m1, . . . ,mk ∈ N:

Mf ⌜m1⌝. . .⌜mn⌝ ↠β ⌜f(m1, . . . ,mn)⌝ .

f is called λ-definable if there exists a λ-term that represents f .

(ii) Let f : Nn ⇀ N be a partial function. A λ-term Mf represents f if for all
m1, . . . ,mn ∈ N:

f(m1, . . . ,mn)↓ =⇒ Mf ⌜m1⌝. . .⌜mn⌝ ↠β ⌜f(m1, . . . ,mn)⌝ ,

f(m1, . . . ,mn)↑ =⇒ Mf ⌜m1⌝. . .⌜mn⌝ has no normal form .

f is called λ-definable if there exists a λ-term that represents f .

Example 7. We give a few examples of λ-terms representing operations on nat-
ural numbers:

– successor : MSucc := λnfx.f(nfx)
– addition: M+ := λmnfx.mf(nfx)
– multiplication: M× := λmnfx.m(nf)x
– exponentiation: ME := λmnfx.mnfx
– unary constant zero function: MC1

0
= λm.⌜0⌝

– projection function: Mπn
i
= λm1 . . .mn.mi

For recognising that MSucc indeed represents the successor function, we find that
for all n ∈ N the following →β-rewrite sequence:

MSucc⌜n⌝ = (λnfx.f(nfx))⌜n⌝

→β λfx.f(⌜n⌝fx)

= λfx.f((λfx.fnx)fx)

→β λfx.f((λx.fnx)x)

→β λfx.f(fnx)

= λfx.fn+1x

= ⌜n+ 1⌝ . (1)

3 Primitive recursive functions are λ-definable

In this section we verify that all primitive recursive functions are λ-definable.
For use in the proofs below, we start by defining how pairs of λ-terms can

be coded as λ-terms.

4 Clemens Grabmayer

Definition 8. For all λ-terms M , N we define the λ-term pair ⟨M, N⟩ repre-
senting M and N by:

⟨M, N⟩ := λx.xMN

and the unpairing projections ρ1 and ρ2 by:

ρ1 := λp.p(λxy.x)

ρ2 := λp.p(λxy.y)

Based on this definition, the following proposition is easy to check.

Proposition 9. For all λ-terms M1,M2 and i = 1, 2 it holds:

ρi⟨M1, M2⟩ ↠β Mi .

Having assembled some essential tools, we can now formulate, and then prove,
the statement on λ-definability of the primitive recursive functions.

Theorem 10. Every primitive recursive function is λ-definable.

Proof. We show the theorem by proving that the class of primitive recursive
functions is contained in the class of λ-definable total functions.

First we have to show that the class of λ-definable functions contains the
base functions of Definition 1:

▷ The 0-ary function O can be represented by ⌜0⌝, the Church numeral for 0.
▷ The successor function Succ can be represented by the λ-term MSucc :=
λnfx.f(nfx), as we saw above in (1).

▷ Every projection function πn
i : Nn → N , can be represented by the λ-term

Mπn
i
= λm1 . . .mn.mi, as is straightforward to check.

Second, we have to show that the class of λ-definable total functions is closed
under composition. For this we let f : Nk → N, and gi : Nn → N, for all
i ∈ {1, . . . , k}, be arbitrary λ-definable functions. We have to show that h =
f ◦ (g1 × . . .× gk) : Nn → N is λ-definable as well. Suppose that f and g1, . . . ,
gk are represented by the λ-terms Mf , Mg1 , . . . , Mgk , respectively. Then it is
easy to check that the λ-term:

Mh := λx1 . . . xn.Mf (Mg1x1. . . xn). . . (Mgkx1. . . xn)

represents h.
Finally, we have to establish that the class of λ-definable total functions is

closed under primitive recursion. For this, let f : Nn → N and g : Nn+2 → N be
arbitrary λ-definable (total) functions. Suppose that f and g are represented by
λ-terms Mf ,Mg, respectively. We have to show that the function h := pr(f ; g) :
Nn+1 → N defined by:

h(x⃗, 0) = f(x⃗)

h(x⃗, y+1) = g(x⃗, h(x⃗, y), y)

From partial recursive to λ-definable functions 5

is λ-definable as well.
In order to establish this, we let:

Init := ⟨⌜0⌝, Mf x1. . .xn⟩
Step := λp.⟨MSucc(ρ1p), Mgx1. . .xn(ρ2p)(ρ1p)⟩

and will show that the λ-term Mh defined by:

Mh := λx1 . . . xnx.ρ2(x Step Init)

represents h.
Let m1, . . . ,mn ∈ N be arbitrary.
For establishing that Mh faithfully represents applications h(m1, . . . ,mn, 0)

for all tuples ⟨m1, . . . ,mn, 0⟩ ∈ Nn+1 for which the base case of the definition of
h by primitive recursion applies, we find the rewrite sequence:

Mh⌜m1⌝. . . ⌜mn⌝⌜0⌝

↠β ρ2(⌜0⌝(Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]) (Init[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]))

= ρ2(⌜0⌝(Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]) ⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩)
= ρ2((λfx.x)(Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]) ⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩)
→β ρ2((λx.x)⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩)
→β ρ2⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩
↠β Mf ⌜m1⌝. . .⌜mn⌝

↠β ⌜f(m1, . . . ,mn)⌝

= ⌜h(m1, . . . ,mn, 0)⌝

For establishing that Mh faithfully represents applications h(m1, . . . ,mn, 1) for
all tuples ⟨m1, . . . ,mn, 1⟩ ∈ Nn+1, we find the rewrite sequence:

Mh⌜m1⌝. . . ⌜mn⌝⌜1⌝

↠β ρ2(⌜1⌝Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝] Init[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝])

= ρ2(⌜1⌝(λp.⟨MSucc(ρ1p), Mg⌜m1⌝. . .⌜mn⌝(ρ2p)(ρ1p)⟩)⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩)
= ρ2((λfx.fx)(λp.⟨. . ., . . .⟩)⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩)
↠β ρ2(λp.⟨. . ., . . .⟩)⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩
↠β ρ2(λp.⟨. . ., . . .⟩)⟨⌜0⌝, ⌜f(m1, . . . ,mn)⌝︸ ︷︷ ︸

= ⌜h(m1,...,mn,0)⌝

⟩

= ρ2(λp.⟨MSucc(ρ1p), Mg⌜m1⌝. . .⌜mn⌝(ρ2p)(ρ1p)⟩)⟨⌜0⌝, ⌜h(m1, . . . ,mn, 0)⌝⟩
→β ρ2⟨. . ., Mg⌜m1⌝. . .⌜mn⌝(ρ2⟨⌜0⌝, ⌜h(m1, . . . ,mn, 0)⌝⟩)(ρ1⟨⌜0⌝, ⌜h(m1, . . . ,mn, 0)⌝⟩)⟩
↠β Mg⌜m1⌝. . .⌜mn⌝(ρ2⟨⌜0⌝, ⌜h(m1, . . . ,mn, 0)⌝⟩)(ρ1⟨⌜0⌝, ⌜h(m1, . . . ,mn, 0)⌝⟩)
↠β Mg⌜m1⌝. . .⌜mn⌝⌜h(m1, . . . ,mn, 0)⌝⌜0⌝

↠β ⌜g(m1, . . . ,mn, h(m1, . . . ,mn, 0), 0)⌝

↠β ⌜h(m1, . . . ,mn, 1)⌝

6 Clemens Grabmayer

For tuples ⟨m1, . . . ,mn, k⟩ ∈ Nn+1 with k > 1 the argument is similar, making
use of rewrite sequences:

⌜k⌝ Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝] Init[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]

= ⌜k⌝(λp.⟨MSucc(ρ1p), Mg⌜m1⌝. . .⌜mn⌝(ρ2p)(ρ1p)⟩)⟨⌜0⌝, Mf ⌜m1⌝. . .⌜mn⌝⟩
= (λfx.fkx)(. . .)⟨. . ., . . .⟩
↠β ⟨⌜k⌝, ⌜h(m1, . . . ,mn, k)⌝⟩ ,

the existence of which can be shown by an easy induction on k, to obtain, for
all k ∈ N, k ≥ 1, rewrite sequences:

Mh⌜m1⌝. . . ⌜mn⌝⌜k⌝

↠β ⌜k⌝ Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝] Init[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]

= (λfx.fkx) Step[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝] Init[x1 := ⌜m1⌝, . . . , xn := ⌜mn⌝]

↠β ⟨k, ⌜h(m1, . . . ,mn, k)⌝⟩ .

In this way we establish that Mh represents h.
Having established that the class of primitive recursive functions is contained

in the class of λ-definable total functions, we have shown the theorem. ⊓⊔

4 Partial recursive functions are λ-definable

In this section we prove that all partial recursive functions are λ-definable.
For use in the proof below, we define codings of the Boolean truth values, a

test function for equality with zero, and the if-then-else construct in λ-calculus.

Definition 11. For representing the Boolean truth values “true” and “false”
we define λ-terms true and false, and for representing a predicate that tests on
λ-terms for being equal to the Church numeral ⌜0⌝ we define the λ-term zero?
as follows:

true := λxy.x false := λxy.y zero? := λx.x(λy.false)true

Furthermore we define, for all λ-terms P ,Q, andR, the λ-term if P then Q else R
as follows:

if P then Q else R := PQR

Proposition 12. For all λ-terms Q and R, and for all n ∈ N it holds:

if true then Q else R ↠β Q

if false then Q else R ↠β R

zero? ⌜0⌝ ↠β true

zero? ⌜n+ 1⌝ ↠β false

From partial recursive to λ-definable functions 7

Proof. These properties are easy to verify by using β-reduction.

We now set out to proving λ-definability for all partial recursive functions.

Theorem 13. Every partial recursive function is λ-definable.

Proof. Let h : Nn+1 → N be an arbitrary partial recursive function. Then by
Theorem 3, Kleene’s normal form theorem, there exist g : Nn+1 → N and f :
N → N such that:

h(x⃗) = f ◦ µ(g)(x⃗) = f(µz.[g(x⃗, z) = 0]) .

Let Mf and Mg be λ-terms representing f and g, respectively. Let:

W := λy.if (zero?Mgx1. . .xny) then (λw.Mfy) else (λw.w(MSuccy)w) .

We will show that the following λ-term Mh represents h:

Mh := λx1 . . . xn.W ⌜0⌝W .

For this we first observe:

Mh⌜m1⌝. . .⌜mn⌝ ↠β W ′ ⌜0⌝ W ′ (2)

for W ′ := W [x1 := ⌜m1⌝] . . .[xn := ⌜mn⌝].
Furthermore, for m⃗ = ⟨m1, . . . ,mn⟩ ∈ Nn and l ∈ N such that g(m⃗, l) = 0

we find the rewrite sequence:

W ′ ⌜l⌝W ′ →β (zero? Mg⌜m1⌝. . .⌜mn⌝⌜l⌝︸ ︷︷ ︸
↠β⌜g(m1,...,mn,l)⌝= ⌜0⌝

)

︸ ︷︷ ︸
↠β true

(λw.Mf⌜l⌝)(λw.w(MSucc⌜l⌝)w)W
′

↠β true(λw.Mf⌜l⌝)(λw.w(MSucc⌜l⌝)w)W
′

↠β (λw.Mf⌜l⌝)W
′

→β Mf⌜l⌝

↠β ⌜f(l)⌝ . (3)

For m⃗ = ⟨m1, . . . ,mn⟩ ∈ Nn and l ∈ N such that g(m⃗, l) ̸= 0, we find:

W ′ ⌜l⌝W ′ →β (zero? Mg⌜m1⌝. . .⌜mn⌝⌜l⌝︸ ︷︷ ︸
↠β⌜g(m1,...,mn,l)⌝ ̸= ⌜0⌝

)

︸ ︷︷ ︸
↠β false

(λw.Mf⌜l⌝)(λw.w(MSucc⌜l⌝)w)W
′

↠β false(λw.Mf⌜l⌝)(λw.w(MSucc⌜l⌝)w)W
′

↠β (λw.w(MSucc⌜l⌝)w)W
′

↠β W ′⌜l + 1⌝W ′ . (4)

Let now m1, . . . ,mn ∈ N be arbitrary.

8 Clemens Grabmayer

Suppose that h(m1, . . . ,mn)↓. Then it follows that µ(g)(m1, . . . ,mn)↓, and
hence there exists m ∈ N such that g(m1, . . . ,mn,m) = 0 and such that
g(m1, . . . ,mn, l)↓ ̸= 0 for all l ∈ N with l < m. Then by (2) and by repeated ap-
plication of the statement corresponding to (4) followed by a single application
of the statement corresponding to (3), we obtain:

Mh⌜m1⌝. . . ⌜mn⌝ ↠β W ′ ⌜0⌝W ′ ↠β W ′ ⌜1⌝W ′ ↠β . . . ↠β W ′ ⌜m⌝W ′

↠β ⌜f(m)⌝ = ⌜f(µ(g)(m1, . . . ,mn))⌝

= ⌜h(m1, . . . ,mn)⌝ .

Suppose now that h(m1, . . . ,mn)↑. Then it follows that µ(g)(m1, . . . ,mn)↑,
and hence for all m ∈ N it holds that g(m1, . . . ,mn,m) ̸= 0.. Then it follows by
(2) and by repeated application of the statement connected to (4) that there is
the following infinite rewrite sequence:

Mh⌜m1⌝. . . ⌜mn⌝ ↠β W ′ ⌜0⌝W ′ ↠β W ′ ⌜1⌝W ′ ↠β . . .

↠β W ′ ⌜n⌝W ′ ↠β W ′ ⌜n+ 1⌝W ′ ↠β

Since this rewrite sequence is a maximal left-most rewrite sequence, and since
maximal left-most rewrite sequences in λ-calculus are known to be normalizing
(that is, they always lead to a normal form whenever there exists one), it follows
that Mh⌜m1⌝. . . ⌜mn⌝ has no normal form.

By what we showed in particular in the last two paragraphs, we have estab-
lished that Mh indeed represents h. ⊓⊔

References

1. Morten Heine Sørensen and Pawe l Urzyczyn. Lectures on the Curry–Howard Iso-
morphism. Elsevier, 2006.

