
Introduction to Model Checking
https://clegra.github.io/mc.html

Lecture 1

Clemens Grabmayer
https://clegra.github.io

Emilio Tuosto
https://cs.gssi.it/emilio.tuosto/

Department of Computer Science

January 26, 2026

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1

https://clegra.github.io/mc.html
https://clegra.github.io
https://cs.gssi.it/emilio.tuosto/


org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Organization

Lectures (Clemens 4 / Emilio 3)
▸ this week:

▸ Monday, 10.30–12.30, room B, Aurora
▸ Tuesday, 14.30–16.30, P-2.6, Zenith
▸ Thursday and Friday, 14.30–16.30, conference room -1, Zenith

▸ next week:

▸ Monday, Tuesday, Thursday, 14.30–16.30, conference room -1, Zenith

▸ presentations (mainly) on blackboard

▸ notes after the lecture (notes 2024/25 already available)

Webpage

▸ https://clegra.github.io/mc.html

stable for later: https://clegra.github.io/mc/25-26/mc.html

Exam (more later)

▸ options:

▸ small verification project (of an algorithm, e.g. in Maude)
▸ presentation about a paper

▸ written exam?
Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1

https://clegra.github.io/mc.html
https://clegra.github.io/mc/25-26/mc.html
https://maude.cs.illinois.edu/tools/lmc/


org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Topics of the course

▸ modeling systems by labeled transition systems (LTSs)

▸ safety, liveness, and fairness properties

▸ Linear Temporal Logic (LTL)

▸ model checking formulas

▸ express properties by Büchi automata
▸ model check LTSs and properties via product automata

▸ Computation Tree Logic (CTL)

▸ Maude examples model-checker

▸ (partial model checking)

▸ (partially known systems (state properties/states/transitions))

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1

https://maude-lang.github.io/
https://maude.lcc.uma.es/maude30-manual-html/maude-manualch12.html


org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Model Checking

. . . is an effective automatable technique:

▸ to expose potential software design errors;

▸ that, given a finite-state model of a system and a formal property,
systematically checks whether this property holds for that model.

▸ widely applied in industry

▸ embedded systems, software engin., hardware design, explainable AI

▸ supports partial verification (of system parts)

▸ provides diagnostic information for debugging

▸ has sound mathematical underpinning (logic and process theory)

Course Goals are introduction to:

▸ Theory: ▸ modeling systems by labeled transition systems,
▸ expressing properties by temporal-logic formulas
▸ model-checking algorithms

▸ Practice related: see Maude examples

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1

https://maude.cs.illinois.edu/tools/lmc/


org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Book

▸ pdf online available (see [1])

▸ we study chapters 1–3, 5, 6

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Lectures

1. Introduction (preview extended, LTSs)

2. Modeling by labeled transition systems

▸ executions; traces; non-determinism; examples

3. Linear-Time Behaviour and Properties

▸ invariant, safety, and liveness (and fairness) properties

4. Linear Temporal Logic (LTL)

▸ syntax and semantics; interpretation of LTSs; examples

5. LTL (continued)
▸ model checking of LTL formulas, and fairness in LTL

▸ Maude examples

6. Computation Tree Logic (CTL)

▸ syntax and semantics, examples

7. Extensions of CTL, and Outlook
▸ expressibility differences with LTL
▸ model checking formulas in CTL

▸ (µ-calculus ∣ partial model-checking ∣ Maude examples)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Software correctness

▸ Software is ubiquitous Ô⇒ software is valuable

“It is fair to state that in this digital era correct systems for in-

formation processing are more valuable than gold.” (H.P. Barendregt,

‘The quest for correctness’, in Images of SMC Research, 1996).”

▸ Software bugs = loss of

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

lives

money

reputation

▸ Simulation / testing
⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

+ concrete implemented systems are checked

+ “simple”

− partial (when do we stop?)

▸ Deductive reasoning
⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

+ also possible for infinite-state system

− hard and time-consuming

− interactive

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Hard-/Software Verification (traditionally)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Hard-/Software Verification (traditionally)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Software verification methods

▸ Peer review
⎧
⎪⎪
⎨
⎪⎪
⎩

+ rather useful: between 31% and 93% (median 60%)

− hard to catch subtle errors (concurrency and algorithmic defects)

▸ Software testing
⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

+ applicable to all sorts of software

+ test generation can (partly) be automated

− exhaustive testing of all execution paths is infeasible

− When do we stop?

▸ Catching software errors: the sooner the better.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Software lifecycle, error introduction/detection, repair costs

Liggesmeyer et al: “Qualitätssicherung technischer Systeme . . . ” [4, 1998]

“In software and hardware design of complex systems, more time and effort are spent
on verification than on construction. Techniques are sought to reduce and ease the
verification efforts while increasing their coverage. Formal methods offer a large
potential to obtain an early integration of verification in the design process, to provide
more effective verification techniques, and to reduce the verification time.”

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Software lifecycle, error introduction/detection, repair costs

“In software and hardware design of complex systems, more time and effort are spent

on verification than on construction. Techniques are sought to reduce and ease the

verification efforts while increasing their coverage. Formal methods offer a large

potential to obtain an early integration of verification in the design process, to provide

more effective verification techniques, and to reduce the verification time.”

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Software lifecycle, error introduction/detection, repair costs

“In software and hardware design of complex systems, more time and effort are spent

on verification than on construction. Techniques are sought to reduce and ease the

verification efforts while increasing their coverage. Formal methods offer a large

potential to obtain an early integration of verification in the design process, to provide

more effective verification techniques, and to reduce the verification time.”

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Model checking

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Glancing at temporal logic

Temporal logic

▸ stems from philosophy: modal logic to reason about time
(in an idealized natural language)

▸ makes it possible to reason about concurrent events

▸ events are ordered in time

▸ time is considered to be discrete

▸ but moments of time are only referred to relatively

Example

Modality ◻ϕ
∧

= for all time moments, ϕ holds.

Then we have:

◻(¬(a ∧ b))
∧

= for all time moments,
events a and b do not occur at the same time,

= it will never happen that
events a and b occur at the same time.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Glancing at temporal logic (its use for model checking)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Deep Space 1 (NASA)

▸ Flyby of asteroid 9969 Braille (1999)

▸ Entered the coma of Comet Borrelly (2001)

▸ Model checking discovered 5 concurrency errors

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Example (program concurrency/non-determinism)

Programs Inc, Dec, and Reset cooperate, and use a shared variable x :

proc Inc
while 0 ≤ x ≤ 200
do
if x < 200
then x := x + 1

fi
od

proc Dec
while 0 ≤ x ≤ 200
do
if x > 0
then x := x − 1

fi
od

proc Reset
while 0 ≤ x ≤ 200
do
if x = 200
then x := 0

fi
od

Question: When started on x = 0, do the counter programs run forever?

Is 0 ≤ x ≤ 200 always guaranteed?

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Modeling (by program graphs)

proc Inc
while true
do

1: if x < 200
2: then x := x + 1

fi
od

proc Dec
while true
do

1: if x > 0
2: then x := x − 1

fi
od

proc Reset
while true
do

1: if x = 200
2: then x := 0

fi
od

Inc1 Dec1 Reset1

Inc2 Dec2 Reset2

(x < 200)?✓

(x < 200)?×

x ∶= x + 1 (x > 0)?✓

(x > 0)?×

x ∶= x − 1 (x = 200)?✓

(x = 200)?×

x ∶= 0

Program graphs (PG)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Modeling (by labeled transition systems, with state space explosion)

I1, x = −1 D1, x = −1 R1, x = −1

I2, x = −1 D2, x = −1 R2, x = −1

I1, x = 0 D1, x = 0 R1, x = 0

I2, x = 0 D2, x = 0 R2, x = 0

I1, x = 1 D1, x = 1 R1, x = 1

I2, x = 1 D2, x = 1 R2, x = 1

I1, x = 199 D1, x = 199 R1, x = 199

I2, x = 199 D2, x = 199 R2, x = 199

I1, x = 200 D1, x = 200 R1, x = 200

I2, x = 200 D2, x = 200 R2, x = 200

(x < 200)?✓

x ∶= x + 1

(x < 200)?✓

x ∶= x + 1

(x < 200)?✓

x ∶= x + 1

x ∶= x + 1

(x < 200)?✓

x ∶= x + 1 (x < 200)?×

x ∶= x + 1

(x > 0)?×x ∶= x − 1

(x > 0)?×x ∶= x − 1

(x > 0)?✓

x ∶= x − 1

(x > 0)?✓

x ∶= x − 1

(x > 0)?✓

x ∶= x − 1

(x = 200)?×

x ∶= 0
(x = 200)?×

(x = 200)?×

(x = 200)?×

(x = 200)?✓

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Formalizing properties (in temporal logic)

Inc1 Dec1 Reset1

Inc2 Dec2 Reset2

(x < 200)?✓

(x < 200)?×

x ∶= x + 1 (x > 0)?✓

(x > 0)?×

x ∶= x − 1 (x = 200)?✓

(x = 200)?×

x ∶= 0

We assume x ∶ = 0 initially.

Inc1 ∣∣ Dec1 ∣∣ Reset1
?
⊧ ◻(0 ≤ x ∧ x ≤ 200) (Linear-TL formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1

⊧

◇(x < 0) (LTL formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1

/⊧

∀◻(0 ≤ x ∧ x ≤ 200) (Computation-Tree-L formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1

⊧

∃◻(0 ≤ x ∧ x ≤ 200) (CTL formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1

⊧

∀◻∃◇(x < 0) (CTL formula)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Counterexample (offending execution trace)

⟨x = 199 ; Inc1 ∣∣ Dec1 ∣∣ Reset1⟩

⟨x = 199 ; Inc2 ∣∣ Dec1 ∣∣ Reset1⟩

⟨x = 200 ; Inc1 ∣∣ Dec1 ∣∣ Reset1⟩

⟨x = 200 ; Inc1 ∣∣ Dec2 ∣∣ Reset1⟩

⟨x = 200 ; Inc1 ∣∣ Dec2 ∣∣ Reset2⟩

⟨x = 0 ; Inc1 ∣∣ Dec2 ∣∣ Reset1⟩

⟨x = −1 ; Inc1 ∣∣ Dec1 ∣∣ Reset1⟩

(x < 200)?✓

x ∶= x + 1

(x > 0)?✓

(x = 200)?✓

x ∶= 0

x ∶= x − 1

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Formalizing properties (in temporal logic)

Inc1 Dec1 Reset1

Inc2 Dec2 Reset2

(x < 200)?✓

(x < 200)?×

x ∶= x + 1 (x > 0)?✓

(x > 0)?×

x ∶= x − 1 (x = 200)?✓

(x = 200)?×

x ∶= 0

We assume x ∶ = 0 initially.

Inc1 ∣∣ Dec1 ∣∣ Reset1 /⊧ ◻(0 ≤ x ∧ x ≤ 200) (Linear-TL formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1 ⊧ ◇(x < 0) (LTL formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1 /⊧ ∀◻(0 ≤ x ∧ x ≤ 200) (Computation-Tree-L formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1 ⊧ ∃◻(0 ≤ x ∧ x ≤ 200) (CTL formula)

Inc1 ∣∣ Dec1 ∣∣ Reset1 ⊧ ∀◻∃◇(x < 0) (CTL formula)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Model checking: validation

Any [such] verification is only as good as the model of the system.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Modeling: Verification versus Validation

VERIFICATION

Are we building the thing right?

⇐
⇒

Does the design satisfy the
expected properties?

VALIDATION

Are we building the right thing?

⇐
⇒

Is the design faithfully capturing
the requirements?

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Model-checking: strengths and weaknesses

Strengths:

▸ it is a general technique

▸ supports partial verification,
checking properties individually

▸ bug-detection is not dependent
on chance

▸ provides diagnostic information
for debugging

▸ potential push-button technology

▸ widely used in industry

▸ can be integrated
in existing development cycles

▸ sound mathematical underpinning
(graph alg’s, data structures, logic)

Weaknesses:

▸ ideal for control-intensive applic.,
less so for data-intensive applic.

▸ verifies system model,
not the actual system

▸ only checks stated requirements
(no guarantee for completeness)

▸ suffers from state-explosion problem

▸ modeling requires expertise
(finding smaller models,

state properties as formulas)

▸ model-checker may have defects
as well

▸ does not permit to directly check
generalizations (infinitely many

components, parameterized systems)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Origins of model checking

I. Clarke and Emerson [2, 1986]: Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic.

They coined the term model checking.

II. Queille and Sifakis [5, 1982]: Specification and Verification of Concurrent
Systems in CESAR.

III. Hajek (1978), and West (1978): introduced automated protocol
validation techniques based on a brute-force examination of the entire
state space, of which model checking can be viewed to be an extension.

These earlier techniques were restricted to checking absence of deadlocks
or livelocks, whereas model checking allows for the investigation of a
broader class of properties.

See Baier and Katoen [1] for more references.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Lectures

1. Introduction (preview extended, LTSs)

2. Modeling by labeled transition systems

▸ executions; traces; non-determinism; examples

3. Linear-Time Behaviour and Properties

▸ invariant, safety, and liveness (and fairness) properties

4. Linear Temporal Logic (LTL)

▸ syntax and semantics; interpretation of LTSs; examples

5. LTL (continued)
▸ model checking of LTL formulas, and fairness in LTL

▸ Maude examples

6. Computation Tree Logic (CTL)

▸ syntax and semantics, examples

7. Extensions of CTL, and Outlook
▸ expressibility differences with LTL
▸ model checking formulas in CTL

▸ (µ-calculus ∣ partial model-checking ∣ Maude examples)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Book Maude

▸ Maude documentation page:
https://maude.cs.illinois.edu/documentation

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1

https://maude.cs.illinois.edu/documentation


org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Maude code (idea)

crl [Inc1a] : Inc1 x => Inc2 x if x < 200

rl [Inc2] : Inc2 x => Inc1 (x + 1)

crl [Inc1b] : Inc1 x => Inc1 x if not(x < 200)

crl [Dec1a] : Dec1 x => Dec2 x if 0 < x

rl [Dec2] : Dec2 x => Dec1 (x - 1)

crl [Dec1b] : Dec1 x => Dec1 x if not(0 < x)

crl [Reset1a] : Reset1 x => Reset2 x if x = 200

rl [Reset2] : Reset2 x => Reset1 0

crl [Reset1b] : Reset1 x => Reset1 x if not(x = 200)

eq initial = { Inc1 Dec1 Reset1 0 }

ceq (S1 S2 S3 x |= counterge0) = true if (0 = x \/ 0 < x)

ceq (S1 S2 S3 x |= counterlt0) = true if (x < 0)

ceq (S1 S2 S3 x |= counterle200) = true if (x < 200 \/ x = 200)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Maude output (simplified)

Maude> red modelCheck(initial, <> counterlt0)

reduce in COUNTERS-CHECK : modelCheck(initial, <> counterlt0)

result ModelCheckResult:

result Bool : true

Maude> red modelCheck(initial, [](counterge0 /\counterle200)
reduce in COUNTERS-CHECK :

modelCheck(initial, [](counterge0 /\counterle200)
result ModelCheckResult:

counterexample({Inc1 Dec1 Reset1 199}
{Inc2 Dec1 Reset1 199}
{Inc1 Dec1 Reset1 200}
{Inc1 Dec2 Reset1 200}
{Inc1 Dec2 Reset2 200}
{Inc1 Dec2 Reset1 0}
{Inc1 Dec1 Reset1 -1})

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Lectures (tentative)

1. Introduction (preview extended)

2. Modeling by labeled transition systems

▸ executions; traces; non-determinism; examples

3. Linear-Time Behaviour and Properties

▸ invariant, safety, and liveness (and fairness) properties

4. Linear Temporal Logic (LTL)

▸ syntax and semantics; interpretation of LTSs; examples

5. LTL (continued)
▸ fairness in LTL

▸ model checking of LTL formulas

6. Computation Tree Logic (CTL)

▸ syntax and semantics, examples

7. Extensions of CTL, and Outlook
▸ expressibility differences with LTL
▸ model checking formulas in CTL

▸ Maude examples ∣ partial model-checking ∣ µ-calculus

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

Exam options

Together we decide on a topic.

Study an article, or a book chapter.
or
Dive deeper into a proof from the lecture.
or
Model a basic algorithm, and check basic properties.
or
Develop an idea that motivates you.
or
. . .

You give a 25-minute presentation about what you found.

Exam examples

Presentations about articles:

▸ Progress, Justness, and Fairness (2019) by R. van Glabbeek, P. Höfner

▸ Comparison of Model Checking Tools for Information Systems (2010) by
M. Frappier et al. (focusing on Spin and NuSMV)

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

References I

Christl Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.
Available at:
https://is.ifmo.ru/books/ principles of model checking.pdf.

Edmund M. Clarke and E. Allen Emerson.
Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic.
In Dexter Kozen, editor, Logics of Programs, pages 52–71, Berlin,
Heidelberg, 1982. Springer Berlin Heidelberg.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1

https://is.ifmo.ru/books/_principles_of_model_checking.pdf


org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

References II

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott.
All About Maude - A High-Performance Logical Framework: How to
Specify, Program, and Verify Systems in Rewriting Logic.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2007.

Peter Liggesmeyer, Martin Rothfelder, Michael Rettelbach, and
Thomas Ackermann.
Qualitätssicherung Software-Basierter Technischer Systeme –
Problembereiche und Lösungsansätze.
Informatik-Spektrum, (21):249–258, 1998.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1



org motiv book lect mc-schema temp-logic D-S-1 counters modeling cex-trace log. prop’s +/− orig lect Maude code exam refs

References III

J. P. Queille and J. Sifakis.
Specification and Verification of Concurrent Systems in CESAR.
In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors,
International Symposium on Programming, pages 337–351, Berlin,
Heidelberg, 1982. Springer Berlin Heidelberg.

Clemens Grabmayer and Emilio Tuosto Introduction to Model Checking: Lecture 1


	Course organization
	Motivation
	Book
	Lectures
	Model checking: schema
	Temporal logic
	Deep Space 1
	Example (Counter)
	Modeling
	Counterexample trace
	LTL and CTL properties
	Model-checking: strengths and weaknesses
	Origins of model checking
	Lectures
	Book Maude
	Maude code
	Exam
	References

