
To appear in: Electronic Notes in Theoretical Computer Science 72 No. 1 (2005)
URL: http://www.elsevier.nl/locate/entcs/volume72.html 16 pages

A Duality in Proof Systems for Recursive Type
Equality and for Bisimulation Equivalence on

Cyclic Term Graphs

Clemens Grabmayer 1,2

Department of Mathematics and Computer Science
Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV Amsterdam,
The Netherlands

Abstract

This paper is concerned with a proof-theoretic observation about two kinds of proof sys-
tems for regular cyclic objects. It is presented for the case of two formal systems that are
complete with respect to the notion of “recursive type equality” on a restricted class of re-
cursive types in µ-term notation. Here we show the existence of an immediate duality with
a geometrical visualization between proofs in a variant of the coinductive axiom system
due to Brandt and Henglein and “consistency-unfoldings” in a variant of a ‘syntactic-
matching’ proof system for testing equations between recursive types due to Ariola and
Klop.

Finally we sketch an analogous result of a duality between a similar pair of proof systems
for bisimulation equivalence on equational specifications of cyclic term graphs.

1 Introduction

The main part of this paper is concerned with an observation about two complete
proof systems for the notion of “recursive type equality” on recursive types.

There are to our knowledge basically two different complete axiom systems
known for recursive type equality: (i) A system due to R. Amadio and L. Cardelli
given in [1] (1993) and (ii) a coinductively motivated axiom system introduced by
M. Brandt and F. Henglein in [3] (1998). Apart from these axiomatizations, it is also
possible to consider (iii) a ‘syntactic-matching’ proof system for which a notion of
consistency with respect to this system is complete for recursive type equality. Such
a system can be defined in a very similar way to one that has been introduced by

1 Email: clemens@cs.vu.nl ; homepage: http://www.cs.vu.nl/~clemens .
2 I want to thank J.W. Klop for suggesting this study and for providing me with a couple of initial
ideas. And I am also much indebted to Bas Luttik for his careful reading of drafts for this paper.

c©2005 Published by Elsevier Science B. V.

mailto:clemens@cs.vu.nl
http://www.cs.vu.nl/~clemens

Grabmayer

Z. Ariola and J.W. Klop in [2] (1995) for the notion of bisimulation equivalence on
equational representations of cyclic term graphs. For our purpose we will consider
only ‘normalized’ variants without symmetry and transitivity rules of the Brandt–
Henglein and syntactic-matching systems. In Section 3 these variant systems will
be defined and their respective soundness and completeness theorems stated.

It was noted by J.W. Klop that there appears to be a striking similarity between
the activities of (a) trying to demonstrate the consistency of an equation between
recursive types with respect to the syntactic-matching system and of (b) trying
to prove the same equation in the system of Brandt and Henglein. This basic
observation underlying the present paper will be described in Section 4 in relation
to the introduced variant systems by explaining it in the light of an example.

In order to extract a precise statement from this observation, two formal prereq-
uisites turn out to be necessary: Firstly, in Section 5 we will introduce an extension
of the variant Brandt–Henglein system with some more coinductive rules. And sec-
ondly, in Section 6 we define so called “consistency-unfoldings” of given equations
between recursive types in the variant ‘syntactic-matching’ system as certain for-
malizations of successful consistency-checks. With these notions our main theorem
is stated in Section 7: There exists even a “duality” between derivations in the vari-
ant Brandt–Henglein system and the corresponding consistency-unfoldings in the
variant syntactic-matching system via easily definable reflection mappings.

In Section 8 we furthermore outline an analogous result for a similar pair of
proof systems concerned with the bisimulation relation on equational specifications
of cyclic term graphs.

2 Preliminaries on recursive types

As in Brandt and Henglein [3] we consider only recursive types denoted by µ-terms
in canonical form over the restricted class of finite types with → as the single type
constructor. We assume a countably infinite set TVar of type variables . The small
Greek letters α and β (possibly with subscripts) will be used as syntactical variables
for type variables and the letters τ, σ, ρ, χ for recursive types.

Definition 2.1 (Recursive Types can-µTp in Canonical Form). The set
can-µTp of recursive types in canonical form is generated by the following grammar:

τ ::= ⊥ |> |α | τ1 → τ2 | µα. (τ1 → τ2)︸ ︷︷ ︸
where α ∈ fv(τ1 → τ2)

. (2.1)

The set of all equations τ = σ between recursive types τ and σ in canonical form
will be denoted by can-µTp–Eq.

The recursive types in can-µTp are in “canonical form” due to the two require-
ments in the last disjunctive clause in grammar (2.1): For given α ∈ TVar the
µ-operator may only be applied to a previously formed expression τ if τ is of the
form τ1 → τ2 and if α occurs free in τ1 → τ2 . – Our results do not depend on the
limitation to consider recursive types in canonical form only (cf. forthcoming [4]).

2

Grabmayer

Figure 1 Example of two strongly equivalent recursive types.

We consider the recursive types in canonical form

τ :≡ µα. ((α→ α)→ α) and σ :≡ µα. (α→ (α→ α)) .

These correspond respectively to the different cyclic term graphs

G(τ) = /.-,()*+→ mm
||yy

yy
yy

yy
y
��

/.-,()*+→

NN33 and G(σ) = /.-,()*+→11
""E

EE
EE

EE
EE
��

/.-,()*+→

PP kk

,

but they possess the same tree unfolding of the form

Tree(τ)= Tree(σ)=

/.-,()*+→��

vvnnnnnnnnnnnnn

((PPPPPPPPPPPPP

/.-,()*+→
~~}}

}}
}}

}}

 A
AA

AA
AA

A /.-,()*+→
~~}}

}}
}}

}}

 A
AA

AA
AA

A

/.-,()*+→
�

���
� ?

???
?

/.-,()*+→
�

���
� ?

???
?

/.-,()*+→
�

���
� ?

???
?

/.-,()*+→
�

���
� ?

???
?

.

Hence τ and σ are strongly equivalent, i.e. τ =µ σ holds, due to Definition 2.2.

Contrary to [3], we do not implicitly identify recursive types in can-µTp that can
be obtained from each other by a finite sequence of admissible renaming-steps for
bound type variables, i.e. that are variants of each other. We will use the notation
τ1 ≡v τ2 to express that τ1 and τ2 are variants of each other.

Via a natural transformation of µ-terms into cyclic term graphs described in (the
extended version of) [2], it is possible to assign to every recursive type τ ∈ can-µTp
a cyclic term graph G(τ) whose nodes have at most two outgoing edges and are
labelled by either the binary function symbol → or by a symbol of arity zero in
{⊥,>} ∪ TVar . Relying on this transformation, the tree unfolding Tree(τ) of an
arbitrary recursive type τ ∈ can-µTp can be defined as the tree unfolding of G(τ).
An alternative formal definition of Tree(τ) can be found in [1]. 3 The leading symbol
L(τ) of a recursive type τ ∈ can-µTp is defined as the symbol that labels the root
in the tree unfolding Tree(τ) of τ . 4

Definition 2.2 (Recursive Type Equality (Strong Equivalence) =µ). Two
recursive types τ, σ ∈ can-µTp are called strongly equivalent (symbolically denoted
by: τ =µ σ) iff they possess the same tree unfolding. More formally, the equivalence
relation recursive type equality (also called strong recursive type equivalence) =µ is

3 The definition in [1] is slightly more general than then the one needed here because Amadio and
Cardelli allow also recursive types not in canonical form like for example µα. (µβ. α) .
4 Alternatively and more formally L(τ) can be defined for all τ ∈ can-µTp by the 5 clauses
L(⊥) := ⊥ , L(>) := > , L(α) := α (for all α ∈ TVar) and L(τ1 → τ2) :=L(µα. (τ1 → τ2)) :=→
(for all α ∈ TVar and τ1, τ2 ∈ can-µTp).

3

Grabmayer

Figure 2 A normalized version HB=
0 of the coinductive axiomatization for recursive

type equality =µ given by Brandt and Henglein.

The axioms and possible marked assumptions in HB=
0 :

(REFL) τ = τ (Assm) (τ = σ)x (with x ∈Mk) .

The derivation rules of HB=
0 :

τ0[µα. τ0/α] = σ
FOLDlµα. τ0 = σ

τ = σ0[µβ. σ0/β]
FOLDr

τ = µβ. σ0

τ = σ VAR (if τ ′ ≡v τ
and σ′ ≡v σ)τ ′ = σ′

τ1 = σ1 τ2 = σ2
ARROWτ1 → τ2 = σ1 → σ2

〈τ1 → τ2 = σ1 → σ2〉x

D1

τ1 = σ1

〈τ1 → τ2 = σ1 → σ2〉x

D2

τ2 = σ2 (ARROW/FIX)x

(if side cond. I)τ1 → τ2 = σ1 → σ2 .

defined by: For all τ, σ ∈ can-µTp

τ =µ σ : ⇐⇒ Tree(τ) = Tree(σ) .

An example for Definition 2.2 and for the underlying notion of the tree unfolding
of a recursive type in can-µTp is given in Figure 1.

3 The proof systems HB=
0 and AK=

0 for =µ

In this section we define the two proof systems on which our results will be based:
A variant system HB=

0 of the axiomatization for =µ given by Brandt and Henglein
in [3] and a proof system AK=

0 suitable for consistency-checking similar to a system
defined by Ariola and Klop in [2]. We formulate these systems in natural-deduction
style and for this and for later purposes we assume a countably infinite set Mk of
assumption markers to be given.

Definition 3.1 (The axiom system HB=
0 for =µ). The formal system HB=

0 has
the equations in can-µTp–Eq as its formulas . It contains the axioms (REFL), allows
marked assumptions (Assm) and has the derivation rules VAR, FOLDl, FOLDr,
ARROW and ARROW/FIX listed in Figure 2. The side condition I on applications
of ARROW/FIX requires that the class of discharged assumptions is actually inhabi-
ted, i.e. non-empty. 5 A formula τ = σ is a theorem of HB=

0 (symbolically denoted
by `HB=

0
τ = σ) iff there is a derivation D in HB=

0 with conclusion τ = σ , in
which all marked assumptions have been discharged at respective applications of
ARROW/FIX.

5 The aim here is to create a clear-cut distinction between applications of ARROW and applica-
tions of ARROW/FIX for easing the reasoning about a later defined transformation on proofs.

4

Grabmayer

Figure 3 A normalized ‘syntactic-matching’ proof system AK=
0 for checking the

consistency of given equations with respect to =µ. This system is related to a one,
that was introduced by Ariola and Klop.

The derivation rules of AK=
0 :

µα. τ0 = σ
UNFOLDl

τ0[µα. τ0/α] = σ

τ = µβ. σ0 UNFOLDr
τ = σ0[µβ. σ0/β]

τ = σ VAR (if τ ′ ≡v τ
and σ′ ≡v σ)τ ′ = σ′

τ1 → τ2 = σ1 → σ2 DECOMP (i = 1, 2)
τi = σi .

Apart from minor differences, the system HB=
0 can be considered as a ‘norma-

lized’ version of the complete axiomatization for =µ given in [3]. No symmetry and
transitivity rules are present in HB=

0 and the axioms (FOLD/UNFOLD) used in
[3] have been reformulated into the two rules FOLDl/r . HB=

0 is ‘normalized’ in the
sense that it satisfies a version of the subformula property . Although lacking the
expressivity of symmetry and transitivity rules, the following also holds for HB=

0 :

Theorem 3.2 (Soundness and Completeness of HB=
0 with respect to =µ).

The axiom system HB=
0 is sound and complete with respect to strong recursive type

equivalence =µ, i.e. for all τ, σ ∈ can-µTp it holds that

`HB=
0

τ = σ ⇐⇒ τ =µ σ .

Both the soundness and the completeness of HB=
0 with respect to =µ can be

shown analogously as done by Brandt and Henglein in [3] for their system. We
continue with the definition of a proof system very similar to a ‘syntactic-matching’
system introduced by Ariola and Klop in Section 3.4 of [2].

Definition 3.3 (A ‘syntactic-matching’ proof system AK=
0 for =µ). The

formal system AK=
0 contains precisely all equations in can-µTp–Eq as its formulas .

It contains no axioms . Its derivation rules are the rules VAR, UNFOLDl, UNFOLDr

and DECOMP that are listed in Figure 3. We will use τ = σ `AK=
0

χ1 = χ2 (for
τ, σ, χ1, χ2 ∈ can-µTp) as notation for the assertion that there is a derivation in
AK=

0 from the assumption τ = σ with conclusion χ1 = χ2 .

The conspicuous feature of this system is the decomposition rule DECOMP,
which is a “destructive” counterpart of the “constructive” composition rules AR-
ROW and ARROW/FIX in HB=

0 . Like HB=
0 the system AK=

0 does not contain
symmetry and transitivity rules and is ‘normalized’ in the sense that it fulfills an
“inverse subformula property”.

Clearly, AK=
0 does not axiomatize =µ, but a notion of consistency-checking with

respect to AK=
0 is sound and complete for =µ. For being able to state this properly,

we need the following terminology: An equation τ = σ between recursive types is
a contradiction with respect to =µ iff L(τ) 6= L(σ), i.e. iff the leading symbols of τ
and σ differ. Furthermore an equation τ = σ is called AK=

0 -inconsistent iff there

5

Grabmayer

Figure 4 Assemblage to a finite downwards-growing “tree of consequences” C of
the 6 different possible initial segments of derivations from µα. ((α→ α)→ α) =
µα. (α→ (α→ α)) in AK=

0 without VAR-applications until looping occurs.

(τ = σ)x

(τ = σ → σ)z(τ = σ)x

τ → τ = σ → (σ → σ)
τ → τ = σ

(τ → τ)→ τ = σ → σ

(τ = σ → σ)z

(τ = σ)x(τ → τ = σ)y

(τ → τ)→ τ = σ → σ
τ = σ → σ(τ = σ)x

τ → τ = σ → (σ → σ)

(τ → τ = σ)y
DECOMP

(τ → τ)→ τ = σ → (σ → σ)
UNFOLDl/r

(≡: τ︷ ︸︸ ︷
µα. ((α→ α)→ α) =

≡: σ︷ ︸︸ ︷
µα. (α→ (α→ α))

)x

exists a contradiction χ1 = χ2 with respect to =µ such that τ = σ `AK=
0

χ1 = χ2 ;
otherwise we say that τ = σ is AK=

0 -consistent .

Theorem 3.4 (Soundness and Completeness with respect to =µ of con-
sistency-checking relative to AK=

0). Consistency with respect to AK=
0 is

sound and complete in relation to =µ: For all τ, σ ∈ can-µTp it holds that

τ = σ is AK=
0 -consistent ⇐⇒ τ =µ σ .

Sketch of Proof Both the soundness-part “⇒” and the completeness-part “⇐”
are easy consequences of the fact that derivations D in AK=

0 from assumption τ = σ
with conclusion χ1 = χ2 correspond to computations of χ1, χ2 ∈ can-µTp with the
property that 6 Tree(τ)|p = Tree(χ1) and Tree(σ)|p = Tree(χ2) hold for some
common position p in the tree unfoldings Tree(τ) and Tree(σ) of τ and σ. 2

4 The basic observation

It is our next aim to indicate the intuition behind the results of this paper by
describing an observation about a concrete and simple example. In this section we
keep τ and σ fixed as the two strongly equivalent types in can-µTp from Figure 1.

Suppose that we want to prove that the equation τ = σ is indeed consistent with
respect to the system AK=

0 . Then we are obliged to show for every derivation D in
AK=

0 from the assumption τ = σ that the conclusion of D is not a contradiction
with respect to =µ. But since there are potentially infinitely many such derivations
in AK=

0 , we might not be able to check all of them in a finite amount of time.

However, it turns out that in every derivation in AK=
0 from τ = σ of depth ≥ 7,

that does not contain applications of VAR, a loop arises, i.e. one formula occurs at
two different places. What is more, the initial segments until looping occurs of all
derivations from τ = σ in AK=

0 without VAR-applications can be arranged to the
downwards-growing derivation-tree C depicted in Figure 4. There single and dou-
ble lines in C separate the premises and conclusions of applications of UNFOLDl/r ,

6 Here Tree(τ)|p denotes the subtree of Tree(τ) at position p.

6

Grabmayer

Figure 5 The derivation D of µα. ((α→ α)→ α) = µα. (α→ (α→ α)) in HB=
0

without open assumption classes.

(. . .)x

τ = σ

(. . .)y

τ → τ = σ

(. . .)x

τ = σ

(τ → τ)→ τ = σ → σ

τ = σ → σ
y

τ → τ = σ → (σ → σ)

τ → τ = σ

(. . .)x

τ = σ

(. . .)z

τ = σ → σ

τ → τ = σ → (σ → σ)

τ → τ = σ

(. . .)x

τ = σ
z

(τ → τ)→ τ = σ → σ

τ = σ → σ
(ARR./FIX)x

(τ → τ)→ τ = σ → (σ → σ)
FOLDl/r

µα. ((α→ α)→ α)︸ ︷︷ ︸
≡: τ

= µα. (α→ (α→ α))︸ ︷︷ ︸
≡: σ

whereas branchings at dashed lines stem from the two possible ways in which con-
clusions can be drawn at rules DECOMP in AK=

0 . The markers x, y and z used
for some formula occurrences in C are intended to highlight the looping in those
AK=

0 -derivations, initial segments of which constitute the branches of C.
It is now possible to use the derivation tree C in an easy inductive proof 7 for the

AK=
0 -consistency of the equation τ = σ by combining 8 the following two properties

of C: Firstly, as inspection shows, C does not contain any contradictions with respect
to =µ . And secondly, C can be considered to be the (positive) result of loop-checking
for all possible derivations without VAR-applications from τ = σ in AK=

0 .

In order to give an indication about the particular relationship described in this
paper between the systems AK=

0 and HB=
0 , we observe 9 the following: By re-

flecting the downwards-growing derivation tree C in AK=
0 at a horizontal line, it is

possible to obtain an upwards-growing prooftree Refl(C) in the system HB=
0 with

occurrences of open assumption classes. Thereby all applications of UNFOLDl/r in
C are “reflected” into applications of FOLDl/r in Refl(C) and all branchings DE-
COMP into applications of ARROW. To transform Refl(C) into a derivation D in
HB=

0 without open assumptions, it is merely necessary (1) to extend Refl(C) above
each of its leaves by one or two applications of FOLDl/r , (2) to transfer respective
assumption markers up to the new formulas at the top of the extended prooftree,
and (3) to redirect the bindings described by these markers to respective applications
of ARROW below, thereby also changing these into ARROW/FIX-applications. In
this way the derivation D in HB=

0 without open assumption classes suggestively
depicted in Figure 5 is reached.

And similarly, by reflecting the derivation D from Figure 5 at a horizontal line in
an analogous way, it is possible to get a downwards-growing derivation tree Refl(D)
from τ = σ in AK=

0 that—although slightly different from C—like C can be taken

7 Hereby we mean a proof by induction on the depth |D| of derivations D in AK=
0 from τ = σ .

8 However, the possible presence of applications of VAR in AK=
0 -derivations from the assumption

τ = σ does technically complicate a necessary proof by induction to some extent here.
9 This was noted by J.W. Klop for a similar example in different, but comparable proof systems.

7

Grabmayer

as the basis of an inductive argument for showing the AK=
0 -consistency of τ = σ .

This example suggests a very direct relationship between derivations in HB=
0

without open assumption classes having conclusion τ̃ = σ̃ (for some τ̃ , σ̃ ∈ can-µTp)
and finite downwards-growing trees of consequences from the same equation τ̃ = σ̃
in AK=

0 that are the result of loop-checking and facilitate easy inductive proofs for
the consistency of τ̃ = σ̃ relative to AK=

0 .

5 The extension e-HB=
0 of HB=

0

For obtaining a precise formulation of the observation in the previous section, it will
be helpful to extend the system HB=

0 with three more coinductive fixed-point rules.

Definition 5.1 (The extension e-HB=
0 of the system HB=

0). The extension
e-HB=

0 of the system HB=
0 has the same formulas and axioms as HB=

0 , allows
the same marked assumptions , and contains all derivation rules of HB=

0 . Addi-
tionally, e-HB=

0 possesses the rules VAR/FIX, FOLDl/FIX and FOLDr/FIX with
applications of the respective form

[τ = σ]x

D0

τ0 = σ0 (R/FIX)x (if side cond.(s) I (and C for R = VAR))
τ = σ

(with some τ, σ, τ0, σ0 ∈ can-µTp and x ∈Mk), given that
τ0 = σ0

Rτ = σ
is an ap-

plication of a rule R ∈ {FOLDl/r, VAR } and that the respectively necessary side
conditions described below are satisfied. At such applications the class [τ = σ]x

of open marked assumptions of the form (τ = σ)x in D0 gets discharged. The side
condition I requires that the assumption class τ = σ in D0 is inhabited (not empty).
For applications of VAR/FIX the side condition C demands furthermore that D0 is
contractive with respect to the marked open assumptions (τ = σ)x , which means
that for every thread in D0 from a marked open assumption (τ = σ)x downwards
at least one application of ARROW or ARROW/FIX is passed. 10

Although the system e-HB=
0 is an extension of HB=

0 , no new theorems become
derivable:

Theorem 5.2 (Equivalence of the systems HB=
0 and e-HB=

0). The system
e-HB=

0 is a conservative extension of HB=
0 and hence 11 the systems HB=

0 and
e-HB=

0 are equivalent (i.e. they possess the same theorems). More specifically, every
derivation D in e-HB=

0 can effectively be transformed into a derivation D′ in HB=
0

with the same conclusion and the same (if any) open assumption classes.

10 It is easy to see that either of two following more special requirements C1 and C2 could have been
used instead of the side condition C for applications of VAR/FIX with an equivalent definition as
the result: C1 is the condition “D0 contains at least one application of ARROW or ARROW/FIX”
and C2 demands that “there is at least one application of a rule different from VAR in D0”.
11 Since HB=

0 and e-HB=
0 have the same formulas.

8

Grabmayer

6 Consistency-Unfoldings

In a second step of the formulation of the observation in Section 4 into a precise
statement, we will formalize finite downwards-growing trees of consequences in AK=

0

as “consistency-unfoldings”, which allow to prove easily the AK=
0 -consistency of

the formulas at their respective roots. – We have to give a definition of “partial
consistency-unfoldings” first.

Definition 6.1 (Partial Consistency-Unfoldings in AK=
0). For all recursive

types τ, σ ∈ can-µTp a partial consistency-unfolding (a p.c.u.) C of the equation
τ = σ in AK=

0 is a finite downwards-growing “tree of consequences” of τ = σ in
AK=

0 that together with the assertion “C is a p.c.u. of τ = σ in AK=
0 ” can be formed

by a finite number of applications of the following 5 generation rules. Thereby the
notion of an unbound leaf-occurrence of a marked formula (an u.l.o.m.f.) in a p.c.u.
is defined in parallel: 12

(i) For all τ, σ ∈ can-µTp and x ∈Mk (τ = σ)x is a p.c.u. C from τ = σ . The

occurrence of (τ = σ)x in C is the single u.l.o.m.f. in C. – Furthermore for all

τ ∈ can-µTp τ = τ is a p.c.u. of τ = τ , which contains no u.l.o.m.f.’s in C.

(ii) For all τ, σ, τ0, σ0 ∈ can-µTp

τ = σ
R

(τ0 = σ0)
m0

C0
is a p.c.u. C of τ = σ given

that C0 is a p.c.u. of τ0 = σ0 and that R is an application of a rule UNFOLDl/r

or VAR. An u.l.o.m.f. in C is such an occurrence of a marked formula in C
within its subtree C0 that corresponds to an u.l.o.m.f. in C0.

(iii) For all τ, σ, τ0, σ0 ∈ can-µTp and x ∈Mk

(τ = σ)x

R
(τ0 = σ0)

m0

C0
[τ = σ]x

is a p.c.u. C

of τ = σ given that (1) C0 is a p.c.u. of τ0 = σ0 in which the (indicated) class
[τ = σ]x of all u.l.o.m.f.’s of the form (τ = σ)x is non-empty and that either
(2a) R is an application of a rule UNFOLDl/r or (2b) R is an application of
VAR and C0 contains at least one application of a rule different from VAR.
All occurrences of (τ = σ)x within the subtree C0 of C, that correspond to
u.l.o.m.f.’s in C0, are bound back in C to the occurrence of (τ = σ)x at the
root. For all marked formulas (τ̃ = σ̃)x̃ different from (τ = σ)x the unbound
leaf-occurrences of this marked formula correspond uniquely and in an obvious

12 In the following clauses the addition “in AK=
0 ” in statements like “C is a p.c.u. in AK=

0 ” is always
dropped. Auxiliary framed boxes are used to delimit the defined p.c.u.’s from the surrounding text.
Here and later we will allow formulas (τ = σ)m with τ, σ ∈ can-µTp and a boldface-marker m to
stand either (a) for the unmarked formula τ = σ or (b) for a marked formula (τ = σ)x with some
marker x ∈Mk , which is furthermore assumed to be denoted by m in this case.

9

Grabmayer

way to the u.l.o.’s of (τ̃ = σ̃)x̃ within the subtree C0 of C.

(iv)
C02

(τ02 = σ02)
m02

C01

(τ01 = σ01)
m01

DECOMP
τ01 → τ02 = σ01 → σ02

is a p.c.u. C of the formula

τ01 → τ02 = σ01 → σ02 for all τ01, τ02, σ01, σ02 ∈ can-µTp , given that C0i is a
p.c.u. of τ0i = σ0i for each i ∈ {1, 2}. The u.l.o.m.f.’s in C correspond uniquely
and in an obvious way to the u.l.o.m.f.’s in either of its immediate subtrees C01
or C02 .

(v)

〈τ = σ〉x
C02

(τ02 = σ02)
m02

〈τ = σ〉x
C01

(τ01 = σ01)
m01

DECOMP
(τ01 → τ02 = σ01 → σ02)

x

(with some x ∈Mk and with

τ :≡ τ01 → τ02 and σ :≡ σ01 → σ02) is a p.c.u. C of τ01 → τ02 = σ01 → σ02 for
all τ01, τ02, σ01, σ02 ∈ can-µTp given that C0i is a p.c.u. of τ0i = σ0i for each
i ∈ {1, 2} and that there is at least one unbound leaf-occurrence of the marked
formula (τ01 → τ02 = σ01 → σ02)

x in either C01 or in C02. All occurrences of
(τ = σ)x within either of the immediate subtrees C01 and C02 of C, that cor-
respond to u.l.o.m.f.’s in C01 or C02, are bound back in C to the occurrence of
(τ = σ)x at the root (and hence are not u.l.o.m.f.’s in C). For every marked
formula (τ̃ = σ̃)x̃ different from (τ = σ)x the unbound leaf-occurrences of this
marked formula correspond uniquely and in an obvious way to the u.l.o.’s of
(τ̃ = σ̃)x̃ within either of the sub-p.c.u.’s C01 or C02 of C.

The depth |C| of a p.c.u. C is defined as the depth of the underlying (derivation-)
tree.

Definition 6.2 (Consistency-Unfoldings in AK=
0). Let τ and σ be recursive

types in canonical form. A partial consistency-unfolding C of τ = σ in AK=
0 is

called a consistency-unfolding (a c.u.) of τ = σ in AK=
0 if and only if C does not

contain any unbound leaf-occurrences of marked formulas.

According to these definitions the derivation tree C depicted in Figure 4 can now
be recognized as a p.c.u. in AK=

0 without u.l.o.m.f.’s and hence as a consistency-
unfolding of µα. ((α→ α)→ α) = µα. (α→ (α→ α)) in AK=

0 . – The following
theorem establishes the link motivated by the example in Section 4 between the
notions of “AK=

0 -consistency” and “consistency-unfolding in AK=
0 ”.

Theorem 6.3 For all recursive types τ, σ ∈ can-µTp it holds that:

τ = σ is AK=
0 -consistent ⇐⇒ There exists a consistency-

unfolding of τ = σ in AK=
0 .

(6.1)

Hint at the Proof Let τ, σ ∈ can-µTp . The implication “⇐” in (6.1) follows by
induction on the depth of an arbitrary derivation from τ = σ in AK=

0 , in which

10

Grabmayer

Figure 6 Three exemplary cases of inductive clauses in the definitions of the
reflection mappings D(·) and C(·) between partial consistency-unfoldings in AK=

0

and derivations in e-HB=
0 (with possibly open assumption classes).

(τ = σ)m
D(·)7−→
←− [
C(·)

(τ = σ)m

(µα. τ0 = σ)x

UNFOLDl
τ0[µα. τ0/α] = σ

C̃0 (≡C(D̃0))

[µα. τ0 = σ]x

D(·)7−→
←− [
C(·)

[µα. τ0 = σ]x

D̃0 (≡D(C̃0))

τ0[µα. τ0/α] = σ
(FOLDl/FIX)x

µα. τ0 = σ

C̃02 (≡C(D̃02))

(τ02 = σ02)
m02

C̃01 (≡C(D̃01))

(τ01 = σ01)
m01

DECOMP
τ01 → τ02 = σ01 → σ02 D(·)7−→

←− [
C(·)

7−→
←− [

D̃01 (≡D(C̃01))

τ01 = σ01

D̃02 (≡D(C̃02))

τ02 = σ02
ARROWτ01 → τ02 = σ01 → σ02

induction it is used that every given c.u. of τ = σ in AK=
0 combines in some sense

all initial segments of such derivations until looping occurs. The implication “⇒” in
(6.1) follows by an analogous, in fact as good as ‘dual’, argument to that one used
in a proof (following [3]) for the completeness of HB=

0 with respect to =µ. 2

7 A duality between the proof systems e-HB=
0 and AK=

0

In a third step of our formalization of the observation in Section 4, we give a defi-
nition of a pair of reflection mappings D(·) and C(·) between p.c.u.’s in AK=

0 and
derivations in e-HB=

0 .

Definition 7.1 (Reflection Mappings D(·) and C(·)). The reflection mapping
D(·) from partial consistency-unfoldings in AK=

0 to derivations in e-HB=
0 (with

possibly open assumption classes) is defined by induction on the depth |C̃| of a
p.c.u. C̃ according to 5 inductive clauses, which refer to the 5 cases in the inductive
definition of p.c.u.’s in Definition 6.1. Three exemplary cases (one each referring to
items (i) and (iv) and one regarding the subcase for an UNFOLDl-rule of item (iii)
in Definition 6.1) have been depicted in Figure 6. The definition of the reflection
mapping C(·) in the opposite direction can be carried out for all derivations D̃ in
e-HB=

0 by induction on its depth |D̃| with clauses that apart from the base case
distinguish the 8 cases of different rules in e-HB=

0 , applications of which may occur
as the last rule applications in D̃ ; three of the nine clauses are depicted in Figure 6.

11

Grabmayer

The well-definedness of D(·) and C(·) as functions between the set of p.c.u.’s in
AK=

0 and the set of derivations in e-HB=
0 with possibly open assumption classes can

be shown by induction on the depth of the elements in the domain of the respective
mapping. – We are now able to state our main theorem.

Theorem 7.2 (A Duality between derivations in e-HB=
0 and consistency-

unfoldings in AK=
0). There is a bijective functional relationship between deriva-

tions in e-HB=
0 without open assumption classes and consistency-unfoldings in

AK=
0 via the reflection mappings D(·) and C(·) defined in Definition 7.1 in the

following sense:

(i) For every consistency-unfolding C̃ of τ = σ in AK=
0 (with some τ, σ ∈ can-µTp)

its reflection D(C̃) is a derivation in e-HB=
0 with conclusion τ = σ and without

open assumption classes.

(ii) For every derivation D̃ in e-HB=
0 without open assumption classes and with

conclusion τ = σ (for some τ, σ ∈ can-µTp) its reflection C(D̃) is a consistency-
unfolding of τ = σ in AK=

0 .

(iii) The functions D(·) of taking the reflection of a consistency-unfolding in AK=
0

and C(·) of taking the reflection of a derivation in e-HB=
0 without open assump-

tion-classes are each other’s inverse.

The very immediate kind of this bijective functional relationship and the possibility
to visualize the reflection functions in a geometrical way is reason to call it a duality.

Sketch of Proof All three items of the theorem (the third one can be split into the
two assertions D ◦ C = id and C ◦ D = id) can be shown by quite straightforward
inductions using the inductive clauses in the definitions of D(·) and C(·). In these in-
ductions bookkeeping must be done for respectively the set of open marked assump-
tions in an e-HB=

0 -derivation or the classes of u.l.o.m.f.’s in a p.c.u. in AK=
0 . 2

An example of a pair (D̃, C̃) consisting of a derivation D̃ in e-HB=
0 and a

consistency-unfolding C̃ in AK=
0 that are each other’s reflection via the operations

D(·) and C(·) is depicted in Figure 7.

8 A duality in proof systems for bisimulation equivalence
on cyclic term graphs

In this section we want to sketch how our duality result about two proof systems for
recursive type equality can be transferred to similar proof systems concerned with
bisimulation equivalence on equational representations of cyclic term graphs.

In the aim to limit technicalities and to follow [2], we will only consider equa-
tional specifications of cyclic term graphs without free variables. We are assuming a
countably infinite set RVar of recursion variables to underlie the following definition
(we will let small Greek letters α, β, . . . vary through recursion variables).

Definition 8.1 (Canonical Term Graph Specifications). Let Σ be a first-
order signature. A canonical term graph specification (a c.t.g.s.) is an equational

12

Grabmayer

Figure 7 Example consisting of a consistency-unfolding C̃ in AK=
0 and of a deriva-

tion D̃ in e-HB=
0 that are each other’s reflection via the mappings D(·) and C(·):

This means that D(C̃) = D̃ and C(D̃) = C̃ hold for C̃ and D̃ as considered below.

D̃ :=

(
τ = σ

)
x ⊥ = ⊥

ARROW
τ → ⊥ = σ → ⊥

τ = σ → ⊥ ⊥ = ⊥
ARROW

τ → ⊥ = (σ → ⊥)→ ⊥
FOLDr

τ → ⊥ = σ
(FOLDl/FIX)x

µα. (α→ ⊥)︸ ︷︷ ︸
≡: τ

= µβ. ((β → ⊥)→ ⊥)︸ ︷︷ ︸
≡: σ

C̃ :=

⊥ = ⊥

⊥ = ⊥
(
τ = σ

)
x

DECOMP
τ → ⊥ = σ → ⊥

τ = σ → ⊥ DECOMP
τ → ⊥ = (σ → ⊥)→ ⊥

UNFOLDr
τ → ⊥ = σ

UNFOLDl

(
µα. (α→ ⊥) = µβ. ((β → ⊥)→ ⊥)

)
x

specification of the form 〈α0 | {α0 = t0, . . . , αn = tn} 〉 , where n ∈ N , α0, . . . , αn

pairwisely different recursion variables in RVar and for all i with 0 ≤ i ≤ n the
terms ti are of the form ti ≡ F (αi1, . . . , αini

) for some function symbol F ∈ Σ of
arity ni and variables αi1, . . . , αini

∈ {α0, . . . , αn} . We will use the letters g and h
to vary through c.t.g.s.’s and denote by T GS(Σ) the set of all c.t.g.s.’s over Σ.

Bisimilarity between c.t.g.s.’s is defined in [2] as follows:

Definition 8.2 (Bisimulation Equivalence ↔ on c.t.g.s.’s). Let Σ be a
signature. Let g and h be canonical term graph specifications over Σ of the form
g = 〈α0 | {α0 = t0, . . . , αn = tn} 〉 and h = 〈α′

0 | {α′
0 = t′0, . . . , α

′
n′ = t′n′} 〉 .

(a) R is called a bisimulation between g and h if and only if
(i) R is a relation with domain {α0, . . . , αn} and codomain {α′

0, . . . , α
′
n′} ;

(ii) α0 R α′
0 ;

(iii) if αi R α′
j for some i, j with 0 ≤ i ≤ n and 0 ≤ j ≤ n′ , and given that

ti ≡ F (αi1, . . . , αini
) and t′j ≡ F ′(α′

j1, . . . , α
′
jn′

j
) with some ni, n

′
j ∈ N 0 , then

F ≡ F ′ (and hence ni = n′j) and αi1 R α′
j1, . . . , αini

R α′
jn′

j
must hold.

(b) We say that g and h are bisimilar (symbolically denoted by g↔h) iff there
exists a bisimulation between g and h.

Example 8.3 We consider the two canonical term graph specifications

g := 〈α0 |Eg 〉 := 〈α0 | {α0 = F (α1, α2), α1 = F (α0, α2), α2 = G(α1, α0)} 〉 (8.1)

h := 〈 β0 |Eh 〉 := 〈 β0 | {β0 = F (β0, β1), β1 = G(β0, β0)} 〉 (8.2)

13

Grabmayer

Figure 8 A Brandt–Henglein-like axiomatization HB↔
0 without symmetry and

transitivity rules of bisimulation equivalence between canonical term graph specifi-
cations over signature Σ.

The axioms and possible marked assumptions in HB↔
0 :

(REFL) 〈α | {α = C, . . .} 〉 = 〈 β | {β = C, . . .} 〉 (Assm) (g = h)x .

(if C is a constant symbol in Σ) (with x ∈Mk)

The derivation rules of HB↔
0 : Rules COMP and rules COMP/FIX with

〈〈 〈α |Eg 〉 = 〈 β |Eh 〉 〉〉x

D1

〈α1 |Eg 〉 = 〈 β1 |Eh 〉 . . .

〈〈 〈α |Eg 〉 = 〈 β |Eh 〉 〉〉x

Dn

〈αn |Eg 〉 = 〈 βn |Eh 〉 (COMP/
FIX)x

(if s.-c. I)
〈α | {α = F (α1, . . . , αn)}] E(0)

g︸ ︷︷ ︸
= Eg

〉 = 〈 β | {β = F (β1, . . . , βn)}] E
(0)
h︸ ︷︷ ︸

= Eh

〉

in T GS({F, G}) . These correspond respectively to the two cyclic term graphs

/.-,()*+F

��~~
~~

~~
~~

��@
@@

@@
@@

@
��

/.-,()*+F

22

00 /.-,()*+Gnn

ll and /.-,()*+F11

��@
@@

@@
@@

@
��

/.-,()*+G

PP ll

.

It is easy to check that R := {(α0, β0), (α1, β0), (α2, β1)} is a bisimulation between
g and h according to Definition 8.2. Hence g↔h holds, i.e. g and h are bisimilar.

A sound and complete axiom system HB↔
0 for ↔ , which is very similar to the

‘normalized’ version HB=
0 of the axiom system for =µ by Brandt and Henglein, is

depicted in Figure 8. Just as for its counterpart in HB=
0 , the rule ARROW/FIX,

applications of the rule COMP/FIX in HB↔
0 are subjected to the side condition I:

This requires that the discharged assumption class is in fact non-empty (to dis-
tinguish such applications from ones of the “plain” COMP-rule). Soundness and
completeness of HB↔

0 with respect to ↔ means, that

`HB
↔
0

g = h ⇐⇒ g↔h

holds for all g, h ∈ T GS(Σ) (for some signature Σ).

A ‘syntactic matching’ proof system AK↔
0 for ↔ , which is similar to the system

AK=
0 , is depicted in Figure 9, its single derivation rule being the decomposition rule

DECOMP. AK↔
0 is sound and complete with respect to ↔ in the sense that

g = h is AK↔
0 -consistent ⇐⇒ g↔h

holds for g, h ∈ T GS(Σ) (for some signature Σ). Hereby an equation g̃ = h̃ between
two c.t.g.s.’s g̃ and h̃ is called AK↔

0 -consistent iff no contradiction with respect to
↔ is derivable in AK↔

0 from g̃ = h̃ . And furthermore an equation g̃ = h̃ be-

14

Grabmayer

Figure 9 A ‘syntactic-matching’ proof system AK↔
0 for testing bisimulation equiv-

alence on equations between canonical term graph specifications.

The derivation rules of AK↔
0 :

〈α |

= Eg︷ ︸︸ ︷
{α = F (α1, . . . , αn)}] E(0)

g 〉 = 〈 β |

= Eh︷ ︸︸ ︷
{β = F (β1, . . . , βn)}] E

(0)
h 〉 DECOMP

(for 1≤ i≤n)〈αi |Eg 〉 = 〈 βi |Eh 〉

tween two c.t.g.s.’s g̃ = 〈α0 | {α0 = t0, . . .} 〉 and h̃ = 〈α′
0 | {α′

0 = t′0, . . .} 〉 is agreed
to be a contradiction with respect to ↔ iff it holds that t0 ≡ F (α01, . . . , α0n0) and
t′0 ≡ G(α′

01, . . . , α
′
0n′

0
) for some n0, n

′
0 ∈ N 0 , variables α01, . . . , α0n0 , α′

01, . . . , α
′
0n′

0

and different symbols F, G ∈ Σ (i.e. F 6≡ G).

Now it is very straightforward to define the notion of p.c.u.’s and consistency-
unfoldings in AK↔

0 of equations between c.t.g.s.’s analogously to Definitions 6.1
and 6.2. And furthermore also reflection functions C(·) and D(·) between p.c.u.’s
in AK↔

0 and derivations in HB↔
0 can be defined very similar to (and in fact easier

than in) Definition 7.1. In this way we are lead to the following counterpart of
Theorem 7.2 for the two proof systems considered here.

Theorem 8.4 (A Duality between derivations in HB↔
0 and consistency-

unfoldings in AK↔
0). There is a bijective functional relationship between

derivations in HB↔
0 without open assumption classes and consistency-unfoldings in

AK↔
0 via reflection mappings C(·) and D(·) : This means that completely analogous

statements to that in items (i), (ii) and (iii) of Theorem 7.2 are true.

In Figure 10 the assertion of this theorem is exemplified for the c.t.g.s.’s g and
h of Example 8.3 by a suggestively typeset pair (D̃, C̃) of a derivation D̃ for g = h
in HB↔

0 without open assumption classes and a consistency-unfolding of g = h in
AK↔

0 that are each other’s “mirror image” via reflection mappings C(·) and D(·).

9 Conclusion

In the main part of this paper we have motivated and developed a precise formal rela-
tionship between two different proof systems concerned with recursive type equality
=µ on (a very small class of) recursive types. We showed the existence of a bijective
correspondence, which can geometrically be visualized, between (1) derivations in
an extension e-HB=

0 of a normalized version HB=
0 of the axiomatization for =µ

by Brandt and Henglein and (2) what we defined as “consistency-unfoldings” in a
proof system AK=

0 à la Ariola and Klop for equational testing with respect to =µ.
This correspondence takes place via two reflection mappings that formalize effective
transformations and that are inverse to each other.

In the last section we indicated that the described duality result is not specific
to the two considered proof systems for recursive types: We sketched an analogous
duality theorem for a similar pair of proof systems concerned with the notion of

15

Grabmayer

Figure 10 Example consisting of a derivation in HB↔
0 without open assumption

classes and of a consistency-unfolding in AK↔
0 that are each other’s “reflection”.

(The canonical term graph specifications g and h are taken from Example 8.3).

(. . .)x

(〈α1 |Eg 〉 = 〈 β0 |Eh 〉)y (. . .)x

〈α2 |Eg 〉 = 〈 β1 |Eh 〉 y
〈α1 |Eg 〉 = 〈 β0 |Eh 〉

(. . .)x (. . .)z

〈α1 |Eg 〉 = 〈 β0 |Eh 〉 (. . .)x

z
〈α2 |Eg 〉 = 〈 β1 |Eh 〉

x
〈α0 |Eg 〉︸ ︷︷ ︸
= g in (8.1)

= 〈 β0 |Eh 〉︸ ︷︷ ︸
= h in (8.2)

(. . .)x

(. . .)z(. . .)x

〈α1 |Eg 〉 = 〈 β0 |Eh 〉
(〈α2 |Eg 〉 = 〈 β1 |Eh 〉)z

(. . .)x(〈α1 |Eg 〉 = 〈 β0 |Eh 〉)y

〈α2 |Eg 〉 = 〈 β1 |Eh 〉(. . .)x

(〈α1 |Eg 〉 = 〈 β0 |Eh 〉)y

(〈α0 |Eg 〉 = 〈 β0 |Eh 〉)x

bisimulation equivalence on equational specifications of cyclic term graphs.

Apart from establishing a precise formal link between the systems HB=
0 and

AK=
0 by tying together closely the notions of “derivability in HB=

0 ” and “consis-
tency with respect to AK=

0 ”, the main significance of our duality result Theorem 7.2
consists perhaps in the following: It can be used to understand and justify the sound-
ness of the—at least at first sight—seemingly paradoxical reasoning formalized by
the rule ARROW/FIX in HB=

0 . In fact, our results facilitate an alternative sound-
ness proof for the system HB=

0 , which is independent from the one given in [3], by
‘reducing’ the soundness of HB=

0 to the soundness of the system AK=
0 .

A slightly more detailed version of this paper is available on the web via the link
http://www.cs.vu.nl/~clemens/termgraph2002 ext.ps . Forthcoming work [4]
is concerned with a detailed study of proof-theoretic transformations between the
mentioned proof systems for recursive types and a number of variant systems.

References

[1] Amadio, R.M., Cardelli, L.: “Subtyping Recursive Types”, ACM Transactions on
Programming Languages and Systems 15 (4), pp. 575–631, 1993.

[2] Ariola, Z.M., Klop, J.W.: “Equational Term Graph Rewriting”, Fundamenta
Informaticae 26 (3,4), pp. 207–240, June 1996; extended version as: Vrije Universiteit
Amsterdam Technical Report IR–391 , September 1995.

[3] Brandt, M., Henglein, F.: “Coinductive Axiomatization of Recursive Type Equality
and Subtyping”, Fundamenta Informaticae 33 , pp. 1–30, 1998.

[4] Grabmayer, C.: “Proof-Theoretic Interconnections between Proof Systems for
Recursive Type Equality”, forthcoming as Vrije Universiteit Amsterdam Technical
Report , 2002.

16

http://www.cs.vu.nl/~clemens/termgraph2002_ext.ps

	Introduction
	Preliminaries on recursive types
	The proof systems HBbold0mu mumu ==--@let@token -====bold0mu mumu 00--@let@token -0000 and AKbold0mu mumu ==--@let@token -====bold0mu mumu 00--@let@token -0000 for =
	The basic observation
	The extension e -HBbold0mu mumu ==--@let@token -====bold0mu mumu 00--@let@token -0000 of HBbold0mu mumu ==--@let@token -====bold0mu mumu 00--@let@token -0000
	Consistency-Unfoldings
	A duality between the proof systems e -HBbold0mu mumu ==--@let@token -====bold0mu mumu 00--@let@token -0000 and AKbold0mu mumu ==--@let@token -====bold0mu mumu 00--@let@token -0000
	A duality in proof systems for bisimulation equivalence on cyclic term graphs
	Conclusion
	References

