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Productivity

When do we accept an infinite mathematical object to be
constructively defined in terms of itself?
When does a finite set of term equations uniquely represent and
constructively define a countably infinite mathematical object?
One way of answering is:

if the equations are productive:
if they evaluate to a unique constructor normal form,
if the equations allow to generate leading constructors to an
arbitrary depth.

Typical examples of productive objects (objects specified by
productive equations) are trees built of constructor symbols.
A productive process continuously turns input into output,
i.e. maps productive objects to productive objects.
In general, productivity is undecidable.
Examples: coinductive natural numbers, streams,
recursively defined infinite processes, trees, proofs, . . . .
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(Co)recursive stream definitions

Whereas recursion eliminates (finite) data,
corecursion produces potentially infinite data, codata.
Instead of descending the argument of a call,
a corecursive call increases the result.
Consecutive corecursive calls in a productive stream definition
must eventually always produce a constructor symbol.

Example

zeros = 0 : zeros
alt = 0 : 1 : alt

nats = 0 : map(+1, nats)

map(f, a : σ) = f(a) : map(f, σ)
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Productivity of Stream Definitions
A (co)recursive stream definition M = . . . M . . . is productive if and
only if the process of continuously evaluating M results in an infinite
constructor normal form t0 : t1 : t2 : . . ..

Example

alt′ = 0 : inv(alt′)
alt′′ = zip(zeros, ones)

fib = 0 : 1 : add(fib, tail(fib))

morse = 0 : 1 : zip(tail(morse), inv(tail(morse)))

where tail(x : σ) = σ

inv(x : σ) = (1− x) : inv(σ)

add(x : σ, y : τ) = (x + y) : add(σ, τ)

zip(x : σ, τ) = x : zip(τ, σ)
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Example

read(x : σ) = x : read(σ)

fastread(x : y : σ) = x : y : fastread(σ)

fives = 5 : read(fives) productive
fives′ = 5 : fastread(fives′) not productive

zip1(x : σ, τ) = x : zip1(τ, σ)

zip2(x : σ, y : τ) = x : y : zip2(σ, τ)

X1 = a : zip1(X1, tail(X1)) productive
X2 = b : zip2(X2, tail(X2)) not productive
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Stream Function Specifications

Example

Consider the orthogonal TRS for stream functions

even(x : σ) → x : odd(σ) tail(x : σ) → σ

odd(x : σ) → even(σ) zip(x : σ, τ) → x : zip(τ, σ)

add(x : σ, y : τ) → a(x , y) : add(σ, τ)

and operations on data terms:

a(x , 0) → x a(x , s(y)) → s(a(x , y)) .

We call such a TRS a stream function specification (SFS).
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Stream Constant Specifications

Example (Continued)

Based on the SFS for even, odd, zip, add, and tail, consider the
extension by:

J → 0 : 1 : even(J)

D → 0 : 1 : 0 : zip(add(tail(D), tail(tail(D))), even(tail(D)))

In this stream constant specification (SCS) we have

J�� 0 : 1 : 0 : 0 : even(even(. . .))

D�� 0 : 1 : 1 : 2 : 1 : 3 : 2 : 3 : 3 : 4 : 3 : 5 : 4 : 5 : 5 : 6 : 5 : 7 : 6 : 7 : 7 : . . .

Hence: D is productive, but J is not productive, in this SCS.
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J�� 0 : 1 : 0 : 0 : evenω

J → 0 : 1 : even(J)

even(J) → even(0 : 1 : even(J))

→ 0 : odd(1 : even(J))

→ 0 : even(even(J))

even2(J) ≡ even(even(J))� even(0 : even(even(J)))

→ 0 : odd(even2(J))

odd(even2(J))� odd(0 : odd(even2(J)))

→ even(odd(even2(J)))

odd(even2(J))� even(odd(even2(J)))

� even2(odd(even2(J)))

� . . .� evenn(odd(even2(J)))� . . .

�� evenω

Hence: J�� 0 : 1 : 0 : 0 : evenω.
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Weakly Guarded SFSs and Pure SCSs

Example (Continued)

In the SFS T we have ‘production cycles’ of the form:

even(x : y : σ) → x : odd(y : σ) → x : even(σ)

odd(x : y : σ) → even(y : σ) → y : odd(σ)

zip(x : σ, y : τ) → x : zip(y : τ, σ) → x : y : zip(σ, τ)

We say that even, odd, zip, and inv are weakly guarded. And we have
a collapsing rewrite sequence:

tail(x : σ) → σ .

We say that tail is collapsing in T .

Such SFSs are called weakly guarded.
SCSs based on weakly guarded SFS are called pure.
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Weakly Guarded SFSs

Definition

A TRS T = 〈Σd ] Σsf ] {:}, Rd ] Rsf 〉 is called
a weakly guarded stream function specification (SFS) iff

1 T is orthogonal.
2 The data part 〈Σd , Rd 〉 is a strongly normalising.
3 Each rule in Rsf is of one of the two forms:

f((x1,1 : . . . : x1,n1 : σ1), . . . , (xr ,1 : . . . : xrs,nrs
: σrs), ~y)

→ t1(~x , ~y) : . . . : tm f(~x , ~y) : σl ,

→ t1(~x , ~y) : . . . : tm f(~x , ~y) : g(σπf(1), . . . , σπf(r ′s ), t ′1(~x , ~y), . . . , t ′r ′d (
~x , ~y)) ,

where πf : {1, . . . , r ′s} → {1, . . . , rs} is injective in case f g.
4 Weakly guarded: On every dependency cycle f g · · · f

there is at least one guard.
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Pure SCSs

Definition

A TRS T = 〈Σd ] Σsf ] Σsc ] {:}, Rd ] Rsf ] Rsc〉 is called
a pure recursive stream specification (SCS) iff:

1 〈Σd ] Σsf ] {:}, Rd ] Rsf 〉 is a weakly guarded SFS.
2 Σsc = {M1, . . . , Mn} set of stream constant symbols;

Rsc = {ρMi | i ∈ {1, . . . , n}} where ρMi the defining rule for Mi :

Mi → Ci [M1, . . . , Mn]

where Ci an n-ary stream context in the underlying SFS.

Note: SCSs are orthogonal TRSs.
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Production of a Term

Definition

Let T = 〈Σ, R〉 a pure SCS.
The production πT (t) of a term t ∈ Ter(Σ) is the supremum of the
number of data elements t can ‘produce’:

πT (t) := sup{n ∈ N | t � s1 : . . . : sn : t ′} .
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Modelling SCSs with Pebbleflow Nets

Kahn (1974): Networks as devices for computing least fixed
points of systems of equations.

Pebbleflow Nets:
Stream elements are abstracted from in favour of ‘pebbles’.
A stream definition is modelled by a pebbleflow net:
The process of evaluation of a stream definition is modelled by
the dataflow of pebbles in a pebbleflow net.
A stream definition is productive if and only if the net associated
to it generates an infinite chain of pebbles.
Elements are: meets, fans, boxes and gates, sources, wires.
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Meet

N2 N1 N2N1

4(•(N1), •(N2)) → •(4(N1, N2))
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Recursion

N N

µx .•(N(x)) → •(µx .N(•(x)))
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Box

N N

σ+σ

box(+σ, N) → •(box(σ, N))
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Box(2)

N N

σ−σ

box(−σ, •(N)) → box(σ, N)
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I/O sequences

Definition

The set ±ω of I/O sequences is the set of infinite sequences over the
alphabet {+,−} that contain an infinite number of +’s:

±ω := {σ ∈ {+,−}ω | ∀n∃m σ(n + m) = +}

An I/O sequence σ ∈ ±ω is called rational if there exist lists
α, γ ∈ {+,−}∗ such that σ = αγ, where γ is not empty.
The pair 〈α, γ〉 is called a rational representation of σ.
And we define:

±ω
rat := {σ ∈ ±ω | σ is rational} .
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Gates

σrsσ1

A gate for modelling rs-ary stream functions.

4(box(σ1, [ ]1), . . . , box(σrs , [ ]rs))
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Term Representations of Nets

Definition

Let V be a set of variables, and N := N ∪ {∞}.
The set N of terms for pebbleflow nets is generated by:

N ::= src(k) | x | •(N) | box(σ, N) | µx .N | 4(N, N)

where k ∈ N, x ∈ V, and σ ∈ ±ω.
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Production Function

N N

}
n

σ′

βσ(n)

σ

box(σ, •n(N)) → •βσ(n)(box(σ′, N))
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Production Function

1 2 3 4 n5 6 7 8 9

4
5
6
7
8

2
3

βσ(n)

0

−+

Graph of the production function βσ for σ = ++−+−+−.
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Production Function

Definition

The production function βσ : N → N of (a box containing) a
sequence σ ∈ ±ω is corecursively defined, for all n ∈ N, by
βσ(n) := β(σ, n):

β(+σ, n) = S(β(σ, n))

β(−σ, 0) = 0
β(−σ, S(n)) = β(σ, n)
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Pebbleflow

Definition
The pebbleflow rewrite relation →p is defined as:

4(•(N1), •(N2)) → •(4(N1, N2)) (P1)
µx .•(N(x)) → •(µx .N(•(x))) (P2)

box((+σ), N) → •(box(σ, N)) (P3)
box((−σ), •(N)) → box(σ, N) (P4)

src(S(k)) → •(src(k)) (P5)

→p is an orthogonal CRS, and hence:

Theorem
The rewrite relation →p is confluent.
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Production of a Net

Definition

The production π(N) of a net N ∈ N is the supremum of the number
of pebbles the net can ‘produce’:

π(N) := sup{n ∈ N | N �p •n(N ′)} .
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Ariya’s Tool

A net visualization applet (Java-based).
Is intended to give a feeling for pebbleflow in pebbleflow nets.
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Translation of Stream Functions into Gates

Example

Following the collapsing rewrite sequence:

tail(x : σ) → σ .

the translation of the stream function tail into a rational gate is:

[tail](N) = 41(box([tail]1, N)) = −−+−+ . . . = −−+
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Translation of Stream Functions into Gates

Example

For the stream function specification

zip(x : σ, τ) → x : zip(τ, σ) ,

which enables the ‘production cycle’

zip(x : σ, y : τ) → x : zip(y : τ, σ) → x : y : zip(σ, τ) ,

the translation of the stream function zip into a rational gate is:

[zip](N1, N2) = 4(box([zip]1, N1), box([zip]2, N2))

= 4(box(−+[zip]2, N1), box(+[zip]1, N2))

= 4(box(−++[zip]1, N1), box(+−+[zip]2, N2))

= 4(box(−++, N1), box(+−+, N2))
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Translation of Stream Constants into Gates

Definition

Let T = 〈Σd ] Σsf ] {:}, Rd ] Rsf 〉 an SFS. For every f ∈ Σsf with
arity 〈rs, rd 〉, the translation of f is a rational gate [f] : N rs → N def. by:

[f](N1, . . . , Nrs) = 4rs
(box([f]1, N1), . . . , box([f]rs , Nrs)) ,

where [f]i ∈ ±ω
rat is defined as follows. We distinguish the two formats

a rule ρf ∈ Rsf can have. Let ~xi : σi stand for xi,1 : . . . : xi,ni : σi . If ρf has
the form: f(~x1 : σ1, . . . , ~xrs : σrs , y1, . . . , yrd ) → t1 : . . . : tm f : u, where:

u ≡ g(σπ f(1), . . . , σπ f(r ′s ), t ′1, . . . , t ′r ′d ) , u ≡ σj ,

then then

[f]i =

{
−ni +m f [g]j if πf(j) = i
−ni + if ¬∃j . πf(j) = i

[f]i =

{
−ni +m f−+ if i = j
−ni + if i 6= j
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Translation of Stream Constants into Nets

Example

D → 0 : 1 : 0 : zip(add(tail(D), tail(tail(D))), even(tail(D)))

[tail]1

[even]1

[zip]1 [zip]2

[zip] [add]1 [add]2

[add]

[tail]1

[tail]1

[tail]1

[D] = µD.•(•(•([zip]([add]([tail](D), [tail]([tail](D))), [even]([tail](D))))))

Endrullis, Grabmayer, Hendriks, Isihara, Klop Productivity of Stream Definitions



Introduction
Recursive Stream Specifications

Modelling with Nets
Deciding Productivity

Conclusion and Ongoing Work

Pebbleflow Nets
A Rewrite System for Pebbleflow. Ariya’s Tool.
Translating Pure Stream Specifications
Preservation of Production

Translation of Stream Constants into Nets

Definition

Let T = 〈Σd ] Σsf ] Σsc ] {:}, Rd ] Rsf ] Rsc〉 be a pure SCS.
For each M ∈ Σsc with rule ρM ≡ M → rhsM the translation
[M] := [M]∅ of M into a rational pebbleflow net is recursively def. by:

[M]α =

{
µM.[rhsM]α∪{M} if M 6∈ α

M if M ∈ α

[t : u]α = •([u]α)

[f(u1, . . . , urs , t1, . . . , trd )]α = [f]([u1]α, . . . , [urs ]α)

where α denotes a set of stream constant symbols.
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Translation is Production Preserving

Theorem

Let T be a pure SCS. Then, π([M]) = πT (M) for all M ∈ Σsc.

Proof.

π([M]) ≤ πT (M): Given a rewrite sequence [M]�p •n(N), define
inductively a rewrite sequence

µ(M)�µT t ′1 : . . . : t ′n : u′

on µ-term representations of infinite terms such that the production of
equally coloured contexts within these terms are preserved.

Endrullis, Grabmayer, Hendriks, Isihara, Klop Productivity of Stream Definitions



Introduction
Recursive Stream Specifications

Modelling with Nets
Deciding Productivity

Conclusion and Ongoing Work

Pebbleflow Nets
A Rewrite System for Pebbleflow. Ariya’s Tool.
Translating Pure Stream Specifications
Preservation of Production

Preservation of Production

[even]1

µJ. •(•(box([even]1, J)))

0

µ

:

:

1
even

µJ. 0 : 1 : even(J)
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Preservation of Production

[odd]1

•(µJ. •(•(box([odd]1, J))))

:

0

µ

:

:

odd

0 : µJ. 1 : 0 : odd(J)

0

1
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Preservation of Production

•(•(µJ. •(box([even]1, J))))

[even]1

:

:0

0

even

µ

:

1

0 : 1 : µJ. 0 : even(J)

Endrullis, Grabmayer, Hendriks, Isihara, Klop Productivity of Stream Definitions



Introduction
Recursive Stream Specifications

Modelling with Nets
Deciding Productivity

Conclusion and Ongoing Work

Pebbleflow Nets
A Rewrite System for Pebbleflow. Ariya’s Tool.
Translating Pure Stream Specifications
Preservation of Production

Preservation of Production

[odd]1

•(•(•(µJ. •(box([odd]1, J)))))

1

:

:

:

0

0

0

odd

µ

:

0 : 1 : 0 : µJ. odd(J)
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Preservation of Production

•(•(•(•(µJ. box([even]1, J)))))

[even]1

1

:

:0

:

0 :

0

µ

even

0 : 1 : 0 : 0 : µJ. even(J)
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A Rewrite System for Pebbleflow. Ariya’s Tool.
Translating Pure Stream Specifications
Preservation of Production

Proof Continued.

π([M]) ≤ πT (M): [. . . ] define inductively a rewrite sequence
µ(M)�µT t ′1 : . . . : t ′n : u′ on µ-term representations of infinite terms
such that the production of equally coloured contexts within these
terms are preserved. Finally, lift this sequence of µ-terms to an
infinite rewrite sequence M��µT t1 : . . . : tn : u of length kω, for some
k ∈ N. Finally, use compression.

π([M]) ≤ πT (M) Given a rewrite sequence M�µT t1 : . . . : tn : u, it is
possible to construct, using the fact that in OTRS taking sequences of
complete developments is a cofinal rewrite strategy, and starting from
a sufficiently large finite unfolding of M in T , a rewrite sequence
µ(M)�µT t ′1 : . . . : t ′n : u′ on µ-term representations of infinite terms.
This rewrite sequence can be used to define inductively, similar as in
the first case by preserving the production of equally coloured
contexts in every step, a rewrite sequence [M]�p •n(N).
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Main Result. Examples. Jörg’s Tool.

Box Composition

Definition

Composition · : ±ω ×±ω → ±ω, 〈σ, τ〉 7→ σ · τ of I/O sequences
is corecursively defined by:

(+σ) · τ = +(σ · τ)

(−σ) · (+τ) = σ · τ

(−σ) · (−τ) = −((−σ) · τ)

Lemma
βσ·τ = βσ ◦ βτ .
Composition is associative.
Composition preserves rationality: σ · τ ∈ ±ω

rat if σ, τ ∈ ±ω
rat.

On rational representations of rational I/O sequences,
composition can be computed effectively.
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Least Fixed Point of Box Composition

1 2 3 4 n5 6 7 8 9

4
5
6
7
8

2
3

βσ(n)

0

−+

Graph of the production function βσ for σ = ++−+−+−
with least fixed point fix(σ) = 6 as indicated.
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Fixed Point Computation

Definition

The operations fixed point fix : ±ω → N and first requirement removal
δ : ±ω → ±ω are corecursively defined by:

fix(+σ) = S(fix(δ(σ))) δ(+σ) = +δ(σ)

fix(−σ) = 0 δ(−σ) = σ

Lemma

fix(σ) is the least fixed point of βσ.
Given a rational representation 〈α, γ〉 of σ ∈ ±ω

rat,
its fixed point fix(σ) can be computed in finite time.
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From Nets to Sources

Definition

Net reduction relation →R on closed pebbleflow nets is defined,
for all σ, τ ∈ ±ω and k , k1, k2 ∈ N, by:

•(N) → box((+−+), N) (R1)
box(σ, box(τ, N)) → box(σ · τ, N) (R2)

box(σ,4(N1, N2)) →4(box(σ, N1), box(σ, N2)) (R3)
µx .4(N1, N2) →4(µx .N1, µx .N2) (R4)

µx .N → N if x 6∈ FV(N) (R5)
µx .box(σ, x) → src(fix(σ)) (R6)

4(src(k1), src(k2)) → src(min(k1, k2)) (R7)
box(σ, src(k)) → src(βσ(k)) (R8)

µx .x → src(0) (R9)
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Properties of Net Reduction

Theorem
→R is production preserving:

N →R N ′ =⇒ π(N) = π(N ′) .

→R is confluent and terminating.
Every closed net normalises to a source, its unique
→R-normal form.
For every rational net N, the →R-normal form of N can be
computed effectively.
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Main Result

Theorem
Productivity for pure SCSs is decidable.

Proof.
The following steps describe an decision algorithm for a stream
constant M in an SCS T :

Translate M to the rational net [M].
Reduce [M] to a source src(n).
(Note that πT (M) = π([M]) = n.)
If n = ∞, then output: “T is productive for M”;
else, n ∈ N, output: “T is not productive for M, it produces n
elements only”.
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Jörg’s Tool

A translation and collapsing tool (Haskell-based).

Input: A pure SCS T , a stream constant M in T .
Output: A natural number n or the symbol ∞ dependent on whether the

maximal number of leading stream constructor symbols “:” in a
reduct of M in T is n, or respectively, is unbounded.
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Conclusion and Ongoing Reserach

A decision algorithm for a rich class of stream definitions
intended as a tool for functional programming practice.
Our format of SCSs only restricts the SFS part (i.p. no nesting of
recursive calls), but not how SCSs make use of stream functions.
Previous approaches established criteria for productivity (not
applicable for disproving) and are either applicable to general
stream def’s, but not automatable (Sijtsma ’89, Buchholz ’05),
or give a ‘productive’/‘don’t know’ answer only for a very limited
subclass (Wadge ’81, Hughes–Pareto–Sabry ’96,

Telford–Turner ’97, Buchholz ’05).
Current research: Computable criteria for productivity and its
complement by considering lower and upper rational bounds on
the production of stream definitions. (Allows to deal with stream
functions whose production depends quantitiatively on the values
of stream elements and data parameters).
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Thanks for your attention!
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