Graph Kernels, Logic, and Choice Axioms

Michał Walicki ${ }^{1}$ Marc Bezem ${ }^{1}$ Clemens Grabmayer ${ }^{2}$
${ }^{1}$ Department of Informatics, University of Bergen, Norway
michal, bezem@ii.uib.no
${ }^{2}$ Department of Philosophy, Universiteit Utrecht, The Netherlands
clemens@phil.uu.nl

September 21, 2009 / Tbilisi 2009 Bakuriani, Georgia

Overview

- Kernels and solutions of digraphs
- Kernel existence and propositional logic
- Kernel existence and choice axioms
- Computational complexity of kernel existence
- Summary of results

Overview

1. Kernels and solutions
2. Kernel existence and propositional logic
3. Kernel existence and choice axioms

4. Computational complexity of kernel existence

5. Summary

Digraphs

A directed graph (digraph) $G=\langle V, \hookrightarrow\rangle$ consists of a set V of vertices, and a set $\mapsto \subseteq V \times V$ of directed edges. Notation for vertices x :

- $(x \mapsto):=\{y \in V \mid x \mapsto y\}$ set of successors of x
- $(\mapsto x):=\{y \in V \mid y \mapsto x\}$ set of predecessors of x
- extended to sets, e.g. $(\mapsto X):=\bigcup_{x \in X}(\mapsto x)$.

$$
\begin{aligned}
& (a \longmapsto)=\{b, c, d\} \\
& (\longmapsto\{d, f\})=\{a, c, d\}
\end{aligned}
$$

Kernels

Definition

A kernel of a digraph $G=\langle V, \mapsto\rangle$ is a set $K \subseteq V$ such that:
$1(K \longmapsto) \cap K=\emptyset$ (no successor of a vertex in K is in K);
$2 V \backslash K \subseteq(\longmapsto K)$
(every vertex not in K is the predecessor of a vertex in K).

Kernels

Definition

A kernel of a digraph $G=\langle V, \mapsto\rangle$ is a set $K \subseteq V$ such that:
$1(K \rightarrow) \cap K=\emptyset$ (no successor of a vertex in K is in K);
$2 V \backslash K \subseteq(\longmapsto K)$
(every vertex not in K is the predecessor of a vertex in K).

$$
\left.\begin{array}{rlrl}
K & =\{v\} \text { is a kernel } & & (K \hookrightarrow) \\
v \backslash K & =\{u, v\} & & (\longmapsto K)
\end{array}\right)=\{u, v\}
$$

Solutions

Definition (von Neumann/Morgenstern, 1944)

A solution of a digraph $G=\langle V, \mapsto\rangle$ is an assignment $\alpha \in\{\mathbf{0}, \mathbf{1}\}^{V}$ of truth-values to the vertices such that:

$$
\forall u \in V[\alpha(u)=\mathbf{1} \Longleftrightarrow \forall v \in V(u \mapsto v \Rightarrow \alpha(v)=\mathbf{0})] .
$$

Solutions

Definition (von Neumann/Morgenstern, 1944)

A solution of a digraph $G=\langle V, \mapsto\rangle$ is an assignment $\alpha \in\{\mathbf{0}, \mathbf{1}\}^{V}$ of truth-values to the vertices such that:

$$
\forall u \in V[\alpha(u)=\mathbf{1} \Longleftrightarrow \forall v \in V(u \nsim v \Rightarrow \alpha(v)=\mathbf{0})] .
$$

Kernels versus solutions

For all assignments $\alpha \in\{\mathbf{0}, \mathbf{1}\}^{V}$, let $\alpha^{\mathbf{1}}:=\{x \in V \mid \alpha(x)=\mathbf{1}\}$.

Proposition

For all assignments α on a digraph G :
α is a solution of $G \Longleftrightarrow \alpha^{1}$ is a kernel of G.

$2 \alpha \in \operatorname{sol}(G)$

Kernels versus solutions

For all assignments $\alpha \in\{\mathbf{0}, \mathbf{1}\}^{V}$, let $\alpha^{\mathbf{1}}:=\{x \in V \mid \alpha(x)=\mathbf{1}\}$.

Proposition

For all assignments α on a digraph G :
α is a solution of $G \Longleftrightarrow \alpha^{1}$ is a kernel of G.

Proof.

$1 K \subseteq V$ is a kernel $\Longleftrightarrow K=V \backslash(\longmapsto K)$;
$2 \alpha \in \operatorname{sol}(G) \Longleftrightarrow \alpha^{1}=V \backslash\left(\mapsto \alpha^{1}\right)$.

Solvability: some results

- general digraphs
- complete digraphs
- fb digraphs without odd cycles (Richardson, 1953)
- digraphs in which for all vertices u and v, either all paths between them have even length, or all have odd length (W/Dyrkolbotn, 2009)
- dags (directed acyclic graphs)
- finite
- well-founded (von Neumann/Morgenstern, 1944)
- fb (finitely branching)
- trees (rooted or unrooted), forests

Unsolvable dag

The infinitely-branching dag $\langle\mathbb{N},<\rangle$ (Yablo dag) is unsolvable:

Unsolvable dag

The infinitely-branching $\operatorname{dag}\langle\mathbb{N},<\rangle$ (Yablo dag) is unsolvable:

Case 1:

Unsolvable dag

The infinitely-branching $\operatorname{dag}\langle\mathbb{N},<\rangle$ (Yablo dag) is unsolvable:

Case 2:

Overview

1. Kernels and solutions

2. Kernel existence and propositional logic
3. Kernel existence and choice axioms
4. Computational complexity of kernel existence
5. Summary

From digraphs to theories

Every digraph $G=\langle V, \mapsto\rangle$ induces the (infinitary) propositional theory

$$
\mathcal{T}(G)=\left\{x \leftrightarrow \bigwedge_{y \in(x \hookrightarrow)} \neg y \mid x \in V\right\}
$$

taking $\left(\bigwedge_{z \in \emptyset} z\right):=1$. If G is finitely-branching, then $\mathcal{T}(G)$ is finitary.

Proposition

- $\mathcal{T}(G)$ is consistent $\Longleftrightarrow G$ is solvable.
- Moreover: $\operatorname{sol}(G)=\bmod (\mathcal{T}(G))$.

From theories to digraphs

$$
\text { Let } \mathrm{T}_{1}=\left\{x_{1} \leftrightarrow \neg x_{2}, \quad x_{3} \leftrightarrow \neg x_{1} \wedge \neg x_{2}\right\},
$$

From theories to digraphs

$$
\text { Let } \mathrm{T}_{1}=\left\{x_{1} \leftrightarrow \neg x_{2}, \quad x_{3} \leftrightarrow \neg x_{1} \wedge \neg x_{2}\right\},
$$

$$
\mathcal{G}\left(T_{1}\right)
$$

solvable

From theories to digraphs

$$
\text { Let } \mathrm{T}_{1}=\left\{x_{1} \leftrightarrow \neg x_{2}, \quad x_{3} \leftrightarrow \neg x_{1} \wedge \neg x_{2}\right\},
$$

$$
T_{2}=\left\{y_{1} \leftrightarrow \neg y_{2}, \quad y_{2} \leftrightarrow \neg y_{3}, \quad y_{3} \leftrightarrow \neg y_{1}\right\} . \text { Then: }
$$

$\mathcal{G}\left(\mathrm{T}_{1}\right)$

$\mathcal{G}\left(T_{2}\right)$
solvable

From theories to digraphs

$$
\text { Let } \mathrm{T}_{1}=\left\{x_{1} \leftrightarrow \neg x_{2}, \quad x_{3} \leftrightarrow \neg x_{1} \wedge \neg x_{2}\right\},
$$

$$
\mathrm{T}_{2}=\left\{y_{1} \leftrightarrow \neg y_{2}, \quad y_{2} \leftrightarrow \neg y_{3}, \quad y_{3} \leftrightarrow \neg y_{1}\right\} . \text { Then: }
$$

$$
\mathcal{G}\left(T_{1}\right)
$$

solvable

$$
\mathcal{G}\left(\mathrm{T}_{2}\right)
$$

unsolvable

From theories to digraphs

Every finitary propositional theory (over var's \mathbb{V}) in normal form:

$$
\mathrm{T}=\left\{x_{i} \leftrightarrow \bigwedge_{j \in J_{i}} \neg y_{i j} \mid i \in I\right\}
$$

induces a digraph $\mathcal{G}(T)=\langle V, \mapsto\rangle$ with

$$
\begin{gathered}
V:=\{z, \bar{z} \mid z \in \mathbb{V}, z \text { not on the rhs of a formula in } \mathrm{T}\} \\
x \mapsto y: \Longleftrightarrow\left(x \leftrightarrow \bigwedge_{j=1}^{n} \neg y_{j}\right) \in T \& y \in\left\{y_{1}, \ldots, y_{n}\right\} \\
z \mapsto \bar{z}, \bar{z} \mapsto z(z \text { not on the rhs of a formula in } T)
\end{gathered}
$$

Proposition

- $\mathcal{G}(\mathrm{T})$ is solvable $\Longleftrightarrow \mathrm{T}$ is consistent.
- Moreover: $\bmod (\mathrm{T})=\left.\operatorname{sol}(\mathcal{G}(\mathrm{T}))\right|_{\mathrm{V}(\mathrm{T})}$

General theories can be brought into equiconsistent normal form by a simple procedure.

Simulating connectives

\square

Simulating connectives

V

\wedge

\longrightarrow

Simulating connectives

\wedge

Simulating connectives

\wedge

Simulating connectives

\wedge

Overview

> 1. Kernels and solutions
> 2. Kernel existence and propositional logic
3. Kernel existence and choice axioms

4. Computational complexity of kernel existence

5. Summary

Solvability and Choice Principles

Proposition

Solvability of fb dags follows from:

- in the general case:
- compactness of propositional logic: every set of propositional formulas that is finitely satisfiable is satisfiable.
- for countable dags:
- countable compactness,
- Weak König's Lemma (WKL): Every infinite, ordered, and fb tree has an infinite path.
- What about the converse implications?
- What choice principle corresponds precisely to solvability of a class of solvable digraphs?

Solvability and Choice Principles

Proposition

Solvability of fb dags follows from:

- in the general case:
- compactness of propositional logic: every set of propositional formulas that is finitely satisfiable is satisfiable.
- for countable dags:
- countable compactness,
- Weak König's Lemma (WKL): Every infinite, ordered, and fb tree has an infinite path.
- What about the converse implications?
- What choice principle corresponds precisely to solvability of a class of solvable digraphs?

Digraph Solvability over ZF

Our Results:

digraph class \mathcal{C}	additional principle needed for proving, and equivalent to, solvability of \mathcal{C} over ZF
disjoint unions of solvable digraphs	AC
disjoint unions of solvable dags	
countable disjoint unions of solvable digraphs (solvable dags)	AC_{ω}
well-founded dags (e.g. finite dags); rooted trees; trees; forests of trees with roots or leafs	

Digraph solvability and AC

Theorem

Over ZF, the following are equivalent:
(AC): For every set X, there is a choice function on X.
(GS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable digraphs G_{i} is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs
one of the vertices.

Digraph solvability and AC

Theorem

Over ZF, the following are equivalent:
(AC): For every set X, there is a choice function on X.
(GS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable digraphs G_{i} is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs
one of the vertices.

Digraph solvability and AC

Theorem

Over ZF, the following are equivalent:
(AC): For every set X, there is a choice function on X.
(GS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable digraphs G_{i} is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs chooses one of the vertices.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union $\biguplus_{i \in I} G_{i}$ of solvable dags G_{i} is solvable.

Idea: Consider a set $A=\{a, b\}$. Let $D(A)$ be the dag:

Solutions of $D(A)$ make a choice between a and b.

Digraph Solvability over RCA。

Our Results:

digraph class \mathcal{C}	additional principle needed for proving, and equivalent to, solvability of \mathcal{C} over RCA_{0}
disjoint unions of solvable digraphs	AC
disjoint unions of solvable dags	
countable disjoint unions of solvable digraphs (solvable dags)	
countable fb dags	
well-founded dags (e.g. finite dags); rooted trees; trees; forests of trees with roots or leafs	

Digraph Solvability over RCA_{0}

Our Results:

digraph class \mathcal{C}	additional principle needed for proving, and equivalent to, solvability of \mathcal{C} over RCA_{0}
disjoint unions of solvable digraphs	AC
disjoint unions of solvable dags	
countable disjoint unions of solvable digraphs (solvable dags)	WKL
countable fb dags	-
well-founded dags (e.g. finite dags); rooted trees; trees; forests of trees with roots or leafs	

Digraph Solvability over RCA_{0}

Theorem

Solvability of countable fb dags is, over RCA_{0}, equivalent to:

- countable compactness: every countable set of propositional formulas that is finitely satisfiable is satisfiable.

Since, over RCA_{0}, countable compactness is equivalent to WKL:

Solvability of countable fb dags is, over RCA_{0}, equivalent to:

- WKL: Every infinite, ordered, and fb tree has an infinite path.

Digraph Solvability over RCA_{0}

Theorem

Solvability of countable fb dags is, over RCA_{0}, equivalent to:

- countable compactness: every countable set of propositional formulas that is finitely satisfiable is satisfiable.

Since, over RCA_{0}, countable compactness is equivalent to WKL :

Corollary

Solvability of countable fb dags is, over RCA_{0}, equivalent to:

- WKL: Every infinite, ordered, and fb tree has an infinite path.

Overview

1. Kernels and solutions

2. Kernel existence and propositional logic
3. Kernel existence and choice axioms
4. Computational complexity of kernel existence
5. Summary

Complexity of kernel/solution existence?

- is recursive: for classes of solvable digraphs (trivial).
- is NP-complete: for finite digraphs (Chvátal, 1973)
- is precisely what for classes including non-fb dags?

Dag-Solvability Problem DSP
Instance: $G=\langle\mathbb{N}, \mapsto\rangle$ a recursive dag
Answer: Is G solvable?
Recognition problem: $\{\ulcorner G\urcorner: G$ is a recursive dag that is solvable $\}$
Where does DSP figure in the arithmetical hierarchy?

The arithmetical hierarchy

$$
\begin{aligned}
\boldsymbol{\Pi}_{0}^{0}:=\boldsymbol{\Sigma}_{0}^{0}:= & 1^{\text {stt-order arithmetic formulas }} & \boldsymbol{\Sigma}_{n_{+1}^{0}}^{0}:=\left\{\exists x_{1} \ldots \exists x_{k} \psi \mid \psi \in \boldsymbol{\Pi}_{n}^{0}\right\} \\
& \text { with bounded quantifiers } & \boldsymbol{\Pi}_{n+1}^{0}:=\left\{\forall x_{1} \ldots \forall x_{k} \psi \mid \psi \in \boldsymbol{\Sigma}_{n}^{0}\right\}
\end{aligned}
$$

$\Sigma_{n}^{0}\left(\Pi_{n}^{0}\right):=$ interpretations of formulas in $\Sigma_{n}^{0}\left(\boldsymbol{\Pi}_{n}^{0}\right)$ over $\mathbb{N} \quad \Delta_{n}^{0}:=\Sigma_{n}^{0} \cap \Pi_{n}^{0}$

The analytical hierarchy

$\Sigma_{n}^{1}\left(\Pi_{n}^{1}\right):=$ interpretations of formulas in $\boldsymbol{\Sigma}_{n}^{1}\left(\boldsymbol{\Pi}_{n}^{1}\right)$ over $\mathbb{N} \quad \Delta_{n}^{1}:=\Sigma_{n}^{1} \cap \Pi_{n}^{1}$

Theorem
 DSP is Σ_{1}^{1}-complete.

Proof.

- Contained in Σ_{1}^{1} :
solvability is expressible by the Σ_{1}^{1}-formula:

$$
\exists K \forall n\left[n \in K \leftrightarrow \forall n^{\prime}\left(\text { EdgeBetween } \ln \left(n, n^{\prime}, m\right) \rightarrow n^{\prime} \notin K\right)\right]
$$

- \sum_{1}^{1}-complete:

Reducing the non-well-foundedness problem NWFP for binary recursive relations (Σ_{1}^{1}-complete!), to DSP via a recursive many-one reduction $D(\cdot)$:
For every recursive binary rel. R build a recursive dag $D(R)$ s.th.:
$D(R)$ is solvable $\Longleftrightarrow R$ is not well-founded

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded.

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Tree unfolding $T(R)$ well-founded.

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Modification $M(T(R))$ of $T(R)$ well-founded.

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Modification $M(T(R))$ of $T(R)$ solvable.

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Dag $D(R)$ associated with R :

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Dag $D(R)$ associated with R unsolvable.

Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Dag $D(R)$ associated with R unsolvable.

Reducing NWFP to DSP (Case 2)

Case 2: not well-founded binary relation R.

Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Tree unfolding $T(R)$ not well-founded.

Reducing NWFP to DSP (Case 2)

Case 2: R not wf. Modification $M(T(R))$ of $T(R)$ not well-founded.

Reducing NWFP to DSP (Case 2)

Case 2: R not wf. Modification $M(T(R))$ of $T(R)$ not well-founded.

Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Modification $M(T(R))$ of $T(R)$ solvable.

Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Dag $D(R)$ associated with R :

Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Dag $D(R)$ associated with R solvable.

Related result

- There exist recursive binary trees without recursive solutions.

Overview

1. Kernels and solutions

2. Kernel existence and propositional logic
3. Kernel existence and choice axioms

4. Computational complexity of kernel existence

5. Summary

Open questions

- Which choice principle corresponds, over ZF:
- to fb-dag solvability?
- to forest solvability (forests possibly including unrooted trees)?

Summary of results

- kernels and logic
- back-and-forth correspondences between solvable digraphs and consistent propositional theories
- kernels and choice axioms
- statements on digraph-/dag-solvability equivalent to AC , and AC_{ω}, over ZF
- comparable statements over RCA 0
- main result: over RCA_{0}, solvability of countable, fb dags is equivalent to countable compactness, and to WKL
- solvability of trees (rooted/unrooted) in ZF.
- computational complexity of kernel existence
- Σ_{1}^{1}-completeness of dag-solvability (and of digraph-solvability)

