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Digraphs

A directed graph (digraph) G = 〈V ,���〉 consists of a set V of vertices,
and a set ��� ⊆ V×V of directed edges. Notation for vertices x :
I (x���) := {y ∈ V | x ��� y} set of successors of x
I (��� x) := {y ∈ V | y ��� x} set of predecessors of x
I extended to sets, e.g. (���X ) :=

⋃
x∈X (��� x).

a

b

c

f
e

d (a���) = {b, c, d}

(��� {d , f}) = {a, c, d}
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Kernels

Definition

A kernel of a digraph G = 〈V ,���〉 is a set K ⊆ V such that:
1 (K���) ∩ K = ∅

(no successor of a vertex in K is in K );
2 V \ K ⊆ (���K )

(every vertex not in K is the predecessor of a vertex in K ).

u

w

v
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Kernels

Definition

A kernel of a digraph G = 〈V ,���〉 is a set K ⊆ V such that:
1 (K���) ∩ K = ∅

(no successor of a vertex in K is in K );
2 V \ K ⊆ (���K )

(every vertex not in K is the predecessor of a vertex in K ).

u

w

v
K = {v} is a kernel (K���) = {w}

V \ K = {u, v} (���K ) = {u, v}
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Solutions

Definition (von Neumann/Morgenstern, 1944)

A solution of a digraph G = 〈V ,���〉 is an assignment α ∈ {0,1}V

of truth-values to the vertices such that:

∀u ∈ V
[
α(u) = 1 ⇐⇒ ∀v ∈ V ( u ��� v ⇒ α(v) = 0 )

]
.
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Kernels versus solutions

For all assignments α ∈ {0,1}V , let α1 := {x ∈ V | α(x) = 1}.

Proposition

For all assignments α on a digraph G:

α is a solution of G ⇐⇒ α1 is a kernel of G.

Proof.

1 K ⊆ V is a kernel ⇐⇒ K = V \ (���K );
2 α ∈ sol(G) ⇐⇒ α1 = V \ (���α1).
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Solvability: some results

I general digraphs
I complete digraphs
I fb digraphs without odd cycles (Richardson, 1953)
I digraphs in which for all vertices u and v , either all paths between

them have even length, or all have odd length (W/Dyrkolbotn, 2009)

I dags (directed acyclic graphs)
I finite
I well-founded (von Neumann/Morgenstern, 1944)
I fb (finitely branching)
I trees (rooted or unrooted), forests
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Unsolvable dag

The infinitely-branching dag 〈N, <〉 (Yablo dag) is unsolvable:
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Case 1:
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From digraphs to theories

Every digraph G = 〈V ,���〉 induces the (infinitary) propositional theory

T (G) = {x ↔
∧

y∈(x���)¬y | x ∈ V}

taking (
∧

z∈∅z) := 1. If G is finitely-branching, then T (G) is finitary.

Proposition

I T (G) is consistent ⇐⇒ G is solvable.

I Moreover: sol(G) = mod(T (G)).
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From theories to digraphs

Let T1 = { x1 ↔ ¬ x2, x3 ↔ ¬ x1 ∧ ¬ x2 },

unsolvable

y1

y3

solvable

y2

x2x1 x3

x2

G(T1)
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From theories to digraphs

Let T1 = { x1 ↔ ¬ x2, x3 ↔ ¬ x1 ∧ ¬ x2 },

unsolvable

y2

y1

y3

solvable

G(T1)

x1 x2

x2

x3
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From theories to digraphs

Let T1 = { x1 ↔ ¬ x2, x3 ↔ ¬ x1 ∧ ¬ x2 },

T2 = { y1 ↔ ¬ y2, y2 ↔ ¬ y3, y3 ↔ ¬ y1 }. Then:

solvable

G(T1) G(T2)

unsolvable

x2

x2x1 x3

y2 y3

y1
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From theories to digraphs

Let T1 = { x1 ↔ ¬ x2, x3 ↔ ¬ x1 ∧ ¬ x2 },

T2 = { y1 ↔ ¬ y2, y2 ↔ ¬ y3, y3 ↔ ¬ y1 }. Then:

solvable unsolvable

y2

G(T1)

y3

G(T2)

x1 x2

x2

x3

y1

Walicki, Bezem, Grabmayer Tbilisi2009

Graph Kernels, Logic, and Choice Axioms



Kernels and solutions Kernels and logic Kernels and choice axioms Complexity of kernel existence Summary

From theories to digraphs
Every finitary propositional theory (over var’s V) in normal form:

T =
{

xi ↔
∧

j∈Ji
¬ yij

∣∣ i ∈ I
}

induces a digraph G(T) = 〈V ,���〉 with

V := {z, z
∣∣ z ∈ V, z not on the rhs of a formula in T}

x ��� y :⇐⇒
(

x ↔
∧n

j=1¬ yj
)
∈T & y ∈ {y1, . . . , yn}

z��� z, z��� z (z not on the rhs of a formula in T)

Proposition

I G(T) is solvable ⇐⇒ T is consistent.

I Moreover: mod(T) = sol(G(T))|V(T)

General theories can be brought into equiconsistent normal form by a
simple procedure.
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Simulating connectives

∨ ∧ ¬
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Simulating connectives

∨ ∧ ¬
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Solvability and Choice Principles

Proposition

Solvability of fb dags follows from:
I in the general case:

I compactness of propositional logic: every set of propositional
formulas that is finitely satisfiable is satisfiable.

I for countable dags:
I countable compactness,
I Weak König’s Lemma (WKL): Every infinite, ordered, and fb tree

has an infinite path.

I What about the converse implications?
I What choice principle corresponds precisely to solvability of a

class of solvable digraphs?
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Digraph Solvability over ZF

Our Results:

digraph class C
additional principle needed

for proving, and equivalent to,
solvability of C over ZF

disjoint unions of solvable digraphs AC
disjoint unions of solvable dags

countable disjoint unions of ACωsolvable digraphs (solvable dags)

well-founded dags (e.g. finite dags);
—rooted trees; trees;

forests of trees with roots or leafs
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Digraph solvability and AC

Theorem

Over ZF, the following are equivalent:
(AC): For every set X , there is a choice function on X.
(GS): Every disjoint union

⊎
i∈I Gi of solvable digraphs Gi is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs chooses one of the vertices.
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Dag solvability and AC

Theorem

Over ZF, AC is also equivalent with:
(DS): Every disjoint union

⊎
i∈I Gi of solvable dags Gi is solvable.

Idea: Consider a set A = {a,b}. Let D(A) be the dag:

Solutions of D(A) make a choice between a and b.
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Digraph Solvability over RCA0

Theorem

Solvability of countable fb dags is, over RCA0, equivalent to:
I countable compactness: every countable set of propositional

formulas that is finitely satisfiable is satisfiable.

Since, over RCA0, countable compactness is equivalent to WKL:

Corollary

Solvability of countable fb dags is, over RCA0, equivalent to:
I WKL: Every infinite, ordered, and fb tree has an infinite path.
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Complexity of kernel/solution existence?

I is recursive: for classes of solvable digraphs (trivial).
I is NP-complete: for finite digraphs (Chvátal, 1973)
I is precisely what for classes including non-fb dags?

DAG-SOLVABILITY PROBLEM DSP
Instance: G = 〈N,���〉 a recursive dag
Answer: Is G solvable?
Recognition problem: {pGq : G is a recursive dag that is solvable}

Where does DSP figure in the arithmetical hierarchy?
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The arithmetical hierarchy

Π0
0 = Σ0

0 = ∆0
0 = ∆0

1

Π0
1 Σ0

1

∆0
2

Π0
2 Σ0

2

∆0
3

. . . . . .

Recursive
sets

Recursively
enumerable

TM Uniform
Halting Problem

Π0
0 := Σ0

0 := 1st-order arithmetic formulas
with bounded quantifiers

Σ0
n+1 := {∃x1 . . . ∃xk Ψ | Ψ ∈ Π0

n}
Π0

n+1 := {∀x1 . . . ∀xk Ψ | Ψ ∈ Σ0
n}

Σ0
n(Π0

n) := interpretations of formulas in Σ0
n(Π0

n) over N ∆0
n := Σ0

n ∩ Π0
n
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The analytical hierarchy

Π1
0 = ∆1

0 = Σ1
0

Π1
1 Σ1

1

∆1
2

Π1
2 Σ1

2

∆1
3

. . . . . .

Arithmetical
sets

Well-Foundedness

Non-Well-foundedness
DSP

Π1
0 := Σ1

0 := 2nd-order arithm. formulas
without set quantifiers

Σ1
n+1 := {∃X1 . . . ∃Xk Ψ | Ψ ∈ Π1

n}
Π1

n+1 := {∀X1 . . . ∀Xk Ψ | Ψ ∈ Σ1
n}

Σ1
n(Π1

n) := interpretations of formulas in Σ1
n(Π1

n) over N ∆1
n := Σ1

n ∩ Π1
n
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Theorem

DSP is Σ1
1-complete.

Proof.

I Contained in Σ1
1:

solvability is expressible by the Σ1
1-formula:

∃K ∀n
[

n ∈ K ↔ ∀n′( EdgeBetweenIn(n,n′,m) → n′ /∈ K )
]

I Σ1
1-complete:

Reducing the non-well-foundedness problem NWFP for binary
recursive relations (Σ1

1-complete!), to DSP via a recursive
many-one reduction D(·):
For every recursive binary rel. R build a recursive dag D(R) s.th.:

D(R) is solvable ⇐⇒ R is not well-founded
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded.

R
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Tree unfolding T (R) well-founded.

T (R)
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Modification M(T (R)) of T (R) well-founded.

M(T (R))
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Modification M(T (R)) of T (R) solvable.

M(T (R))
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Dag D(R) associated with R:

M(T (R))

D(R)
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Dag D(R) associated with R unsolvable.

M(T (R))

D(R)
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Reducing NWFP to DSP (Case 1)

Case 1: R well-founded. Dag D(R) associated with R unsolvable.

D(R)

M(T (R))
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Reducing NWFP to DSP (Case 2)

Case 2: not well-founded binary relation R.

R
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Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Tree unfolding T (R) not well-founded.

T (R)

Walicki, Bezem, Grabmayer Tbilisi2009

Graph Kernels, Logic, and Choice Axioms



Kernels and solutions Kernels and logic Kernels and choice axioms Complexity of kernel existence Summary

Reducing NWFP to DSP (Case 2)

Case 2: R not wf. Modification M(T (R)) of T (R) not well-founded.

M(T (R))
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Reducing NWFP to DSP (Case 2)

Case 2: R not wf. Modification M(T (R)) of T (R) not well-founded.

M(T (R))
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Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Modification M(T (R)) of T (R) solvable.

M(T (R))
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Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Dag D(R) associated with R:

D(R)

M(T (R))
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Reducing NWFP to DSP (Case 2)

Case 2: R not well-founded. Dag D(R) associated with R solvable.

D(R)

M(T (R))
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Related result

I There exist recursive binary trees without recursive solutions.
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Overview

1. Kernels and solutions

2. Kernel existence and propositional logic

3. Kernel existence and choice axioms

4. Computational complexity of kernel existence

5. Summary
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Open questions

I Which choice principle corresponds, over ZF:
I to fb-dag solvability?
I to forest solvability (forests possibly including unrooted trees)?
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Summary of results

I kernels and logic
I back-and-forth correspondences between

solvable digraphs and consistent propositional theories

I kernels and choice axioms
I statements on digraph-/dag-solvability equivalent to AC, and ACω,

over ZF
I comparable statements over RCA0

I main result: over RCA0, solvability of countable, fb dags
is equivalent to countable compactness, and to WKL

I solvability of trees (rooted/unrooted) in ZF.

I computational complexity of kernel existence
I Σ1

1-completeness of dag-solvability (and of digraph-solvability)

Walicki, Bezem, Grabmayer Tbilisi2009

Graph Kernels, Logic, and Choice Axioms


