Graph Kernels, Logic, and Choice Axioms

Michał Walicki¹ Marc Bezem¹ Clemens Grabmayer²

¹ Department of Informatics, University of Bergen, Norway michal, bezem@ii.uib.no

² Department of Philosophy, Universiteit Utrecht, The Netherlands clemens@phil.uu.nl

September 21, 2009 / Tbilisi 2009 Bakuriani, Georgia

Walicki, Bezem, Grabmayer

- Kernels and solutions of digraphs
- Kernel existence and propositional logic
- Kernel existence and choice axioms.
- Computational complexity of kernel existence
- Summary of results

Kernels and solutions	Kernels and logic	Kernels and choice axioms	Complexity of kernel existence	Summary
Overview				

1. Kernels and solutions

- 2. Kernel existence and propositional logic
- 3. Kernel existence and choice axioms
- 4. Computational complexity of kernel existence
- 5. Summary

Digraphs

A directed graph (digraph) $G = \langle V, \rightarrow \rangle$ consists of a set *V* of vertices, and a set $\rightarrow \subseteq V \times V$ of directed edges. Notation for vertices *x*:

- $(x \rightarrow) := \{y \in V \mid x \rightarrow y\}$ set of successors of x
- $(\rightarrowtail x) := \{y \in V \mid y \rightarrowtail x\}$ set of predecessors of x
- extended to sets, e.g. $(\rightarrow X) := \bigcup_{x \in X} (\rightarrow x)$.

 $(a \rightarrow) = \{b, c, d\}$

$$(\rightarrowtail \{d, f\}) = \{a, c, d\}$$

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Kernel	s and solutions	Kernels and logic	Kernels and choice axioms	Complexity of kernel existence	Summary
Ke	ernels				
	Definition				
	A kernel of	a digraph G =	$\langle V, ightarrow angle$ is a set K	\subseteq <i>V</i> such that:	
	1 (<i>K</i> →)	$\cap K = \emptyset$			
	(no su	ccessor of a ve	ertex in K is in K);		

2 $V \setminus K \subseteq (\rightarrow K)$

(every vertex not in K is the predecessor of a vertex in K).

Kernel	s and solutions	Kernels and logic	Kernels and choice axioms	Complexity of kernel existence	Summary
Ke	ernels				
	Definition				
	A kernel of	a digraph G =	$\langle V, ightarrow angle$ is a set K	\subseteq <i>V</i> such that:	
	1 (<i>K</i> →)	$\cap \mathbf{K} = \emptyset$			
	(no su	ccessor of a ve	ertex in K is in K);		

 $V \setminus K \subseteq (\rightarrowtail K)$

(every vertex not in K is the predecessor of a vertex in K).

$$K = \{v\} \text{ is a kernel} \quad (K \mapsto) = \{w\}$$

$$V \setminus K = \{u, v\} \quad (\mapsto K) = \{u, v\}$$

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Kernels and solutions	Kernels and logic	Kernels and choice axioms	Complexity of kernel existence	Summary
Solutions				

Definition (von Neumann/Morgenstern, 1944)

A solution of a digraph $G = \langle V, \rightarrow \rangle$ is an assignment $\alpha \in \{0, 1\}^V$ of truth-values to the vertices such that:

$$\forall u \in V \big[\alpha(u) = \mathbf{1} \iff \forall v \in V (u \rightarrowtail v \Rightarrow \alpha(v) = \mathbf{0}) \big].$$

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Kernels and solutions	Kernels and logic	Kernels and choice axioms	Complexity of kernel existence	Summary
Solutions				

Definition (von Neumann/Morgenstern, 1944)

A solution of a digraph $G = \langle V, \rightarrow \rangle$ is an assignment $\alpha \in \{0, 1\}^V$ of truth-values to the vertices such that:

$$\forall u \in V \big[\alpha(u) = \mathbf{1} \iff \forall v \in V (u \rightarrowtail v \Rightarrow \alpha(v) = \mathbf{0}) \big].$$

Kernels versus solutions

For all assignments $\alpha \in \{0, 1\}^V$, let $\alpha^1 := \{x \in V \mid \alpha(x) = 1\}$.

Proposition

For all assignments α on a digraph G:

 α is a solution of $G \iff \alpha^1$ is a kernel of G.

Proof.

1 $K \subseteq V$ is a kernel $\iff K = V \setminus (\mapsto K);$ 2 $\alpha \in sol(G) \iff \alpha^1 = V \setminus (\mapsto \alpha^1).$

Walicki, Bezem, Grabmayer

Kernels versus solutions

For all assignments $\alpha \in \{0, 1\}^V$, let $\alpha^1 := \{x \in V \mid \alpha(x) = 1\}$.

Proposition

For all assignments α on a digraph G:

 α is a solution of $G \iff \alpha^1$ is a kernel of G.

Proof.

1
$$K \subseteq V$$
 is a kernel $\iff K = V \setminus (\rightarrowtail K);$
2 $\alpha \in sol(G) \iff \alpha^1 = V \setminus (\rightarrowtail \alpha^1).$

Walicki, Bezem, Grabmayer

Solvability: some results

general digraphs

- complete digraphs
- fb digraphs without odd cycles (Richardson, 1953)
- digraphs in which for all vertices u and v, either all paths between them have even length, or all have odd length (W/Dyrkolbotn, 2009)
- dags (directed acyclic graphs)
 - finite
 - well-founded (von Neumann/Morgenstern, 1944)
 - fb (finitely branching)
 - trees (rooted or unrooted), forests

Unsolvable dag

The infinitely-branching dag $(\mathbb{N}, <)$ (Yablo dag) is unsolvable:

Unsolvable dag

The infinitely-branching dag $\langle \mathbb{N}, < \rangle$ (Yablo dag) is unsolvable:

Case 1:

The infinitely-branching dag $\langle \mathbb{N}, \langle \rangle$ (Yablo dag) is unsolvable:

Case 2:

Kernels and solutions	Kernels and logic	Kernels and choice axioms	Complexity of kernel existence	Summary
Overview				

1. Kernels and solutions

2. Kernel existence and propositional logic

- 3. Kernel existence and choice axioms
- 4. Computational complexity of kernel existence
- 5. Summary

From digraphs to theories

Every digraph $G = \langle V, \rightarrow \rangle$ induces the (infinitary) propositional theory

$$\mathcal{T}(G) = \{ x \leftrightarrow \bigwedge_{y \in (x \rightarrowtail)} \neg y \mid x \in V \}$$

taking $(\bigwedge_{z \in \emptyset} z) := 1$. If G is finitely-branching, then $\mathcal{T}(G)$ is finitary.

Proposition

- $\mathcal{T}(G)$ is consistent $\iff G$ is solvable.
- Moreover: $sol(G) = mod(\mathcal{T}(G))$.

Let
$$\mathsf{T}_1 = \{ x_1 \leftrightarrow \neg x_2, x_3 \leftrightarrow \neg x_1 \land \neg x_2 \},\$$

 $\mathcal{G}(T_1)$

Walicki, Bezem, Grabmayer

Let
$$\mathsf{T}_1 = \{ x_1 \leftrightarrow \neg x_2, x_3 \leftrightarrow \neg x_1 \land \neg x_2 \},\$$

 $\mathcal{G}(T_1)$

Walicki, Bezem, Grabmayer

Let
$$T_1 = \{ x_1 \leftrightarrow \neg x_2, x_3 \leftrightarrow \neg x_1 \land \neg x_2 \},\$$

 $T_2 = \{ y_1 \leftrightarrow \neg y_2, y_2 \leftrightarrow \neg y_3, y_3 \leftrightarrow \neg y_1 \}.$ Then:

solvable

Walicki, Bezem, Grabmayer

Let
$$T_1 = \{ x_1 \leftrightarrow \neg x_2, x_3 \leftrightarrow \neg x_1 \land \neg x_2 \},\$$

 $T_2 = \{ y_1 \leftrightarrow \neg y_2, y_2 \leftrightarrow \neg y_3, y_3 \leftrightarrow \neg y_1 \}.$ Then:

Walicki, Bezem, Grabmayer

Every finitary propositional theory (over var's \mathbb{V}) in normal form:

$$\mathsf{T} = \big\{ x_i \leftrightarrow \bigwedge_{j \in J_i} \neg y_{ij} \, \big| \, i \in I \big\}$$

induces a digraph $\mathcal{G}(\mathsf{T}) = \langle V, \rightarrowtail \rangle$ with

 $V := \{z, \overline{z} \mid z \in \mathbb{V}, z \text{ not on the rhs of a formula in } \mathsf{T}\}$ $x \mapsto y :\iff (x \leftrightarrow \bigwedge_{j=1}^{n} \neg y_{j}) \in \mathsf{T} \& y \in \{y_{1}, \dots, y_{n}\}$ $z \mapsto \overline{z}, \ \overline{z} \mapsto z \ (z \text{ not on the rhs of a formula in } \mathsf{T})$

Proposition

- $\mathcal{G}(\mathsf{T})$ is solvable $\iff \mathsf{T}$ is consistent.
- Moreover: $mod(T) = sol(\mathcal{G}(T))|_{\mathbb{V}(T)}$

General theories can be brought into equiconsistent normal form by a simple procedure.

Walicki, Bezem, Grabmayer

Graph Kernels, Logic, and Choice Axioms

Walicki, Bezem, Grabmayer

Tbilisi2009

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Walicki, Bezem, Grabmayer

Tbilisi2009

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Overview

- 1. Kernels and solutions
- 2. Kernel existence and propositional logic
- 3. Kernel existence and choice axioms
- 4. Computational complexity of kernel existence
- 5. Summary

Solvability and Choice Principles

Proposition

Solvability of fb dags follows from:

- ▶ in the general case:
 - compactness of propositional logic: every set of propositional formulas that is finitely satisfiable is satisfiable.
- for countable dags:
 - countable compactness,
 - Weak König's Lemma (WKL): Every infinite, ordered, and fb tree has an infinite path.
- What about the converse implications?
- What choice principle corresponds precisely to solvability of a class of solvable digraphs?

Solvability and Choice Principles

Proposition

Solvability of fb dags follows from:

- ▶ in the general case:
 - compactness of propositional logic: every set of propositional formulas that is finitely satisfiable is satisfiable.
- for countable dags:
 - countable compactness,
 - Weak König's Lemma (WKL): Every infinite, ordered, and fb tree has an infinite path.
- What about the converse implications?
- What choice principle corresponds precisely to solvability of a class of solvable digraphs?

Digraph Solvability over ZF

Our Results:

digraph class C	additional principle needed for proving, and equivalent to, solvability of <i>C</i> over ZF
disjoint unions of solvable digraphs	AC
disjoint unions of solvable dags	
countable disjoint unions of solvable digraphs (solvable dags)	AC_{ω}
well-founded dags (e.g. finite dags); rooted trees; trees; forests of trees with roots or leafs	_

Digraph solvability and AC

Theorem

Over ZF, the following are equivalent: (AC): For every set X, there is a choice function on X. (GS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable digraphs G_i is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs chooses one of the vertices.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Digraph solvability and AC

Theorem

Over ZF, the following are equivalent: (AC): For every set X, there is a choice function on X. (GS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable digraphs G_i is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs chooses one of the vertices.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Digraph solvability and AC

Theorem

Over ZF, the following are equivalent: (AC): For every set X, there is a choice function on X. (GS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable digraphs G_i is solvable.

Idea: Consider solutions of complete digraphs:

Every solution of a complete digraphs chooses one of the vertices.

Walicki, Bezem, Grabmayer	Tbilisi2009
Graph Kernels, Logic, and Choice Axioms	

Theorem

Over ZF, AC is also equivalent with: (DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between *a* and *b*.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Theorem

Over ZF, AC is also equivalent with: (DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between a and b.

Walicki, Bezem, Grabmayer

Theorem

Over ZF, AC is also equivalent with: (DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between a and b.

Walicki, Bezem, Grabmayer

Theorem

Over ZF, AC is also equivalent with:

(DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between a and b.

Walicki, Bezem, Grabmayer

Theorem

Over ZF, AC is also equivalent with: (DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between a and b.

Walicki, Bezem, Grabmayer

Theorem

Over ZF, AC is also equivalent with:

(DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between a and b.

Walicki, Bezem, Grabmayer

Theorem

Over ZF, AC is also equivalent with: (DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of *D*(*A*) make a choice between *a* and *b*.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Theorem

Over ZF, AC is also equivalent with: (DS): Every disjoint union $\biguplus_{i \in I} G_i$ of solvable dags G_i is solvable.

Idea: Consider a set $A = \{a, b\}$. Let D(A) be the dag:

Solutions of D(A) make a choice between *a* and *b*.

Walicki, Bezem, Grabmayer

Digraph Solvability over RCA0

Our Results:

digraph class C	additional principle needed for proving, and equivalent to, solvability of C over RCA ₀
disjoint unions of solvable digraphs	AC
disjoint unions of solvable dags	
countable disjoint unions of solvable digraphs (solvable dags)	AC_ω
countable fb dags	WKL
well-founded dags (e.g. finite dags); rooted trees; trees; forests of trees with roots or leafs	

Digraph Solvability over RCA₀

Our Results:

digraph class C	additional principle needed for proving, and equivalent to, solvability of C over RCA_0
disjoint unions of solvable digraphs	AC
disjoint unions of solvable dags	
countable disjoint unions of solvable digraphs (solvable dags)	AC_{ω}
countable fb dags	WKL
well-founded dags (e.g. finite dags); rooted trees; trees; forests of trees with roots or leafs	_

Digraph Solvability over RCA₀

Theorem

Solvability of countable fb dags is, over RCA₀, equivalent to:

countable compactness: every countable set of propositional formulas that is finitely satisfiable is satisfiable.

Since, over RCA₀, countable compactness is equivalent to WKL:

Corollary

Solvability of countable fb dags is, over RCA₀, equivalent to:

WKL: Every infinite, ordered, and fb tree has an infinite path.

Digraph Solvability over RCA₀

Theorem

Solvability of countable fb dags is, over RCA₀, equivalent to:

countable compactness: every countable set of propositional formulas that is finitely satisfiable is satisfiable.

Since, over RCA₀, countable compactness is equivalent to WKL:

Corollary

Solvability of countable fb dags is, over RCA₀, equivalent to:

WKL: Every infinite, ordered, and fb tree has an infinite path.

Overview

- 1. Kernels and solutions
- 2. Kernel existence and propositional logic
- 3. Kernel existence and choice axioms
- 4. Computational complexity of kernel existence
- 5. Summary

Complexity of kernel/solution existence?

- ▶ is recursive: for classes of solvable digraphs (trivial).
- is NP-complete: for finite digraphs (Chvátal, 1973)
- is precisely what for classes including non-fb dags?

DAG-SOLVABILITY PROBLEM DSP Instance: $G = \langle \mathbb{N}, \rightarrow \rangle$ a recursive dag Answer: Is G solvable? Recognition problem: { $\lceil G \rceil$: G is a recursive dag that is solvable}

Where does DSP figure in the arithmetical hierarchy?

The arithmetical hierarchy

The analytical hierarchy

Kernels and	solutions
-------------	-----------

Theorem

DSP is Σ_1^1 -complete.

Proof.

• Contained in Σ_1^1 :

solvability is expressible by the Σ_1^1 -formula:

 $\exists K \forall n [n \in K \leftrightarrow \forall n' (\textit{EdgeBetweenIn}(n, n', m) \rightarrow n' \notin K)]$

• Σ_1^1 -complete:

Reducing the non-well-foundedness problem NWFP for binary recursive relations (Σ_1^1 -complete!), to DSP via a recursive many-one reduction $D(\cdot)$: For every recursive binary rel. *R* build a recursive dag D(R) s.th.:

D(R) is solvable $\iff R$ is not well-founded

Case 1: R well-founded.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Case 1: R well-founded. Tree unfolding T(R) well-founded.

Case 1: *R* well-founded. Modification M(T(R)) of T(R) well-founded.

Walicki, Bezem, Grabmayer

Case 1: *R* well-founded. Modification M(T(R)) of T(R) solvable.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Case 1: *R* well-founded. Dag D(R) associated with *R*:

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Case 1: R well-founded. Dag D(R) associated with R unsolvable.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Case 1: R well-founded. Dag D(R) associated with R unsolvable.

Walicki, Bezem, Grabmayer Graph Kernels, Logic, and Choice Axioms

Case 2: not well-founded binary relation *R*.

Walicki, Bezem, Grabmayer

Tbilisi2009

Case 2: *R* not well-founded. Tree unfolding T(R) not well-founded.

Walicki, Bezem, Grabmayer

Tbilisi2009

Case 2: R not wf. Modification M(T(R)) of T(R) not well-founded.

Walicki, Bezem, Grabmayer

Tbilisi2009

Case 2: R not wf. Modification M(T(R)) of T(R) not well-founded.

Walicki, Bezem, Grabmayer

Tbilisi2009

Case 2: R not well-founded. Modification M(T(R)) of T(R) solvable.

Walicki, Bezem, Grabmayer

Tbilisi2009

Case 2: *R* not well-founded. Dag D(R) associated with *R*:

Walicki, Bezem, Grabmayer

Case 2: R not well-founded. Dag D(R) associated with R solvable.

Walicki, Bezem, Grabmayer

Tbilisi2009

Related result

> There exist recursive binary trees without recursive solutions.

Overview

- 1. Kernels and solutions
- 2. Kernel existence and propositional logic
- 3. Kernel existence and choice axioms
- 4. Computational complexity of kernel existence
- 5. Summary

Open questions

- ► Which choice principle corresponds, over ZF:
 - to fb-dag solvability?
 - to forest solvability (forests possibly including unrooted trees)?

Summary of results

- kernels and logic
 - back-and-forth correspondences between solvable digraphs and consistent propositional theories
- kernels and choice axioms
 - statements on digraph-/dag-solvability equivalent to AC, and AC_ω, over ZF
 - comparable statements over RCA₀
 - main result: over RCA₀, solvability of countable, fb dags is equivalent to countable compactness, and to WKL
 - solvability of trees (rooted/unrooted) in ZF.
- computational complexity of kernel existence
 - $\succ \Sigma_1^1$ -completeness of dag-solvability (and of digraph-solvability)