Co-Reflexivity $=$ Symmetry + Anti-Symmetry

Clemens Grabmayer and Dimitri Hendriks
Department of Computer Science, VU University Amsterdam room T-4.29, W\&N building
c.a.grabmayer@vu.nl r.d.a.hendriks@vu.nl

22 March 2014

Definition. Let R be a binary relation on a set A, that is, $R \subseteq A \times A$.

- The inverse or converse relation of R is $R^{-1}:=\{\langle y, x\rangle:\langle x, y\rangle \in R\}$.
- The equality relation $=$ on A is denoted by $=:=\{\langle x, x\rangle: x \in A\}$.

Definition. Let A be a set, and let R be a binary relation, and $=$ be the equality relation, on A. The well-known properties of reflexivity, symmetry, and antisymmetry, and the less well-known property of co-reflexivity, are defined for R by the following stipulations:

- R is called reflexive if $=\subseteq R$.
- R is called co-reflexive if $R \subseteq=$.
- R is called symmetric if $R^{-1} \subseteq R$.
- R is called anti-symmetric if $R \cap R^{-1} \subseteq=$.

Theorem (room T-4.29). Let R be a binary relation on a set A. Then it holds:
R is co-reflexive $\Longleftrightarrow R$ is symmetric and anti-symmetric.
Proof. For " \Rightarrow ", suppose that R is co-reflexive. Then $R \subseteq=$ holds. Now it follows that R is symmetric, because it is a subrelation of the equality relation $=$. Furthermore it follows that $R^{-1} \subseteq=^{-1}==$. This entails that $\left(R \cap R^{-1}\right) \subseteq$ $(=\cap=)==$. Hence R is also anti-symmetric.

For " \Leftarrow ", suppose that R is symmetric and anti-symmetric. Then it holds that $R^{-1} \subseteq R$ and $R \cap R^{-1} \subseteq=$. By the first statement (symmetry of R), we find $R=\left(R^{-1}\right)^{-1} \subseteq R^{-1} \subseteq R$, and hence that also $R^{-1}=R$ holds. Then by using this and the second statement (anti-symmetry of R), we conclude that $R=R \cap R=R \cap R^{-1} \subseteq=$ holds, which shows that R is co-reflexive.

Corollary. Let A be a set. The following two statements hold:
(i) The equality relation $=$ on A is the largest binary relation on A that is both symmetric and anti-symmetric.
(ii) The equality relation $=$ on A is the only binary relation on A that is reflexive, symmetric, and anti-symmetric.

Proof. For (i), let R be an arbitrary binary relation on A that is symmetric and anti-symmetric. By the theorem it follows that $R \subseteq=$. Since $=$ is symmetric and anti-symmetric, it follows that $=$ is indeed the largest binary relation on A with these properties.

For (iil), suppose that R is a binary relation on A that is reflexive, symmetric, and anti-symmetric. Again by the theorem it follows that $R \subseteq=$. Since by reflexivity of R also $R \supseteq=$ holds, it follows that $R==$.

