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Overview

Stepping Stones and Contributions

• A finitary coinduction principle for regular expression equivalence.

• A coinductively motivated proof system cREG0 for reg.expr.equiv.

• An effective proof-theoretic transformation from the coinductive

system cREG0 to the “traditional” system REG.

Used Concepts
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Overview

Stepping Stones and Contributions

• A finitary coinduction principle for regular expression equivalence.

• A coinductively motivated proof system cREG0 for reg.expr.equiv.

• An effective proof-theoretic transformation from the coinductive

system cREG0 to the “traditional” system REG.

Used Concepts

– Regular expression equivalence.

– Deterministic automata.

– Language derivatives. A coinduction principle for lang. equality.

– Brzozowski derivatives. A coinduction principle for reg.expr.equiv.

– Salomaa’s axiomatisation F1 and its “reverse form” REG.
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Regular Expression Equivalence

For Σ = {a1, . . . , an} . L(Σ) : the set of formal languages over Σ;

R(Σ), the set of regular expressions over alphabet Σ:

E ::= 0 | 1 | a1 | . . . | an | E+E | E.E | E∗

=L , regular expression equivalence is defined by

E =L F ⇐⇒def L(E) = L(F )

(L(E), L(F ) are the languages represented by E, F ).

Example: (a + b)∗ =L (a∗.b)∗.a∗ .
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Regular Expression Equivalence

For Σ = {a1, . . . , an} . L(Σ) : the set of formal languages over Σ;

R(Σ), the set of regular expressions over alphabet Σ:

E ::= 0 | 1 | a1 | . . . | an | E+E | E.E | E∗

=L , regular expression equivalence is defined by

E =L F ⇐⇒def L(E) = L(F )

(L(E), L(F ) are the languages represented by E, F ).

Example: (a + b)∗ =L (a∗.b)∗.a∗ .

We say: E ∈ R(Σ) has the

empty word property (ewp(E)) ⇐⇒def ε ∈ L(E) .
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The Axiom System REG for =L

(Salomaa’s axiomatisation F1 reversed)

The axioms of REG :

(B1) E + (F + G) = (E + F ) + G (B7) E.1 = E

(B2) (E.F ).G = E.(F.G) (B8) E.0 = 0
(B3) E + F = F + E (B9) E + 0 = E

(B4) (E + F ).G = E.G + F.G (B10) E∗ = 1 + E.E∗

(B5) E.(F + G) = E.F + E.G (B11) E∗ = (1 + E)∗

(B6) E + E = E

The inference rules of REG : REFL, SYMM, TRANS, and

E = F CTXTC[E] = C[F ]
E = F .E + G FIX (if ¬ ewp(F ))

E = F ∗.G
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The Axiom System REG (Cont.)

Theorem (∼ Salomaa, Aanderaa (1965/66)). The axiom system
REG is sound and complete with respect to =L :

(for all E,F ∈ R(Σ))
[
`REG E = F ⇐⇒ E =L F

]
.

CALCO 2005, Swansea, UK slide 4



Using Proofs by Coinduction to Find “Traditional” Proofs Clemens Grabmayer

The Axiom System REG (Cont.)

Theorem (∼ Salomaa, Aanderaa (1965/66)). The axiom system
REG is sound and complete with respect to =L :

(for all E,F ∈ R(Σ))
[
`REG E = F ⇐⇒ E =L F

]
.

Sub-Axiom-Systems without FIX that will be used:

ACI: the axioms for associativity, commutativity, idempotency;

ACI+: all axioms not involving ∗ + { 1.E = E }+ { 0.E = 0 } .

≡ACI , ≡ACI+ : relations of provable equality in ACI and ACI+.

R(Σ)ACI , R(Σ)ACI+ : ≡ACI- and ≡ACI+-equivalence classes of R(Σ).
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A Coinductively Motivated Proof System cREG0

The possible marked assumptions in cREG0 :

(Assm) (E = F )u

The inference rules of cREG0 : (Given Σ = {a1, . . . , an}).
D1

C[E1] = F
ApplAxACI+

C[E2] = F

D1

F = C[E1] ApprAxACI+

F = C[E2]
(E1 = E2 or E2 = E1 is an ACI+-axiom),

D1

Ea1 = Fa1 . . .
Dn

Ean = Fan COMP
(if ewp(E)⇔ ewp(F ))E = F
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A Coinductively Motivated Proof System cREG0

The possible marked assumptions in cREG0 :

(Assm) (E = F )u

The inference rules of cREG0 : (Given Σ = {a1, . . . , an}).
D1

C[E1] = F
ApplAxACI+

C[E2] = F

D1

F = C[E1] ApprAxACI+

F = C[E2]
(E1 = E2 or E2 = E1 is an ACI+-axiom),

[E = F ]u
D1

Ea1 = Fa1 . . .

[E = F ]u
Dn

Ean = Fan COMP/FIX, u
(if ewp(E)⇔ ewp(F ))E = F
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The Proof System cREG0 (Cont.)

• does not possess SYMM and TRANS: these rules are “admissible”;

• has an extension cREG with SYMM and TRANS that is similar to

– the coinductive axiomatisation of recursive type equality by

Brandt and Henglein (1998).

– an axiomatisation of bisimilarity of normed recursive

BPA-processes due to Stirling (1994);

• is “normalised”: it fulfills a “subformula property”;

• is sound and complete w.r.t. =L (proof sketched later).
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Deterministic Automata

A deterministic automaton S = 〈S, A, o, t〉 consists of

– a set S of states (may be infinite),

– an input alphabet A (may be infinite),

– an output function o : S → {0, 1},

– a transition function t : S → SA.

(No initial state is specified.)

Notation. For states s and s′,

s∼ s′ means: s and s′ are bisimilar;

s∼fin s′ means: s and s′ are related by a finite bisimulation.
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Differential Calculus for Formal Languages

Using language derivatives

La =def

{
v ∈ Σ∗ | a.v ∈ L

}
,

L(Σ) can be turned into the automaton L(Σ) = 〈L(Σ),Σ, oL, tL〉 by

tL(L)(a) =def La and oL(L) =def

{
1 . . . ε ∈ L

0 . . . ε /∈ L .
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Differential Calculus for Formal Languages

Using language derivatives

La =def

{
v ∈ Σ∗ | a.v ∈ L

}
,

L(Σ) can be turned into the automaton L(Σ) = 〈L(Σ),Σ, oL, tL〉 by

tL(L)(a) =def La and oL(L) =def

{
1 . . . ε ∈ L

0 . . . ε /∈ L .

Theorem (Rutten). For all L1, L2 ∈ L(Σ):

L1 ∼ L2 in L(Σ) =⇒ L1 = L2 .

This justifies a coinduction principle for proving equality of formal

languages.
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Differential Calculus for Regular Expressions

Brzozowski derivatives (·)a : R(Σ)→ R(Σ) defined by clauses like

0a =def 0 , (E + F )a =def Ea + Fa , (E∗)a =def Ea.E
∗ ,

mimic language derivatives. And oL(·) can be mimicked by a function

o : R(Σ)→ {0, 1} .

Proposition. L(Ea) = (L(E))a, o(E) = oL(L(E)).

Automaton R(Σ) =def 〈R(Σ),Σ, t, o〉 : letting t(E)(a) =def Ea .

CALCO 2005, Swansea, UK slide 9



Using Proofs by Coinduction to Find “Traditional” Proofs Clemens Grabmayer

Differential Calculus for Regular Expressions

Brzozowski derivatives (·)a : R(Σ)→ R(Σ) defined by clauses like

0a =def 0 , (E + F )a =def Ea + Fa , (E∗)a =def Ea.E
∗ ,

mimic language derivatives. And oL(·) can be mimicked by a function

o : R(Σ)→ {0, 1} .

Proposition. L(Ea) = (L(E))a, o(E) = oL(L(E)).

Automaton R(Σ) =def 〈R(Σ),Σ, t, o〉 : letting t(E)(a) =def Ea .

Theorem (Rutten). For all E1, E2 ∈ R(Σ):

E1 ∼ E2 in R(Σ) =⇒ E1 =L E2 .

(This justifies a coinduction principle for proving equiv. of reg. expr’s.)
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Naive Use of the Coinduction Principle for =L . . .

We want to show E ≡ (a + b)∗ =L (a∗.b)∗.a∗ ≡ F1 (justifying a sim-

ple instance of Conway’s axiom scheme (SUMSTAR)).

The subautomaton of E in R({a, b}) is infinite:

E

Ea Eb

(·)a

(·)a

E
a2

E
a3

E
b2

E
b3

(·)a (·)b

(·)b

(·)b

(·)a (·)b

(·)b(·)a
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. . . is not effective

Therefore a bisimulation between E and F1 in R(Σ) that starts as

(·)b

(·)b

(·)b

〈E, F1〉

〈Ea, (F1)a〉 〈Eb, (F1)b〉

〈(E)bb, (F1)bb〉

(·)a

(·)a

(·)a

〈Eab, (F1)ab〉 〈Eba, (F1)ba〉〈Eaa, (F1)aa〉

cannot be finite. Hence, used naively, the coinduction principle is not

effective (not realisable).
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Using Identities to Get Less Derivatives

E ≡ (a + b)∗ has infinitely many (iter.) derivatives: f.a. w ∈ {a, b}∗

Ewa ≡ (0 + 0).E + (. . . + ((0 + 0).E︸ ︷︷ ︸
|w| times

+ (1 + 0).E))

Ewb ≡ . . . + (0 + 1).E))

Not so if simplifying by ACI-identities is allowed:

Ewa ≡ACI 0.E + (1 + 0).E Ewb ≡ACI 0.E + (0 + 1).E

nor if simplifying by ACI+-identities is allowed:

Ewa ≡ACI+ Ewb ≡ACI+ E .
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A Finitary Coinduction Principle for =L

Lemma (∼ Brzozowski). The set
{
[Ew]ACI

∣∣ w ∈ Σ∗} is finite f.a.

E∈R(Σ). Hence also
{
[Ew]ACI+

∣∣ w ∈ Σ∗} is finite, f.a. E∈R(Σ).

Factor automaton R(Σ)ACI+ = 〈R(Σ)ACI+, oACI+, tACI+〉 :
letting tACI+([E]ACI+)(a) =def [Ea]ACI+.
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A Finitary Coinduction Principle for =L

Lemma (∼ Brzozowski). The set
{
[Ew]ACI

∣∣ w ∈ Σ∗} is finite f.a.

E∈R(Σ). Hence also
{
[Ew]ACI+

∣∣ w ∈ Σ∗} is finite, f.a. E∈R(Σ).

Factor automaton R(Σ)ACI+ = 〈R(Σ)ACI+, oACI+, tACI+〉 :
letting tACI+([E]ACI+)(a) =def [Ea]ACI+.

Theorem. For all E,F ∈ R(Σ):

[E]ACI+ ∼fin [F ]ACI+ in R(Σ)ACI+ ⇐⇒ E =L F .

This justifies a finitary coinduction principle for proving equality of

regular expressions.

Corollary. =L on R(Σ) can be decided by checking for the exis-
tence of finite bisimulations in R(Σ)ACI+.
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Finitary Coinduction Principle: an Example

Again, we aim to prove (a + b)∗ =L (a∗.b)∗.a∗.

For E ≡ (a + b)∗, F1 ≡ (a∗.b)∗.a∗, and F2 ≡ ((a∗.b).(a∗.b)∗).a∗ + a∗

it is easy to verify:

(·)a (·)b

(·)a (·)b (·)b
(·)a

[E]
ACI+

[F1]
ACI+

[F2]
ACI+

{〈
[E]ACI+, [F1]ACI+

〉
,

〈
[E]ACI+, [F2]ACI+

〉}
is a finite bisimulation.

By the (finitary) coinduction principle (a + b)∗ =L (a∗.b)∗.a∗ follows.
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Relation with cREG0: Finite Bisimulations . . .

[E]
ACI+

[F1]
ACI+

(·)a (·)b

(·)a

(·)b

(·)b

〈[E]
ACI+

, [F1]
ACI+

〉

[F2]
ACI+

〈[E]
ACI+

, [F2]
ACI+

〉

(·)a

This bisimulation defines the following automaton in R(Σ)ACI+ :

(·)a
(·)b

(·)a (·)b

〈[E]
ACI+

, [F1]
ACI+

〉

〈[E]
ACI+

, [F2]
ACI+

〉
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. . . correspond to . . . derivations in cREG0

〈[E]
ACI+

, [F1]
ACI+

〉

〈[E]
ACI+

, [F1]
ACI+

〉

〈[E]
ACI+

, [F1]
ACI+

〉

〈[E]
ACI+

, [F2]
ACI+

〉

〈[E]
ACI+

, [F2]
ACI+

〉

(·)b(·)a

(·)a (·)b
e

d

is an “unwinding” of the bisimulation between [E]ACI+ and [F2]ACI+

which corresponds to the cREG0-derivation

(E = F2)e

Ea = (F2)a

(E = F1)d

Eb = (F2)bCOMP/FIX, e
E = F2

Ea = (F1)a

(E = F1)d

Eb = (F1)b COMP/FIX, d
E = F1
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Soundness and Completeness of cREG0

Theorem. cREG0 is sound and complete with respect to =L :

for all E,F ∈ R(Σ) :
[
`cREG0 E = F ⇐⇒ E =L F

]
.

Hint at the Proof.

“⇐”: argue as just explained for the example.

“⇒”: Let D a derivation in cREG0 with conclusion E = F .

Then {〈[G]ACI+ , [H ]ACI+〉 | G = H occurs in D} is a

finite bisimulation between [E]ACI+ and [F ]ACI+ in R(Σ)ACI+.

By the finitary coinduction principle, E =L F follows.
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A Transformation from cREG0 to REG

Combination StepAnnotation Step Extraction Step

D̂(2)

F = G

D̂(1)

E = G

REG-derivations
without

assumptions

cREG0-derivation
without open
assumptions

D
E = F

ann-cREG0-deriva-
tion without open

assumptions

D̂
G : E = F

REG-derivation (D̂)′
without assumptions

D̂(1)

E = G

D̂(2)

F = G
SYMM

G = F
TRANS

E = F
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The Annotation Step (in our example)

(1.e : E = F2)e

1.e : Ea = (F2)a

(1.d : E = F1)d

1.d : Eb = (F2)bCOMP/FIX, e
a∗ + a∗b.d : E = F2

a∗ + a∗b.d : Ea = (F1)a

(1.d : E = F1)d

1.d : Eb = (F1)bCOMP/FIX, d (aa∗b + b)∗(1 + aa∗)︸ ︷︷ ︸
≡G

: E = F1
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The Annotation Step (in our example)

(1.e : E = F2)e

1.e : Ea = (F2)a

(1.d : E = F1)d

1.d : Eb = (F2)bCOMP/FIX, e
a∗ + a∗b.d : E = F2

a∗ + a∗b.d : Ea = (F1)a

(1.d : E = F1)d

1.d : Eb = (F1)bCOMP/FIX, d (aa∗b + b)∗(1 + aa∗)︸ ︷︷ ︸
≡G

: E = F1

The annotation G in this ann-cREG0-deriv. describes the bisimulation

betw. E and F1; it has the following gen. subautomation inR(Σ)ACI+ :

(·)a

(·)a

(·)b

(·)b

[Ga]
ACI+

[G]
ACI+
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The Extraction Step

D̂
G : E = F

ann-cREG0-deriva-
tion without open

assumptions

REG-derivations
without

assumptions

D̂(1)

E = G

D̂(2)

F = G
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The Extraction Step (the deriv. D̂(1) in our example)

D(E)

E = 1 + a.Ea + b.Eb

D(E)

E = 1 + a.Ea + b.Eb

REFL, ApprAx
ACI+

E = 1.EApplAx
ACI+

Ea = E
CTXT

a.Ea = a.E

REFL, ApprAx
ACI+

E = 1.E ApplAx
ACI+

Eb = E
CTXT

b.Eb = b.E
+

a.Ea + b.Eb = a.E + b.E
CTXT1 + a.Ea + b.Eb = 1 + a.E + b.E
TRANS

E = 1 + a.E + b.E ApprAx
ACI+

E = a.E + (1 + b.E)
FIXE = a∗(1 + b.E)

Appl/rAx
ACI+

Ea = a∗ + a∗b.E
CTXT

a.Ea = a.(a∗ + a∗b.E)

REFL, ApprAx
ACI+E = 1.E ApplAx

ACI+

Eb = E
CTXT

b.Eb = b.E
+

a.Ea + b.Eb = a.(a∗ + a∗b.E) + b.E
CTXT

1 + a.Ea + b.Eb = 1 + a.(a∗ + a∗b.E) + b.E
ApprAx

ACI+

1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)
TRANS

E = (aa∗b + b).E + (1 + aa∗)
FIXE = (aa∗b + b)∗(1 + aa∗)

CALCO 2005, Swansea, UK slide 21



Using Proofs by Coinduction to Find “Traditional” Proofs Clemens Grabmayer

The Combination Step

D̂(1)

E = G

D̂(2)

F = G
SYMM

G = F
TRANS

E = F

REG-derivation (D̂)′
without assumptions

REG-derivations
without

assumptions

D̂(1)

E = G

D̂(2)

F = G
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A Transformation from cREG0 to REG

Theorem.Every derivation D in cREG0 without open assumptions
can effectively be transformed into a derivation D′ in REG with the
same conclusion as D.

Proof.

Combination StepAnnotation Step Extraction Step

D̂(2)

F = G

D̂(1)

E = G

REG-derivations
without

assumptions

cREG0-derivation
without open
assumptions

D
E = F

ann-cREG0-deriva-
tion without open

assumptions

D̂
G : E = F

REG-derivation (D̂)′
without assumptions

D̂(1)

E = G

D̂(2)

F = G
SYMM

G = F
TRANS

E = F

Corollary. The system REG is complete with respect to =L .
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Summary

In the paper I have

– restated Rutten’s coinduction principle for regular expression equiv-

alence =L as a finitary coinduction principle (that can be used to

decide =L );

– introduced a coinductively motivated, complete proof system

cREG0 for =L ;

– described an effective proof-theoretic transformation from cREG0

to REG, the “reversed” form of Salomaa’s axiomatisation F1 ;

– thereby provided a coinductive completeness proof for REG (which

can be “redone” for F1).
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Related Work. A Related Problem?

• Proof systems for recursive type equality : a transformation from

the coinductive axiomatisation by Brandt-Henglein into

the “traditional” axiomatisation by Amadio-Cardelli (in my thesis).

• Milner’s problem (1984): Find a system that is weaker than REG,

but complete for star behaviours? (Is BPA∗
δ,ε complete?)

a b
a

a

b

b

a

6-

(a + b)∗ (a∗b)∗a∗6=BPA∗
δ,ε

a
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Thanks for your attention!
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Salomaa’s Axiomatization F1 of =L

The axioms of F1 :

A1 E + (F + G) = (E + F ) + G A7 1.E = E

A2 E.(F.G) = (E.F ).G A8 0.E = 0

A3 E + F = F + E A9 E + 0 = E

A4 E.(F + G) = E.F + E.G A10 E∗ = 1 + E∗.E

A5 (E + F ).G = E.G + F.G A11 E∗ = (1 + E)∗

A6 E + E = E

The inference rules of F1 :

E = F C[E] = G
C[F ] = C[E], C[F ] = G

E = E.F + G (if o(F ) = 0)
E = G.F ∗
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Brzozowski Derivatives

Brzozowski derivatives (·)a : R(Σ)→ R(Σ) are defined by

0a =def 0 , (E + F )a =def Ea + Fa , (E∗)a =def Ea.E
∗ ,

ba =def

{
1 . . . b = a

0 . . . b 6= a
(E.F )a =def

{
Ea.F + Fa . . . o(E) = 1

Ea.F . . . o(E) = 0

mimic language derivatives. Also, a function o : R(Σ)→ R(Σ) can

be defined that mimics the function oL:

o(0) = o(b) =def 0 , o(E + F ) =def

{
0 . . . o(E) = o(F ) = 0

1 . . . else

o(E.F ) =def

{
1 . . . o(E) = o(F ) = 1

0 . . . else ,
o(E∗) =def 1 .
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The Annotation Step

D
E = F

cREG0-derivation
without open
assumptions

D̂
G : E = F

ann-cREG0-deriva-
tion without open

assumptions
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Justifying the Annotation Step

Lemma. cREG0 and ann-cREG0 are linked by an annotating
transformation (̂·) and an annotating-deleting transf. (̌·) :

{[Ei = Fi]di}i=1,...,m

D
E = F︸ ︷︷ ︸

= ˇ(˜ )D

(̂·)7−→
←− [
(̌·)

{[1.di : Ei = Fi]di}i=1,...,m

D̃
(G0+)

∑m
j=1 Gj.dj : E = F︸ ︷︷ ︸

= D̂
cREG0-derivation D ann-cREG0-derivation D̃

(Each derivation in ann-cREG0 can be written in the form of the
prooftree on the right.)
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The Annotated Version ann-cREG0 of cREG0 (I)

The axioms and possible marked assumptions in ann-cREG0(Σ,∆) :

(REFL) E : E = E (Assm) (d : E = F )d (with d ∈ ∆) .

The inference rules of ann-cREG0(Σ,∆) :

D1

G : C[E1] = F
ApplAxREG

G : C[E2] = F

D1

G : F = C[E1] ApprAxREG
G : F = C[E2]

(if E1 = E2 or E2 = E1 is an axiom of REG),

And annotated versions of the rules COMP and COMP/FIX

(on the two following slides).
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The Annotated Version ann-cREG0 of cREG0 (II)

Annotated version of the rule COMP:

D1

G10 +
m∑

j=1

G1j.dj : Ea1 = Fa1 . . .

Dn

Gn0 +
m∑

j=1

Gnj.dj : Ean = Fan

(
o(E) +

n∑
i=1

Gi0

)
+

m∑
j=1

( n∑
i=1

ai.Gij

)
.dj : E = F

(if o(E) = o(F )).

(Here we have assumed Σ = {a1, . . . , an}).
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The Annotated Version ann-cREG0 of cREG0 (III)

Annotated version of the rule COMP/FIX:

[dk : E = F ]dk

D1

G10 +
m∑

j=1

G1j.dj : Ea1 = Fa1 . . .

[dk : E = F ]dk

Dn

Gn0 +
m∑

j=1

Gnj.dj : Ean = Fan

dk( n∑
i=1

ai.Gik

)∗
.
(
o(E) +

n∑
i=1

Gi0

)
+

+
m∑

j=1,j 6=k

( n∑
i=1

ai.Gik

)∗
.
( n∑

i=1

ai.Gij

)
.dj : E = F

(if o(E) = o(F )).
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The Extraction Step (the deriv. D̂(2) in our example)

D(F1)

F1 = 1 + a.(F1)a + b.(F1)b

D(F2)

F2 = 1 + a.(F2)a + b.(F2)b

REFL, ApprAx
ACI+ F2 = 1.F2ApplAx

ACI+ (F2)a = F2
CTXT

a.(F2)a = a.F2

REFL, ApprAx
ACI+F1 = 1.F1 ApplAx

ACI+

(F1)b = F1
CTXT

b.(F1)b = b.F1 +
a.(F2)a + b.(F2)b = a.F2 + b.F1

CTXT
1 + a.(F2)a + b.(F2)b = 1 + a.F2 + b.F1

TRANS
F2 = 1 + a.F2 + b.F1 ApprAx

ACI+

F2 = a.F2 + (1 + b.F1)
FIXF2 = a∗(1 + b.F1) Appl/rAx

ACI+

(F1)a = a∗ + a∗b.F1
CTXT

a.(F1)a = a.(a∗ + a∗b.F1)

REFL, ApprAx
ACI+

F1 = 1.F1 ApplAx
ACI+

(F1)b = F1
CTXT

b.(F1)b = b.F1 +
a.(F1)a + b.(F1)b = a.(a∗ + a∗b.F1) + b.F1

CTXT
1 + a.(F1)a + b.(F1)b = 1 + a.(a∗ + a∗b.F1) + b.F1

TRANS
F1 = 1 + a.(a∗ + a∗b.F1) + b.F1 ApprAx

ACI+

F1 = (aa∗b + b).F1 + (1 + aa∗)
FIXF1 = (aa∗b + b)∗(1 + aa∗)
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“Fundamental Theorem of Formal Languages”

Lemma. For all E ∈ R(Σ),

E =L o(E) +
n∑

i=1

ai.Eai

holds, and a derivation in REG− with this conclusion (“=” i.p.o.
“ =L ”) can effectively be constructed.

Proof. By induction on the syntactical structure of regular expres-

sions.
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Justifying the Extraction Step

Lemma. For every derivation

{[1.di : Ei = Fi]di}i=1,...,m

D̃
(G0+)

∑m
j=1 Gj.dj : E = F

in ann-cREG0 it is possible to extract effectively derivations

D̃(1)

E = (G0+)
∑m

j=1 Gj.Ej

and D̃(2)

F = (G0+)
∑m

j=1 Gj.Fj

in REG.
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The Process Algebra BPA∗δ,ε

The axioms of BPA∗
δ,ε :

(A1) x + y = y + x (A6) x + δ = x

(A2) x + (y + z) = (x + y) + z (A7) ε.x = x

(A3) x + x = x (A8) δ.x = δ

(A4) (x + y).z = x.z + y.z (A9) x.ε = x

(A5) x.(y.z) = (x.y).z (KS2) x∗ = ε + x.x∗

(KS3) (x + y)∗ = x∗.(y.(x + y)∗ + ε) (KS1) x∗ = (ε + x)∗

Possible inference rules for BPA∗
δ,ε : REFL, SYMM, TRANS, and

x = y
CTXTC[x] = C[y]

x = f.x + z
FIX (if o(f) = 0)

x = f∗.z
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