Using Proofs by Coinduction to Find "Traditional" Proofs

Clemens Grabmayer

Dept. of Computer Science Free University (VU) Amsterdam

CALCO 2005

 $5^{\rm th}$ of September 2005

Overview

Stepping Stones and Contributions

- A finitary coinduction principle for regular expression equivalence.
- A coinductively motivated proof system **cREG**₀ for reg.expr.equiv.
- An effective proof-theoretic transformation from the coinductive system **cREG**₀ to the "traditional" system **REG**.

Used Concepts

Overview

Stepping Stones and Contributions

- A finitary coinduction principle for regular expression equivalence.
- A coinductively motivated proof system **cREG**₀ for reg.expr.equiv.
- An effective proof-theoretic transformation from the coinductive system **cREG**₀ to the "traditional" system **REG**.

Used Concepts

- Regular expression equivalence.
- Deterministic automata.
- Language derivatives. A coinduction principle for lang. equality.
- Brzozowski derivatives. A coinduction principle for reg.expr.equiv.
- Salomaa's axiomatisation F_1 and its "reverse form" REG.

Regular Expression Equivalence

For $\Sigma = \{a_1, \ldots, a_n\}$. $\mathcal{L}(\Sigma)$: the set of *formal languages over* Σ ; $\mathcal{R}(\Sigma)$, the set of *regular expressions* over alphabet Σ :

$$E ::= 0 | 1 | a_1 | \dots | a_n | E + E | E \cdot E | E^*$$

 $=_L$, regular expression equivalence is defined by

$$E =_L F \iff_{\mathsf{def}} L(E) = L(F)$$

(L(E), L(F) are the languages represented by E, F). Example: $(a+b)^* =_L (a^*.b)^*.a^*$.

Regular Expression Equivalence

For $\Sigma = \{a_1, \ldots, a_n\}$. $\mathcal{L}(\Sigma)$: the set of *formal languages over* Σ ; $\mathcal{R}(\Sigma)$, the set of *regular expressions* over alphabet Σ :

$$E ::= 0 | 1 | a_1 | \dots | a_n | E + E | E \cdot E | E^*$$

 $=_L$, regular expression equivalence is defined by

$$E =_L F \iff_{\mathsf{def}} L(E) = L(F)$$

(L(E), L(F)) are the languages represented by E, F).

Example: $(a+b)^* =_L (a^*.b)^*.a^*$.

We say: $E \in \mathcal{R}(\Sigma)$ has the *empty word property* $(ewp(E)) \iff_{def} \epsilon \in L(E)$.

The Axiom System REG for $=_L$ (Salomaa's axiomatisation F_1 reversed)

The *axioms* of **REG**:

The *inference rules* of **REG** : REFL, SYMM, TRANS, and

$$\frac{E = F}{C[E] = C[F]} \mathsf{CTXT} \qquad \frac{E = F \cdot E + G}{E = F^* \cdot G} \mathsf{FIX} (\mathsf{if} \neg ewp(F))$$

The Axiom System REG (Cont.)

Theorem (~ Salomaa, Aanderaa (1965/66)). The axiom system **REG** is sound and complete with respect to $=_L$:

(for all $E, F \in \mathcal{R}(\Sigma)$) $\left[\vdash_{\mathsf{REG}} E = F \iff E =_L F \right]$.

The Axiom System REG (Cont.)

Theorem (~ Salomaa, Aanderaa (1965/66)). The axiom system **REG** is sound and complete with respect to $=_L$:

(for all $E, F \in \mathcal{R}(\Sigma)$) $\left[\vdash_{\mathsf{REG}} E = F \iff E =_L F \right]$.

Sub-Axiom-Systems without FIX that will be used:

ACI: the *axioms* for <u>a</u>ssociativity, <u>c</u>ommutativity, <u>i</u>dempotency; ACI⁺: all *axioms* not involving $* + \{ 1.E = E \} + \{ 0.E = 0 \}$.

 \equiv_{ACI} , \equiv_{ACI^+} : relations of provable equality in ACI and ACI⁺. $\mathcal{R}(\Sigma)_{ACI}$, $\mathcal{R}(\Sigma)_{ACI^+}$: \equiv_{ACI^-} and \equiv_{ACI^+} -equivalence classes of $\mathcal{R}(\Sigma)$.

A Coinductively Motivated Proof System cREG₀

The possible *marked assumptions* in **cREG**₀:

(Assm)
$$(E = F)^{\boldsymbol{u}}$$

The *inference rules* of **cREG**₀:

(Given $\Sigma = \{a_1, ..., a_n\}$).

$$\begin{array}{l} \mathcal{D}_1 & \mathcal{D}_1 \\ \underline{C[E_1] = F} \\ \overline{C[E_2] = F} \end{array} \mathsf{App}_l \mathsf{Ax}_{\mathsf{ACI}^+} & \begin{array}{l} \mathcal{D}_1 \\ F = C[E_1] \\ F = C[E_2] \end{array} \mathsf{App}_r \mathsf{Ax}_{\mathsf{ACI}^+} \\ (E_1 = E_2 \text{ or } E_2 = E_1 \text{ is an } \mathsf{ACI}^+\text{-axiom}), \end{array}$$

$$\begin{array}{cccc}
\mathcal{D}_{1} & \mathcal{D}_{n} \\
\underline{E}_{a_{1}} = F_{a_{1}} & \dots & E_{a_{n}} = F_{a_{n}} \\
E = F & \text{(if } ewp(E) \Leftrightarrow ewp(F))
\end{array}$$

A Coinductively Motivated Proof System cREG₀

The possible *marked assumptions* in **cREG**₀:

(Assm)
$$(E = F)^{\boldsymbol{u}}$$

The *inference rules* of **cREG**₀:

(Given
$$\Sigma = \{a_1, \ldots, a_n\}$$
).

$$\begin{array}{ll}
\mathcal{D}_{1} & \mathcal{D}_{1} \\
\frac{C[E_{1}] = F}{C[E_{2}] = F} \operatorname{App}_{l}\operatorname{Ax}_{ACI^{+}} & \frac{F = C[E_{1}]}{F = C[E_{2}]}\operatorname{App}_{r}\operatorname{Ax}_{ACI^{+}} \\
(E_{1} = E_{2} \text{ or } E_{2} = E_{1} \text{ is an } ACI^{+} \text{-axiom}), \\
[E = F]^{u} & [E = F]^{u} \\
\mathcal{D}_{1} & \mathcal{D}_{n} \\
\frac{E = F}{E} & COMP/FIX, u \\
(\text{if } ewp(E) \Leftrightarrow ewp(F))
\end{array}$$

The Proof System cREG₀ (Cont.)

- does not possess SYMM and TRANS: these rules are "admissible";
- has an extension **cREG** with SYMM and TRANS that is similar to
 - the coinductive axiomatisation of *recursive type equality* by Brandt and Henglein (1998).
 - an axiomatisation of *bisimilarity of normed recursive* BPA-processes due to Stirling (1994);
- is "normalised": it fulfills a "subformula property";
- is sound and complete w.r.t. $=_L$ (proof sketched later).

Deterministic Automata

A deterministic automaton $S = \langle S, A, o, t \rangle$ consists of

- a set S of *states* (may be infinite),
- an *input alphabet* A (may be infinite),
- an output function $o: S \rightarrow \{0,1\}$,
- a transition function $t: S \to S^A$.

(No initial state is specified.)

Notation. For states s and s',

$$s \sim s'$$
 means: s and s' are bisimilar;

 $s \sim_{\text{fin}} s'$ means: s and s' are related by a *finite bisimulation*.

Differential Calculus for Formal Languages

Using language derivatives

$$L_a =_{\mathsf{def}} \{ v \in \Sigma^* \mid a.v \in L \} ,$$

 $\mathcal{L}(\Sigma)$ can be turned into the automaton $\mathcal{L}(\Sigma) = \langle \mathcal{L}(\Sigma), \Sigma, o_{\mathcal{L}}, t_{\mathcal{L}} \rangle$ by

$$t_{\mathcal{L}}(L)(a) =_{\mathsf{def}} L_a$$
 and $o_{\mathcal{L}}(L) =_{\mathsf{def}} \begin{cases} 1 \dots \epsilon \in L \\ 0 \dots \epsilon \notin L \end{cases}$.

Differential Calculus for Formal Languages

Using language derivatives

$$L_a =_{\mathsf{def}} \{ v \in \Sigma^* \mid a.v \in L \} ,$$

 $\mathcal{L}(\Sigma)$ can be turned into the automaton $\mathcal{L}(\Sigma) = \langle \mathcal{L}(\Sigma), \Sigma, o_{\mathcal{L}}, t_{\mathcal{L}} \rangle$ by

$$t_{\mathcal{L}}(L)(a) =_{\mathsf{def}} L_a$$
 and $o_{\mathcal{L}}(L) =_{\mathsf{def}} \begin{cases} 1 \dots \epsilon \in L \\ 0 \dots \epsilon \notin L \end{cases}$

Theorem (Rutten). For all $L_1, L_2 \in \mathcal{L}(\Sigma)$:

$$L_1 \sim L_2 \quad in \ \mathcal{L}(\Sigma) \implies L_1 = L_2 .$$

This justifies a *coinduction principle for proving equality of formal languages*.

Differential Calculus for Regular Expressions

Brzozowski derivatives $(\cdot)_a : \mathcal{R}(\Sigma) \to \mathcal{R}(\Sigma)$ defined by clauses like

 $0_a =_{\mathsf{def}} 0, \qquad (E+F)_a =_{\mathsf{def}} E_a + F_a, \qquad (E^*)_a =_{\mathsf{def}} E_a \cdot E^*,$

mimic language derivatives. And $o_{\mathcal{L}}(\cdot)$ can be mimicked by a function $o : \mathcal{R}(\Sigma) \to \{0, 1\}$.

Proposition. $L(E_a) = (L(E))_a, \quad o(E) = o_{\mathcal{L}}(L(E)).$

Automaton $\mathcal{R}(\Sigma) =_{\mathsf{def}} \langle \mathcal{R}(\Sigma), \Sigma, t, o \rangle$: letting $t(E)(a) =_{\mathsf{def}} E_a$.

Differential Calculus for Regular Expressions

Brzozowski derivatives $(\cdot)_a : \mathcal{R}(\Sigma) \to \mathcal{R}(\Sigma)$ defined by clauses like

 $0_a =_{\mathsf{def}} 0, \qquad (E+F)_a =_{\mathsf{def}} E_a + F_a, \qquad (E^*)_a =_{\mathsf{def}} E_a \cdot E^*,$

mimic language derivatives. And $o_{\mathcal{L}}(\cdot)$ can be mimicked by a function $o : \mathcal{R}(\Sigma) \to \{0, 1\}$.

Proposition. $L(E_a) = (L(E))_a, \quad o(E) = o_{\mathcal{L}}(L(E)).$

Automaton $\mathcal{R}(\Sigma) =_{def} \langle \mathcal{R}(\Sigma), \Sigma, t, o \rangle$: letting $t(E)(a) =_{def} E_a$.

Theorem (Rutten). For all $E_1, E_2 \in \mathcal{R}(\Sigma)$:

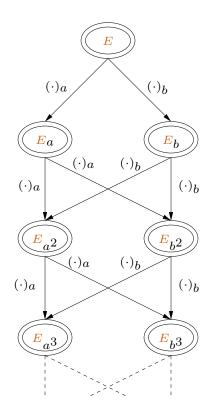
 $E_1 \sim E_2 \quad in \ \mathcal{R}(\Sigma) \implies E_1 =_L E_2 .$

(This justifies a *coinduction principle for proving equiv. of reg. expr's.*)

Naive Use of the Coinduction Principle for $=_L \ldots$

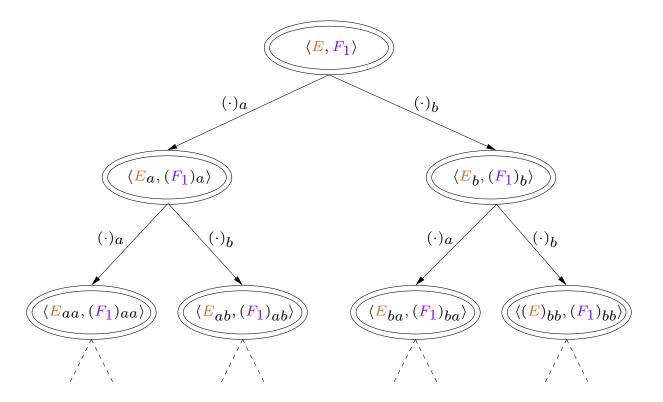
We want to show $E \equiv (a+b)^* =_L (a^*.b)^*.a^* \equiv F_1$ (justifying a simple instance of Conway's axiom scheme (SUMSTAR)).

The subautomaton of E in $\mathcal{R}(\{a, b\})$ is infinite:



... is not effective

Therefore a bisimulation between E and F_1 in $\mathcal{R}(\Sigma)$ that starts as



cannot be finite. Hence, used naively, the coinduction principle is not effective (not *realisable*).

Using Identities to Get Less Derivatives

 $E \equiv (a+b)^*$ has infinitely many (iter.) derivatives: f.a. $w \in \{a,b\}^*$

$$\underbrace{E_{wa}}_{|w| \text{ times}} \equiv \underbrace{(0+0).E + (\ldots + ((0+0).E) + (1+0).E))}_{|w| \text{ times}} + \underbrace{(1+0).E))$$

$$\underbrace{E_{wb}}_{|w| \text{ times}} = \ldots + (0+1).E))$$

Not so if simplifying by **ACI**-identities is allowed:

 $E_{wa} \equiv_{ACI} 0.E + (1+0).E$ $E_{wb} \equiv_{ACI} 0.E + (0+1).E$

nor if simplifying by **ACI**⁺-identities is allowed:

$$E_{wa} \equiv_{\mathsf{ACI}^+} E_{wb} \equiv_{\mathsf{ACI}^+} E$$
 .

A Finitary Coinduction Principle for $=_L$

 $\begin{array}{l} \mbox{Lemma (} \sim \mbox{Brzozowski). The set } \left\{ [E_w]_{\rm ACI} \mid w \in \Sigma^* \right\} \ is \ finite \ f.a. \\ E \in \mathcal{R}(\Sigma). \ Hence \ also \left\{ [E_w]_{\rm ACI^+} \mid w \in \Sigma^* \right\} \ is \ finite, \ f.a. \ E \in \mathcal{R}(\Sigma). \\ \mbox{Factor automaton } \mathcal{R}(\Sigma)_{\rm ACI^+} = \langle \mathcal{R}(\Sigma)_{\rm ACI^+}, o_{\rm ACI^+}, t_{\rm ACI^+} \rangle : \\ & \quad \mbox{letting } t_{\rm ACI^+}([E]_{\rm ACI^+})(a) =_{\rm def} [E_a]_{\rm ACI^+}. \end{array}$

A Finitary Coinduction Principle for $=_L$

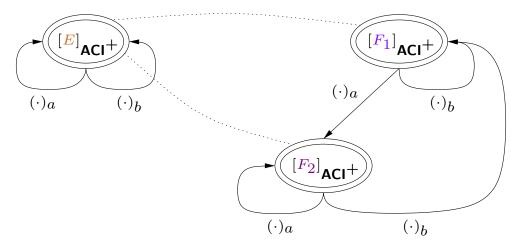
This justifies a *finitary coinduction principle* for proving equality of regular expressions.

Corollary. $=_L$ on $\mathcal{R}(\Sigma)$ can be decided by checking for the existence of finite bisimulations in $\mathcal{R}(\Sigma)_{\mathsf{ACI}^+}$.

Finitary Coinduction Principle: an Example

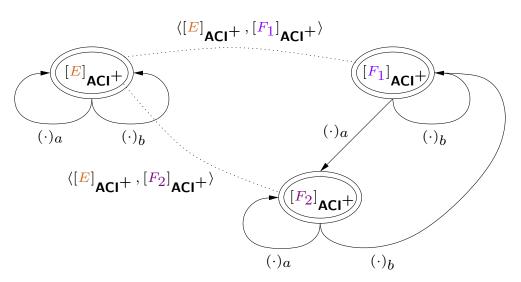
Again, we aim to prove $(a + b)^* =_L (a^*.b)^*.a^*$.

For $E \equiv (a+b)^*$, $F_1 \equiv (a^*.b)^*.a^*$, and $F_2 \equiv ((a^*.b).(a^*.b)^*).a^* + a^*$ it is easy to verify:

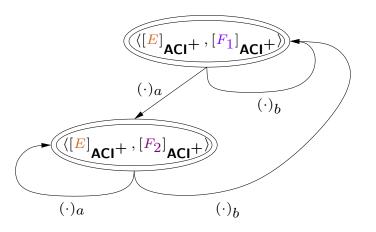


 $\left\{ \left\langle [E]_{ACI^+}, [F_1]_{ACI^+} \right\rangle, \left\langle [E]_{ACI^+}, [F_2]_{ACI^+} \right\rangle \right\} \text{ is a finite bisimulation.}$ By the (finitary) coinduction principle $(a+b)^* =_L (a^*.b)^*.a^*$ follows.

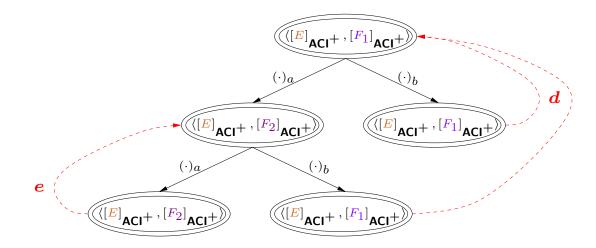
Relation with cREG₀: **Finite Bisimulations** . . .



This bisimulation defines the following automaton in $\mathcal{R}(\Sigma)_{\mathbf{ACI}^+}$:



... correspond to ... derivations in cREG₀



is an "unwinding" of the bisimulation between $[E]_{ACI^+}$ and $[F_2]_{ACI^+}$ which corresponds to the **cREG**₀-derivation

$$COMP/FIX, \ \boldsymbol{e}^{\underline{(\boldsymbol{E}=F_2)^{\boldsymbol{e}}}}_{\underline{E_a=(F_2)_a}} \frac{(\boldsymbol{E}=F_1)^{\boldsymbol{d}}}{E_b=(F_2)_b}}{\underline{\boldsymbol{E}=F_2}}_{\underline{E_a=(F_1)_a}} \frac{(\boldsymbol{E}=F_1)^{\boldsymbol{d}}}{E_b=(F_1)_b}}{E_b=(F_1)_b}COMP/FIX, \ \boldsymbol{d}^{\boldsymbol{d}}$$

Soundness and Completeness of cREG₀

Theorem. cREG₀ is sound and complete with respect to $=_L$:

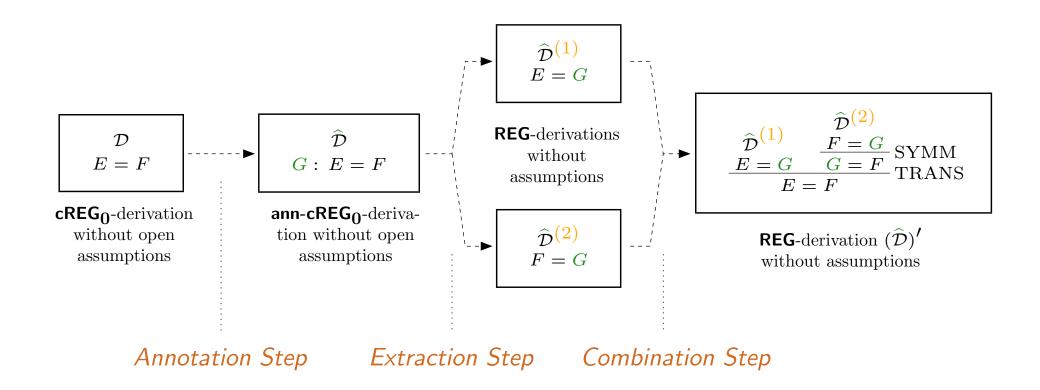
for all $E, F \in \mathcal{R}(\Sigma)$: $[\vdash_{\mathsf{cREG}_0} E = F \iff E =_L F]$.

Hint at the Proof.

" \Leftarrow ": argue as just explained for the example.

" \Rightarrow ": Let \mathcal{D} a derivation in \mathbf{cREG}_0 with conclusion E = F. Then $\{\langle [G]_{\mathbf{ACI}^+}, [H]_{\mathbf{ACI}^+} \rangle \mid G = H \text{ occurs in } \mathcal{D} \}$ is a finite bisimulation between $[E]_{\mathbf{ACI}^+}$ and $[F]_{\mathbf{ACI}^+}$ in $\mathcal{R}(\Sigma)_{\mathbf{ACI}^+}$. By the finitary coinduction principle, $E =_L F$ follows.

A Transformation from \mbox{cREG}_0 to \mbox{REG}



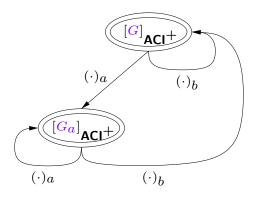
The Annotation Step (in our example)

$$\begin{array}{c} \mathsf{COMP}/\mathsf{FIX}, \ \mathbf{e} \frac{\underbrace{(1.e:\ E = F_2)^{\mathbf{e}}}{1.e:\ E_a = (F_2)_a}}{\underbrace{\frac{a^* + a^*b.d:\ E = F_2}{a^* + a^*b.d:\ E = F_2}}}{\underbrace{\frac{(1.d:\ E = F_1)^{\mathbf{d}}}{1.d:\ E_b = (F_2)_b}}{\underbrace{\frac{(1.d:\ E = F_1)^{\mathbf{d}}}{1.d:\ E_b = (F_1)_a}}} \\ \mathsf{COMP}/\mathsf{FIX}, \ \mathbf{d} \frac{\underbrace{\frac{a^* + a^*b.d:\ E_a = (F_1)_a}{a^* + a^*b.d:\ E_a = (F_1)_a}}}{\underbrace{\frac{(aa^*b + b)^*(1 + aa^*)}{E}:\ E = F_1}} \\ \end{array}$$

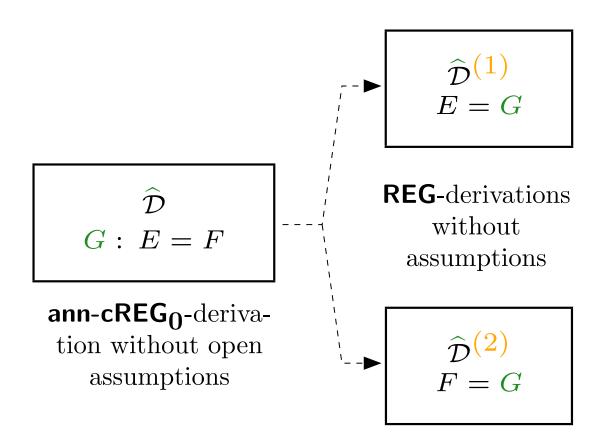
The Annotation Step (in our example)

$$\begin{array}{c} \mathsf{COMP}/\mathsf{FIX}, \ \mathbf{e} \frac{\underbrace{(1.e:\ E = F_2)^{\mathbf{e}}}{1.e:\ E_a = (F_2)_a}}{\underbrace{\frac{a^* + a^*b.d:\ E = F_2}{1.d:\ E = F_2}}_{\underbrace{\frac{a^* + a^*b.d:\ E = F_2}{a^* + a^*b.d:\ E_a = (F_1)_a}} \underbrace{\frac{(1.d:\ E = F_1)^{\mathbf{d}}}{1.d:\ E_b = (F_1)_b}}_{\underbrace{\frac{(aa^*b + b)^*(1 + aa^*)}{E}:\ E = F_1}}_{\equiv G} \end{array}$$

The annotation G in this **ann-cREG**₀-deriv. describes the bisimulation betw. E and F_1 ; it has the following gen. subautomation in $\mathcal{R}(\Sigma)_{ACI^+}$:



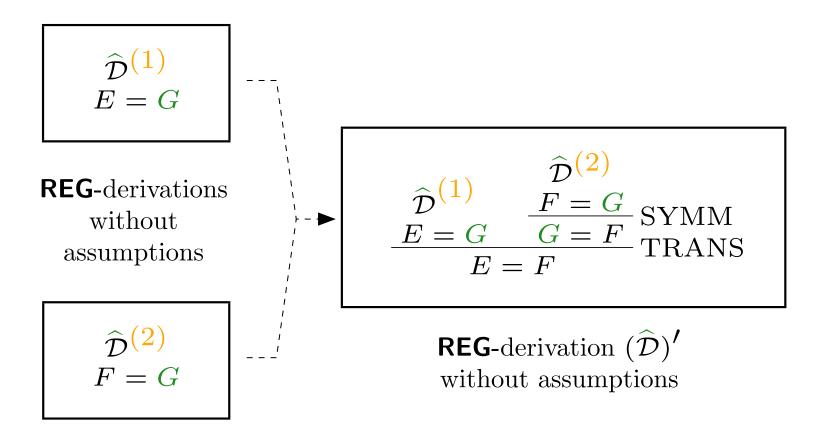
The Extraction Step



The Extraction Step (the deriv. $\widehat{\mathcal{D}}^{(1)}$ in our example)

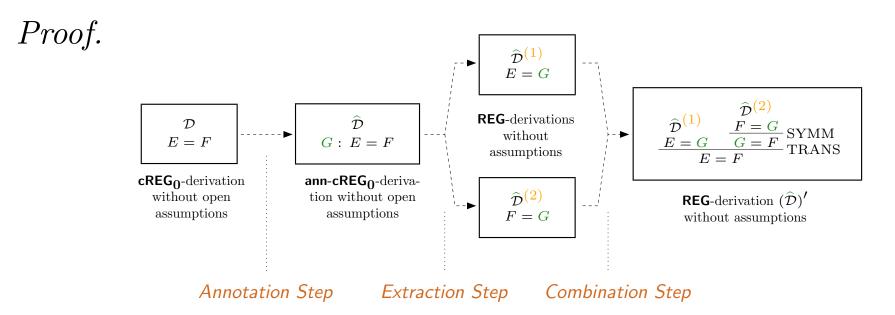
$$\begin{array}{c} \mathcal{D}^{(E)} \\ \mathcal{D}^{(E)}$$

The Combination Step



A Transformation from $cREG_0$ to REG

Theorem. Every derivation \mathcal{D} in $cREG_0$ without open assumptions can effectively be transformed into a derivation \mathcal{D}' in REG with the same conclusion as \mathcal{D} .



Corollary. The system **REG** is complete with respect to $=_L$.

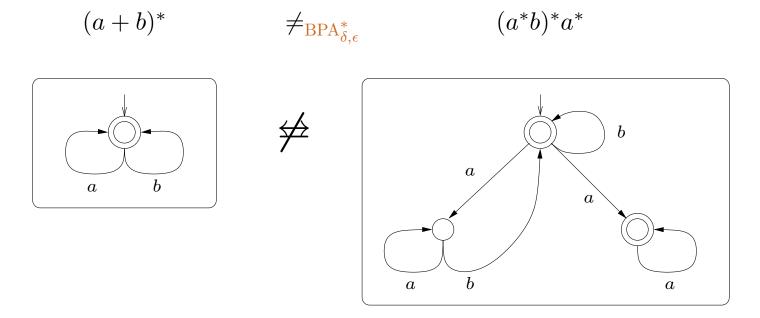
Summary

In the paper I have

- restated Rutten's coinduction principle for regular expression equivalence $=_L$ as a finitary coinduction principle (that can be used to decide $=_L$);
- introduced a coinductively motivated, complete proof system $cREG_0$ for $=_L$;
- described an effective proof-theoretic transformation from $cREG_0$ to REG, the "reversed" form of Salomaa's axiomatisation F_1 ;
- thereby provided a coinductive completeness proof for REG (which can be "redone" for F_1).

Related Work. A Related Problem?

- Proof systems for *recursive type equality*: a transformation from the coinductive axiomatisation by Brandt-Henglein into the "traditional" axiomatisation by Amadio-Cardelli (in my thesis).
- Milner's problem (1984): Find a system that is weaker than **REG**, but complete for *star behaviours*? (Is $BPA^*_{\delta,\epsilon}$ complete?)



Thanks for your attention!

References

- [1] Amadio, R.M., Cardelli, L.: "Subtyping Recursive Types", ACM Transactions on Programming Languages and Systems 15 (4) pp. 575–631, 1993.
- [2] Aanderaa, S.: On the algebra of regular expressions, *Applied Mathematics*, Harvard University (January 1965) 1–18.
- [3] Brandt, M., Henglein, F.: "Coinductive axiomatization of recursive type equality and subtyping", *Fundamenta Informaticae* 33 (1998) 1–30.
- [4] Brzozowski, J.A.: "Derivatives of regular expressions", *Journal of the ACM* **11** (1964) 481–494.

- [5] Conway, J.H.: *Regular Algebra and Finite Machines*. Chapman and Hall (1971).
- [6] Hüttel, H., Stirling, C.: "Actions Speak Louder Than Words: Proving Bisimilarity for Context-Free Processes", Journal of Logic and Computation 8:4 (1998) 485–509.
- [7] Grabmayer, C.: *Relating Proof Systems for Recursive Types*, PhD thesis, Vrije Universiteit Amsterdam (2005).
- [8] Milner, R.: "A Complete Inference System for a Class of Regular Behaviours", *Journal of Computer and System Sciences 28*, pp. 439–466, 1984.

[9] Rutten, J.J.M.M.: Automata and Coinduction (an Exercise

in Coinduction), *Proceedings of CONCUR '98*, LNCS 1466, Springer (1998) 194–218.

- [10] Salomaa, A.: Two complete axiom systems for the algebra of regular events, *Journal of the ACM* **13**:1 (1966) 158–169.
- [11] Troelstra, A.S., Schwichtenberg, H.: *Basic Proof Theory*, Cambridge University Press (1996, 2000).

Salomaa's Axiomatization F_1 of $=_L$

The *axioms* of F_1 :

A_1	E + (F + G) = (E + F) + G	A_7	1.E = E
A_2	E.(F.G) = (E.F).G	A_8	0.E = 0
A_3	E + F = F + E	A_9	E + 0 = E
A_4	E.(F+G) = E.F + E.G	A_{10}	$E^* = 1 + E^*.E$
A_5	(E+F).G = E.G + F.G	A_{11}	$E^* = (1+E)^*$
A_6	E + E = E		

The *inference rules* of F_1 :

$$\frac{E = F}{C[F] = C[E], \ C[F] = G} \qquad \frac{E = E \cdot F + G}{E = G \cdot F^*} \text{(if } o(F) = 0\text{)}$$

Brzozowski Derivatives

Brzozowski derivatives $(\cdot)_a : \mathcal{R}(\Sigma) \to \mathcal{R}(\Sigma)$ are defined by

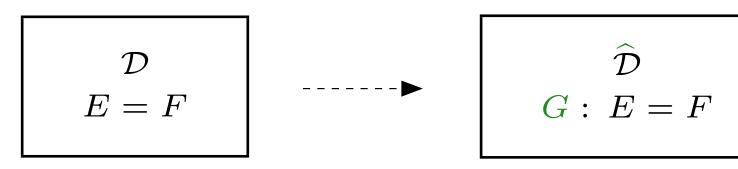
$$0_{a} =_{def} 0, \quad (E+F)_{a} =_{def} E_{a} + F_{a}, \quad (E^{*})_{a} =_{def} E_{a}.E^{*},$$

$$b_{a} =_{def} \begin{cases} 1 & \dots & b = a \\ 0 & \dots & b \neq a \end{cases} \quad (E.F)_{a} =_{def} \begin{cases} E_{a}.F + F_{a} & \dots & o(E) = 1 \\ E_{a}.F & \dots & o(E) = 0 \end{cases}$$

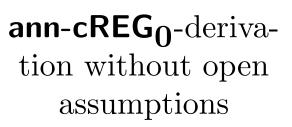
mimic language derivatives. Also, a function $o : \mathcal{R}(\Sigma) \to \mathcal{R}(\Sigma)$ can be defined that mimics the function $o_{\mathcal{L}}$:

$$\begin{split} o(0) &= o(b) \,=_{\mathsf{def}} \, 0 \,, \quad o(E+F) \,=_{\mathsf{def}} \, \begin{cases} 0 & \dots & o(E) = o(F) = 0 \\ 1 & \dots & \mathsf{else} \end{cases} \\ o(E.F) \,=_{\mathsf{def}} \, \begin{cases} 1 & \dots & o(E) = o(F) = 1 \\ 0 & \dots & \mathsf{else} \,, \end{cases} \quad o(E^*) \,=_{\mathsf{def}} \, 1 \,. \end{split}$$

The Annotation Step

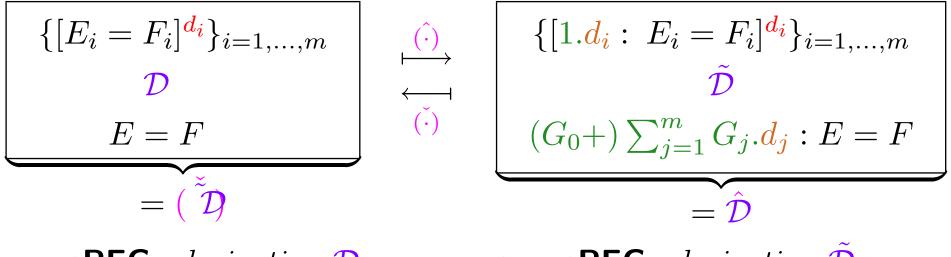


 $\begin{array}{c} \mathsf{cREG}_0 \text{-} \mathrm{derivation} \\ \mathrm{without \ open} \\ \mathrm{assumptions} \end{array}$



Justifying the Annotation Step

Lemma. $cREG_0$ and $ann-cREG_0$ are linked by an <u>annotating</u> transformation $(\hat{\cdot})$ and an <u>annotating-deleting</u> transf. $(\hat{\cdot})$:



 $cREG_0$ -derivation \mathcal{D}

ann-cREG₀-derivation $\tilde{\mathcal{D}}$

(Each derivation in $ann-cREG_0$ can be written in the form of the prooftree on the right.)

The Annotated Version ann-cREG $_0$ of cREG $_0$ (I)

The *axioms* and possible *marked assumptions* in **ann-cREG**₀(Σ, Δ):

(REFL)
$$\overline{E: E = E}$$
 (Assm) $(d: E = F)^d$ (with $d \in \Delta$)

The *inference rules* of **ann-cREG**₀(Σ, Δ):

$$\begin{aligned} \mathcal{D}_1 & \mathcal{D}_1 \\ \frac{G: C[E_1] = F}{G: C[E_2] = F} \mathsf{App}_l \mathsf{Ax}_{\mathsf{REG}} & \frac{G: F = C[E_1]}{G: F = C[E_2]} \mathsf{App}_r \mathsf{Ax}_{\mathsf{REG}} \\ & \text{(if } E_1 = E_2 \text{ or } E_2 = E_1 \text{ is an axiom of } \mathsf{REG}), \end{aligned}$$

And annotated versions of the rules COMP and COMP/FIX (on the two following slides).

The Annotated Version ann-cREG₀ of cREG₀ (II)

Annotated version of the rule COMP:

(Here we have assumed $\Sigma = \{a_1, \ldots, a_n\}$).

The Annotated Version ann-cREG₀ of cREG₀ (III)

Annotated version of the rule COMP/FIX:

$$[d_{k}: E = F]^{d_{k}} \qquad [d_{k}: E = F]^{d_{k}}$$

$$\mathcal{D}_{1} \qquad \mathcal{D}_{n}$$

$$G_{10} + \sum_{j=1}^{m} G_{1j}.d_{j}: E_{a_{1}} = F_{a_{1}} \dots G_{n0} + \sum_{j=1}^{m} G_{nj}.d_{j}: E_{a_{n}} = F_{a_{n}}$$

$$(\sum_{i=1}^{n} a_{i}.G_{ik})^{*}.(o(E) + \sum_{i=1}^{n} G_{i0}) + \sum_{i=1}^{m} G_{i0}) + \sum_{j=1, j \neq k}^{m} (\sum_{i=1}^{n} a_{i}.G_{ik})^{*}.(\sum_{i=1}^{n} a_{i}.G_{ij}).d_{j}: E = F$$

$$(\text{if } o(E) = o(F)).$$

The Extraction Step (the deriv. $\widehat{\mathcal{D}}^{(2)}$ in our example)

$$\begin{array}{c} \mathcal{D}^{(F_2)} \\ \mathcal{D}^{(F_1)} \\ \mathcal{D}^{(F_1)}$$

"Fundamental Theorem of Formal Languages"

Lemma. For all $E \in \mathcal{R}(\Sigma)$,

$$E =_L o(E) + \sum_{i=1}^n a_i \cdot E_{a_i}$$

holds, and a derivation in REG^- with this conclusion ("=" i.p.o. "=L") can effectively be constructed.

Proof. By induction on the syntactical structure of regular expressions.

Justifying the Extraction Step

Lemma. For every derivation

$$\{ [1.\mathbf{d}_i : E_i = F_i]^{\mathbf{d}_i} \}_{i=1,\dots,m}$$
$$\tilde{\mathcal{D}}$$
$$(G_0+) \sum_{j=1}^m G_j \cdot \mathbf{d}_j : E = F$$

in ann-cREG₀ it is possible to extract effectively derivations

$$\begin{array}{c} \tilde{\mathcal{D}}^{(1)} \\ E = (G_0 +)\sum_{j=1}^m G_j . E_j \end{array} and \qquad \begin{array}{c} \tilde{\mathcal{D}}^{(2)} \\ F = (G_0 +)\sum_{j=1}^m G_j . F_j \end{array}$$

in **REG**.

The Process Algebra $BPA^*_{\delta,\epsilon}$

The *axioms* of $BPA^*_{\delta,\epsilon}$:

Possible *inference rules* for BPA^{*}_{δ,ϵ}: REFL, SYMM, TRANS, and

$$\frac{x = y}{C[x] = C[y]} \mathsf{CTXT} \qquad \frac{x = f \cdot x + z}{x = f^* \cdot z} \mathsf{FIX} \text{ (if } o(f) = 0\text{)}$$