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Overview

▸ Comparison desiderata

Illustr.: Process interpretation of regular expressions

▸ Milner’s questions, known results

▸ structure-constrained process graphs:

▸ LEE -witnesses: graph labelings based on a loop–condition LEE

▸ preservation under bisimulation collapse

▸ readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

▸ from terms in the λ-calculus with letrec to:

▸ higher-order λ-term graphs

▸ first-order λ-term graphs

▸ λ-NFAs, and λ-DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Comparison results

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints



O C-des PI pi Mil Milner’s Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Overview

▸ Comparison desiderata

Illustr.: Process interpretation of regular expressions

▸ Milner’s questions, known results

▸ structure-constrained process graphs:

▸ LEE -witnesses: graph labelings based on a loop–condition LEE

▸ preservation under bisimulation collapse

▸ readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

▸ from terms in the λ-calculus with letrec to:

▸ higher-order λ-term graphs

▸ first-order λ-term graphs

▸ λ-NFAs, and λ-DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Comparison results

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints



O C-des PI pi Mil Milner’s Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Overview

▸ Comparison desiderata

Illustr.: Process interpretation of regular expressions

▸ Milner’s questions, known results

▸ structure-constrained process graphs:

▸ LEE -witnesses: graph labelings based on a loop–condition LEE

▸ preservation under bisimulation collapse

▸ readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

▸ from terms in the λ-calculus with letrec to:

▸ higher-order λ-term graphs

▸ first-order λ-term graphs

▸ λ-NFAs, and λ-DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Comparison results

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints



O C-des PI pi Mil Milner’s Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Overview

▸ Comparison desiderata

Illustr.: Process interpretation of regular expressions

▸ Milner’s questions, known results

▸ structure-constrained process graphs:

▸ LEE -witnesses: graph labelings based on a loop–condition LEE

▸ preservation under bisimulation collapse

▸ readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

▸ from terms in the λ-calculus with letrec to:

▸ higher-order λ-term graphs

▸ first-order λ-term graphs

▸ λ-NFAs, and λ-DFAs

▸ minimization / readback / efficiency / Haskell implementation

▸ Comparison results

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints



O C-des PI pi Mil Milner’s Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Comparison desiderata

Regular expressions under process semantics (bisimilarity ↔)

Given: process graph interpretation J⋅KP , studied under ↔

▸ not closed under →, and ↔, modulo ↔ incomplete

Desired: reason with graphs that are J⋅KP -expressible modulo ↔

(at least with ‘sufficiently many’)

understand incompleteness by a structural graph property

λ-calculus with letrec under unfolding semantics

Not available: term graph interpretation that is studied under ↔

▸ graph representations used by compilers
were not intended for use under ↔

Desired: term graph interpretation that:

▸ natural correspondence with terms in λletrec

▸ supports compactification under ↔

▸ efficient translation and readback
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Process interpretation of regular expressions
(current work with Wan Fokkink)

[2] a

[2] a

a

a

b

b [1]

b [1]

L(v2,→[1],→br,[>1])L(v2,→[1],→br)

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints



O C-des PI pi Mil Milner’s Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Regular Expressions (Copi–Elgot–Wright, 1958; based on Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the
grammar:

e, f ∶∶= 0 ∣ 1 ∣ a ∣ (e + f) ∣ (e ⋅ f) ∣ (e⋆) (for a ∈ A).

Note, here:

▸ symbol 0 instead of ∅

▸ symbol 1 used (often dropped, definable as 0⋆)

▸ no complementation operation e

▸ is not expressible under language interpretation
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Language interpretation J⋅KL (Copi–Elgot–Wright, 1958)

0
J⋅KL
z→ empty language ∅

1
J⋅KL
z→ {ε} (ε the empty word)

a
J⋅KL
z→ {a}

e + f
J⋅KL
z→ union of JeKL and JfKL

e ⋅ f
J⋅KL
z→ element-wise concatenation of JeKL and JfKL

e∗
J⋅KL
z→ set of words formed by concatenating words in JeKL

plus the empty word ε
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Process interpretation J⋅KP (Milner, 1984)

0
J⋅KP
z→ deadlock δ, no termination

1
J⋅KP
z→ empty process ε, then terminate

a
J⋅KP
z→ atomic action a, then terminate

e + f
J⋅KP
z→ alternative composition of JeKP and JfKP

e ⋅ f
J⋅KP
z→ sequential composition of JeKP and JfKP

e∗
J⋅KP
z→ unbounded iteration of JeKP , option to terminate
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Process interpretation of regular expressions
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a(a(b + ba))∗0 (aa(ba)∗b)∗0

a ⋅ (a ⋅ (b + b ⋅ a))∗ ⋅ 0 (a ⋅ a ⋅ (b ⋅ a)∗ ⋅ b)∗ ⋅ 0a ⋅ (a ⋅ (b + b ⋅ a))∗ ⋅ 0 (a ⋅ a ⋅ (b ⋅ a)∗ ⋅ b)∗ ⋅ 0(a ⋅ a ⋅ (b ⋅ a)∗ ⋅ b)∗ ⋅ 0Ja ⋅ (a ⋅ (b + b ⋅ a))∗ ⋅ 0KP J(a ⋅ a ⋅ (b ⋅ a)∗ ⋅ b)∗ ⋅ 0KPJa(a(b + ba))∗0KP J(aa(ba)∗b)∗0KPa(a(b + ba))∗0 (aa(ba)∗b)∗0↔↔P
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Process graphs and NFAs

Definition

A process graph over actions in A is a tuple G = ⟨V , vs, T ,E⟩ where:

▸ V is a set of vertices,

▸ vs ∈ V is the start vertex,

▸ T ⊆ V ×A × V the set of transitions,

▸ E ⊆ V × {↓} the set of termination extensions.

Restriction

Here we only consider finite and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

▸ nondeterministic finite-state automata (NFAs),

that are studied under bisimulation, not under language equivalence.

Antimirov (1996): NFA-definition of J⋅KP via partial derivatives.
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Properties of P

▸ Not every finite-state process is J⋅KP -expressible.

▸ Not every finite-state process is J⋅KP -expressible modulo ↔.

▸ Fewer identities hold for ↔P than for =L : ↔P ⫋ =L .

a

a

b

b

not J⋅KP -expressible

J⋅KP -expressible modulo ↔

a b

/↔

J(ab)∗+(ab)∗aKP

a1 a2
b1

b2

c1

c2

/↔

J0KPnot J⋅KP -expressible

not J⋅KP -expressible modulo ↔
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Salomaa’s axiomatization of =L (products commuted)

Axioms :

(B1) e + (f + g) = (e + f) + g (B7) e ⋅ 1 = e

(B2) (e ⋅ f) ⋅ g = e ⋅ (f ⋅ g) (B8) e ⋅ 0 = 0

(B3) e + f = f + e (B9) e + 0 = e

(B4) (e + f) ⋅ g = e ⋅ g + f ⋅ g (B10) e∗ = 1 + e ⋅ e∗

(B5) e ⋅ (f + g) = e ⋅ f + e ⋅ g (B11) e∗ = (1 + e)∗

(B6) e + e = e

(B8)′ 0 ⋅ e = 0

Inference rules : equational logic plus

e = f ⋅ e + g
FIX (if {ε} ∉ JfKL

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

)
e = f∗ ⋅ g

non-empty-word
property
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Sound and unsound axioms with respect to ↔P

Axioms :

(B1) e + (f + g) = (e + f) + g (B7) e ⋅ 1 = e
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(B6) e + e = e

(B8)′ 0 ⋅ e = 0
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Milner’s adaptation for ↔P (Mil =Mil− + RSP∗)

Axioms :

(B1) e + (f + g) = (e + f) + g (B7) e ⋅ 1 = e

(B2) (e ⋅ f) ⋅ g = e ⋅ (f ⋅ g)
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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e = f∗ ⋅ g

non-empty-word
property
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Milner’s questions

, and partial results

Q1. Which structural property of finite process graphs

characterizes J⋅KP -expressibility modulo ↔ ?

▸ definability by well-behaved specifications (Baeten/Corradini, 2005)

▸ that is decidable (super–exponentially) (Baeten/Corradini/G, 2007)

Q2. Is Mil complete for ↔P ?

▸ ↔P has no finite (purely) equational axiomatization (Sewell, 1994)

▸ Mil is complete for perpetual–loop expressions (Fokkink, 1996)

▸ every iteration e∗ occurs as part of a ‘no-exit’ subexpression e∗ ⋅ 0

▸ Mil is complete when restricted to 1-return-less expressions
(Corradini, De Nicola, Labella, 2002)

▸ Mil− + one of two stronger rules (than RSP∗) is complete (G, 2006)

▸ with a coinductive rule (based on Antimirov’s partial derivatives)

▸ with a unique solvability principle USP
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well-behaved form
(Corradini, Baeten)

J(1 ⋅ aa(1 ⋅ ba)∗1 ⋅ b)∗(1 ⋅ 1)KP
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Loop chart

Definition

A process graph is a loop chart if:

L-1.

There is an infinite path from the start vertex.

L-2.

Every infinite path from the start vertex returns to it.

L-3.

Termination is only possible at the start vertex.

vs

v1 v2

v3

v4

v5
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Loop elimination, and properties

Ð→elim : eliminate a transition-induced loop by:

▸ removing the loop-entry transition(s)

▸ garbage collection

Ð→prune : remove a transition to a deadlocking state

Lemma

(i) Ð→elim is terminating.

(ii) Ð→elim ∪Ð→prune is terminating and confluent.
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Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

∃G0 (GÐ→∗
elim G0 /Ð→elim

∧ G0 has no infinite trace ) .

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

(i) LEE(G).

(ii) There is an Ð→elim normal form without an infinite trace.

(iii) There is an Ð→elim,prune normal form without an infinite trace.

(iv) Every Ð→elim normal form is without an infinite trace.

(v) Every Ð→elim,prune normal form is without an infinite trace.
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[2]
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[2]
a
[2]
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⟨b, br⟩

v2
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⟨b, [1]⟩ [1]b [1]b [1]b

L(v2,→[1],→br,[>1])

is loop subchart

L(v2,→[1],→br,[>1])L(v1,→[2],→br,[>2])

is loop subchartL(v1,→[2],→br,[>2])
LEE-witness

loop–branch labeling: marking transitions
a
Ð→ as:

▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N,

written
a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→,

written
a
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a
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or entry steps →[m] with m > n,
until v is reached again
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followed by branch steps →br

or entry steps →[m] with m > n,
until v is reached again
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LEE-witness ?

v0

[2] a

[2] a

v1

a

a

b

v2

b [1]

b [1]

L(v2,→[1],→br,[>1])L(v2,→[1],→br)

L(v0,→[2],→br,[>2])

L(v0,→[2],→br)

LEE-witness
layered

LEE-witness

loop–branch labeling: marking transitions
a
Ð→ as:

▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N, written

a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a LEE-witness, if:

L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br,[>n])

is a loop subchart
).

L2. No infinite →br path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from
different vertices have different entry-step levels.

L(v,→[n],→br,[>n]) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,
until v is reached again
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Ð→br or

a
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A loop–branch labeling is a LEE-witness, if:

L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br,[>n])

is a loop subchart
).

L2. No infinite →br path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from
different vertices have different entry-step levels.

L(v,→[n],→br,[>n]) ∶= subchart induced
by entry steps →[n] from v
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loop–branch labeling: marking transitions
a
Ð→ as:

▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N, written

a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a LEE-witness, if:

L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br,[>n])

is a loop subchart
).

L2. No infinite →br path from the start vertex.

L3. L(wi,→[ni],→br,[>ni]) for i ∈ {1,2} loop charts

∧ w1 ≠ w2 ∧ w1 ∈ L(w2, . . ., . . .) Ô⇒ n1 ≠ n2.

L(v,→[n],→br,[>n]) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,
until v is reached again
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loop–branch labeling: marking transitions
a
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▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N, written

a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a LEE-witness, if:

L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br,[>n])

is a loop subchart
).

L2. No infinite →br path from the start vertex.

L3. L(wi,→[ni],→br,[>ni]) for i ∈ {1,2} loop charts

∧ w1 ≠ w2 ∧ w1 ∈ L(w2, . . ., . . .) Ô⇒ n1 ≠ n2.

L(v,→[n],→br,[>n]) ∶= subchart induced
by entry steps →[n] from v
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Layered LEE-witness
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LEE-witness
layered

LEE-witness

loop–branch labeling: marking transitions
a
Ð→ as:

▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N, written

a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a layered LEE-witness, if:

l-L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br,[>n])

is a loop subchart
).

l-L2. No infinite →br path from the start vertex.

l-L3. L(wi,→[ni],→br,[>ni]) for i ∈ {1,2} loop charts

∧ w1 ≠ w2 ∧ w1 ∈ L(w2, . . ., . . .) Ô⇒ n1 < n2.

L(v,→[n],→br,[>n]) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,
until v is reached again
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a
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⟨a,[n]⟩
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a
Ð→[n],

▸ branch steps
⟨a,br⟩
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a
Ð→br or

a
Ð→.
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is a loop subchart
).

l-L2. No infinite →br path from the start vertex.

l-L3. L(wi,→[ni],→br) for i ∈ {1,2} loop charts

∧ w1 ≠ w2 ∧ w1 ∈ L(w2, . . ., . . .) Ô⇒ n1 < n2.

L(v,→[n],→br) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,

until v is reached again
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loop–branch labeling: marking transitions
a
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▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N, written

a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a layered LEE-witness, if:

l-L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br)

is a loop subchart
).

l-L2. No infinite →br path from the start vertex.

l-L3. L(wi,→[ni],→br) for i ∈ {1,2} loop charts

∧ w1 ≠ w2 ∧ w1 ∈ L(w2, . . ., . . .) Ô⇒ n1 < n2.

L(v,→[n],→br) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,

until v is reached again
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LEE-witness
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loop–branch labeling: marking transitions
a
Ð→ as:

▸ entry steps
⟨a,[n]⟩
ÐÐÐÐ→ for n ∈ N, written

a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a layered LEE-witness, if:

l-L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br)

is a loop subchart
).

l-L2. No infinite →br path from the start vertex.

l-L3. A loop subchart induced by a vertex in the body
of another induced loop subchart has lower level.

L(v,→[n],→br) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,

until v is reached again
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a
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a
Ð→[n],

▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or
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Ð→.
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A loop–branch labeling is a layered LEE-witness, if:

l-L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br)

is a loop subchart
).

l-L2. No infinite →br path from the start vertex.

l-L3. A loop subchart induced by a vertex in the body
of another induced loop subchart has lower level.

L(v,→[n],→br) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,

until v is reached again
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▸ branch steps
⟨a,br⟩
ÐÐÐ→, written

a
Ð→br or

a
Ð→.

Definition

A loop–branch labeling is a layered LEE-witness, if:

l-L1. ∀n ∈ N∀v ∈ V (
v→[n] ⇒ L(v,→[n],→br)

is a loop subchart
).

l-L2. No infinite →br path from the start vertex.

l-L3. A loop subchart induced by a vertex in the body
of another induced loop subchart has lower level.

L(v,→[n],→br) ∶= subchart induced
by entry steps →[n] from v
followed by branch steps →br

or entry steps →[m] with m > n,

until v is reached again
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LEE versus LEE-witness

Theorem

For every process graph G :

LEE(G) ⇐⇒ G has a LEE-witness.

Proof (Idea).

⇒ : record loop elimination

⇐ : carry out loop-elimination as indicated in the LEE-witness,
in inside–out direction, e.g.:

a

a

[2]

b

[1]

b

v0

v1

v2

[2]

v0

v1

v2

Ð→elim

v0

v1

v2

Ð→elim
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For every process graph G :
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Proof (Idea).
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LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness Ĝ of a process graph G

can be transformed by an effective procedure (cut-elimination-like)

into a layered LEE-witness Ĝ′ of G.

Theorem

For every process graph G the following are equivalent:

(i) LEE(G).

(ii) G has a LEE-witness.

(iii) G has a layered LEE-witness.
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LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness Ĝ of a process graph G

can be transformed by an effective procedure (cut-elimination-like)
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7 LEE-witnesses

C

a

ab

b

v0

v1

v2

[1]b

layered

[2]

[1]

layered

[2][1]

not layered

Ô⇒
make layered

[1]

[2]

layered

[1]

[1]

layered

[2] [1]

not layered

Ô⇒
make layered

[2]

[1]

layered
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LEE under bisimulation?

Observation

▸ LEE is not invariant under bisimulation.

▸ LEE is not preserved by converse functional bisimulation.

a

LEE

¬LEE

a a

a

a aa

a

a

a

LEE ¬LEE
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LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

LEE(G1) ∧ G1 → G2 Ô⇒ LEE(G2) .

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) ∧ C is bisimulation collapse of G Ô⇒ LEE(C) .

Proof (Idea).

Use loop elimination in G1 to carry out loop elimination in G2.
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Collapsing LEE-witnesses

a

a

a[1] a[1]

b

b
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Ja(a(b + ba))∗0KP

a

a

a[1] a[1]

b
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b

b
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aa[2] a[2]

a

bb[1] b[1]
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J(aa(ba)∗b)∗0KP
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LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

LEE(G1) ∧ G1 → G2 Ô⇒ LEE(G2) .

(ii) LEE is preserved from a process graph to its bisimulation collapse:

LEE(G) ∧ C is bisimulation collapse of G Ô⇒ LEE(C) .

Idea of Proof for (i)

Use loop elimination in G1 to carry out loop elimination in G2.
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Lemma

(i) LEE is preserved by functional bisimulations:
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Readback

Lemma

Process graphs with LEE are J⋅KP -expressible:

LEE(G) Ô⇒ ∃e ∈ Reg(A) (G↔ JeKP ) .
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Readback from layered LEE-witness (example)

layered
LEE-witness

a

a

[1] a

b

b

v0

v1

v2

s(v0) = 0∗ ⋅ a ⋅ s(v1)

=Mil− a ⋅ s(v1)

=Mil− a ⋅ (a ⋅ (b + b ⋅ a))
∗
⋅ 0

s(v1) = (a ⋅ s(v2, v1))
∗
⋅ 0

=Mil− (a ⋅ (b + b ⋅ a))
∗
⋅ 0

s(v2, v1) = 0∗ ⋅ (b ⋅ s(v1, v1) + b ⋅ s(v0, v1))

=Mil− 0
∗
⋅ (b ⋅ 1 + b ⋅ a)

=Mil− b + b ⋅ a

s(v1, v1) = 1

s(v0, v1) = 0∗ ⋅ a ⋅ s(v1, v1)

= 0∗ ⋅ a ⋅ 1

=Mil− a
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1-return-less regular expressions

Lemma

Process graphs with LEE are J⋅KP -expressible:

LEE(G) Ô⇒ ∃e ∈ Reg(A) (G↔ JeKP ) .

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-⋆) (e ∈ Reg1r/⋆
(A)) if:

▸ for no iteration subexpression f∗ of e does JfKP proceed to a
process p such that:

▸ p has the option to immediately terminate, and
▸ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

▸ (a ⋅ (1 + b))∗

×

▸ (a ⋅ (0∗ + b))∗

×

▸ a ⋅ (a ⋅ (b + b ⋅ a))
∗
⋅ 0

✓

▸ (a∗(b∗ + c ⋅ 0)∗)∗

×

▸ (a∗(b∗ + c ⋅ 0))∗

×

▸ (a∗(b + c ⋅ 0))∗

✓
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1-return-less regular expressions

Lemma

Process graphs with LEE are J⋅K1r/⋆P -expressible:

LEE(G) Ô⇒ ∃e ∈ Reg1r/⋆
(A) (G↔ JeKP ) .

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-⋆) (e ∈ Reg1r/⋆
(A)) if:

▸ for no iteration subexpression f∗ of e does JfKP proceed to a
process p such that:

▸ p has the option to immediately terminate, and
▸ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

▸ (a ⋅ (1 + b))∗ ×

▸ (a ⋅ (0∗ + b))∗ ×

▸ a ⋅ (a ⋅ (b + b ⋅ a))
∗
⋅ 0 ✓

▸ (a∗(b∗ + c ⋅ 0)∗)∗ ×

▸ (a∗(b∗ + c ⋅ 0))∗

×

▸ (a∗(b + c ⋅ 0))∗

✓
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Characterization of expressibility1r/⋆ modulo ↔

Theorem

For every process graph G with bisimulation collapse C the following are
equivalent:

(i) G is J⋅K1r/⋆P -expressible modulo ↔ .

(ii) LEE(C).

(iii) C has a LEE-witness.

(iv) C has a layered LEE-witness.

Milners characterization question restricted, and adapted:

Q1′′. Which structural property of collapsed finite process graphs

characterizes J⋅K1r/⋆P -expressibility modulo ↔ ?

▸ The loop-existence and elimination property LEE.

Also yields: efficient decision method of J⋅K1r/⋆P -expressibility modulo ↔.
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Structure constrained finite process graphs

loop–exit palm trees ⫋ J⋅K1r/⋆P -expressible graphs

⫋

graphs with LEE / a (layered) LEE-witness

⫋ graphs whose collapse satisfies LEE

= graphs that are J⋅K1r/⋆P -expressible modulo ↔

⫋ graphs that are J⋅KP -expressible modulo ↔

⫋ finite process graphs

Benefits of the class of process graphs with LEE:

▸ is closed under →

▸ forth-/back-correspondence with 1-return-less regular expressions

Application to Milner’s questions yields partial results:

Q1: characterization/efficient decision of J⋅K1r/⋆P -expressibility modulo ↔

Q2: alternative compl. proof of Mil on 1-return-less expressions (C/DN/L)
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Maximal sharing of functional programs
(joint work with Jan Rochel)

L G

L0 G0

interpret

readback

collapse

λ

λ

@

@

0

0
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maximal sharing: example (fix)

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf. let r = f (f r) in r

λ

@

0 @

0

λf. let r = f r in r
λ

@

0

λf. f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT
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maximal sharing: the method

L G

G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).
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interpretation

L G

L0 G0

interpret

readback

collapse
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running example

instead of:

λf. let r = f (f r) in r z→max-sharing λf. let r = f r in r

we use:

λx.λf. let r = f (f r x)x in r z→max-sharing λx.λf. let r = f r x in r

L z→max-sharing L0
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ-DFA
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@ x

f r

r

syntax tree
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λx

λf

@

@ x

f

r

syntax tree (+ recursive backlink)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@

f

x

syntax tree (+ recursive backlink, + scopes)

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints



O C-des PI pi Mil Milner’s Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λx

λf

@

@

f

x

syntax tree (+ recursive backlink, + scopes, + binding links)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph with binding backlinks (+ scope sets)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph with binding backlinks (+ scope sets)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph (+ scope sets)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

higher-order term graph (with scope sets, Blom [2003])
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

higher-order term graph (with scope sets, Blom [2003])
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

higher-order term graph (with scope sets, + abstraction-prefix function)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

higher-order term graph (with abstraction-prefix function)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

λ-higher-order-term-graph JL0KH
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

v0

()

v1

(v0)

(v0v1)

(v0v1)

(v0v1)

(v0)

first-order term graph (+ abstraction-prefix function)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0

0

first-order term graph with binding backlinks (+ scope sets)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0 S

0

first-order term graph with scope vertices with backlinks (+ scope sets)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0 S

0

first-order term graph with scope vertices with backlinks
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@

@

0 S

0

λ-term-graph JL0KT
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@0

@0

@1

S0

@1

0

S1 0

λ

λ

@0

@0

@1

S0

@1

0

S1 0

0,@0/1, S0/1

0,@0/1, S0/1

λ,0, S0/1

λ,0, S0/1

λ,@0/1, S0/1 λ, 0, @0/1

λ, @0/1, S0/1

λ, 0, @0/1, S0/1

finite-state automaton (acceptance not settled)
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@0

@0

@1

S0

@1

0

S1 0

λ-NFA
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graph interpretation (example 1)

L0 = λx.λf. let r = f r x in r

λ

λ

@0

@0

@1

S0

@1

0

S1 0

0,@0/1, S0/1

0,@0/1, S0/1

λ,0, S0/1

λ,0, S0/1

λ,@0/1, S0/1 λ, 0, @0/1

λ, @0/1, S0/1

λ, 0, @0/1, S0/1 λ-DFA
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ-DFA
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@ x

f @

@ x

f r

r

syntax tree
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@ x

f @

@ x

f

r

syntax tree (+ recursive backlink)
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@

@

@

f f

x x

syntax tree (+ recursive backlink)
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λx

λf

@

@

@

@

f f

x x

syntax tree (+ recursive backlink, + scopes)
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

first-order term graph with binding backlinks (+ scope sets)
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0

0 0

λ-higher-order-term-graph JLKH
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0 S S

0 0

first-order term graph with scope vertices with backlinks (+ scope sets)
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graph interpretation (example 2)

L = λx.λf. let r = f (f r x)x in r

λ

λ

@

@

@

@

0 0 S S

0 0

λ-term-graph JLKT
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graph interpretation (examples 1 and 2)

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
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interpretation J⋅KT : properties (cont.)

interpretation λletrec-term L z→ λ-term-graph JLKT
▸ defined by induction on structure of L

▸ similar analysis as fully-lazy lambda-lifting

▸ yields eager-scope λ-term-graphs: ∼ minimal scopes

Theorem

For λletrec-terms L1 and L2 it holds: Equality of infinite unfolding
coincides with bisimilarity of λ-term-graph interpretations:

JL1Kλ∞ = JL2Kλ∞ ⇐⇒ JL1KT ↔ JL2KT
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interpretation J⋅KT : properties (cont.)

interpretation λletrec-term L z→ λ-term-graph JLKT
▸ defined by induction on structure of L

▸ similar analysis as fully-lazy lambda-lifting

▸ yields eager-scope λ-term-graphs: ∼ minimal scopes

Theorem

For λletrec-terms L1 and L2 it holds: Equality of infinite unfolding
coincides with bisimilarity of λ-term-graph interpretations:

JL1Kλ∞ = JL2Kλ∞ ⇐⇒ JL1KT ↔ JL2KT
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collapse

L G

L0 G0

interpret

readback

collapse
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bisimulation check between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
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bisimulation between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT

←

JLKT
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bisimilarity between λ-term-graphs

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

↔

JL0KT ↔ JLKT
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functional bisimilarity and bisimulation collapse

λ

λ

@

@

0 S

0

λ

λ

@

@

@

@

0 0 S S

0 0

←

JL0KT ← JLKT
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bisimulation collapse: property

Theorem

The class of eager-scope λ-term-graphs
is closed under functional bisimilarity →.

Ô⇒ For a λletrec-term L

the bisimulation collapse of JLKT is again an eager-scope λ-term-graph.
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readback

L G

L0 G0

interpret

readback

collapse
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readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)
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readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)
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readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)
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readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G:

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)
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maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L with ∣L∣ = n

as λ-term-graph G = JLKT
▶ in time O(n2), size ∣G∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G∣ log ∣G∣) = O(n2 logn)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT )(L) of L for a
λletrec-term L requires time O(n2 logn), where ∣L∣ = n.
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Demo: console output
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Demo: generated λ-NFAs

[1]

[3]

L

[9,6]

L

[10,7]

A0

[13,15]

A1A1

[11,8]

A0

S1

[14,16]

S0

0

0

1

3

L

6

L

7

A0

15

A1

8

A0

9

A1

0

10

A0

13

A1

A1

11

A0

0

S1

14

S0

0

S1

16

S0

0
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Resources (maximal sharing)

▸ tool maxsharing on hackage.haskell.org

▸ papers and reports

▸ Maximal Sharing in the Lambda Calculus with Letrec

▸ ICFP 2014 paper

▸ accompanying report arXiv:1401.1460

▸ Term Graph Representations for Cyclic Lambda Terms

▸ TERMGRAPH 2013 proceedings

▸ extended report arXiv:1308.1034

▸ Vincent van Oostrom, CG: Nested Term Graphs

▸ TERMGRAPH 2014 post-proceedings in EPTCS 183

▸ thesis Jan Rochel

▸ Unfolding Semantics of the Untyped λ-Calculus with letrec

▸ Ph.D. Thesis, Utrecht University, 2016

Clemens Grabmayer Modeling Terms by Graphs with Structure Constraints
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Comparison results: structure-constrained graphs

Regular expressions under ↔P

Given: graph interpretation J⋅KP , studied under bisimulation ↔

▸ not closed under →, and ↔, incomplete under ↔

Defined: class of process graphs with LEE / (layered) LEE-witness

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with 1-return-less expr’s

▸ contains the collapse of a process graph G
⇐⇒ G is J⋅K1r/⋆P -expressible modulo ↔

λ-calculus with letrec under =λ∞

Not available: graph interpretation that is studied under ↔

Defined: int’s J⋅KH/J⋅KT as higher-order/first-order λ-term graphs

▸ closed under → (hence under collapse)

▸ back-/forth correspondence with λ-calculus with letrec

▸ efficient translation and readback
▸ translation is inverse of readback
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▸ efficient translation and readback
▸ translation is inverse of readback
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L’Aquila (from Monte Castelvecchia la Crocetta)
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Corno Grande, Gran Sasso (from close to GSSI, L’Aquila)
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