Modeling Terms by Graphs with Structure Constraints

 (An illustration with background)Clemens Grabmayer

Department of Computer Science
Vrije Universiteit Amsterdam
The Netherlands
Seminar TCS
Vrije Universiteit Amsterdam October 19, 2018

structure constraints (L'Aquila)

structure constraints (L'Aquila)

Overview

Illustr.: Process interpretation of regular expressions

- LEE-witnesses: graph labelings based on a loop-condition LEE

Backgr.: Maximal sharing of functional programs

- higher-order λ-term graphs

Overview

Illustr.: Process interpretation of regular expressions

- Milner's questions, known results
- structure-constrained process graphs:
- LEE-witnesses: graph labelings based on a loop-condition LEE
- preservation under bisimulation collapse
- readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

- higher-order λ-term graphs

Overview

Illustr.: Process interpretation of regular expressions

- Milner's questions, known results
- structure-constrained process graphs:
- LEE-witnesses: graph labelings based on a loop-condition LEE
- preservation under bisimulation collapse
- readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

- from terms in the λ-calculus with letrec to:
- higher-order λ-term graphs
- first-order λ-term graphs
- λ-NFAs, and λ-DFAs
- minimization / readback / efficiency / Haskell implementation

Overview

- Comparison desiderata

Illustr.: Process interpretation of regular expressions

- Milner's questions, known results
- structure-constrained process graphs:
- LEE-witnesses: graph labelings based on a loop-condition LEE
- preservation under bisimulation collapse
- readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

- from terms in the λ-calculus with letrec to:
- higher-order λ-term graphs
- first-order λ-term graphs
- λ-NFAs, and λ-DFAs
- minimization / readback / efficiency / Haskell implementation
- Comparison results

Comparison desiderata

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under \lrcorner, and \leftrightarrows, modulo \leftrightarrows incomplete
λ-calculus with letrec under unfolding semantics

Comparison desiderata

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under \rightarrow, and \leftrightarrows, modulo \leftrightarrows incomplete

Desired: reason with graphs that are $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows (at least with 'sufficiently many')
understand incompleteness by a structural graph property
λ-calculus with letrec under unfolding semantics

Comparison desiderata

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under \rightarrow, and \leftrightarrows, modulo \leftrightarrows incomplete

Desired: reason with graphs that are $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows (at least with 'sufficiently many')
understand incompleteness by a structural graph property
λ-calculus with letrec under unfolding semantics
Not available: term graph interpretation that is studied under \leftrightarrows

- graph representations used by compilers were not intended for use under \leftrightarrows

Comparison desiderata

Regular expressions under process semantics (bisimilarity \leftrightarrows)
Given: process graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under \leftrightarrows

- not closed under \rightarrow, and \leftrightarrows, modulo \leftrightarrows incomplete

Desired: reason with graphs that are $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows (at least with 'sufficiently many')
understand incompleteness by a structural graph property
λ-calculus with letrec under unfolding semantics
Not available: term graph interpretation that is studied under \leftrightarrows

- graph representations used by compilers were not intended for use under \leftrightarrows
Desired: term graph interpretation that:
- natural correspondence with terms in $\boldsymbol{\lambda}_{\text {letrec }}$
- supports compactification under \leftrightarrows
- efficient translation and readback

Process interpretation of regular expressions (current work with Wan Fokkink)

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set $\operatorname{Reg}(A)$ of regular expressions over alphabet A is defined by the grammar:

$$
e, f::=0|1| a|(e+f)|(e \cdot f) \mid\left(e^{\star}\right) \quad(\text { for } a \in A) .
$$

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set $\operatorname{Reg}(A)$ of regular expressions over alphabet A is defined by the grammar:

$$
e, f::=0|1| a|(e+f)|(e \cdot f) \mid\left(e^{*}\right) \quad(\text { for } a \in A) .
$$

Note, here:

- symbol 0 instead of \varnothing
- symbol 1 used (often dropped, definable as 0^{*})
- no complementation operation \bar{e}
- is not expressible under language interpretation

Language interpretation $\llbracket \cdot \rrbracket_{L} \quad$ (Copi-Elgot-Wright, 1958)

$0 \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ empty language \varnothing
$1 \stackrel{\llbracket \rrbracket_{L}}{\longmapsto}\{\epsilon\} \quad(\epsilon$ the empty word $)$
$a \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}\{a\}$

Language interpretation $\llbracket \cdot \rrbracket_{L} \quad$ (Copi-Elgot-Wright, 1958)

$0 \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ empty language \varnothing
$1 \stackrel{\llbracket \rrbracket_{L}}{\longmapsto}\{\epsilon\} \quad(\epsilon$ the empty word)
$a \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}\{a\}$
$e+f \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ union of $\llbracket e \rrbracket_{L}$ and $\llbracket f \rrbracket_{L}$
$e \cdot f \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ element-wise concatenation of $\llbracket e \rrbracket_{L}$ and $\llbracket f \rrbracket_{L}$
$e^{*} \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ set of words formed by concatenating words in $\llbracket e \rrbracket_{L}$ plus the empty word ϵ

Process interpretation $\llbracket \cdot \rrbracket_{P} \quad$ (Milner, 1984)

$0 \stackrel{\Vdash \cdot \|_{P}}{\longleftrightarrow}$ deadlock δ, no termination
$1 \stackrel{\llbracket \eta_{P}}{\longleftrightarrow}$ empty process ϵ, then terminate
$a \xrightarrow{\llbracket \cdot \|_{P}}$ atomic action a, then terminate

Process interpretation $\llbracket \cdot \rrbracket_{P} \quad$ (Milner, 1984)

$0 \stackrel{\llbracket \cdot \|_{P}}{\longleftrightarrow}$ deadlock δ, no termination
$1 \stackrel{\Vdash \cdot \|_{P}}{\longleftrightarrow}$ empty process ϵ, then terminate
$a \xrightarrow{\llbracket \cdot \|_{P}}$ atomic action a, then terminate
$e+f \stackrel{\llbracket \|_{P}}{\longleftrightarrow}$ alternative composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e \cdot f \xrightarrow{\llbracket!\rrbracket_{P}}$ sequential composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e^{*} \xrightarrow{\llbracket \|_{P}}$ unbounded iteration of $\llbracket e \rrbracket_{P}$, option to terminate

Process interpretation of regular expressions

$$
a(a(b+b a))^{*} 0
$$

$\left(a a(b a)^{*} b\right)^{*} 0$

Process interpretation of regular expressions

$a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$
$\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0$

Process interpretation of regular expressions

$$
a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0
$$

$$
\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0
$$

Process interpretation of regular expressions

$$
a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0
$$

$$
\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0
$$

Process interpretation of regular expressions

$$
a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0
$$

$$
\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0
$$

Process interpretation of regular expressions

$$
\llbracket a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0 \rrbracket_{P}
$$

$$
\llbracket\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0 \rrbracket_{P}
$$

Process interpretation of regular expressions

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$
$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Process interpretation of regular expressions

Process interpretation of regular expressions

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$
$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Process interpretation of regular expressions

$$
\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}
$$

$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Process interpretation of regular expressions

Process graphs and NFAs

Definition

A process graph over actions in A is a tuple $G=\left\langle V, v_{\mathbf{s}}, T, E\right\rangle$ where:

- V is a set of vertices,
- $v_{\mathrm{s}} \in V$ is the start vertex,
- $T \subseteq V \times A \times V$ the set of transitions,
- $E \subseteq V \times\{\downarrow\}$ the set of termination extensions.

Process graphs and NFAs

Definition

A process graph over actions in A is a tuple $G=\left\langle V, v_{\mathbf{s}}, T, E\right\rangle$ where:

- V is a set of vertices,
- $v_{\mathrm{s}} \in V$ is the start vertex,
- $T \subseteq V \times A \times V$ the set of transitions,
- $E \subseteq V \times\{\downarrow\}$ the set of termination extensions.

Restriction

Here we only consider finite and start-vertex connected process graphs.

Process graphs and NFAs

Definition

A process graph over actions in A is a tuple $G=\left\langle V, v_{\mathbf{s}}, T, E\right\rangle$ where:

- V is a set of vertices,
- $v_{\mathrm{s}} \in V$ is the start vertex,
- $T \subseteq V \times A \times V$ the set of transitions,
- $E \subseteq V \times\{\downarrow\}$ the set of termination extensions.

Restriction

Here we only consider finite and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

- nondeterministic finite-state automata (NFAs),
that are studied under bisimulation, not under language equivalence.

Process graphs and NFAs

Definition

A process graph over actions in A is a tuple $G=\left\langle V, v_{\mathrm{s}}, T, E\right\rangle$ where:

- V is a set of vertices,
- $v_{\mathrm{s}} \in V$ is the start vertex,
- $T \subseteq V \times A \times V$ the set of transitions,
- $E \subseteq V \times\{\downarrow\}$ the set of termination extensions.

Restriction

Here we only consider finite and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

- nondeterministic finite-state automata (NFAs),
that are studied under bisimulation, not under language equivalence.
Antimirov (1996): NFA-definition of $\llbracket \cdot \rrbracket_{P}$ via partial derivatives.

Expressible process graphs (under bisimulation \leftrightarrows)

Expressible process graphs (under bisimulation \leftrightarrows)

Expressible process graphs (under bisimulation \leftrightarrows)

$$
\begin{gathered}
\epsilon \operatorname{im}\left(\mathbb{I} \cdot \rrbracket_{P}\right) \\
\mathbb{I} \cdot \rrbracket_{P} \text {-expressible }
\end{gathered}
$$

$$
\notin \operatorname{im}\left(\mathbb{[} \rrbracket_{P}\right)
$$

Expressible process graphs (under bisimulation \leftrightarrows)

Expressible process graphs (under bisimulation \leftrightarrows)

$\in \operatorname{im}\left(\llbracket \cdot \rrbracket_{P}\right)$
$\llbracket \cdot \rrbracket_{P}$-expressible
$\notin \operatorname{im}\left(\llbracket \cdot \rrbracket_{P}\right)$
$\epsilon \operatorname{im}\left(\llbracket \rrbracket_{P}\right)$
$\llbracket \cdot \rrbracket_{P}$-expressible

Expressible process graphs (under bisimulation \leftrightarrows)

Expressible process graphs (under bisimulation \leftrightarrows)

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.

not $\llbracket \cdot \rrbracket_{P}$-expressible $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.

not $\llbracket \cdot \rrbracket_{P}$-expressible
$\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows

not $\llbracket \cdot \rrbracket_{P}$-expressible not $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \nsubseteq={ }_{L}$.

Properties of P

- Not every finite-state process is $\llbracket \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \leftrightarrows_{P} \varsubsetneqq=_{L}$.

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \leftrightarrows_{P}$ 身 L_{L}.

$$
a \cdot(b+c)
$$

4_{P}
$a \cdot b+a \cdot c$

Salomaa's axiomatization of $={ }_{L}$ (products commuted)

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Sound and unsound axioms with respect to \leftrightarrows_{P}

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Sound and unsound axioms with respect to \leftrightarrows_{P}

Axioms:

(B1)	$e+(f+g)=(e+f)+g$	(B7)	$e \cdot 1=e$
(B2)	$(e \cdot f) \cdot g=e \cdot(f \cdot g)$	(B8)	$e \cdot 0=0$
(B3)	$e+f=f+e$	(B9)	$e+0=e$
(B4)	$(e+f) \cdot g=e \cdot g+f \cdot g$	(B10)	$e^{*}=1+e \cdot e^{*}$
(B5)	$e \cdot(f+g)=e \cdot f+e \cdot g$	(B11)	$e^{*}=(1+e)^{*}$
(B6)	$e+e=e$	$(\mathrm{B} 8)^{\prime}$	$0 \cdot e=0$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Milner's adaptation for $\leftrightarrows_{P} \quad\left(\mathrm{Mil}=\mathrm{Mil}^{-}+\mathrm{RSP}^{*}\right)$

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B11) $e^{*}=(1+e)^{*}$
(B6) $\quad e+e=e$
$(\mathrm{B} 8)^{\prime} \quad 0 \cdot e=0$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { RSP }^{*}(\text { if } \underbrace{\text { property }}_{\text {non-empty-word }} \boldsymbol{\{ \epsilon \} \notin \llbracket f \rrbracket _ { L }})
$$

Milner's adaptation for $\leftrightarrows_{P} \quad\left(\mathrm{Mil}=\mathrm{Mil}^{-}+\mathrm{RSP}^{*}\right)$

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $\quad 0 \cdot e=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { RSP }^{*}\left(\text { if }_{\text {non-empty-word }}^{\text {property }} \boldsymbol{\{ \epsilon \} \notin \llbracket f \rrbracket _ { L }}\right)
$$

Milner's adaptation for $\leftrightarrows_{P} \quad\left(\mathrm{Mil}=\mathrm{Mil}^{-}+\mathrm{RSP}^{*}\right)$

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $\quad 0 \cdot e=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B11) $e^{*}=(1+e)^{*}$
(B6) $\quad e+e=e$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*}(\text { if } \underbrace{\text { property }}_{\text {non-empty-word }} \boldsymbol{\{ \epsilon \} \notin \llbracket f \rrbracket _ { L }})
$$

Milner's questions

Q2. Is Mil complete for \leftrightarrows_{P} ?

Milner's questions

Q1. Which structural property of finite process graphs characterizes $\llbracket \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

Q2. Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

Q2. Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)

Q2. Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Is Mil complete for \leftrightarrows_{P} ?

- \leftrightarrows_{P} has no finite (purely) equational axiomatization (Sewell, 1994)

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Is Mil complete for \leftrightarrows_{P} ?

- \leftrightarrows_{P} has no finite (purely) equational axiomatization (Sewell, 1994)
- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*} \cdot 0$

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Is Mil complete for \leftrightarrows_{P} ?

- $\overleftrightarrow{\leftrightarrow}_{P}$ has no finite (purely) equational axiomatization (Sewell, 1994)
- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*} \cdot 0$
- Mil is complete when restricted to 1-return-less expressions
(Corradini, De Nicola, Labella, 2002)

Milner's questions, and partial results

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Is Mil complete for \leftrightarrows_{P} ?

- $\overleftrightarrow{S}_{P}$ has no finite (purely) equational axiomatization (Sewell, 1994)
- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*} \cdot 0$
- Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)
- Mil^{-}+ one of two stronger rules (than RSP*) is complete (G, 2006)
- with a coinductive rule (based on Antimirov's partial derivatives)
- with a unique solvability principle USP

Well-behaved form, looping palm trees

$\llbracket\left(a a(b a)^{*} b\right)^{*} \rrbracket_{P}$

Well-behaved form, looping palm trees

well-behaved form
(Corradini, Baeten)

$$
\llbracket\left(a a(b a)^{*} b\right)^{*} \rrbracket_{P} \quad \llbracket\left(1 \cdot a a(1 \cdot b a)^{*} 1 \cdot b\right)^{*}(1 \cdot 1) \rrbracket_{P}
$$

Well-behaved form, looping palm trees

well-behaved form (Corradini, Baeten)

$$
\llbracket\left(a a(b a)^{*} b\right)^{*} \rrbracket_{P} \quad \llbracket\left(1 \cdot a a(1 \cdot b a)^{*} 1 \cdot b\right)^{*}(1 \cdot 1) \rrbracket_{P} \quad \llbracket\left(a a(b a)^{*} b\right)^{*} \rrbracket_{P}
$$

looping palm tree

Loop chart

Definition

A process graph is a loop chart if:
L-1.
L-2.
L-3.

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2.
L-3.

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3.

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

no loop chart

Loop chart

Definition

A process graph is a loop chart if:
L-1. There is an infinite path from the start vertex.
L-2. Every infinite path from the start vertex returns to it.
L-3. Termination is only possible at the start vertex.

loop chart

loop chart

no loop chart

Loop elimination

Loop elimination

\longrightarrow elim

Loop elimination

\longrightarrow elim

\longrightarrow elim

Loop elimination

Loop elimination, and properties

\longrightarrow elim: eliminate a transition-induced loop by:

- removing the loop-entry transition(s)
- garbage collection
\longrightarrow prune : remove a transition to a deadlocking state

Loop elimination, and properties

\longrightarrow elim: eliminate a transition-induced loop by:

- removing the loop-entry transition(s)
- garbage collection
\longrightarrow prune : remove a transition to a deadlocking state

Lemma
(i) \longrightarrow elim is terminating.
(ii) \longrightarrow elim $\cup \longrightarrow$ prune is terminating and confluent.

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

$\xrightarrow{ }{ }_{\text {elim }}$

Loop elimination

Loop elimination

\xrightarrow{H} elim

Loop elimination

Loop elimination

$$
\xrightarrow{ } \mathrm{elim}
$$

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

$\longrightarrow \mathrm{elim}$
(-) v_{1}

$$
\xrightarrow{ } \mathrm{elim}
$$

Loop elimination

\xrightarrow{H} elim

${ }^{\boldsymbol{H}}$ elim

Structure property LEE

Definition
A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \dashv_{\mathrm{elim}} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \not{ }_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using confluence properties)
For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \succ_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using confluence properties)
For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.
(iii) There is an \longrightarrow elim,prune normal form without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$
\begin{aligned}
\exists G_{0}\left(G \longrightarrow{ }_{\text {elim }}^{*}\right. & G_{0} \dashv_{\text {elim }} \\
& \left.\wedge G_{0} \text { has no infinite trace }\right) .
\end{aligned}
$$

Lemma (by using confluence properties)
For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) There is an \longrightarrow elim normal form without an infinite trace.
(iii) There is an \longrightarrow elim,prune normal form without an infinite trace.
(iv) Every \longrightarrow elim normal form is without an infinite trace.
(v) Every \longrightarrow elim, prune normal form is without an infinite trace.

LEE fails

LEE fails

LEE fails

\neg LEE

\xrightarrow{H} elim

LEE fails

LEE holds

LEE holds

LEE holds / Recording loop elimination

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE holds / Recording loop elimination

\longrightarrow elim

LEE

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$,

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$,

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

loop-branch labeling: marking transitions \xrightarrow{a} as:
- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.

L2.
L3.

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.

L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{l}v \rightarrow[n] \Rightarrow \\ \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\mathrm{br},[>n]}\right) \\ \text { is a loop subchart }\end{array}\right)$.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{l}v \rightarrow[n] \Rightarrow \\ \\ \text { is a loop subchart }\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br,[>n] }}\right) \\ \end{array}\right)$.
L2.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:

L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{b r,[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:

L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced
by entry steps $\rightarrow{ }_{[n]}$ from v
followed by branch steps $\rightarrow_{b r}$
or entry steps $\rightarrow[m]$ with $m>n$,
until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:

L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3. $\mathcal{L}\left(w_{i}, \rightarrow_{\left[n_{i}\right]}, \rightarrow_{\mathrm{br},\left[>n_{i}\right]}\right)$ for $i \in\{1,2\}$ loop charts $\wedge w_{1} \neq w_{2} \wedge w_{1} \in \mathcal{L}\left(w_{2}, \ldots, \ldots\right) \Longrightarrow n_{1} \neq n_{2}$.

$$
\begin{aligned}
& \mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right) \\
& \quad \mathcal{L}\left(v_{1}, \rightarrow_{[2]}, \rightarrow_{\mathrm{br},[>2]}\right)
\end{aligned}
$$

$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{\text {br }}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

LEE-witness

Definition

A loop-branch labeling is a LEE-witness, if:

L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3. $\mathcal{L}\left(w_{i}, \rightarrow_{\left[n_{i}\right]}, \rightarrow_{\mathrm{br},\left[>n_{i}\right]}\right)$ for $i \in\{1,2\}$ loop charts $\wedge w_{1} \neq w_{2} \wedge w_{1} \in \mathcal{L}\left(w_{2}, \ldots, \ldots\right) \Longrightarrow n_{1} \neq n_{2}$.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{b r}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness ?

LEE-witness ?

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow{ }_{\mathrm{br},[>1]}\right)$
not a loop chart

LEE-witness?

no!
(L1.) violated:

$$
\mathcal{L}\left(v_{0}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)
$$

not a loop chart

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)$
not a loop chart

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)$
not a loop chart

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)$
not a loop chart

no!
(L2.) violated:
infinite $\rightarrow_{b r}$ path
from start vertex

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow_{[1]}, \rightarrow_{\text {br, }[>1]}\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow{ }_{\mathrm{br},[>1]}\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow{ }_{\mathrm{br},[>1]}\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

no!
(L3.) violated: overlapping loop charts have same level

LEE-witness ?

no!
(L1.) violated:
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[1]}, \rightarrow{ }_{\mathrm{br},[>1]}\right)$
not a loop chart

no!
(L2.) violated:
infinite \rightarrow br path
from start vertex

no!
(L3.) violated:
have same level

LEE-witness ?

LEE-witness ?

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.
loop-branch labeling: marking transitions \xrightarrow{a} as:
- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}{ }_{[n]}$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{l}v \rightarrow{ }_{[n]} \Rightarrow \\ \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, [>n] }}\right) \\ \text { is a loop subchart })\end{array}\right)$.
L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br, }[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{r}v \rightarrow_{[n]} \Rightarrow \underset{L}{\mathcal{L}}\left(v, \rightarrow_{[n]}, \rightarrow_{\mathrm{br},[\text { [}} \mathrm{n}\right]\end{array}\right)$.
L2. No infinite \rightarrow br path from the start vertex.
L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.
$\mathcal{L}\left(v_{0}, \rightarrow_{[2]}, \rightarrow_{\mathrm{br},[>2]}\right) \quad \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\mathrm{br},[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v
followed by branch steps \rightarrow br

$$
\text { or entry steps } \rightarrow[m] \text { with } m>n \text {, }
$$

until v is reached again

LEE-witness

$\mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\text {br, }[>1]}\right)$
$\mathcal{L}\left(v_{0}, \rightarrow_{[2]}, \rightarrow{ }_{\text {br,[>2] }}\right)$
loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow_{[n]} \Rightarrow \underset{L}{\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\mathrm{br},[>n]}\right)}}{$ is a loop subchart } .
L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3. $\mathcal{L}\left(w_{i}, \rightarrow_{\left[n_{i}\right]}, \rightarrow_{\mathrm{br},[\text { [}}^{\left.n_{i}\right]}\right.$) for $i \in\{1,2\}$ loop charts $\wedge w_{1} \neq w_{2} \wedge w_{1} \in \mathcal{L}\left(w_{2}, \ldots, \ldots\right) \Longrightarrow n_{1} \neq n_{2}$.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{b r,[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}{ }_{[n]}$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a LEE-witness, if:
L1. $\forall n \in \mathbb{N} \forall v \in V\left(\begin{array}{r}v \rightarrow{ }_{[n]} \Rightarrow \\ \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\mathrm{br},[>n]}\right) \\ \\ \text { is a loop subchart })\end{array}\right)$.
L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
L3. $\mathcal{L}\left(w_{i}, \rightarrow_{\left[n_{i}\right]}, \rightarrow_{\mathrm{br},\left[>n_{i}\right]}\right)$ for $i \in\{1,2\}$ loop charts $\wedge w_{1} \neq w_{2} \wedge w_{1} \in \mathcal{L}\left(w_{2}, \ldots, \ldots\right) \Longrightarrow n_{1} \neq n_{2}$.

$$
\mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\mathrm{br},[>1]}\right)
$$

$$
\mathcal{L}\left(v_{0}, \rightarrow_{[2]}, \rightarrow_{\mathrm{br},[>2]}\right)
$$

LEE-witness
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\mathrm{br},[>n]}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps $\rightarrow_{\mathrm{br}}$ or entry steps $\rightarrow[m]$ with $m>n$, until v is reached again

O C-des PI pi Mil Milner's Qs loop-elim LEE L Layered LEE-WitneSS

O C-des PI pi Mil Milner's Qs loop-elim LEE L Layered LEE-witneSS

$$
\text { loop-branch labeling: marking transitions } \xrightarrow{a} \text { as: }
$$

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}{ }_{[n]}$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a layered LEE-witness, if:
I-L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow_{[n]} \Rightarrow \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br }}\right)}{$ is a loop subchart $)}$.
I-L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
I-L3. A loop subchart induced by a vertex in the body of another induced loop subchart has lower level.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br }}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{\mathrm{br}}$
until v is reached again

O C-des PI pi Mil Milner's Qs loop-elim LEE L Layered LEE-witneSS

$$
\text { loop-branch labeling: marking transitions } \xrightarrow{a} \text { as: }
$$

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a layered LEE-witness, if:
I-L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow_{[n]} \Rightarrow \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br }}\right)}{$ is a loop subchart $)}$.
I-L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
I-L3. A loop subchart induced by a vertex in the body of another induced loop subchart has lower level.
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br }}\right):=$ subchart induced by entry steps $\rightarrow[n]$ from v followed by branch steps $\rightarrow_{\mathrm{br}}$
until v is reached again

O C-des PI pi Mil Milner's Qs loop-elim LEE L Layered LEE-witneSS

$$
\text { loop-branch labeling: marking transitions } \xrightarrow{a} \text { as: }
$$

- entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}[n]$,
- branch steps $\xrightarrow{\langle a, \text { br }\rangle}$, written \xrightarrow{a} br or \xrightarrow{a}.

Definition

A loop-branch labeling is a layered LEE-witness, if:
I-L1. $\forall n \in \mathbb{N} \forall v \in V\binom{v \rightarrow_{[n]} \Rightarrow \mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{\text {br }}\right)}{$ is a loop subchart $)}$.
I-L2. No infinite $\rightarrow_{b r}$ path from the start vertex.
I-L3. A loop subchart induced by a vertex in the body of another induced loop subchart has lower level.
$\mathcal{L}\left(v_{2}, \rightarrow_{[1]}, \rightarrow_{\text {br }}\right)$
$\mathcal{L}\left(v_{0}, \rightarrow{ }_{[2]}, \rightarrow\right.$ br $)$
layered
LEE-witness
$\mathcal{L}\left(v, \rightarrow_{[n]}, \rightarrow_{b r}\right):=$ subchart induced by entry steps $\rightarrow{ }_{[n]}$ from v followed by branch steps \rightarrow br
until v is reached again

LEE versus LEE-witness

Theorem
For every process graph G :
$\operatorname{LEE}(G) \Longleftrightarrow G$ has a LEE-witness.

LEE versus LEE-witness

Theorem

For every process graph G :

$$
\operatorname{LEE}(G) \Longleftrightarrow G \text { has a LEE-witness. }
$$

Proof (Idea).
\Rightarrow : record loop elimination

LEE versus LEE-witness

Theorem

For every process graph G :

$$
\operatorname{LEE}(G) \Longleftrightarrow G \text { has a LEE-witness. }
$$

Proof (Idea).

\Rightarrow : record loop elimination
\Leftarrow : carry out loop-elimination as indicated in the LEE-witness, in inside-out direction, e.g.:

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph G
can be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}^{\prime} of G.

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph G
can be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}^{\prime} of G.

Theorem

For every process graph G the following are equivalent:
(i) $\operatorname{LEE}(G)$.
(ii) G has a LEE-witness.
(iii) G has a layered LEE-witness.

7 LEE-witnesses

7 LEE-witnesses

7 LEE-witnesses

layered

7 LEE-witnesses

layered

7 LEE-witnesses

layered

not layered

7 LEE-witnesses

layered

not layered

7 LEE-witnesses

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered

layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered
layered

layered

7 LEE-witnesses

layered

layered

layered

not layered

not layered
layered

layered

LEE under bisimulation?

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.

LEE
$\neg L E E$

LEE
\neg LEE

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.
- LEE is not preserved by converse functional bisimulation.

LEE
\neg LEE
LEE
\neg LEE

LEE under functional bisimulation

Lemma
(i) LEE is preserved by functional bisimulations:
$\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \xrightarrow{ } G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right)$.

LEE under functional bisimulation

Lemma
(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

Proof (Idea).
Use loop elimination in G_{1} to carry out loop elimination in G_{2}.

Collapsing LEE-witnesses

$$
\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}
$$

Collapsing LEE-witnesses

$$
\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}
$$

Collapsing LEE-witnesses

$$
\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}
$$

Collapsing LEE-witnesses

$$
\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}
$$

Collapsing LEE-witnesses

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$

$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Collapsing LEE-witnesses

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$

$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Collapsing LEE-witnesses

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$
$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Collapsing LEE-witnesses

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$
$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Collapsing LEE-witnesses

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$

$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

LEE under functional bisimulation

Lemma
(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

Idea of Proof for (i)
Use loop elimination in G_{1} to carry out loop elimination in G_{2}.

LEE under functional bisimulation / bisimulation collapse

Lemma
(i) LEE is preserved by functional bisimulations:

$$
\operatorname{LEE}\left(G_{1}\right) \wedge G_{1} \rightarrow G_{2} \Longrightarrow \operatorname{LEE}\left(G_{2}\right) .
$$

(ii) LEE is preserved from a process graph to its bisimulation collapse:
$\operatorname{LEE}(G) \wedge C$ is bisimulation collapse of $G \Longrightarrow \operatorname{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_{1} to carry out loop elimination in G_{2}.

Readback

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Readback from layered LEE-witness (example)

Readback from layered LEE-witness (example)

layered
LEE-witness

Readback from layered LEE-witness (example)

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
& =\text { Mil }^{(}(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{*} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
\begin{aligned}
& s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& s\left(v_{1}\right)=\quad\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
\end{aligned}
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

$$
s\left(v_{1}\right)=\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0
$$

$$
s\left(v_{2}, v_{1}\right)=0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right)
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
s\left(v_{1}, v_{1}\right) & =1
\end{aligned}
$$

layered
LEE-witness

Readback from layered LEE-witness (example)

$$
s\left(v_{0}\right)=0^{*} \cdot a \cdot s\left(v_{1}\right)
$$

$$
\begin{aligned}
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{-} 0^{*} \cdot(b \cdot 1+b \cdot a)
\end{aligned}
$$

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{-} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

Readback from layered LEE-witness (example)

Readback from layered LEE-witness (example)

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot s\left(v_{1}\right) \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
& =\text { Mil }^{*}(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =\quad 0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =\quad 0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{*} a
\end{aligned}
$$

Readback from layered LEE-witness (example)

layered
LEE-witness

$$
\begin{aligned}
s\left(v_{0}\right) & =0^{*} \cdot a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot s\left(v_{1}\right) \\
& =\text { Mil }^{-} a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{1}\right) & =\left(a \cdot s\left(v_{2}, v_{1}\right)\right)^{*} \cdot 0 \\
& =\text { Mil }^{(}(a \cdot(b+b \cdot a))^{*} \cdot 0 \\
s\left(v_{2}, v_{1}\right) & =0^{*} \cdot\left(b \cdot s\left(v_{1}, v_{1}\right)+b \cdot s\left(v_{0}, v_{1}\right)\right) \\
& =\text { Mil }^{*} 0^{*} \cdot(b \cdot 1+b \cdot a) \\
& =\text { Mil }^{-} b+b \cdot a \\
s\left(v_{1}, v_{1}\right) & =1 \\
s\left(v_{0}, v_{1}\right) & =0^{*} \cdot a \cdot s\left(v_{1}, v_{1}\right) \\
& =0^{*} \cdot a \cdot 1 \\
& =\text { Mil }^{*} a
\end{aligned}
$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \|_{\star}}(A)\left(G \leftrightarrow \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1-return-less(-under-*) $\left(e \in \operatorname{Reg}^{17 \mid \star}(A)\right)$ if:

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \|_{\star}}(A)\left(G \leftrightarrow \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \|_{\star}}(A)\left(G \leftrightarrow \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star \|_{\star}}(A)\left(G \leftrightarrow \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1 \star \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times \quad$ ($\left.a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*}$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$
\times
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*}$
\times
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*}$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$
\times
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{1 \star{ }^{1 \star}}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $\star)\left(e \in \operatorname{Reg}^{1+\| \star}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1 -return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*}$
\times
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*}$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{\sharp \star \star \star}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1+\|^{\star}}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \quad \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{\sharp \star \star \star}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1+\|^{\star}}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$
- $\left(a^{*}(b+c \cdot 0)\right)^{*}$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \|_{P}^{1 \times \| \star}$-expressible:

$$
\operatorname{LEE}(G) \Longrightarrow \exists e \in \operatorname{Reg}^{\sharp \star \star \star}(A)\left(G \leftrightarrows \llbracket e \rrbracket_{P}\right) .
$$

Definition (Corradini, De Nicola, Labella (here intuitive version))
A regular expression e is 1 -return-less(-under- $)\left(e \in \operatorname{Reg}^{1+\|^{\star}}(A)\right)$ if:

- for no iteration subexpression f^{*} of e does $\llbracket f \rrbracket_{P}$ proceed to a process p such that:
- p has the option to immediately terminate, and
- p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot(1+b))^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)^{*}\right)^{*} \times$
- $\left(a \cdot\left(0^{*}+b\right)\right)^{*} \times$
- $\left(a^{*}\left(b^{*}+c \cdot 0\right)\right)^{*} \times$
- $a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$
- $\left(a^{*}(b+c \cdot 0)\right)^{*}$

Characterization of expressibility ${ }^{1 \uparrow \mid \star}$ modulo \leftrightarrows

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\mid \star}$-expressible modulo \leftrightarrows.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Characterization of expressibility ${ }^{1 \uparrow \mid \star}$ modulo \leftrightarrows

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\uparrow \star}$-expressible modulo \leftrightarrows.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Milners characterization question:
Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

Characterization of expressibility ${ }^{1 \uparrow \mid \star}$ modulo \leftrightarrows

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\mid \star}$-expressible modulo \leftrightarrows.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Milners characterization question restricted:
Q1'. Which structural property of finite process graphs

$$
\text { characterizes } \llbracket \cdot \rrbracket_{P}^{1+\uparrow \star} \text {-expressibility modulo } \leftrightarrows \text { ? }
$$

Characterization of expressibility ${ }^{1 \uparrow \mid \star}$ modulo \leftrightarrows

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\mid \star}$-expressible modulo \leftrightarrows.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Milners characterization question restricted, and adapted:
Q1". Which structural property of collapsed finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}^{1+\uparrow \star}$-expressibility modulo \leftrightarrows ?

Characterization of expressibility ${ }^{1 \times \|_{\star}}$ modulo \leftrightarrows

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\mid \star}$-expressible modulo \leftrightarrows.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:
Q1". Which structural property of collapsed finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}^{1+\downarrow \star}$-expressibility modulo \leftrightarrows ?

- The loop-existence and elimination property LEE.

Characterization of expressibility ${ }^{1 \times \|_{\star}}$ modulo \leftrightarrows

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:
(i) G is $\llbracket \cdot \|_{P}^{1+\mid \star}$-expressible modulo \leftrightarrows.
(ii) $\operatorname{LEE}(C)$.
(iii) C has a LEE-witness.
(iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:
Q1". Which structural property of collapsed finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}^{1 \nmid \star}$-expressibility modulo \leftrightarrows ?

- The loop-existence and elimination property LEE.

Also yields: efficient decision method of $\llbracket \cdot \rrbracket_{P}^{1 \times \mid \star}$-expressibility modulo \leftrightarrows.

Structure constrained finite process graphs

graphs with LEE / a (layered) LEE-witness

Benefits of the class of process graphs with LEE:

- is closed under $\xrightarrow{\longrightarrow}$
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

graphs with LEE / a (layered) LEE-witness

\subsetneq graphs whose collapse satisfies LEE
$=$ graphs that are $\llbracket \cdot \|_{P}^{\ddagger+\|}$-expressible modulo \leftrightarrows

Benefits of the class of process graphs with LEE:

- is closed under $\xrightarrow{\longrightarrow}$
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \llbracket \cdot \|_{P}^{1+\| \star} \text {-expressible graphs } \\
\subsetneq & \text { graphs with LEE / a (layered) LEE-witness } \\
\varsubsetneqq & \text { graphs whose collapse satisfies LEE } \\
= & \text { graphs that are } \llbracket \cdot \|_{P}^{\mathbb{I}^{+\mid \star}} \text {-expressible modulo } \leftrightarrows
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \llbracket \cdot \|_{P}^{1+\|} \text {-expressible graphs } \\
\subsetneq & \text { graphs with LEE } / \text { a (layered) LEE-witness } \\
\ddagger & \text { graphs whose collapse satisfies LEE } \\
= & \text { graphs that are } \llbracket \cdot \|_{P}^{1+\star} \text {-expressible modulo } \leftrightarrows \\
\varsubsetneqq & \text { graphs that are } \llbracket \cdot \rrbracket_{P} \text {-expressible modulo } \leftrightarrows
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \llbracket \cdot \|_{P}^{1 \times \mid \star} \text {-expressible graphs } \\
\subsetneq & \text { graphs with LEE } / \text { a (layered) LEE-witness } \\
\subsetneq & \text { graphs whose collapse satisfies LEE } \\
= & \text { graphs that are } \llbracket \cdot \rrbracket_{P}^{1 \star \mid \star} \text {-expressible modulo } \leftrightarrows \\
\subsetneq & \text { graphs that are } \llbracket \cdot \rrbracket_{P} \text {-expressible modulo } \leftrightarrows \\
\subsetneq & \text { finite process graphs }
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
\text { loop-exit palm trees } & \varsubsetneqq \llbracket \cdot \rrbracket_{P}^{1 \times \|^{\star}} \text {-expressible graphs } \\
& \subsetneq \text { graphs with LEE } / \text { a (layered) LEE-witness } \\
& \varsubsetneqq \text { graphs whose collapse satisfies LEE } \\
& =\text { graphs that are } \llbracket \cdot \rrbracket_{P}^{1 \times \Downarrow \star} \text {-expressible modulo } \leftrightarrows \\
& \varsubsetneqq \text { graphs that are } \llbracket \cdot \rrbracket_{P} \text {-expressible modulo } \leftrightarrows \\
& \varsubsetneqq \text { finite process graphs }
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

Structure constrained finite process graphs

$$
\begin{aligned}
& \text { loop-exit palm trees } \subsetneq \llbracket \cdot \rrbracket_{P}^{1 \times \| \star} \text {-expressible graphs } \\
& \subsetneq \text { graphs with LEE / a (layered) LEE-witness } \\
& \text { 〔 graphs whose collapse satisfies LEE } \\
& =\text { graphs that are } \llbracket \cdot \|_{P}^{\ddagger+\| \star} \text {-expressible modulo } \leftrightarrows \\
& \subsetneq \text { graphs that are } \llbracket \cdot \rrbracket_{P} \text {-expressible modulo } \leftrightarrows \\
& \ddagger \text { finite process graphs }
\end{aligned}
$$

Benefits of the class of process graphs with LEE:

- is closed under $\xrightarrow{\longrightarrow}$
- forth-/back-correspondence with 1-return-less regular expressions

Application to Milner's questions yields partial results:
Q1: characterization/efficient decision of $\llbracket \cdot \|_{P}^{1+\rrbracket \star}$-expressibility modulo \leftrightarrows Q2: alternative compl. proof of Mil on 1-return-less expressions (C/DN/L)

Maximal sharing of functional programs

(joint work with Jan Rochel)

maximal sharing: example (fix)

maximal sharing: the method

maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

maximal sharing: the method

1. term graph interpretation 【•]. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec- }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding program $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

maximal sharing: the method

1. term graph interpretation $\llbracket \cdot \rrbracket$. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph

$$
\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}
$$

b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}
3. readback rb
of f-o term graph G_{0} yielding program $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

interpretation

running example

instead of:
λf. let $r=f(f r)$ in $r \quad \longmapsto_{\text {max-sharing }} \quad \lambda f$. let $r=f r$ in r
we use:
$\lambda x . \lambda f$. let $r=f(f r x) x$ in r
$\longmapsto_{\text {max-sharing }}$
$\lambda x . \lambda f$. let $r=f r x$ in r
L
\longmapsto max-sharing

graph interpretation (example 1)

$$
L_{0}=\lambda x . \lambda f . \text { let } r=f r x \text { in } r
$$

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes, + binding links)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with abstraction-prefix function)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-higher-order-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ abstraction-prefix function)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

$$
\lambda \text {-term-graph } \llbracket L_{0} \rrbracket_{\mathcal{T}}
$$

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-NFA

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

graph interpretation (example 2)

$$
L=\lambda x . \lambda f . \text { let } r=f(f r x) x \text { in } r
$$

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink, + scopes)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

$$
\lambda \text {-term-graph } \llbracket L \rrbracket_{\mathcal{T}}
$$

graph interpretation (examples 1 and 2)

$\left.\llbracket L_{0}\right]_{T}$

$$
\llbracket L \rrbracket \tau
$$

interpretation $\llbracket \cdot \|_{\mathcal{T}}$: properties (cont.)

interpretation $\boldsymbol{\lambda}_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes
\square

interpretation $\llbracket \cdot \|_{\mathcal{T}}$: properties (cont.)

interpretation $\boldsymbol{\lambda}_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes

Theorem

For $\boldsymbol{\lambda}_{\text {letrec }}$-terms L_{1} and L_{2} it holds: Equality of infinite unfolding coincides with bisimilarity of λ-term-graph interpretations:

$$
\llbracket L_{1} \rrbracket_{\lambda \infty}=\llbracket L_{2} \rrbracket_{\lambda_{\infty}} \quad \Longleftrightarrow \llbracket L_{1} \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

collapse

bisimulation check between λ-term-graphs

bisimulation between λ-term-graphs

bisimilarity between λ-term-graphs

functional bisimilarity and bisimulation collapse

bisimulation collapse: property

Theorem

The class of eager-scope λ-term-graphs is closed under functional bisimilarity \rightarrow.
\Longrightarrow For a $\boldsymbol{\lambda}_{\text {letrec }}$-term L
the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ-term-graph.

readback

readback

defined with property:

readback

defined with property:

readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \|_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $[!]_{\mathcal{T}}$ modulo isomorphism \simeq.

readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $\left[\cdot \|_{\mathcal{T}}\right.$ modulo isomorphism \simeq. idea:

1. construct a spanning tree T of G
2. using local rules, in a bottom-up traversal of T synthesize $L=\mathrm{rb}(G)$

maximal sharing: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb
of f-o term graph G_{0}
yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

Theorem

Computing a maximally compact form $L_{0}=\left(\mathrm{rb} \circ \| \vee \llbracket \cdot \rrbracket_{\mathcal{T}}\right)(L)$ of L for a $\boldsymbol{\lambda}_{\text {letrec }}$-term L requires time $O\left(n^{2} \log n\right)$, where $|L|=n$.

Demo: console output

jan:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
λ-letrec-term:
λx. λf. let $r=f(f r x) x$ in r
derivation:

(x f[r]) f	(x) x
$(x \mathrm{f}[\mathrm{r}]) \mathrm{f}$ (f r x)	(x f[r]) x

(x f[r]) f (f r x) x
(x f) let r = f (f r x) x in r
(x) λf. let $r=f(f r x) x$ in r
() λx. λf. let $r=f(f r x) x$ in r
writing DFA to file: running-dfa.pdf
readback of DFA:
λx. λy. let $F=y(y F x) x$ in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
λx. λy. let $F=y F x$ in F
jan: ~/papers/maxsharing-ICFP/talks/ICFP-2014>

Demo: generated λ-NFAs

Resources (maximal sharing)

- tool maxsharing on hackage.haskell.org
- papers and reports
- Maximal Sharing in the Lambda Calculus with Letrec
- ICFP 2014 paper
- accompanying report arXiv:1401.1460
- Term Graph Representations for Cyclic Lambda Terms
- TERMGRAPH 2013 proceedings
- extended report arXiv:1308.1034
- Vincent van Oostrom, CG: Nested Term Graphs
- TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
- Unfolding Semantics of the Untyped λ-Calculus with letrec
- Ph.D. Thesis, Utrecht University, 2016

Comparison results: structure-constrained graphs

Regular expressions under \leftrightarrows_{P}

Given: graph interpretation $\llbracket \cdot \|_{P}$, studied under bisimulation \leftrightarrows

- not closed under $\xrightarrow{\rightarrow}$, and \leftrightarrows, incomplete under \leftrightarrows
λ-calculus with letrec under $=\boldsymbol{\lambda}^{\infty}$
Not available: graph interpretation that is studied under \leftrightarrows

Comparison results: structure-constrained graphs

Regular expressions under \leftrightarrows_{P}
Given: graph interpretation $\llbracket \cdot \rrbracket_{P}$, studied under bisimulation \leftrightarrows

- not closed under $\xrightarrow{ }$, and \leftrightarrows, incomplete under \leftrightarrows

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G
$\Longleftrightarrow G$ is $\llbracket \cdot \rrbracket_{P}^{1+\| \star}$-expressible modulo \leftrightarrows
λ-calculus with letrec under $=\lambda^{\infty}$
Not available: graph interpretation that is studied under \leftrightarrows

Comparison results: structure-constrained graphs

Regular expressions under \leftrightarrows_{P}
Given: graph interpretation $\llbracket \|_{P}$, studied under bisimulation \leftrightarrows

- not closed under $\xrightarrow{ }$, and \leftrightarrows, incomplete under \leftrightarrows

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G $\Longleftrightarrow G$ is $\llbracket \cdot \rrbracket_{P}^{1+\| \star}$-expressible modulo \leftrightarrows
λ-calculus with letrec under $=\lambda^{\infty}$
Not available: graph interpretation that is studied under \leftrightarrows
Defined: int's $\llbracket \cdot \rrbracket_{\mathcal{H}} / \mathbb{\llbracket} \cdot \rrbracket_{\mathcal{T}}$ as higher-order/first-order λ-term graphs
- closed under \rightarrow (hence under collapse)
- back-/forth correspondence with λ-calculus with letrec
- efficient translation and readback
- translation is inverse of readback

L'Aquila (from Monte Castelvecchia la Crocetta)

Corno Grande, Gran Sasso (from close to GSSI, L'Aquila)

