Modeling Terms by Graphs with Structure Constraints (An illustration with background)

Clemens Grabmayer

Department of Computer Science Vrije Universiteit Amsterdam The Netherlands

Seminar TCS Vrije Universiteit Amsterdam October 19, 2018

structure constraints (L'Aquila)

structure constraints (L'Aquila)

Overview

Illustr.: Process interpretation of regular expressions

LEE-witnesses: graph labelings based on a loop-condition LEE

Backgr.: Maximal sharing of functional programs

• higher-order λ -term graphs

Overview

Illustr.: Process interpretation of regular expressions

- Milner's questions, known results
- structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
- readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

• higher-order λ -term graphs

Overview

Illustr.: Process interpretation of regular expressions

- Milner's questions, known results
- structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
- readback: from graph labelings to regular expressions

Backgr.: Maximal sharing of functional programs

- from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - λ -NFAs, and λ -DFAs
- minimization / readback / efficiency / Haskell implementation

Overview

- Comparison desiderata
- Illustr.: Process interpretation of regular expressions
 - Milner's questions, known results
 - structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
 - readback: from graph labelings to regular expressions
- Backgr.: Maximal sharing of functional programs
 - from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - λ -NFAs, and λ -DFAs
 - minimization / readback / efficiency / Haskell implementation
 - Comparison results

 Regular expressions under process semantics (bisimilarity ↔)

 Given: process graph interpretation [[·]]_P, studied under ↔

 ▶ not closed under →, and ↔, modulo ↔ incomplete

$\lambda\text{-calculus}$ with letrec under unfolding semantics

 $\lambda\text{-calculus}$ with letrec under unfolding semantics

Regular expressions under process semantics (bisimilarity ↔) Given: process graph interpretation [[·]]_P, studied under ↔ ▶ not closed under ⇒, and ↔, modulo ↔ incomplete Desired: reason with graphs that are [[·]]_P-expressible modulo ↔ (at least with 'sufficiently many') understand incompleteness by a structural graph property

 λ -calculus with letrec under unfolding semantics

Not available: term graph interpretation that is studied under \Leftrightarrow

▶ graph representations used by compilers were not intended for use under ⇔

 $\lambda\text{-calculus}$ with letrec under unfolding semantics

Not available: term graph interpretation that is studied under \Leftrightarrow

▶ graph representations used by compilers were not intended for use under ↔

Desired: term graph interpretation that:

- natural correspondence with terms in $\lambda_{ ext{letrec}}$
- supports compactification under \leq
- efficient translation and readback

(current work with Wan Fokkink)

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f ::= 0 | 1 | a | (e + f) | (e \cdot f) | (e^{\star})$$
 (for $a \in A$).

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f ::= 0 | 1 | a | (e + f) | (e \cdot f) | (e^*)$$
 (for $a \in A$).

Note, here:

- ▶ symbol 0 instead of Ø
- ▶ symbol 1 used (often dropped, definable as 0^{*})
- no complementation operation \overline{e}
 - is not expressible under language interpretation

Language interpretation $\llbracket \cdot \rrbracket_L$ (Copi-Elgot-Wright, 1958)

$$\begin{array}{cccc} \mathbf{0} & \stackrel{\left[\cdot \right]_{L}}{\longmapsto} & \text{empty language } \varnothing \\ \mathbf{1} & \stackrel{\left[\cdot \right]_{L}}{\longmapsto} & \{\epsilon\} & (\epsilon \text{ the empty word}) \\ a & \stackrel{\left[\cdot \right]_{L}}{\longmapsto} & \{a\} \end{array}$$

Language interpretation $\llbracket \cdot \rrbracket_L$ (Copi-Elgot-Wright, 1958)

$$\begin{array}{cccc} \mathbf{0} & \stackrel{\left[\cdot \right]_L}{\longmapsto} & \text{empty language } \varnothing \\ \mathbf{1} & \stackrel{\left[\cdot \right]_L}{\longmapsto} & \{\epsilon\} & (\epsilon \text{ the empty word}) \\ a & \stackrel{\left[\cdot \right]_L}{\longmapsto} & \{a\} \end{array}$$

$$\begin{array}{cccc} e+f & \stackrel{\llbracket\cdot\rrbracket_L}{\longmapsto} & \text{union of } \llbracket e \rrbracket_L \text{ and } \llbracket f \rrbracket_L \\ e \cdot f & \stackrel{\llbracket\cdot\rrbracket_L}{\longmapsto} & \text{element-wise concatenation of } \llbracket e \rrbracket_L \text{ and } \llbracket f \rrbracket_L \\ e^* & \stackrel{\llbracket\cdot\rrbracket_L}{\longmapsto} & \text{set of words formed by concatenating words in } \llbracket e \rrbracket_I \\ & \text{plus the empty word } \epsilon \end{array}$$

Process interpretation $\llbracket \cdot \rrbracket_{P}$ (Milner, 1984)

т т

$$0 \xrightarrow{\llbracket \cdot \rrbracket_P} \text{ deadlock } \delta, \text{ no termination}$$

$$1 \stackrel{\|\cdot\|_P}{\longmapsto} \text{ empty process } \epsilon, \text{ then terminate}$$

$$a \xrightarrow{\|\cdot\|_P}$$
 atomic action a , then terminate

Process interpretation $\llbracket \cdot \rrbracket_{P}$ (Milner, 1984)

т т

$$0 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ deadlock } \delta, \text{ no termination}$$

$$1 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ empty process } \epsilon, \text{ then terminate}$$

$$a \xrightarrow{\|\cdot\|_P}$$
 atomic action a , then terminate

$$\begin{array}{ccc} e+f & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{alternative composition of } \llbracket e \rrbracket_P \text{ and } \llbracket f \rrbracket_P \\ e \cdot f & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{sequential composition of } \llbracket e \rrbracket_P \text{ and } \llbracket f \rrbracket_P \\ e^* & \stackrel{\llbracket \cdot \rrbracket_P}{\mapsto} & \text{unbounded iteration of } \llbracket e \rrbracket_P, \text{ option to terminate} \end{array}$$

 $\llbracket a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \rrbracket_{\mathbf{P}}$

 $\llbracket a(a(b+ba))^* 0 \rrbracket_P \qquad \Longleftrightarrow \qquad \llbracket (aa(ba)^* b)^* 0 \rrbracket_P$

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider <u>finite</u> and <u>start-vertex connected</u> process graphs.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider <u>finite</u> and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

nondeterministic finite-state automata (NFAs),

that are studied under bisimulation, not under language equivalence.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- V is a set of vertices,
- $v_s \in V$ is the *start vertex*,
- $T \subseteq V \times A \times V$ the set of *transitions*,
- $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider <u>finite</u> and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

nondeterministic finite-state automata (NFAs),

that are studied under bisimulation, not under language equivalence.

Antimirov (1996): NFA-definition of $\llbracket \cdot \rrbracket_P$ via partial derivatives.

 $\notin im(\llbracket \cdot \rrbracket_{P})$

 $\in im(\llbracket \cdot \rrbracket_P) \qquad \notin im(\llbracket \cdot \rrbracket_P)$ $\llbracket \cdot \rrbracket_P \text{-expressible}$

 $\llbracket \cdot \rrbracket_{P}$ -expressible

▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.

- Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .

- Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \leq .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

- ▶ Not every finite-state process is **[**·**]**_P-expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

Salomaa's axiomatization of $=_L$ (products commuted)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Sound and unsound axioms with respect to \leq_P

Axioms :

(B1)	e + (f + g) = (e + f) + g	(B7)	$e \cdot 1 = e$
(B2)	$(e \cdot f) \cdot g = e \cdot (f \cdot g)$	(B8)	$e \cdot 0 = 0$
(B3)	e + f = f + e	(B9)	e + 0 = e
(B4)	$(e+f) \cdot g = e \cdot g + f \cdot g$	(B10)	$e^* = 1 + e \cdot e^*$
(B5)	$e \cdot (f + g) = e \cdot f + e \cdot g$	(B11)	$e^* = (1 + e)^*$
(B6)	e + e = e		

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word

property

Sound and unsound axioms with respect to \leq_P

Axioms :

(B1)	e + (f + g) = (e + f) + g	(B7)	$e \cdot 1 = e$
(B2)	$(e \cdot f) \cdot g = e \cdot (f \cdot g)$	(B8)	$e \cdot 0 = 0$
(B3)	e + f = f + e	(B9)	e + 0 = e
(B4)	$(e+f) \cdot g = e \cdot g + f \cdot g$	(B10)	$e^* = 1 + e \cdot e^*$
(B5)	$e \cdot (f + g) = e \cdot f + e \cdot g$	(B11)	$e^* = (1+e)^*$
(B6)	e + e = e	(B8)'	$0 \cdot e = 0$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Milner's adaptation for \leq_P (Mil = Mil⁻ + RSP*)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\operatorname{if} \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Milner's adaptation for \leq_P (Mil = Mil⁻ + RSP*)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\operatorname{if} \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

Milner's adaptation for \leq_P (Mil = Mil⁻ + RSP*)

Axioms :

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\operatorname{if} \{\epsilon\} \notin \llbracket f \rrbracket_L)$$
non-empty-word
property

O C-des PI pi Mil Milner's Qs loop-elim LEE LEE-witness collapse readback 1r-less line-up MS interpret collapse readback c d lit C-res

Milner's questions

Q2. Is Mil complete for \leq_P ?

Milner's questions

Q1. Which structural property of finite process graphs characterizes $[\![\cdot]\!]_P$ -expressibility modulo \Leftrightarrow ?

Q2. Is Mil complete for \leq_P ?

Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

Q2. Is Mil complete for \leq_P ?

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)

Q2. Is Mil complete for \leq_P ?

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \implies_P has no finite (purely) equational axiomatization (Sewell, 1994)

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \implies_P has no finite (purely) equational axiomatization (Sewell, 1994)
 - Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^* occurs as part of a 'no-exit' subexpression $e^*\cdot 0$

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \implies_P has no finite (purely) equational axiomatization (Sewell, 1994)
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^* occurs as part of a 'no-exit' subexpression $e^*\cdot 0$
 - Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)

- Q1. Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Is Mil complete for \leq_P ?
 - ▶ \leq_P has no finite (purely) equational axiomatization (Sewell, 1994)
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^* occurs as part of a 'no-exit' subexpression $e^*\cdot 0$
 - Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)
 - Mil^- + one of two stronger rules (than RSP*) is complete (G, 2006)
 - with a coinductive rule (based on Antimirov's partial derivatives)
 - with a unique solvability principle USP

Well-behaved form, looping palm trees

$\llbracket (aa(ba)^*b)^* \rrbracket_P$

Well-behaved form, looping palm trees

well-behaved form

(Corradini, Baeten)

 $\llbracket (aa(ba)^*b)^* \rrbracket_{P}$

 $\llbracket (1 \cdot aa(1 \cdot ba)^* 1 \cdot b)^* (1 \cdot 1) \rrbracket_P$

Well-behaved form, looping palm trees

Definition			
A process graph is a loop chart if:			
L-1.			
L-2.			
L-3.			

Definition

A process graph is a loop chart if:

L-1. There is an infinite path from the start vertex.

L-2.

L-3.

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.

L-3.

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Loop elimination, and properties

\longrightarrow_{elim} : eliminate a transition-induced loop by:

- removing the loop-entry transition(s)
- garbage collection

 \rightarrow_{prune} : remove a transition to a deadlocking state

Loop elimination, and properties

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\longrightarrow_{\mathsf{elim}} \right.$$

 $\wedge G_0$ has no infinite trace).

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\longrightarrow_{\mathsf{elim}} \right)$$

 $\wedge G_0$ has no infinite trace).

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an \rightarrow_{elim} normal form without an infinite trace.

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\longrightarrow_{\mathsf{elim}} \right)$$

 $\wedge G_0$ has no infinite trace).

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

(i) $\mathsf{LEE}(G)$.

- (ii) There is an \rightarrow_{elim} normal form without an infinite trace.
- (iii) There is an $\rightarrow_{\text{elim},\text{prune}}$ normal form without an infinite trace.

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \not\to_{\mathsf{elim}} \right)$$

 $\wedge G_0$ has no infinite trace).

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

- (i) $\mathsf{LEE}(G)$.
- (ii) There is an \rightarrow_{elim} normal form without an infinite trace.
- (iii) There is an $\rightarrow_{\text{elim},\text{prune}}$ normal form without an infinite trace.
- (iv) Every \rightarrow_{elim} normal form is without an infinite trace.
- (v) Every $\rightarrow_{\text{elim,prune}}$ normal form is without an infinite trace.

LEE holds

LEE holds

LEE-witness

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$,

loop-branch labeling: marking transitions \xrightarrow{a} as:

• entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,

loop–branch labeling: marking transitions \xrightarrow{a} as:

• entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,

• branch steps
$$\xrightarrow{(a,br)}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

 $b \underbrace{ \begin{bmatrix} 1 \end{bmatrix} \\ v_0 \\ a \\ v_1 \\ a \\ \begin{bmatrix} 2 \end{bmatrix} \\ v_2 \end{bmatrix} b$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1. L2.

L3.

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1. L2. L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \mathsf{ is reached again} \end{split}$$

 $v_0 \bullet a$ $b (1) \bullet v_1 a$ $[2] \bullet v_2$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, \lfloor n \rfloor \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$, • branch steps $\frac{\langle a, br \rangle}{\longrightarrow}$, written \xrightarrow{a}_{br} or $\xrightarrow{a}_{\rightarrow}$. Definition A loop-branch labeling is a LEE-witness, if: L1. L2. L3. $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq$ subchart induced by entry steps $\rightarrow_{[n]}$ from v followed by branch steps \rightarrow_{br} or entry steps $\rightarrow_{[m]}$ with m > n, until v is reached again

 $v_0 \bullet v_1$ $b (1) \bullet v_1$ $[2] \bullet v_2$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ is loop subchart

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, \lfloor n \rfloor \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$, • branch steps $\frac{\langle a, br \rangle}{\longrightarrow}$, written \xrightarrow{a}_{br} or $\xrightarrow{a}_{\rightarrow}$. Definition A loop-branch labeling is a LEE-witness, if: L1. L2. L3. $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq$ subchart induced by entry steps $\rightarrow_{[n]}$ from v followed by branch steps \rightarrow_{br} or entry steps $\rightarrow_{[m]}$ with m > n, until v is reached again

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1. L2. L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \mathsf{ is reached again} \end{split}$$

$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as: • entry steps $\xrightarrow{\langle a, \lfloor n \rfloor \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$, • branch steps $\frac{\langle a, br \rangle}{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a}_{br} . Definition A loop-branch labeling is a LEE-witness, if: L1. L2. L3. $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq$ subchart induced by entry steps $\rightarrow_{[n]}$ from v followed by branch steps \rightarrow_{br} or entry steps $\rightarrow_{[m]}$ with m > n, until v is reached again

 $\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$ is loop subchart

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{ is a loop subchart} \end{pmatrix}$$
.
L2.
L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $b \underbrace{ \begin{bmatrix} 1 \end{bmatrix} \\ v_0 \\ a \\ b \\ \begin{bmatrix} 2 \end{bmatrix} \\ v_2 \\ b \end{bmatrix} b$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to \mathsf{br}, [>n]) \\ \text{ is a loop subchart} \end{pmatrix}$$
.
L2.
L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart\ induced} \\ \mathsf{by\ entry\ steps\ } \rightarrow_{[n]} \mathsf{from\ } v \\ \mathsf{followed\ by\ branch\ steps\ } \rightarrow_{\mathsf{br}} \\ \mathsf{or\ entry\ steps\ } \rightarrow_{[m]} \mathsf{with\ } m > n, \\ \mathsf{until\ } v \mathsf{ is\ reached\ again} \end{split}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{ is a loop subchart} \end{pmatrix}$. L2. No infinite \to_{br} path from the start vertex. L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart\ induced} \\ \mathsf{by\ entry\ steps\ } \rightarrow_{[n]} \mathsf{from\ } v \\ \mathsf{followed\ by\ branch\ steps\ } \rightarrow_{\mathsf{br}} \\ \mathsf{or\ entry\ steps\ } \rightarrow_{[m]} \mathsf{with\ } m > n, \\ \mathsf{until\ } v \mathsf{ is\ reached\ again} \end{split}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by} \text{ entry steps } \rightarrow_{[n]} \text{ from } v \\ \mathsf{followed} \text{ by branch steps } \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps } \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $v_0 \bullet v_1$ $b \bullet v_1 \\ [2] \\ v_2 \\ v_2 \\ b \bullet v_2 \\ b \bullet v_1 \\ b \bullet$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $v_0 \bullet v_1$ a $b (1) \bullet v_1$ $a \\ [2] \\ v_2$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]}$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from the start vertex. L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{br,[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, ..., ...) \implies n_1 \neq n_2.$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by} \text{ entry steps } \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed} \text{ by branch steps } \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps } \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $b \underbrace{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ v_2 \\ v_1 \\ b \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v$

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from the start vertex. L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{br,[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, ..., ...) \implies n_1 \neq n_2.$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

no!

(L1.) violated: $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ not a loop chart

no!

(L1.) violated: $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ not a loop chart

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

- L2. No infinite \rightarrow_{br} path from the start vertex.
- L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed} \mathsf{ by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \mathsf{ is reached again} \end{split}$$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

$$\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}, [>2]})$$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2. No infinite \rightarrow_{br} path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by} \text{ entry steps } \rightarrow_{[n]} \text{ from } v \\ \mathsf{followed} \text{ by branch steps } \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps } \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]}) \ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2. No infinite \rightarrow_{br} path from the start vertex.

L3. Overlapping/touching loop subcharts gen. from different vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \\ \mathsf{until } v \text{ is reached again} \end{split}$$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]}) \ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

$$-1. \ \forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}.$$

L2. No infinite \rightarrow_{br} path from the start vertex.

L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\mathrm{br},[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \dots, \dots) \Longrightarrow n_1 \neq n_2.$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \end{split}$$

until v is reached again

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

LEE-witness

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

$$-1. \ \forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}, [>n]}) \\ \text{is a loop subchart} \end{pmatrix}.$$

L2. No infinite \rightarrow_{br} path from the start vertex.

L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\mathrm{br}, [>n_i]})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \dots, \dots) \implies n_1 \neq n_2.$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \end{split}$$

 $\mathcal{L}(v_2,
ightarrow_{[1]},
ightarrow_{ ext{br},[>1]}) \ \mathcal{L}(v_0,
ightarrow_{[2]},
ightarrow_{ ext{br},[>2]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if: I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow [n] \Rightarrow \mathcal{L}(v, \rightarrow [n], \rightarrow_{br,[>n]}) \\ \text{ is a loop subchart} \end{pmatrix}$. I-L2. No infinite \rightarrow_{br} path from the start vertex.

I-L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\mathsf{br},[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \dots, \dots) \Longrightarrow n_1 < n_2.$

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with } m > n, \end{aligned}$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]}) \ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if: I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow_{[n]} \Rightarrow \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{br}) \\ \text{is a loop subchart} \end{pmatrix}$. I-L2. No infinite \rightarrow_{br} path from the start vertex.

I-L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{br})$ for $i \in \{1, 2\}$ loop charts

 $\wedge w_1 \neq w_2 \wedge w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 < n_2.$

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

 $\begin{aligned} \mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}}) \\ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}}) \end{aligned}$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if: I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{br}) \\ \text{ is a loop subchart} \end{pmatrix}$. I-L2. No infinite \to_{br} path from the start vertex. I-L3. $\mathcal{L}(w_i, \to_{[n_i]}, \to_{br})$ for $i \in \{1, 2\}$ loop charts

 $\wedge w_1 \neq w_2 \wedge w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 < n_2.$

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) &\coloneqq \mathsf{subchart induced} \\ \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from } v \\ \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

 $\begin{aligned} \mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}}) \\ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}}) \end{aligned}$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if:

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from the start vertex.

I-L3. A loop subchart induced by a vertex in the body of another induced loop subchart has lower level.

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq \text{subchart induced} \\ \text{by entry steps} \rightarrow_{[n]} \text{from } v \\ \text{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}})$ $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$ $\mathsf{layered}$ $\mathsf{LEE-witness}$

loop-branch labeling: marking transitions \xrightarrow{a} as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to [n] \Rightarrow \mathcal{L}(v, \to [n], \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

I-L2. No infinite \rightarrow_{br} path from the start vertex.

I-L3. A loop subchart induced by a vertex in the body of another induced loop subchart has lower level.

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq \text{subchart induced} \\ \text{by entry steps} \rightarrow_{[n]} \text{from } v \\ \text{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

 $\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}})$ $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$ layered LEE-witness loop-branch labeling: marking transitions \xrightarrow{a} as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if:

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from the start vertex.

I-L3. A loop subchart induced by a vertex in the body of another induced loop subchart has lower level.

 $\begin{aligned} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq \text{subchart induced} \\ \text{by entry steps} \rightarrow_{[n]} \text{from } v \\ \text{followed by branch steps} \rightarrow_{\mathsf{br}} \end{aligned}$

LEE versus LEE-witness

Theorem

For every process graph G:

 $\mathsf{LEE}(G) \iff G$ has a LEE -witness.

LEE versus LEE-witness

Theorem

```
For every process graph G:
```

```
\mathsf{LEE}(G) \iff G has a \mathsf{LEE}-witness.
```

Proof (Idea).

 \Rightarrow : record loop elimination

LEE versus LEE-witness

Theorem

```
For every process graph G:
```

```
\mathsf{LEE}(G) \iff G has a \mathsf{LEE}-witness.
```

Proof (Idea).

- \Rightarrow : record loop elimination
- carry out loop-elimination as indicated in the LEE-witness, in *inside-out* direction, e.g.:

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph Gcan be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}' of G.

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph Gcan be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}' of G.

Theorem

For every process graph G the following are equivalent:

- (i) $\mathsf{LEE}(G)$.
- (ii) G has a LEE-witness.
- (iii) G has a layered LEE-witness.

LEE under bisimulation?

LEE under bisimulation

Observation

• LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

• LEE is not invariant under bisimulation.

LEE -LEE

LEE under bisimulation

Observation

• LEE is not invariant under bisimulation.

LEE under bisimulation

Observation

- LEE is **not** invariant under bisimulation.
- LEE is not preserved by converse functional bisimulation.

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

 $\mathsf{LEE}(G_1) \land G_1 \not\supseteq G_2 \implies \mathsf{LEE}(G_2)$.

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

 $\mathsf{LEE}(G_1) \land G_1 \not\supseteq G_2 \implies \mathsf{LEE}(G_2)$.

Proof (Idea).

Use loop elimination in G_1 to carry out loop elimination in G_2 .

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket (aa(ba)^*b)^*0 \rrbracket_{\boldsymbol{P}}$

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

 $\mathsf{LEE}(G_1) \land G_1 \not\supseteq G_2 \implies \mathsf{LEE}(G_2)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

 $\mathsf{LEE}(G_1) \wedge G_1 \simeq G_2 \implies \mathsf{LEE}(G_2)$.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

 $\mathsf{LEE}(G) \land C$ is bisimulation collapse of $G \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

Readback

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

$$s(v_{0}) = 0^{*} \cdot a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{Mil^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{Mil^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{Mil^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{Mil^{-}} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

 $s(v_1, v_1) = 1$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1 s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = \left(a \cdot s(v_2, v_1)\right)^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^-} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

=_{Mil}- 0* \cdot (b \cdot 1 + b \cdot a)

$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^-} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

 $s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{\mathsf{M}\mathsf{H}^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{\mathsf{M}\mathsf{H}^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{\mathsf{M}\mathsf{H}^{-}} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{\mathsf{Mil}^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{\mathsf{Mil}^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{\mathsf{Mil}^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^{-}} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$
$$=_{\mathsf{Mil}^-} a \cdot s(v_1)$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{\mathsf{M}\mathsf{i}\mathsf{l}^{-}} a$$

$$s(v_{0}) = 0^{*} \cdot a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot s(v_{1})$$

$$=_{Mil^{-}} a \cdot (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{1}) = (a \cdot s(v_{2}, v_{1}))^{*} \cdot 0$$

$$=_{Mil^{-}} (a \cdot (b + b \cdot a))^{*} \cdot 0$$

$$s(v_{2}, v_{1}) = 0^{*} \cdot (b \cdot s(v_{1}, v_{1}) + b \cdot s(v_{0}, v_{1}))$$

$$=_{Mil^{-}} 0^{*} \cdot (b \cdot 1 + b \cdot a)$$

$$=_{Mil^{-}} b + b \cdot a$$

$$s(v_{1}, v_{1}) = 1$$

$$s(v_{0}, v_{1}) = 0^{*} \cdot a \cdot s(v_{1}, v_{1})$$

$$= 0^{*} \cdot a \cdot 1$$

$$=_{Mil^{-}} a$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_{P} \right).$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_{P}^{\frac{1}{p}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lr} \land \star}(A) \left(G \rightleftharpoons \llbracket e \rrbracket_P \right).$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{\pm r \setminus *}(A)$) if:

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

•
$$(a \cdot (1+b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

•
$$(a \cdot (1+b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions
1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and

×

p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

•
$$(a \cdot (0^* + b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\texttt{tr} \land \texttt{t}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{lf} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and

× ×

p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

•
$$(a \cdot (0^* + b))^*$$

1-return-less regular expressions

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\text{1+}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{++}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (0^* + b))^*$$
 ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\text{1+}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$

•
$$(a \cdot (0^* + b))^*$$
 ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

•
$$(a \cdot (1+b))^*$$
 ×

$$\bullet \ (a \cdot (0^* + b))^* \qquad \qquad \mathbf{\times}$$

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

•
$$(a^*(b^* + c \cdot 0)^*)^*$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\text{1+}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

$$(a \cdot (1+b))^*$$
 × $(a^*(b^*+c \cdot 0)^*)^*$ ×
 $(a \cdot (0^*+b))^*$ ×

$$\bullet \ a \cdot \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \quad \checkmark$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^* \times (a^*(b^*+c \cdot 0)^*)^* \times (a^*(b^*+c \cdot 0))^* \times (a^*(b^*+c \cdot 0))^*$$

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

×

l emma

Process graphs with LEE are $\left\|\cdot\right\|_{\mathcal{D}}^{\frac{1}{2}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \operatorname{Reg}^{1+/*}(A)$) if:

- for no iteration subexpression f^* of e does $[\![f]\!]_P$ proceed to a process p such that:
 - p has the option to immediately terminate, and

×

p has the option to do a proper step, and terminate later.

$$(a \cdot (1+b))^* \times (a^*(b^*+c \cdot 0)^*)^* \times (a^*(b^*+c \cdot 0))^* \times (a^*(b^*+c$$

•
$$(a^*(b^* + c \cdot 0))^*$$
 ×

$$\bullet \ a \cdot \left(a \cdot (b + b \cdot a) \right)^* \cdot 0 \quad \checkmark$$

Lemma

Process graphs with LEE are $\llbracket \cdot \rrbracket_P^{\ddagger + \lambda_*}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathsf{l} \mathsf{r} \backslash \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{+*}(A)$) if:

- ▶ for <u>no</u> iteration subexpression f^{*} of e does [[f]]_P proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

 $(a \cdot (1+b))^* \times (a^*(b^*+c \cdot 0)^*)^* \times (a^*(b^*+c \cdot 0))^* \times (a^*(b^*+c$

$$(a^*(b^* + c \cdot 0))^* \times (a^*(b + c \cdot 0))^*$$

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

l emma

Process graphs with LEE are $\left\|\cdot\right\|_{\mathcal{D}}^{\frac{1}{2}}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\texttt{le} \land \star}(A) \left(G \nleftrightarrow \llbracket e \rrbracket_P \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{\frac{1}{r} \times (A)}$) if:

- for no iteration subexpression f^* of e does $[\![f]\!]_P$ proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

 $(a \cdot (1+b))^*$ × $(a^*(b^* + c \cdot 0)^*)^*$ × $(a \cdot (0^* + b))^*$

•
$$(a^*(b^* + c \cdot 0))^*$$
 ×
• $(a^*(b + c \cdot 0))^*$ ×

$$\bullet \ a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \quad \checkmark$$

×

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

```
(i) G is \llbracket \cdot \rrbracket_P^{\ddagger \cdot \land \star}-expressible modulo \leq \cdot.
```

```
(ii) LEE(C).
```

- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger + \star}$ -expressible modulo $\leq \cdot$.
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question:

Q1. Which structural property of finite process graphs characterizes $[\![\cdot]\!]_P$ -expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\frac{1}{P}}$ -expressible modulo \leq .
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question restricted:

Q1'. Which structural property of finite process graphs characterizes $\left[\!\left.\cdot\right]\!\right]_{P}^{\frac{1}{2}}$ -expressibility modulo \leq ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger \cdot \bigstar}$ -expressible modulo $\leq \cdot$.
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question restricted, and adapted:

Q1". Which structural property of collapsed finite process graphs characterizes $[\![\cdot]]_P^{\texttt{tr}\setminus \star}$ -expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger + \star}$ -expressible modulo $\leq \cdot$.
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:

- Q1". Which structural property of collapsed finite process graphs characterizes $[\![\cdot]]_P^{\texttt{tr}\setminus \star}$ -expressibility modulo \Leftrightarrow ?
 - The loop-existence and elimination property LEE.

Characterization of expressibility r^{\star} modulo \leq

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $\llbracket \cdot \rrbracket_P^{\ddagger \ast}$ -expressible modulo \leq .
- (ii) LEE(C).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:

- Q1". Which structural property of collapsed finite process graphs characterizes $[\![\cdot]\!]_P^{\frac{1}{2}+\lambda}$ -expressibility modulo \Leftrightarrow ?
 - ► The loop-existence and elimination property LEE.

Also yields: efficient decision method of $\left[\cdot\right]_{P}^{\frac{1}{2}}$ -expressibility modulo \leq .

graphs with LEE / a (layered) LEE-witness

- ▶ is closed under \rightarrow
- forth-/back-correspondence with 1-return-less regular expressions

graphs with LEE / a (layered) LEE-witness

- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\left[\cdot\right]_{P}^{\frac{1+\lambda}{2}}$ -expressible modulo \leq

- ▶ is closed under \rightarrow
- ▶ forth-/back-correspondence with 1-return-less regular expressions

- $\left[\cdot\right]_{P}^{\frac{1}{r}\times}$ -expressible graphs
- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\left[\cdot\right]_{P}^{\frac{1+\lambda}{2}}$ -expressible modulo \leq

- ▶ is closed under \rightarrow
- ▶ forth-/back-correspondence with 1-return-less regular expressions

- $\left[\cdot\right]_{P}^{\frac{1}{r}\times}$ -expressible graphs
- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\left[\!\left[\cdot\right]\!\right]_{P}^{\frac{1}{N}}$ -expressible modulo \leq
- \subseteq graphs that are $\llbracket \cdot \rrbracket_P$ -expressible modulo $\leq \geq$

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

- $\left[\cdot\right]_{P}^{\frac{1}{r}\times}$ -expressible graphs
- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\left[\!\left[\cdot\right]\!\right]_{P}^{\frac{1}{N}}$ -expressible modulo \leq
- \subsetneq graphs that are $\llbracket \cdot \rrbracket_P$ -expressible modulo \preceq
- ⊊ finite process graphs

- ▶ is closed under \ge
- ▶ forth-/back-correspondence with 1-return-less regular expressions

loop-exit palm trees $\subseteq [\cdot]_P^{++}$ -expressible graphs

- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\left[\!\left[\cdot\right]\!\right]_{P}^{\frac{1+1}{4}}$ -expressible modulo \leq
- \subsetneq graphs that are $\llbracket \cdot
 rbracket_P$ -expressible modulo \Leftrightarrow
- finite process graphs

- ▶ is closed under \ge
- ▶ forth-/back-correspondence with 1-return-less regular expressions

loop-exit palm trees $\subseteq [\cdot]_P^{++}$ -expressible graphs

- \subseteq graphs with LEE / a (layered) LEE-witness
- \subseteq graphs whose collapse satisfies LEE
- = graphs that are $\left[\cdot\right]_{P}^{\frac{1+\lambda}{2}}$ -expressible modulo \leq
- \subseteq graphs that are $\llbracket \cdot
 rbracket_P$ -expressible modulo \leq
- finite process graphs

Benefits of the class of process graphs with LEE:

- ▶ is closed under \ge
- ▶ forth-/back-correspondence with 1-return-less regular expressions

Application to Milner's questions yields partial results:

- Q1: characterization/efficient decision of $\llbracket \cdot \rrbracket_P^{\text{tr},\star}$ -expressibility modulo \Leftrightarrow
- Q2: alternative compl. proof of Mil on 1-return-less expressions (C/DN/L)

Maximal sharing of functional programs

(joint work with Jan Rochel)

maximal sharing: example (fix)

maximal sharing: the method

a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.

interpretation

running example

 $\begin{array}{ll} \text{instead of:} \\ \lambda f. \, \text{let } r = f\left(f\,r\right) \, \text{in } r & \longmapsto_{\text{max-sharing}} & \lambda f. \, \text{let } r = f\,r \, \text{in } r \\ \text{we use:} \\ \lambda x. \, \lambda f. \, \text{let } r = f\left(f\,r\,x\right) x \, \text{in } r & \longmapsto_{\text{max-sharing}} & \lambda x. \, \lambda f. \, \text{let } r = f\,r\,x \, \text{in } r \\ \\ L & \longmapsto_{\text{max-sharing}} & L_0 \end{array}$

graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree
$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

syntax tree (+ recursive backlink)

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

syntax tree (+ recursive backlink, + scopes)

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

syntax tree (+ recursive backlink, + scopes, + binding links)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, Blom [2003])

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, Blom [2003])

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, + abstraction-prefix function)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with abstraction-prefix function)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ abstraction-prefix function)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

λ -term-graph $\llbracket L_0 \rrbracket_{\mathcal{T}}$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

syntax tree

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

syntax tree (+ recursive backlink)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

syntax tree (+ recursive backlink)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

syntax tree (+ recursive backlink, + scopes)

 $L = \lambda x. \lambda f. \text{ let } r = f(frx)x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L = \lambda x. \lambda f. \text{ let } r = f(frx)x \text{ in } r$

λ -higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

 $L = \lambda x. \lambda f. \text{ let } r = f(frx)x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

 $L = \lambda x. \lambda f. \text{ let } r = f(frx)x \text{ in } r$

λ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\lambda_{\mathsf{letrec}}$ -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

 $\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \Leftrightarrow \llbracket L_2 \rrbracket_{\mathcal{T}}$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\lambda_{\mathsf{letrec}}$ -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

 $\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \nleftrightarrow \llbracket L_2 \rrbracket_{\mathcal{T}}$

collapse

bisimulation check between λ -term-graphs

bisimulation between λ -term-graphs

bisimilarity between λ -term-graphs

functional bisimilarity and bisimulation collapse

bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \Rightarrow .

 \implies For a $\lambda_{ ext{letrec}}$ -term L

the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ -term-graph.

defined with property:

defined with property:

defined with property:

Theorem

For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

defined with property:

Theorem For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

idea:

- 1. construct a spanning tree T of G
- 2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

maximal sharing: complexity

- 1. interpretation
 - of $\lambda_{\mathsf{letrec}}$ -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0
 - in time $O(|G|\log|G|) = O(n^2\log n)$
- 3. readback rb

of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

• in time $O(|G|\log|G|) = O(n^2\log n)$

Theorem

Computing a maximally compact form $L_0 = (rb \circ |\downarrow \circ [\![\cdot]\!]_{\mathcal{T}})(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

Demo: console output

```
ian:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
\lambda-letrec-term:
\lambda x. \lambda f. let r = f(f r x) x in r
derivation:
            ----- 0 ----- 0
            (x f[r]) f (x f[r]) r (x) x
(x) x
(x f[r]) f (f r x)
                ۵) -----
۵) ۸ -----
(x f[r]) f (f r x) x
                                                            (x f[r]) r
                                                                 ---- let
(x f) let r = f (f r x) x in r
                           .....λ
(x) \lambda f. let r = f(f r x) x in r
                                .....λ
() \lambda x. \lambda f. let r = f (f r x) x in r
writing DFA to file: running-dfa.pdf
readback of DFA:
\lambda x, \lambda y, let F = v (v F x) x in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
\lambda x. \lambda y. let F = y F x in F
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>
                          Clemens Grabmayer
                                       Modeling Terms by Graphs with Structure Constraints
```

Demo: generated λ -NFAs

Resources (maximal sharing)

- tool maxsharing on hackage.haskell.org
- papers and reports
 - Maximal Sharing in the Lambda Calculus with Letrec
 - ICFP 2014 paper
 - accompanying report arXiv:1401.1460
 - Term Graph Representations for Cyclic Lambda Terms
 - TERMGRAPH 2013 proceedings
 - extended report arXiv:1308.1034
 - Vincent van Oostrom, CG: Nested Term Graphs
 - TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
 - Unfolding Semantics of the Untyped λ -Calculus with letrec
 - Ph.D. Thesis, Utrecht University, 2016

Comparison results: structure-constrained graphs

Regular expressions under \Leftrightarrow_P

Given: graph interpretation $\llbracket \cdot \rrbracket_P$, studied under bisimulation \Leftrightarrow

▶ not closed under \rightarrow , and \leftrightarrow , incomplete under \leftrightarrow

 λ -calculus with letrec under = $_{\lambda^{\infty}}$

Not available: graph interpretation that is studied under \Leftrightarrow

Comparison results: structure-constrained graphs

Regular expressions under \Leftrightarrow_P

Given: graph interpretation $\llbracket \cdot \rrbracket_P$, studied under bisimulation \Leftrightarrow

▶ not closed under \rightarrow , and \Leftrightarrow , incomplete under \Leftrightarrow

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \Rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's
- contains the collapse of a process graph G ⇔ G is []¹⁴/_P -expressible modulo ⇔

 λ -calculus with letrec under = $_{\lambda^{\infty}}$

Not available: graph interpretation that is studied under \Leftrightarrow

Comparison results: structure-constrained graphs

Regular expressions under \leq_P

Given: graph interpretation $\llbracket \cdot \rrbracket_P$, studied under bisimulation \Leftrightarrow

▶ not closed under \rightarrow , and \Leftrightarrow , incomplete under \Leftrightarrow

Defined: class of process graphs with LEE / (layered) LEE-witness

- closed under \Rightarrow (hence under collapse)
- back-/forth correspondence with 1-return-less expr's

 λ -calculus with letrec under = $_{\lambda^{\infty}}$

Not available: graph interpretation that is studied under \Leftrightarrow

Defined: int's $\llbracket \cdot \rrbracket_{\mathcal{H}} / \llbracket \cdot \rrbracket_{\mathcal{T}}$ as higher-order/first-order λ -term graphs

- closed under \Rightarrow (hence under collapse)
- ▶ back-/forth correspondence with λ -calculus with letrec
 - efficient translation and readback
 - translation is inverse of readback

L'Aquila (from Monte Castelvecchia la Crocetta)

Corno Grande, Gran Sasso (from close to GSSI, L'Aquila)

