The process semantics of regular expressions

Clemens Grabmayer

Computer Science group Gran Sasso Science Institute L'Aquila

Postdoc Seminar November 19, 2018

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f ::= 0 | 1 | a | (e + f) | (e \cdot f) | (e^{\star})$$
 (for $a \in A$).

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f ::= 0 | 1 | a | (e + f) | (e \cdot f) | (e^*)$$
 (for $a \in A$).

Note, here:

- ▶ symbol 0 instead of Ø
- ▶ symbol 1 used (often dropped, definable as 0^{*})
- no complementation operation \overline{e}

Language semantics $\llbracket \cdot \rrbracket_L$ (Copi-Elgot-Wright, 1958)

$$\begin{array}{cccc} \mathbf{0} & \stackrel{\left[\begin{smallmatrix} \bullet \right]_L}{\longmapsto} & \text{empty language } \varnothing \\ \\ \mathbf{1} & \stackrel{\left[\begin{smallmatrix} \bullet \right]_L}{\longmapsto} & \{\epsilon\} & (\epsilon \text{ the empty word}) \\ \\ a & \stackrel{\left[\begin{smallmatrix} \bullet \right]_L}{\longmapsto} & \{a\} \end{array}$$

Language semantics $\llbracket \cdot \rrbracket_L$ (Copi-Elgot-Wright, 1958)

$$e + f \xrightarrow{[\mathbb{I}]_L} \text{ union of } \llbracket e \rrbracket_L \text{ and } \llbracket f \rrbracket_L$$

$$e \cdot f \xrightarrow{[\mathbb{I}]_L} \text{ element-wise concatenation of } \llbracket e \rrbracket_L \text{ and } \llbracket f \rrbracket_L$$

$$e^* \xrightarrow{[\mathbb{I}]_L} \text{ set of words formed by concatenating words in } \llbracket e \rrbracket_I$$

$$plus the empty word \epsilon$$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (Milner, 1984)

- $0 \stackrel{\llbracket \cdot \rrbracket_{P}}{\longmapsto} \text{ deadlock } \delta, \text{ no termination}$
- $1 \quad \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \quad \text{empty process } \epsilon, \text{ then terminate}$
- $a \xrightarrow{\llbracket \cdot \rrbracket_P}$ atomic action a, then terminate

Process semantics $\llbracket \cdot \rrbracket_{P}$ (Milner, 1984)

$$0 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ deadlock } \delta, \text{ no termination}$$

$$1 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} \text{ empty process } \epsilon, \text{ then terminate}$$

$$a \xrightarrow{\llbracket \cdot \rrbracket_P}$$
 atomic action a , then terminate

$$\begin{array}{ccc} e+f & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{alternative composition of } \llbracket e \rrbracket_P \text{ and } \llbracket f \rrbracket_P \\ e \cdot f & \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} & \text{sequential composition of } \llbracket e \rrbracket_P \text{ and } \llbracket f \rrbracket_P \\ e^* & \stackrel{\llbracket \cdot \rrbracket_P}{\mapsto} & \text{unbounded iteration of } \llbracket e \rrbracket_P, \text{ option to terminate} \end{array}$$

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

$$a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$$
 $(a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0$

b

a

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

 $a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$

$$(a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0$$

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

 $a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$

$$(a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0$$

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

 $a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$

 $(a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0$

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

 $\llbracket a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \rrbracket_{\mathbf{P}}$

 $\llbracket (a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0 \rrbracket_{P}$

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

 $[a(a(b+ba))^*0]_P$

 $\llbracket (aa(ba)^*b)^*0 \rrbracket_{\boldsymbol{P}}$

Process semantics $\llbracket \cdot \rrbracket_P$ (examples)

 $\llbracket a(a(b+ba))^*0 \rrbracket_{P}$

 $[(aa(ba)^*b)^*0]_P$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

 $\llbracket a(a(b+ba))^* 0 \rrbracket_P \qquad \Longleftrightarrow \qquad \llbracket (aa(ba)^* b)^* 0 \rrbracket_P$

 $\notin im(\llbracket \cdot \rrbracket_{\boldsymbol{P}})$

 $\llbracket \cdot \rrbracket_{P}$ -expressible

▶ Not every finite-state process is [[·]]_P-expressible.

- ▶ Not every finite-state process is [[·]]_P-expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .

- Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

- ▶ Not every finite-state process is [[·]]_P-expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible modulo \Leftrightarrow .
- Fewer identities hold for \leq_P than for $=_L$: $\leq_P \subseteq =_L$.

Complete axiomatization of $=_L$ (Aanderaa/Salomaa, 1965/66)

Axioms :

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$

non-empty-word property

Sound and unsound axioms with respect to \leq_P

Axioms :

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$

non-empty-word property

Sound and unsound axioms with respect to \leq_P

Axioms :

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } (\text{if } \{\epsilon\} \notin \llbracket f \rrbracket_L)$$

non-empty-word property
Adaptation for $\Leftrightarrow_{\mathbf{P}}$ (Milner, 1984) (Mil = Mil⁻ + RSP^{*})

Axioms:

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* \left(\operatorname{if} \left\{ \epsilon \right\} \notin \llbracket f \rrbracket_L \right)$$
non-empty-word

property

Adaptation for $\Leftrightarrow_{\mathbf{P}}$ (Milner, 1984) (Mil = Mil⁻ + RSP^{*})

Axioms:

 $(\mathsf{B6}) \qquad e + e = e$

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* \left(\operatorname{if} \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_L} \right)$$

non-empty-word property

Adaptation for $\Leftrightarrow_{\mathbf{P}}$ (Milner, 1984) (Mil = Mil⁻ + RSP^{*})

Axioms:

 $(\mathsf{B6}) \qquad e + e = e$

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* \left(\operatorname{if} \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_L} \right)$$

non-empty-word property language semantics process semantics prop's Aanderaa's/Salomaa's ax Milner's ax Milner's questions LEE LEE-witness LEE fails LEE collapse goals

Milner's questions

Milner's questions

Q1. Recognition: Which structural property of finite process graphs characterizes $[\![\cdot]\!]_{P}$ -expressibility modulo \Leftrightarrow ?

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$ -expressibility modulo \Leftrightarrow ?

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

definability by well-behaved specifications (Baeten/Corradini, 2005)

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \leq_P ?

Q1. Recognition: Which structural property of finite process graphs characterizes $[\![\cdot]\!]_P$ -expressibility modulo \Leftrightarrow ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \leq_P ?
 - Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*}\cdot 0$

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \leq_P ?
 - Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - \blacktriangleright every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*}\cdot 0$
 - Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_P$ -expressibility modulo \Leftrightarrow ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \leq_P ?
 - Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - every iteration e^* occurs as part of a 'no-exit' subexpression $e^*\cdot 0$
 - Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)
 - ▶ Mil⁻ + one of two stronger rules (than RSP^{*}) is complete (*G*, 2006)

LEE-witness

structured LEE-witness

LEE-witness: structure constrained process graph

LEE-witness

structured LEE-witness

LEE-witness yields star expression

structure constraints (L'Aquila)

structure constraints (L'Aquila)

Loop elimination

Loop elimination

Loop elimination

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.
- LEE is not preserved by converse functional bisimulation.

LEE is preserved under bisimulation collapse

 $\llbracket a(a(b+ba))^*0 \rrbracket_{\mathbf{P}}$

 $[(aa(ba)^*b)^*0]_{P}$

Goals

- Completeness proof
 - is a large project: report (now ~ 250 pages, ~ 2 years)
 - writing up a crucial step:
 - pseudo-collapse LEE-witnesses with 1-transitions
- Interpretations of equational theories
 - Characterize interpretations with respect to what kinds of properties they permit to transfer between equational theories

Goals

- Completeness proof
 - is a large project: report (now ~ 250 pages, ~ 2 years)
 - writing up a crucial step:
 - pseudo-collapse LEE-witnesses with 1-transitions
- Interpretations of equational theories
 - Characterize interpretations with respect to what kinds of properties they permit to transfer between equational theories
- Recognition problem
 - polynomial if no 1-transitions (testing for property LEE)
- Cost models for λ-calculus