The process semantics of regular expressions

Clemens Grabmayer

Computer Science group

Gran Sasso Science Institute
L'Aquila

Postdoc Seminar

November 19, 2018

Regular Expressions

Definition

The set $\operatorname{Reg}(A)$ of regular expressions over alphabet A is defined by the grammar:

$$
e, f::=0|1| a|(e+f)|(e \cdot f) \mid\left(e^{\star}\right) \quad(\text { for } a \in A) .
$$

Regular Expressions (Copi-Elgot-Wright, 1958; based on Kleene, 1951)

Definition

The set $\operatorname{Reg}(A)$ of regular expressions over alphabet A is defined by the grammar:

$$
e, f::=0|1| a|(e+f)|(e \cdot f) \mid\left(e^{*}\right) \quad(\text { for } a \in A) .
$$

Note, here:

- symbol 0 instead of \varnothing
- symbol 1 used (often dropped, definable as 0^{*})
- no complementation operation \bar{e}

Language semantics $\llbracket \cdot \rrbracket_{L} \quad$ (Copi-Elgot-Wright, 1958)

$0 \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ empty language \varnothing
$1 \stackrel{\llbracket \rrbracket_{L}}{\longmapsto}\{\epsilon\} \quad(\epsilon$ the empty word)
$a \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}\{a\}$

Language semantics $\llbracket \cdot \rrbracket_{L} \quad$ (Copi-Elgot-Wright, 1958)

$0 \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ empty language \varnothing
$1 \stackrel{\llbracket \rrbracket_{L}}{\longmapsto} \quad\{\epsilon\} \quad(\epsilon$ the empty word)
$a \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}\{a\}$
$e+f \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ union of $\llbracket e \rrbracket_{L}$ and $\llbracket f \rrbracket_{L}$
$e \cdot f \stackrel{\llbracket \cdot \rrbracket_{L}}{\longmapsto}$ element-wise concatenation of $\llbracket e \rrbracket_{L}$ and $\llbracket f \rrbracket_{L}$
$e^{*} \xrightarrow{\llbracket \cdot \rrbracket_{L}}$ set of words formed by concatenating words in $\llbracket e \rrbracket_{L}$ plus the empty word ϵ

Process semantics $\llbracket \cdot \rrbracket_{P} \quad$ (Miner, 1984)

$0 \stackrel{\Vdash \Vdash \|_{P}}{\longleftrightarrow}$ deadlock δ, no termination
$1 \stackrel{\Vdash \cdot \|_{P}}{\longleftrightarrow}$ empty process ϵ, then terminate
$a \xrightarrow{\llbracket \|_{P}}$ atomic action a, then terminate

Process semantics $\llbracket \cdot \rrbracket_{P} \quad$ (Miner, 1984)

$0 \stackrel{\llbracket \cdot \mathbb{P}_{P}}{\longleftrightarrow}$ deadlock δ, no termination
$1 \stackrel{\llbracket \eta_{P}}{\longleftrightarrow}$ empty process ϵ, then terminate
$a \xrightarrow{\llbracket \|_{P}}$ atomic action a, then terminate
$e+f \xrightarrow{\llbracket!\|_{P}}$ alternative composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e \cdot f \xrightarrow{\|\cdot\|_{P}}$ sequential composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e^{*} \xrightarrow{\llbracket \|_{P}}$ unbounded iteration of $\llbracket e \rrbracket_{P}$, option to terminate

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

$\left(a a(b a)^{*} b\right)^{*} 0$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

$\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

$\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

$a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0$
$\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

$\llbracket a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0 \rrbracket_{P}$

$$
\llbracket\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0 \rrbracket_{P}
$$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$

$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Process semantics $\llbracket \cdot \rrbracket_{P}$ (examples)

Expressible process graphs (under bisimulation \leftrightarrows)

Expressible process graphs (under bisimulation \leftrightarrows)

$$
\notin i m\left(\mathbb{[} \cdot \rrbracket_{P}\right)
$$

Expressible process graphs (under bisimulation \leftrightarrows)

$\epsilon \operatorname{im}\left(\llbracket \rrbracket_{P}\right)$
$\notin i m\left(\mathbb{\llbracket} \rrbracket_{P}\right)$
$\llbracket \cdot \rrbracket_{P}$-expressible

Expressible process graphs (under bisimulation \leftrightarrows)

$\epsilon \operatorname{im}\left(\llbracket \rrbracket_{P}\right)$

$$
\notin i m\left(\llbracket \rrbracket_{P}\right)
$$

$\llbracket \cdot \rrbracket_{P}$-expressible

Expressible process graphs (under bisimulation \leftrightarrows)

$$
\begin{gathered}
\epsilon \operatorname{im}\left(\llbracket \cdot \rrbracket_{P}\right) \\
\llbracket \cdot \rrbracket_{P} \text {-expressible }
\end{gathered}
$$

$$
\notin \operatorname{im}\left(\llbracket \rrbracket_{P}\right)
$$

$\llbracket \cdot \|_{p}$-expressible

Expressible process graphs (under bisimulation \leftrightarrows)

Expressible process graphs (under bisimulation \leftrightarrows)

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.

not $\llbracket \cdot \rrbracket_{P}$-expressible $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.

not $\llbracket \cdot \rrbracket_{P}$-expressible
$\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows

not $\llbracket \cdot \rrbracket_{P}$-expressible not $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq={ }_{L}$.

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq=_{L}$.

Properties of P

- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible.
- Not every finite-state process is $\llbracket \cdot \rrbracket_{P}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq=_{L}$.

$$
a \cdot(b+c)
$$

4_{P}
$a \cdot b+a \cdot c$

Complete axiomatization of $=_{L} \quad$ (Aanderaa/Salomaa, 1965/66)

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $e^{*}=(1+e)^{*}$
(B6) $\quad e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Sound and unsound axioms with respect to \leftrightarrows_{P}

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Sound and unsound axioms with respect to \leftrightarrows_{P}

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $e \cdot 0=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
$(\mathrm{B} 8)^{\prime} \quad 0 \cdot e=0$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX } \quad \text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Adaptation for $\overleftrightarrow{S}_{P} \quad$ (Milner, 1984) (Mil $=$ Mil $^{-}+$RSP $\left.^{*}\right)$

Axioms:

(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $\quad(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $\quad e^{*}=1+e \cdot e^{*}$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
$(\mathrm{B} 8)^{\prime} \quad 0 \cdot e=0$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*}(\text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Adaptation for $\overleftrightarrow{S}_{P} \quad$ (Milner, 1984) (Mil $=$ Mil $^{-}+$RSP $\left.^{*}\right)$

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $\quad 0 \cdot e=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $e^{*}=1+e \cdot e^{*}$
(B11) $e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*}(\text { if } \underbrace{\text { property }}_{\text {non-empty-word }} \begin{array}{|c|}
\left\{\epsilon \notin \llbracket f \rrbracket_{L}\right.
\end{array})
$$

Adaptation for $\overleftrightarrow{S}_{P} \quad$ (Milner, 1984) (Mil $=$ Mil $^{-}+$RSP $\left.^{*}\right)$

Axioms:
(B1) $e+(f+g)=(e+f)+g$
(B7) $e \cdot 1=e$
(B2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(B8) $\quad 0 \cdot e=0$
(B3) $\quad e+f=f+e$
(B9) $e+0=e$
(B4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(B10) $e^{*}=1+e \cdot e^{*}$
(B11) $\quad e^{*}=(1+e)^{*}$
(B6) $e+e=e$
Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*}(\text { if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\begin{array}{c}
\text { non-empty-word } \\
\text { property }
\end{array}})
$$

Milner's questions

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

Milner's questions, and partial results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*} \cdot 0$

Milner's questions, and partial results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*} \cdot 0$
- Mil is complete when restricted to 1 -return-less expressions
(Corradini, De Nicola, Labella, 2002)

Milner's questions, and partial results

Q1. Recognition: Which structural property of finite process graphs characterizes $\llbracket \cdot \rrbracket_{P}$-expressibility modulo \leftrightarrows ?

- definability by well-behaved specifications (Baeten/Corradini, 2005)
- that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)

Q2. Complete axiomatization: Is Mil complete for \leftrightarrows_{P} ?

- Mil is complete for perpetual-loop expressions (Fokkink, 1996)
- every iteration e^{*} occurs as part of a 'no-exit' subexpression $e^{*} \cdot 0$
- Mil is complete when restricted to 1 -return-less expressions (Corradini, De Nicola, Labella, 2002)
- Mil^{-}+ one of two stronger rules (than RSP*) is complete (G, 2006)

New approach: Loop Existence and Elimination (LEE)

New approach: Loop Existence and Elimination (LEE)

New approach: Loop Existence and Elimination (LEE)

eliminate loop

New approach: Loop Existence and Elimination (LEE)

eliminate loop

New approach: Loop Existence and Elimination (LEE)

eliminate loop

New approach: Loop Existence and Elimination (LEE)

eliminate loop

eliminate loop entry

New approach: Loop Existence and Elimination (LEE)

eliminate loop

garbage collection eliminate loop entry

New approach: Loop Existence and Elimination (LEE)

eliminate loop

eliminate loop

New approach: Loop Existence and Elimination (LEE)

eliminate loop

eliminate loop

repeated elimination of loops leads to a process graph without infinite trace

New approach: Loop Existence and Elimination (LEE)

eliminate loop

eliminate loop

repeated elimination of loops leads to a process graph without infinite trace

New approach: Loop Existence and Elimination (LEE)

eliminate loop

eliminate loop

repeated elimination of loops leads to a process graph without infinite trace

New approach: Loop Existence and Elimination (LEE)

eliminate loop

eliminate loop

repeated elimination of loops leads to a process graph without infinite trace

LEE-witness

structured
LEE-witness

LEE-witness: structure constrained process graph

LEE-witness
structured
LEE-witness

LEE-witness yields star expression

LEE-witness
structured
LEE-witness

$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

structure constraints (L'Aquila)

structure constraints (L'Aquila)

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

Loop elimination

$\xrightarrow{\longrightarrow}$ elim

Loop elimination

$\xrightarrow{\longrightarrow}$ elim

Loop elimination

$\xrightarrow{\longrightarrow}$ elim

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

$\longrightarrow \mathrm{elim}$
v_{1}

\xrightarrow{l} elim

$\longrightarrow{ }^{*}$ elim

Loop elimination

\longrightarrow elim
v_{1}

$$
\longrightarrow \mathrm{elim}
$$

Loop elimination

\longrightarrow elim
v_{1}

$\xrightarrow{ } \mathrm{elim}$

Loop elimination

\longrightarrow elim
© v_{1}

$\longrightarrow \mathrm{elim}$

$\xrightarrow{ } \mathrm{elim}$
$\longrightarrow{ }^{*}{ }^{*}$

Loop elimination

\longrightarrow elim
v_{1}

$\xrightarrow{\nrightarrow}$ elim

LEE fails

LEE fails

LEE fails

LEE fails

LEE under bisimulation

Observation

- LEE is not invariant under bisimulation.
- LEE is not preserved by converse functional bisimulation.

LEE
$\neg L E E$

LEE
ᄀLEE

LEE is preserved under bisimulation collapse

$\llbracket a(a(b+b a))^{*} 0 \rrbracket_{P}$
$\llbracket\left(a a(b a)^{*} b\right)^{*} 0 \rrbracket_{P}$

Goals

- Completeness proof
- is a large project: report (now ~ 250 pages, ~ 2 years)
- writing up a crucial step:
- pseudo-collapse LEE-witnesses with 1-transitions
- Interpretations of equational theories
- Characterize interpretations with respect to what kinds of properties they permit to transfer between equational theories

Goals

- Completeness proof
- is a large project: report (now ~ 250 pages, ~ 2 years)
- writing up a crucial step:
- pseudo-collapse LEE-witnesses with 1-transitions
- Interpretations of equational theories
- Characterize interpretations with respect to what kinds of properties they permit to transfer between equational theories
- Recognition problem
- polynomial if no 1-transitions (testing for property LEE)
- Cost models for λ-calculus

