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a b s t r a c t

We give an algorithm for deciding productivity of a large and natural class of recursive
stream definitions. A stream definition is called ‘productive’ if it can be evaluated
continually in such a way that a uniquely determined stream in constructor normal form
is obtained as the limit. Whereas productivity is undecidable for stream definitions in
general, we show that it can be decided for ‘pure’ stream definitions. For every pure
stream definition the process of its evaluation can be modelled by the dataflow of abstract
stream elements, called ‘pebbles’, in a finite ‘pebbleflow net(work)’. And the production of
a pebbleflow net associated with a pure stream definition, that is, the amount of pebbles
the net is able to produce at its output port, can be calculated by reducing nets to trivial
nets.
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1. Introduction

In functional programming, term rewriting and λ-calculus, there is a wide arsenal of methods for proving termination
such as recursive path orders, dependency pairs (for term rewriting systems, [24]) and the method of computability (for
λ-calculus, [22]). All of these methods pertain to finite data only. In the last two decades interest has grown towards infinite
data, as witnessed by the application of type theory to infinite objects [8], and the emergence of coalgebraic techniques for
infinite data types like streams [20]. While termination cannot be expected when infinite data are processed, infinitary
notions of termination become relevant. For example, in frameworks for the manipulation of infinite objects such as
infinitary rewriting [15] and infinitary λ-calculus [16], basic notions are the properties WN∞ and SN∞ of infinitary weak
and strong normalization [17], and UN∞ of uniqueness of (infinitary) normal forms.
In the functional programming literature the notion of ‘productivity’ has arisen, initially in the pioneering work of

Sijtsma [21], as a natural strengthening ofwhat in our setting are the propertiesWN∞ andUN∞. A streamdefinition is called
productive if not only can the definition be evaluated continually to build up a unique infinite normal form, but the resulting
infinite expression is also meaningful in the sense that it is a constructor normal formwhich allows us to consecutively read
off individual elements of the stream. Since productivity of stream definitions is undecidable in general, the challenge is to
find ever larger classes of stream definitions significant to programming practice for which productivity is decidable, or for
which at least a powerful method for proving productivity exists.

Contribution and overview. We show that productivity is decidable for a rich class of recursive stream specifications that
hitherto could not be handled automatically. (Since a stream definition, in the sense most commonly used, defines a stream
only in the case that it is productive, here and henceforth we use the more accurate term ‘stream specification’.) We start
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with a brief introduction to infinitary rewriting, and define some preliminary notions in Section 2. In Section 3 we define
‘pure stream constant specifications’ (SCSs) as orthogonal term rewriting systems, which are based on ‘weakly guarded
stream function specifications’ (SFSs). In Section 4 we develop a ‘pebbleflow calculus’ as a tool for computing the ‘degree
of definedness’ of SCSs. The idea is that a stream element is modelled by an abstract ‘pebble’, a stream specification by a
finite ‘pebbleflow net’, and the process of evaluating a stream specification by the dataflow of pebbles in the associated
net. In Section 5, we give a translation of SCSs into ‘rational’ pebbleflow nets, and prove that this translation is production
preserving. Finally in Section 6, we show that the production of a ‘rational’ pebbleflow net, that is, the amount of pebbles
such a net is able to produce at its output port, can be calculated by an algorithm that reduces nets to trivial nets. We obtain
that productivity is decidable for pure SCSs. We believe our approach is natural because it is based on building a pebbleflow
net corresponding to an SCS as a model that is able to reflect the local consumption/production steps during the evaluation
of the stream specification in a quantitatively precise manner.
This paper is a revised and extended version of the paper [11] presented at FCT 2007. We follow [21,7] in describing the

quantitative input/output behaviour of a stream function f by a ‘modulus of production’ νf : (N)r → N with the property
that the first νf(n1, . . . , nr) elements of f(t1, . . . , tr) can be computed whenever the first ni elements of ti are defined. In
fact, our approach is distinguished by the use of optimalmoduli. Moreover, our decision algorithm exploits moduli that are
‘rational’ functions ν : (N)r → Nwhich, for r = 1, have eventually periodic difference functions1ν(n) := ν(n+ 1)− ν(n),
that is ∃n, p ∈ N. ∀m ≥ n. 1ν(m) = 1ν(m + p). This class of moduli is effectively closed under composition, and allows
us to calculate fixed points of unary functions. Rational production moduli generalise those employed by [25,13,8,23], and
enable us to precisely capture the consumption/production behaviour of a large class of stream functions.

Related work. In order to facilitate a comparison of our contribution with previous approaches, we describe the various
notions of production moduli that have been proposed.
It is well-known that networks are devices for computing least fixed points of systems of equations [14]. The notion of

‘productivity’ (sometimes also referred to as ‘liveness’) was first mentioned by Dijkstra [9]. Since then several papers [25,21,
8,13,23,7] have been devoted to criteria ensuring productivity. The common essence of these approaches is a quantitative
analysis.
In [25] Wadge uses dataflow networks to model fixed points of equations. He devises a so-called ‘cyclic sum test’, using

production moduli of the form ν(n1, . . . , nr) = min(n1 + a1, . . . , nr + ar) with ai ∈ Z, i.e. the output ‘leads’ or ‘lags’ the
input by a fixed value ai.
Sijtsma [21] points out that this class of production moduli is too restrictive to capture the behaviour of commonly used

stream functions like even or zip. For instance, consider:

M = 0 : zip(inv(even(M)), tail(M)) ,

a definition of the Thue–Morse sequence (see also Fig. 1), which we use as a running example, cannot be dealt with by the
cyclic sum test and othermethodsmentioned below. Therefore Sijtsma develops an approach allowing arbitrary production
moduli νf : Nr → N, having the only drawback of not being automatable in full generality.
In order to formalise coinductive types in type theory, Coquand [8] defines a syntactic criterion called ‘guardedness’ for

ensuring productivity. Giménez [12] implements a modified version of this criterion in the Coq proof assistant. This notion
of guarded recursion avoids the introduction of non-normalisable terms, but is too restrictive for programming practice,
because it disallows function applications to recursive calls, like even(M) in the definition ofM above.
Telford and Turner [23] extend the notion of guardednesswith amethod in the flavour ofWadge. They use a sophisticated

counting scheme to compute the ‘guardedness level’ of a stream function, an element in Z ∪ {−ω,ω}. With this, a stream
specification is recognised to be productive if the result of computing its guardedness level (by plain addition in the case of
unary functions) from the guardedness levels of the stream functions occurring is positive. However, their approach does
not overcome Sijtsma’s criticism: their production moduli are essentially the same as Wadge’s. Determining a guardedness
level x, hence a modulus of the form n 7→ n + x, for the stream function even leaves x = −ω as the only possibility. As a
consequence, their algorithm does not recognise the specification ofM to be productive.
Hughes, Pareto and Sabry [13] introduce a type system using production moduli with the property that νf (a · x + b) =

c · x+ d for some a, b, c, d ∈ N. For instance, the type assigned there to the stream function tail is Sti+1 → Sti. Hence their
system rejects the stream specification forM because the subterm tail(M) cannot be typed. Moreover, their class of moduli
is not closed under composition, leading to the need for approximations and a loss of power.
Buchholz [7] presents a formal type system for proving productivity, whose basic ingredients are, closely connected

to [21], unrestricted production moduli νf : Nr → N. In order to obtain an automatable method, Buchholz also devises a
syntactic criterion to ensure productivity. This criterion easily handles all the examples of [23], but fails to dealwith functions
that have a negative effect like even, and hence with the specification ofM above.

2. Infinitary rewriting

The theoretical foundation and background of ourwork is that of infinitary rewriting, ensuring us of unique normalisation
results when dealing with infinite objects such as streams, that are computed in an infinite timescale. For general reference
and a more complete introduction we mention [24,17,15]. Here we just give a succinct introduction to the notions of
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Fig. 1. Example of a productive SCS.

infinitary rewriting. We will do this in the following somewhat informal glossary, starting with the notion of infinitary
rewriting itself. Thereafter, these preliminary notions will be given in more technical detail.

2.1. Glossary

(I) Infinitary rewriting is a natural extension of ordinary, finitary rewriting, by allowing terms to have infinite branches.
Canonical examples are infinite (term) trees, infinite streams of data, or infinite λ-terms. For infinite λ-terms, see [5] for
untyped infinite λ-terms, and [1] for simply typed infinite λ-terms. In mathematical and physical theories the use of such
infinite objects is commonplace in the form of infinite expansions and power series. In λ-calculus a particular class of infinite
λ-terms is well known as Böhm trees [4].
(II) Infinite terms. Formally, one can introduce infinite terms in several ways: most concretely as partial mappings from the
set of positions N∗ to the alphabet symbols of some signature Σ , or by means of coinductive notions, or as the completion
of the metric space of finite terms with the usual metric based on the familiar notion of distance that yields distance 2−(n+1)
for terms that are identical up to and including level n from the root, but then have a difference (see Definition 2.2). In this
complete metric space of finite and infinite terms we have the notion of Cauchy convergence.
(III) Reduction (or rewriting) sequences. In ordinary, finitary, rewriting theory rewriting sequences (we also use ‘reduction’ for
‘rewriting’) are just finite or infinite. This view is much more refined in infinitary rewriting, by allowing rewrite sequences
of any countable ordinal length. The passage over limit ordinals is given by a strengthened notion of Cauchy convergence,
called ‘strong convergence’.
Note that Cauchy convergence of reduction sequences is not yet sufficient to make a reduction sequence ‘connected’, as

it should be; without more it could jump at a limit stage to a totally unrelated term. So, we evidently have to impose the
requirement of continuity that at a limit stage λ the reduction sequence proceeds with the limit of the prefix up to λ. Thus,
e.g., in the reduction sequence t0 → r1 → . . . tω → tω+1 → . . . the term tω equals limi→ω ti (see [17] for several examples
of transfinite reductions sequences).
(IV) Strong convergence is Cauchy convergence with the extra requirement that the ‘activity’, that is the depth of the
successive redex contractions (‘firings’) in a rewrite sequence, has to go deeper and deeperwhen approaching a limit ordinal.
For the rationale of this requirement and amore detailed introductionwe refer to [15,24]. Herewe justmention the essential
benefit of this requirement: it provides uswith a natural notion of ‘descendant’ or ‘residual’, also in limit passages. In classical
λ-calculus and term rewriting, the ubiquitous notion of descendant or residual has proved to be indispensable for a fruitful
development of the theory.
(V) Compressing transfinite rewriting sequences. The full-fledged framework of infinitary rewriting comprises transfinitely
long rewrite sequences. However, when one wishes to avoid the transfinite realm, there is the sub-framework where one
restricts to the first infinite ordinal ω. What we definitely do retain (see Definition 2.3) is the notion of strong convergence:
also in a rewrite sequence of length ω, the redex depth of the sequence must tend to∞: the evaluation is not allowed to
stagnate at some finite level, but must proceed and deliver more and more levels of the constructors that we are interested
in. Technically, the property that yields this modest framework of reductions of length not exceeding ω, is the Compression
Property, stating that every transfinitely long rewrite sequence can be compressed, by a dove-tailing strategy of redex
selection, to a rewrite sequence with the same begin and end point, but of length ≤ ω. The property holds when we deal
with a class of well-behaved systems of rewrite rules, known as ‘orthogonal rewrite systems’.
(VI) Orthogonal term rewriting systems (TRSs) with constructors. We will employ orthogonal TRSs, formally introduced in
Definition 2.1. These systems have been widely studied, and admit an extensive and elegant theory. Orthogonality means
that the reduction rules are left-linear (no variable occurs twice in the left-hand side), and there are no critical pairs. The
signatures will contain, next to ‘defined function symbols’, also ‘constructor symbols’; they are not meant to be rewritten,
but are generating the finite data or infinite ‘codata’. We adhere to a sorting discipline; the straightforward details are stated
in Section 2.2.
(VII) The basic finitary notions CR, UN, SN, WN. We briefly recall the basic properties pertaining to finite rewriting: CR is
the Church–Rosser or confluence property, stating that every pair of coinitial reductions can be prolonged to a common
reduct; UN is the immediate corollary to CR that ensures the uniqueness of normal forms (terms without redexes): two
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finite reductions ending in normal forms, end in the same normal form. As is well-known, for orthogonal TRSs the properties
CR and hence UN always hold, and this is even so for weakly orthogonal TRSs, where trivial critical pairs are allowed. The
property SN, Strong Normalisation, states that there are no infinite reductions, or rephrased, that every reduction must
terminate eventually, if prolonged ‘long enough’. Weak Normalization (WN) just states that there exists a reduction to
normal form.
(VIII) The basic infinitary notions CR∞, UN∞, SN∞, WN∞. In the realm of infinitary reductions the finitary properties
introduced above generalise to analogous notions indicated by the superscript ∞. CR∞ states that infinitary reductions
starting from the same (finite or infinite) term can be prolonged to a common reduct, using infinitary reductions. The
property UN∞ states that two such infinitary reductions cannot end in two different possibly infinite normal forms. The
generalisation to WN∞ is obvious too: there exists an infinitary reduction to normal form. The definition of the stronger
property SN∞ is more subtle: roughly, it means that we are bound to find a normal form when we reduce, transfinitely,
long enough. This entails that it is guaranteed that the reduction cannot ‘stagnate’ at some finite level. For a more precise
discussion of this notion we refer to [17] or [24]. Here we are restricting ourselves to the versions of the infinitary
generalisations of WN∞ and SN∞ where we deal only with reduction sequences not exceeding length ω. For the general
background we mention that even for orthogonal TRSs the property CR∞ fails, due to the possible presence of ‘collapsing’
reduction rules (they have as right-hand side a single variable). However, UN∞ does hold for orthogonal TRSs. Remarkably,
forweakly orthogonal TRSsUN∞ fails. In [17] it is proved that the global versions of SN∞ andWN∞, where ‘global’means that
they hold for all terms, are in fact equivalent, even without the condition of non-erasing rules (as the analogous equivalence
for finite reductions requires).
(IX) Productivity. In the setting of orthogonal TRSs, productivity is a strengthening ofWN∞wherewe require that the normal
form, whose existence is assured by WN∞, must be not just any (possibly infinite) normal form, but one that is ‘intended’,
namely, built solely from constructors. Productivity is the main property that we will be concerned with in this paper.

2.2. Preliminaries

Let N+ := N \ {0}. We consider a finite or infinite term as a function on a prefix closed subset of N∗+ taking values in
a first-order signature, adhering to a sortedness discipline. Let U be a finite set of sorts. A U-sorted set A is a family of sets
{Au}u∈U . We sometimes write x ∈ A as a shorthand for ∃u ∈ U . x ∈ Au. A U-sorted signatureΣ is a U-sorted set of symbols f ,
each equipped with an arity 〈u1 · · · un, u〉 ∈ U∗ × U , for which we will use the suggestive type notation u1× · · · × un → u,
where f ∈ Σu. LetX be a U-sorted set of variables. Then, a term overΣ andX of sort u ∈ U is a partial map t : N∗+ ⇀ Σ ∪X
such that:

(i) its root t(ε) is defined and has sort u;
(ii) its domain is prefix closed: p ∈ dom(t)whenever pi ∈ dom(t), for all p ∈ N∗+ , i ∈ N+;
(iii) symbol arities define the number of immediate subterms and their respective sorts: for all p ∈ N∗+ , if t(p) ∈ X then

pi 6∈ dom(t), for all i ∈ N+, and if t(p) ∈ Σ with arity u1 × · · · × un → u, then t(pi) ∈ (Σ ∪X)ui if 1 ≤ i ≤ n, and
pi 6∈ dom(t) otherwise.

The set of terms overΣ andX of sort u ∈ U is denoted by Ter∞(Σ,X)u. Usually we keep the variables implicit, assuming a
countably infinite setX, and write Ter∞(Σ)u. The set Ter∞(Σ) of all terms is defined by Ter∞(Σ) :=

⋃
u∈U Ter∞(Σ)u. The

set of positions Pos(t) of a term t ∈ Ter∞(Σ) is the domain of t . A term t is called finite if the set Pos(t) is finite. We write
Ter(Σ) for the set of finite terms. We use the symbol ≡ to indicate syntactical equality of terms. For positions p ∈ Pos(t)
we use t|p to denote the subterm of t at position p, defined by t|p(q) := t(pq) for all q ∈ N∗+ .
For f ∈ Σ with arity u1×· · ·×un → u and terms ti ∈ Ter∞(Σ)ui wewrite f (t1, . . . , tn) to denote the term t ∈ Ter∞(Σ)u

that is defined by t(ε) = f , and t(ip) = ti(p) for all 1 ≤ i ≤ n and p ∈ N∗+ . For constants c ∈ Σ we simply write c instead of
c(). We use x, y, z, . . . to range over variables.

Definition 2.1. AU-sorted term rewriting system (TRS) is a pair 〈Σ, R〉 consisting of a finite,U-sorted signatureΣ and a finite,
U-sorted set R of ruleswith finite left- and right-hand sides that satisfy well-sortedness: Ru ⊆ Ter(Σ,X)u× Ter(Σ,X)u for
all u ∈ U , as well as the standard TRS requirements: for all rules ` → r ∈ R, ` is not a variable, and all variables in r also
occur in `.
Let T = 〈Σ, R〉 be a U-sorted TRS. We define D(Σ) := {root(l) | l → r ∈ R}, the set of defined symbols, and

C(Σ) := Σ \ D(Σ), the set of constructor symbols. T is called a constructor TRS if, for every rewrite rule ρ ∈ R, the
left-hand side is of the form F(t1, . . . , tn)with F ∈ D(Σ) and ti ∈ Ter(C(Σ)); then ρ is a defining rule for F .

A substitution is a U-sorted map σ : X → Ter∞(Σ,X), that is, ∀u ∈ U, x ∈ Xu. σ (x) ∈ Ter∞(Σ,X)u. For terms
t ∈ Ter∞(Σ,X) and substitutions σ we define tσ as the result of replacing each x ∈ X in t by σ(x). Formally, tσ is defined,
for all p ∈ N∗+ , by: tσ(p) = σ(t(p0))(p1) if there exist p0, p1 ∈ N∗+ such that p = p0p1 and t(p0) ∈ X, and tσ(p) = t(p),
otherwise. Let [] be a fresh symbol, [] 6∈ Σ ∪ X. A context C is a term from Ter∞(Σ,X ∪ {[]}) containing precisely one
occurrence of []. By C[s]we denote the term Cσ where σ([]) = s and σ(x) = x for all x ∈ X.

Definition 2.2. On the set of terms Ter∞(Σ) we define a metric d by d(s, t) = 0 whenever s ≡ t , and d(s, t) = 2−k
otherwise, where k ∈ N is the least length of all positions p ∈ N∗+ such that s(p) 6= t(p).
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A TRS T induces a rewrite relation on the set of terms as follows.

Definition 2.3. Let T be a TRS over Σ . For terms s, t ∈ Ter∞(Σ) and p ∈ N∗+ we write s →T,p t if there exist a rule
`→ r ∈ R, a substitution σ and a context C with C(p) = [] such that s ≡ C[`σ ] and t ≡ C[rσ ]. We write s→R t if there
exists a position p such that s→T,p t .
A reduction sequence t0 →T,p0 t1 →T,p0 . . . of length ω is called strongly convergent if limi→∞ |pi| = ∞, that is, the

lengths of the positions of the redexes contracted in the rewrite sequence tend to infinity.

Definition 2.4. Let T be a TRS and t0 ∈ Ter∞(Σ). Then T is calledω-convergent for t0, denoted by SNωT (t0), if every reduction
t0 →T,p0 t1 →T,p0 . . . of length ω is strongly convergent. T is called weakly ω-normalising for t0, denoted by WN

ω
T (t0), if

there exists a reduction t0 →T,p0 t1 →T,p0 . . . which is either finite and ends in a normal form, or is strongly convergent,
and the limit term tω := limi→∞ ti is a normal form.

For the general definitions of SN∞ andWN∞ based on transfinite rewrite sequenceswe refer to [17]. For orthogonal TRSs (i.e.
left-linear, and non-overlapping redexes, see [24]) infinitary strong normalisation SN∞ and infinitary weak normalisation
WN∞ coincide with the properties SNω and WNω , respectively:

Lemma 2.5. Let T be an orthogonal TRS and t0 ∈ Ter∞(Σ). Then we have

• T is infinitary strongly normalising for t0, denoted by SN∞T (t0), if and only if SN
ω
T (t0) holds, and

• T is infinitary weakly normalising for t0, denoted byWN∞T (t0), if and only ifWN
ω
T (t0) holds.

We write SN∞T shortly for SN
∞

T (Ter∞(Σ)), that is, infinitary normalisation on all terms. Furthermore, the subscript T may
be suppressed if it is clear from the context.
Note that, for non-left-linear TRSs the lemma does not hold. For instance, consider the TRS f (x, x)→ f (a, b), a→ s(a)

and b→ s(b). Then every reduction of lengthω starting from f (a, b) is strongly convergent, that is, the depths of the redexes
contracted in the terms of the reduction tend to infinity. Nevertheless, f (a, b) is neither strongly nor weakly infinitary
normalising: we have f (a, b) →ω f (sω, sω), but the limit term f (sω, sω) is not a normal form and even in transfinitely
many steps it does not rewrite to one.
Since outermost-fair rewriting is an infinitary normalising strategy for orthogonal TRSs, it is also possible to characterise

WN∞ as follows.

Lemma 2.6. Let T be an orthogonal TRS and t ∈ Ter∞(Σ). Then WN∞T (t) holds if and only if every outermost-fair rewrite
sequence t0 →T,p0 t1 →T,p0 . . . of length ω is strongly convergent.

For every strongly convergent, outermost-fair rewrite sequence t0 →T,p0 t1 →T,p0 . . . in an orthogonal TRS, the limit
term limi→∞ ti is a normal form. Therefore, the important direction of the above lemma is the ‘only-if’-part. That is, in case
WN∞T (t) holds, then every outermost-fair rewrite sequence converges towards a normal form. This normal form is unique,
since orthogonal TRSs have the property UN∞ (infinitary unique normal forms), that is, whenever t �� n1 and t �� n2 for
normal forms n1 and n2, then n1 ≡ n2.
Productivity is a strengthening of infinitary weak normalisation, where we require that the unique normal form is a

constructor normal form.

Definition 2.7 (Productivity). Let T be an orthogonal TRS, and let t ∈ Ter∞(Σ). Then T is called productive for t if WN∞T (t)
holds and the unique normal form of t is a constructor normal form.

Note that, we define productivity as a strengthening ofWN∞ and not of SN∞. Definition 2.7 captures the intuitive notion
of well-definedness of specifications of infinite structures in lazy functional programming languages like Haskell, Miranda
or Clean. For example, consider the following Haskell program:

alt = tail(alt’)
alt’ = 0:1:alt’

Here, alt is perfectly well-defined, rewriting to an infinite list in the limit. However, if we only unfold alt’ without
reducing tail, then we obtain tail(0:1:0:1. . .) after ω many steps in the limit. Thus, although the stream constant
alt in this system is SN∞ we have to use an outermost-fair strategy to obtain a constructor normal form of alt within ω
many steps. Another example is the Haskell program:

zeros = f(c)
c = c
f(x) = 0:f(x)

The system is not SN∞, since the term f(c) rewrites to itself. Nevertheless, zeros is productive and Haskell evaluates
zeros to a list of zeros, infinite in the limit. The reason is the one mentioned above: every lazy functional programming
language essentially uses some form of outermost-fair (or outermost-needed) rewriting strategy, also called ‘lazy
evaluation’, see e.g. [19].
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3. Recursive stream specifications

We introduce the concepts of ‘stream constant specification’ (SCS) and ‘stream function specification’ (SFS). An SCS
consists of three layers: the SCS layer where stream constants are specified using stream and data function symbols that
are defined by the rules of the underlying SFS. An SFS consists of an SFS layer and a data layer. These notions are illustrated
by the SCS given in Fig. 1. This SCS is productive and defines the well-known Thue–Morse sequence; indeed the constant
M rewrites to 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : . . . in the limit. A subtle point here is the definition of the stream function zip;
had we used the rule zip∗(x : σ , y : τ) → x : y : zip∗(σ , τ ) instead, then M would not produce a second element, for, in
the right-hand side of M, zip∗ will never match against a constructor in its second argument. Furthermore, we mention
that the rule for M could be simplified to M → 0 : zip(inv(M), tail(M)). We have chosen a variant including the stream
function even to demonstrate the strength of our approach. As explained in the introduction, previously stream functions
like even cannot be dealt with automatically. Note that, our example is not artificial, because the simplification is based
on a mathematical insight. Moreover, every computable stream can be specified entirely without using stream functions:
A→ B(0), B(n)→ t(n) : B(n+ 1), with an appropriate specification of the data function t. Then the actual computation of
the stream elements is ‘hidden away’ into the computation of the data function t. Thus for showing productivity, the burden
has shifted from analysing the stream functions to analysing the data functions. In particular, it has to be shown that t(n) is
finitary strongly normalising and rewrites to a constructor normal form for every n ∈ N.
To formalise the definition of SCSs and SFSs, we use many-sorted term rewriting. Only the rules in the SFS-layer will

be subjected to syntactic restrictions, in order to ensure well-definedness of the stream functions specified. No conditions
other than well-sortedness will be imposed on how the defining rules for the stream constant symbols in the SCS-layer can
make use of the function symbols in the other two layers.
In the sequel we use sorts D and S for data terms and stream terms, respectively. A stream TRS is an {S,D}-sorted,

orthogonal TRS 〈Σ, R〉 such that ‘:’ ∈ ΣS , the stream constructor symbol, with arity D × S → S is the single constructor
symbol inΣS . The members ofΣD andΣS are referred to as data symbols and stream symbols, respectively. Without loss of
generality we assume that all stream arguments of a stream function, if present, are in front. That is, for all f ∈ Σ , f has arity
S]s(f) × D]d(f) → S, and we refer to ]s(f) ∈ N and ]d(f) ∈ N as its stream arity and data arity, respectively. A stream symbol
is called a stream constant if it is a constant of sort S.
In this paper we restrict our attention to constructor stream TRSs. The sets Ter(C(Σ))D and Ter∞(C(Σ))S are the sets of

data terms and of stream terms in constructor normal form, respectively. Note that stream constructor normal forms are
inherently infinite. Moreover, we only consider stream TRSs with strict data symbols: for allm ∈ ΣD we have ]s(m) = 0.

Definition 3.1. Let T be a stream TRS. For every t ∈ Ter(Σ)S , we say that T is productive for t if t has a unique infinite
normal form u1 : u2 : u3 : . . . ∈ Ter∞(C(Σ))S , for some u1, u2, u3, . . . ∈ Ter(C(ΣD)).

Definition 3.2. Let T be a stream TRS. The production function ΠT : Ter(Σ)S → N of T is defined for all t ∈ Ter(Σ)S by
ΠT (t) := sup{#:(s) | t �T s }, called the production of t , where #:(t) := sup{n ∈ N | t = t1 : . . . : tn : t ′}, andN := N∪{∞}
is the set of extended natural numbers.

The following proposition characterises productivity of a stream TRS T for a term t by the unboundedness of the production
of t in T . This is an easy consequence of the fact that orthogonal TRSs are finitary confluent, and enjoy the property UN∞ [17].

Proposition 3.3. Let T be a stream TRS, and let t ∈ Ter(Σ)S . Then T is productive for t if and only if ΠT (t) = ∞.

Definition 3.4. A stream function specification (SFS) is a stream TRS T = 〈Σ, R〉 such that:

(i) 〈ΣD, RD〉 is a strongly normalising (finitary SN) TRS in which all ground terms have constructor normal forms.
(ii) For every stream function symbol f ∈ ΣS \ {:} with stream arity k = ]s(f ) and data arity l = ]d(f ) there is precisely
one rule in RS , denoted by ρ f, the defining rule for fwhich has the form:

f((x1 : σ1), . . . , (xk : σk), y1, . . . , yl)→ t1 : . . . : tm : u (ρ f)

where xi : σi stands for xi,1 : . . . : xi,ni : σi, the σi are variables of sort S, and u is of one of the forms:

u ≡ g(σφ f(1), . . . , σφ f(k′), t
′

1, . . . , t
′

l′) (a)

u ≡ σi (b)

where g ∈ ΣS with k′ = ]s(g) and l′ = ]d(g), φ f : {1, . . . , k′} → {1, . . . , k} is an injection used to permute stream
arguments, n1, . . . , nk,m ∈ N, and 1 ≤ i ≤ k.

We use out(ρ f) := m to denote the production of ρ f, and in(ρ f, i) := ni to denote the consumption of ρ f at the i-th position.
The SFS T is called weakly guarded if there are no rules `1 → r1, . . . , `n → rn ∈ Rsf such that root(`1) = root(rn),

∀i. root(ri) 6= ‘:’, and ∀i < n. root(`i+1) = root(ri); that is, there do not exist unproductive rewrite sequences of the form
f(t)→+ f(t ′).

Please cite this article in press as: J. Endrullis, et al., Productivity of stream definitions, Theoretical Computer Science (2009),
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Remark 3.5. (i) This definition covers a large class of stream functions including for instance tail, even, odd, and zip. By
the restriction to strict data symbols, we exclude data rules such as head(x : σ)→ x, possibly creating ‘look-ahead’ as
in the well-defined example S→ 0 : head(tail2(S)) : S from [21].

(ii) For an extension of the format of SFSs we refer to [10], where the conditions on stream functions imposed here are
relaxed in four different ways (while productivity stays decidable for stream specifications built upon stream functions
of the extended class). First, the requirement of right-linearity of stream variables (a consequence of the permutation
function φ f for stream arguments being injective) is dropped, allowing rules like f(σ )→ g(σ , σ ). Second, ‘additional
supply’ to the stream arguments is allowed, in rules like diff(x : y : σ) → xor(x, y) : diff(y : σ), where the variable
y is ‘supplied’ to the recursive call of diff. Third, the use of non-productive stream functions is allowed. Finally, even
a restricted form of pattern matching is allowed in defining rules for stream functions as long as, for every stream
function f, the quantitative (‘data-oblivious’) consumption/production behaviour of all defining rules for f is the same,
see Example 3.9 below. Extending terminology introduced in Definition 3.6 below, stream specifications built upon
stream functions of this enlarged class are also called ‘pure’ in [10].

Definition 3.6. Let T = 〈Σ, R〉 be a stream TRS with an additional partitionΣS = Σsf ] Σsc ] {:} of the stream signature
and a partition RS = Rsf ] Rsc of the set of stream rules. Then T is called a pure stream constant specification (SCS) if the
following conditions hold:

(i) T0 = 〈ΣD ]Σsf ] {:}, RD ] Rsf 〉 is a weakly guarded SFS. We say: T is based on T0.
(ii) Σsc is a set of constant symbols containing a distinguished symbolM0, called the root of T . Rsc is the set of defining rules

ρM:M→ t for everyM ∈ Σsc .

Given an SCS, we speak of its data, SFS, and SCS layer to mean RD, Rsf , and Rsc , respectively. An SCS T is called productive if T
is productive for its rootM0.

In the sequel we restrict to SCSs in which all stream constants in Σsc are reachable from the root: M ∈ Σsc is reachable
if there is a term t such that M0 � t and M occurs in t . Note that reachability of stream constants is decidable, and that
unreachable symbols may be neglected for investigating whether or not an SCS is productive.
Since every SCS is a stream TRS, Proposition 3.3 entails the following characterisation of productivity of stream terms,

which will be useful in the correctness proof of our method for deciding productivity of SCSs.

Proposition 3.7. Let T be a SCS. Then T is productive if and only if ΠT (M0) = ∞.

The signature of the SCS given in Fig. 1 is partitioned such that ΣD = {0, 1, i}, Σsf = {zip, inv, even, odd,
tail} andΣsc = {M}; the set of rules R is partitioned as indicated.

Example 3.8. Consider the SCS 〈Σ, R〉 with Σ = {0, 1, even, odd, J, :} and where R has the SCS layer Rsc = {J →
0 : 1 : even(J)}, the SFS layer consisting of the mutual recursive rules for even and odd (see Fig. 1), and the empty data
layer RD = ∅. The infinite normal form of J is 0 : 1 : 0 : 0 : even(even(. . .)), which is not a constructor normal form. Hence J
is WN∞ (in fact SN∞), but not productive.

Example 3.9. For an example that (only just) falls outside the format of SCSs, consider the stream TRS T = 〈Σ, R〉 with
Σ = {0, 1, tail, f, T, :} and with R consisting of the stream constant layer rules Rsc = {T → 0 : 1 : f(tail(T))}, the stream
function layer rules Rsf = {tail(x : σ) → σ , f(0 : σ) → 0 : 1 : f(σ ) , f(1 : σ) → 1 : 0 : f(σ )}, and an empty set RD = ∅ of
data layer rules. T specifies the Thue–Morse stream based on the D0L-system {0→ 01, 1→ 10}. Now note that T is not
an SCS as defined in Definition 3.6 because this specification uses pattern matching on data symbols for the stream function
symbol f, and, in particular, two defining rules for f rather than just one.

Remark 3.10. (i) Although the specification in Example 3.9 is not an SCS, it is easy to transform it into one. The two
defining rules for f satisfy the special property that their consumption/production behaviour is the same. This makes it
possible to transform T into the following closely related SCS T ′ that also specifies the Thue–Morse sequence: let
T ′ = 〈Σ ′, R′〉 with Σ ′ = {0, 1, i, f, T, :} and with R′ consisting of the stream constant layer rules R′sc = {T →
0 : 1 : f(tail(T))}, the stream function layer rules R′sf = {tail(x : σ) → σ , f(x : σ) → x : i(x) : f(σ )}, and the data
layer rules R′D = {i(0)→ 1, i(1)→ 0}.

(ii) All k-automatic streams [2] can be defined as SCSs. In itself this is an immediate consequence of the fact that every
computable stream can be defined as an SCS by simulating the effect of a Turing machine by data layer rules. However,
there is a much more straightforward translation of k-DFAO’s (see [2]) into a stream specification, resembling the one
in Example 3.9, which can be transformed into an SCS similar as described in (i). We note that the data layer of the
SCS after this transformation consists of rules that can be viewed as a collection of finite substitutions and that form a
trivially terminating TRS.

(iii) The stream specification in Example 3.9 corresponds to a ‘pure stream specification’ as introduced in subsequent work
[10], an extension of the present SCSs framework that admits limited pattern matching on data (see also Remark 3.5,
ii), and for which productivity is still decidable.

Please cite this article in press as: J. Endrullis, et al., Productivity of stream definitions, Theoretical Computer Science (2009),
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Fig. 2. Rule (P1).

4. Pebbleflow nets

We introduce pebbleflow nets as a means to model the ‘data-oblivious’ consumption/production behaviour of SCSs. That
is, we abstract from the actual stream elements (data) in an SCS in favour of occurrences of the symbol •, which we call
a ‘pebble’. Thus, a stream term d : s is translated to [d : s] = •([s]). Pebbleflow nets are inspired by interaction nets [18],
and could be implemented in the framework of interaction nets with little effort. We give an operational description of
pebbleflow nets and define a production preserving translation of SCSs into ‘rational’ nets.
Pebbleflow nets are networks built of pebble processing units (fans, boxes, meets, sources) connected by wires. We first

introduce a term syntax for nets and the rules governing the flow of pebbles through a net, and then give an operational
meaning of the units a net is built of.

Definition 4.1. Let V be a set of variables. The setN of pebbleflow terms (shortly called nets) is generated by:

N ::= src(k) | x | •(N) | box(σ ,N) | µx.N | 4(N,N)

where x ∈ V , σ is a term representation of an I/O sequence in±ω ⊆ {+,−}ω (defined in Definition 4.3 below), and where,
for n ∈ N, n is the numeral (a term representation) for n that is defined by n := sn(0) if n ∈ N, and∞ := sω . A net is called
closed if it has no free variables.

Pebbleflow terms can be viewed as term specifications of cyclic term graphs (for the latter see [3,24]). They are µ-terms
that employ µ-bindings to describe back-pointers in cyclic graph representations. An explicit translation G of µ-terms into
cyclic term graphs is described in [3, Def. 2.7, p. 7]. The image of the translationG has been characterised as the class of cyclic
term graphs without ‘horizontal sharing’ [6].

Definition 4.2. The pebbleflow rewrite relation →P is defined by the following rules which may be applied in arbitrary
contexts:

4(•(N1), •(N2))→ •(4(N1,N2)) (P1)
µx.•(N(x))→ •(µx.N(•(x))) (P2)
box(+σ ,N)→ •(box(σ ,N)) (P3)

box(−σ , •(N))→ box(σ ,N) (P4)
src(s(k))→ •(src(k)) (P5)

Wires are unidirectional FIFO communication channels. They are idealised in the sense that there is no upper bound on
the number of pebbles they can store; arbitrarily long queues are allowed. Wires have no counterpart on the term level; in
this sense they are akin to the edges of a term tree. Wires connect boxes,meets, fans, and sources, that we describe next.
A meet is waiting for a pebble at each of its input ports and only then produces one pebble at its output port, see Fig. 2.

Put differently, the number of pebbles a meet produces equals the minimum of the numbers of pebbles available at each
of its input ports. Meets enable explicit branching; they are used to model stream functions of stream arity> 1, as will be
explained below. Ameet with an arbitrary number n ≥ 1 of input ports is implemented by using a single wire in case n = 1,
and if n = k+ 1 with k ≥ 1, by connecting the output port of a ‘k-ary meet’ to one of the input ports of a (binary) meet.
The behaviour of a fan is dual to that of a meet: a pebble at its input port is duplicated along its output ports. A fan can

be seen as an explicit sharing device, and thus enables the construction of cyclic nets. More specifically, we use fans only to
implement feedback when drawing nets; there is no explicit term representation for the fan in our term calculus. In Fig. 3 a
pebble is sent over the output wire of the net and at the same time is fed back to the ‘recursion wire(s)’. We represent cyclic
nets byµ-terms: a fan is represented by a binderµx, and a recursionwire connected to one of its output ports is represented
by a variable x. In rule (P2) feedback is accomplished by substituting •(x) for all free occurrences x of N .
A source has an output port only, contains a number k ∈ N of pebbles, and can fire if k > 0, see Fig. 6. In Section 6 we

show how to reduce closed nets, i.e. nets without free input ports, to sources.

Please cite this article in press as: J. Endrullis, et al., Productivity of stream definitions, Theoretical Computer Science (2009),
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Fig. 3. Rule (P2).

Fig. 4. Rule (P3).

Fig. 5. Rule (P4).

Fig. 6. Rule (P5).

A box consumes pebbles at its input port and produces pebbles at its output port, controlled by an infinite sequence
σ ∈ {+,−}ω associated with the box. For example, consider the unary stream function dup, defined as follows, and its
corresponding ‘I/O sequence’:

dup(x : σ) = x : x : dup(σ ) −++−++−++ . . .

which is to be thought of as: for dup to produce two outputs, it first has to consume one input, and this process repeats indefinitely.
Intuitively, the symbol − represents a requirement for one input pebble, and + represents a ready state for one output
pebble. Pebbleflow through boxes is visualised in Figs. 4 and 5.

Definition 4.3. The set±ω of I/O sequences is defined as the set of infinite sequences over the alphabet {+,−} that contain
an infinite number of+’s:

±
ω
:=
{
σ ∈ {+,−}ω | ∀n. ∃m ≥ n. σ (m) = +

}
.

A sequence σ ∈ ±ω is rational if there exist lists α, β ∈ {+,−}∗ such that σ = αβ , where β is not the empty list and β
denotes the infinite sequenceβββ . . .. The pair 〈α, β〉 is called a rational representation of σ . The set of rational I/O sequences
is denoted by±ωrat . A net is called rational if all its boxes contain rational I/O sequences; byNrat we denote the set of rational
nets.

In the next section we define a translation from SCSs to rational nets. In Section 6 we introduce a rewrite system for
reducing nets to trivial nets (pebble sources). That system, the kernel of our decision algorithm, is terminating for rational
nets, and enables us to determine the total production of a rational net. We stress that the restriction to rational nets in our
algorithm does not entail a restriction to deal only with SCSs that define rational streams; actually, the SCS given in Fig. 1
defining the Thue–Morse sequence, an irrational stream, is translated to a rational net.
A stream function fwith a streamarity n ismodelled by a gate: an n-ary component4n composedwith n boxes expressing

the contribution of each individual stream argument to the total production of f, see Fig. 8.We define gates as n-ary contexts:

gate(σ1, . . . , σn) := 4n(box(σ1, []1), . . . , box(σn, []n))

Please cite this article in press as: J. Endrullis, et al., Productivity of stream definitions, Theoretical Computer Science (2009),
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Fig. 7. box(σ , •n(N))→ •πσ (n)(box(σ ′,N)).

Fig. 8. A gate with n input ports.

and by writing gate(σ1, . . . , σn)(N1, . . . ,Nn) for context filling we deviate from the standard notation to mean
4n(box(σ1,N1), . . . , box(σn,Nn)).

Definition 4.4. The production function πσ : N→ N of (a box containing) a sequence σ ∈ ±ω defined, for all n ∈ N, by
πσ (n) := π(σ , n), where π(σ , n) ∈ N is, for all υ ∈ ±ω and n ∈ N, corecursively defined by:

π(+υ, n) = 1+ π(υ, n) π(−υ, 0) = 0 π(−υ, n+ 1) = π(υ, n).

Intuitively, πσ (n) is the number of outputs of a box containing sequence σ when fed with n inputs, see Fig. 7. Notice that
πσ is well-defined because σ contains infinitely many+’s by definition.

Lemma 4.5. The pebbleflow rewrite relation→P is confluent.

Proof. The rules of→P can be viewed as a higher-order rewriting system (HRS) that is orthogonal. Applying Theorem 11.6.9
in [24] then establishes the lemma. �

Definition 4.6. The production function 5P : N → N of nets is defined for all N ∈ N by 5P(N) := sup{n ∈ N
| N �P •

n(N ′)}, called the production of N . Moreover, for a net N and an assignment α : V → N, let 5P(N, α) := 5P(Nα)
whereNα denotes the net obtained by replacing each free variable x ofN with•α(x)(x).Wewill employ the notationα[x 7→ n]
to denote an update of α, defined by α[x 7→ n](y) = n if y = x, and α[x 7→ n](y) = α(y) otherwise.

Note that for closed nets N we have Nα = N and therefore5P(N, α) = 5P(N), for all assignments α.
We define an alternative net production function 5N (equivalent to 5P) that provides some useful intuition and will

allow us to get a handle on proving that production is preserved by the net reduction relation introduced in Section 6.

Definition 4.7. The mapping5N : N × (V → N)→ N is defined inductively by:

5N (src(k), α) = k 5N (box(σ ,N), α) = πσ (5N (N, α))
5N (•(N), α) = 1+5N (N, α) 5N (µx.N, α) = lfp(λn.5N (N, α[x 7→ n]))

5N (x, α) = α(x) 5N (4(N1,N2), α) = min(5N (N1, α),5N (N2, α))

Notice that5N is monotonic in its second argument. The net production functions5P and5N coincide (see the Appendix
for a proof):

Lemma 4.8. For all nets N and assignments α, we have5P(N, α) = 5N (N, α).

5. Translating stream specifications into nets

In this section we define a ‘production preserving’ translation from stream constantsM in an SCS to rational nets [M]. In
particular, the root M0 of an SCS T will be mapped to a net [M0] ∈ Nrat with the property that its production equals the
production ofM0 in T .
As a first step, we give a translation of the stream function symbols in an SFS into rational gates (gates with boxes

containing rational I/O sequences) that precisely model their quantitative consumption/production behaviour. The idea is
to define, for a stream function symbol f, a rational gate by keeping track of the ‘production’ (the guards encountered) and
the ‘consumption’ of the rules applied, during the finite or eventually periodic dependency sequence on f.

Please cite this article in press as: J. Endrullis, et al., Productivity of stream definitions, Theoretical Computer Science (2009),
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Fig. 9. The net translation [M] = µM.•([zip]([inv]([even](M)), [tail](M))) ofM.

Definition 5.1. Let T = 〈ΣD ] Σsf ] {:}, RD ] Rsf 〉 be an SFS. Then, for each f ∈ Σsf with stream arity k = ]s(f) and data
arity l = ]d(f) the translation of f is a rational gate [f] : N k

→ N defined by:

[f] = gate([f]1, . . . , [f]k)

where [f]i ∈ ±ωrat is defined as follows. We distinguish the two formats a rule ρ f ∈ Rsf can have. Let xi : σi stand for
xi,1 : . . . : xi,ni : σi. If ρ f has the form: f(x1 : σ1, . . . , xk : σk, y1, . . . , yl)→ t1 : . . . : tm : u, where:

(a) u ≡ g(σφ f(1), . . . , σφ f(]s(g)), t
′

1, . . . , t
′

]d(g)
), then (b) u ≡ σj, then

[f]i =

{
−
ni+m[g]j if φ f(j) = i
−
ni+ if ¬∃j. φ f(j) = i

[f]i =

{
−
ni+m−+ if i = j
−
ni+ if i 6= j

In the second step, we now define the translation of the stream constants in an SCS into rational nets. Here the idea
is that the recursive definition of a stream constant M is unfolded step by step; the terms thus arising are translated
according to their structure by making use of the translation of the stream function symbols encountered; whenever a
stream constant ismet that has been unfolded before, the translation stops after establishing a binding to aµ-binder created
earlier.

Definition 5.2. Let T = 〈ΣD ]Σsf ]Σsc ] {:}, RD ] Rsf ] Rsc〉 be an SCS. Then, for eachM ∈ Σsc with rule ρM ≡ M→ rhsM
the translation [M] := [M]∅ ofM to a closed pebbleflow net is recursively defined by (α a set of stream constant symbols):

[M]α =

{
µM.[rhsM]α∪{M} ifM 6∈ α
M ifM ∈ α

[t : u]α = •([u]α)
[f(u1, . . . , u]s(f), t1, . . . , t]d(f))]α = [f]([u1]α, . . . , [u]s(f)]α).

Example 5.3. Reconsider the SCS given in Fig. 1. The translation of the stream constant M and of the stream functions
involved, is illustrated in Fig. 9. (Note that to obtain rational representations of the translated stream functions we use
loop checking on top of Definition 5.1.)
The root of the SCS of Example 3.8 is translated by: µJ.•(•([even](J))).

By stating that the translation of the root of an SCS into a pebbleflow net is ‘production preserving’, the theorem below
will provide the basis for our decision algorithm for productivity of SCSs, which will be detailed in the next section. A proof
of this theorem is given in Section A.2.

Theorem 5.4. For every SCS T : ΠT (M0) = 5P([M0]) holds.

6. Deciding productivity

We define a rewriting system for pebbleflow nets that, for every net N , allows us to reduce N to a single source while
preserving the production of N .
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Definition 6.1. We define the net reduction relation→R by the compatible closure of the following rule schemata:

•(N)→ box(+−+,N) (R1)
box(σ , box(τ ,N))→ box(σ ◦ τ ,N) (R2)
box(σ ,4(N1,N2))→4(box(σ ,N1), box(σ ,N2)) (R3)

µx.4(N1,N2)→4(µx.N1, µx.N2) (R4)
µx.N → N if x 6∈ FV(N) (R5)

µx.box(σ , x)→ src(fix(σ )) (R6)

4(src(k1), src(k2))→ src(min(k1, k2)) (R7)

box(σ , src(k))→ src(πσ (k)) (R8)

µx.x→ src(0) (R9)

where k, k1, k2 ∈ N, σ and τ are term representations of I/O sequences in ±ω , and where min(n,m), πσ (k) (see
Definition 4.4), σ ◦ τ (see Definition 6.2), and fix(σ ) (see Definition 6.4) are numerals that represent operation results.

The rewrite system given in Definition 6.1 contains ruleswith infinite left-hand sides. However, by turning the I/O sequences
and the numbers inN into constants, the system can be transformed into a finite higher-order rewriting system (HRS). Then
the operationsmin, π , ◦, and fix have to be defined on the constants.

Definition 6.2. The operation composition ◦ : ±ω ×±ω →±ω , 〈σ , τ 〉 7→ σ ◦ τ of I/O sequences is defined corecursively by
the following equations:

+σ ◦ τ = +(σ ◦ τ) −σ ◦ +τ = σ ◦ τ −σ ◦ −τ = −(−σ ◦ τ).

Composition of sequences σ ◦ τ ∈ ±ω exhibits analogous properties as composition of functions over natural numbers: it
is associative, but not commutative.

Lemma 6.3. For all σ , τ , υ ∈ ±ω: (i) σ ◦ (τ ◦ υ) = (σ ◦ τ) ◦ υ , and (ii) πσ ◦ πτ = πσ◦τ .
Because we formalised the I/O behaviour of boxes by sequences and because we are interested in proving and disproving
productivity, for the formalisation of the pebbleflow rewrite relation in Definition 4.2 the choice has been made to give
output priority over input. This becomes apparent in the definition of composition above: the net box(+−+, box(−−+, x))
is able to consume an input pebble at its free input port x as well as to produce an output pebble, whereas the result
box(+−−+, x) of the composition can only consume input after having fired.
The fixed point of a box is the production of the box when fed its own output.

Definition 6.4. The operations fixed point fix : ±ω → N and requirement removal δ : ±ω →±ω on I/O sequences are
corecursively defined as follows:

fix(+σ) = 1+ fix(δ(σ )) δ(+σ) = +δ(σ )

fix(−σ) = 0 δ(−σ) = σ .

Lemma 6.5. For all σ ∈ ±ω , we have lfp(πσ ) = fix(σ ).

Observe that πσ◦σ◦σ◦... = πσ (πσ (πσ (. . .))) = fix(σ ). Therefore, the infinite self-composition of the form
box(σ , box(σ , box(σ , . . .))) is ‘production equivalent’ to src(fix(σ )).
An important property used in the following lemma is that functions of the form λn ∈ N. 5P(N, α[x 7→ n]) are

monotonic functions over N. Every monotonic function f : N → N in the complete chain N has a least fixed point lfp(f )
which can be computed by lfp(f ) = limn→∞ f n(0). In what follows we employ, for monotonic f , g : N → N, two basic
properties:

∀n,m. f (min(n,m)) = min(f (n), f (m)) (1)
lfp(λn.min(f (n), g(n))) = min(lfp(f ), lfp(g)). (2)

Lemma 6.6. Net reduction preserves production:5P(N) = 5P(N ′) if N →R N ′.

Proof. By Lemma 4.8 it suffices to prove:
C[`σ ] →R C[rσ ] =⇒ ∀α.5N (C[`σ ], α) = 5N (C[rσ ], α) ,

where `→ r is a rule of the net reduction TRS, and C a unary context over N . We proceed by induction on C . For the base
case, C = [], we give the essential proof steps only (no definition unfoldings): For rule (R1), observe that π−+ is the identity
function on N. For rule (R2), we apply Lemma 6.3 (ii). For rule (R3) the desired equality follows from (1) above. For rule (R4)
we conclude by (2) above. For rule (R6) we use Lemma 6.5. For the remaining rules the statement trivially holds. For the
induction step, the statement easily follows from the induction hypotheses. �
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Lemma 6.7. The net reduction relation→R is terminating and confluent, and every closed net normalises to a unique normal
form, a source.
Proof. To see that→R is terminating, let [[−]] : N → N be defined by:

[[x]] = 1 [[•(N)]] = 2 · [[N]] + 1 [[µx.N]] = 2 · [[N]]
[[src(k)]] = 1 [[box(σ ,N)]] = 2 · [[N]] [[4(N1,N2)]] = [[N1]] + [[N2]] + 1 ,

and observe that N →R M implies [[N]] > [[M]].
Some of the rules of→R overlap; e.g. rule (R2) with itself. For each of the five critical pairs we can find a common reduct

(the critical pair 〈σ ◦ (τ ◦ υ), (σ ◦ τ) ◦ υ〉 due to an (R2)/(R2)-overlap can be joined by Lemma 6.3 (i)), and hence→R is
locally confluent, by the Critical Pairs Lemma (cf. [24]). By Newman’s Lemma, we obtain that→R is confluent. Thus normal
forms are unique.
To show that every closed net normalises to a source, letN be an arbitrary normal form. Note that the set of free variables

of a net is closed under→R, and hence N is a closed net. Clearly, N does not contain pebbles, otherwise (R1) would be
applicable. To see that N contains no subterms of the formµx.M , suppose it does and consider the innermost such subterm,
viz.M contains no µ. IfM ≡ src(k) orM ≡ x, then (R5), resp. (R9) is applicable. IfM ≡ box(σ ,M ′), we further distinguish
four cases: if M ′ ≡ src(k) or M ′ ≡ x, then (R8) resp. (R6) is applicable; if the root symbol of M ′ is one of box,4, then M
constitutes a redex with respect to (R2), (R3), respectively. If M ≡ 4(M1,M2), we have a redex with respect to (R4). Thus,
there are no subterms µx.M in N , and therefore, because N is closed, also no variables x. To see that N has no subterms of
the form box(σ ,M), suppose it does and consider the innermost such subterm. Then, if M ≡ src(k) or M ≡ 4(M1,M2)
then (R8) resp. (R3) is applicable; other cases have been excluded above. Finally, N does not contain subterms of the form
4(N1,N2). For if it does, consider the innermost occurrence and note that, since the other cases have been excluded already,
N1 and N2 have to be sources, and so we have a redex with respect to (R7). We conclude that N ≡ src(k) for some k ∈ N. �

Observe that net reduction employs infinitary rewriting for fixed point computation and composition (Definitions 6.2
and 6.4). To compute normal forms in finite time we make use of finite representations of rational sequences and exchange
the numeral sω with a constant∞.
Lemma 6.8. There is an algorithm that, if N ∈ Nrat and rational representations of the sequences σ ∈ ±ωrat in N are given,
computes the→R-normal form of N.
Proof. Note that composition preserves rationality, that is, σ ◦ τ ∈ ±ωrat whenever σ , τ ∈ ±

ω
rat . Similarly, it is

straightforward to show that for sequences σ , τ ∈ ±ωrat with given rational representations the fixed point fix(σ ) and a
rational representation of the composition σ ◦ τ can be computed in finite time. �

Theorem 6.9. Productivity is decidable for pure stream constant specifications.
Proof. The following steps describe a decision algorithm for productivity of a stream constant M in an SCS T : First, the
translation [M] ofM into a pebbleflow net is built according to Definition 5.2. It is easy to verify that [M] is in fact a rational
net. Second, by the algorithm stated by Lemma 6.8, [M] is collapsed to a source src(n) with n ∈ N. By Theorem 5.4 it
follows that [M] has the same production as M in T , and by Lemma 6.6 that the production of [M] is n. Consequently,
ΠT (M) = n. Hence the answers ‘‘T is productive forM’’ and ‘‘T is not productive forM’’ are obtained if n =∞ and if n ∈ N,
respectively. �

We end this section with showing how our algorithm decides productivity of our running examples, the SCSs for J and
M given in Example 3.8 and Fig. 1. Besides, we illustrate that productivity is sensitive to the precise definitions of the stream
functions used by considering a slightly modified version of the SCS forM.
Example 6.10. For the definition of J from Example 3.8 we obtain:

[J] = µJ.•(•(box(−+−, J)))→2
R1 µJ.box(+−+, box(+−+, box(−+−, J)))

→R2 µJ.box(++−+, box(−+−, J))→R2 µJ.box(++−+−, J)→R6 src(4) ,

proving that J is not productive (only 4 elements can be evaluated).
Example 6.11. By rewriting [M] from Fig. 9 with parallel outermost rewriting (except that the composition of boxes is
preferred to reduce the size of the terms) according to→R we get:

[M] = µM.•(4(box(−++, box(−+, box(−+−,M))), box(+−+, box(−−+,M))))

→
3
R2 µM.•(4(box(−++−,M), box(+−−++,M)))

→R1·R3 µM.4(box(+−+, box(−++−,M)), box(+−+, box(+−−++,M)))

→
2
R2 µM.4(box(+−++−,M), box(++−−++,M))

→R4 4(µM.box(+−++−,M), µM.box(++−−++,M))

→R6 4(src(fix(+−++−)), src(fix(++−−++))) = 4(src(∞), src(∞))

→R7 src(∞) ,

Please cite this article in press as: J. Endrullis, et al., Productivity of stream definitions, Theoretical Computer Science (2009),
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witnessing productivity of the SCS for M. Note that the ‘fine’ definitions of zip and even are crucial in this setting. If we
replace the definition of zip in the SCS forM by the ‘coarser’ one: zip∗(x : σ , y : τ)→ x : y : zip∗(σ , τ )we obtain an SCS T ∗

where:

[M] = µM.•(4(box(−++, box(−+, box(−+−,M))), box(−++, box(−−+,M))))

→
3
R2 µM.•(4(box(−++−,M), box(−−++,M)))

→R1·R3 µM.4(box(+−+, box(−++−,M)), box(+−+, box(−−++,M)))

→
2
R2 µM.4(box(+−++−,M), box(+−−++,M))

→R4·R6 4(src(fix(+−++−)), src(fix(+−−++))) = 4(src(∞), src(1))→R7 src(1).

HenceM is not productive in T ∗ (here it produces only one element).

7. Conclusion and ongoing research

We have shown that productivity is decidable for stream specifications that belong to the format of pure SCSs. The class
of pure SCSs contains specifications that cannot be recognised automatically to be productive by the methods of [25,21,8,
13,23,7] (e.g. the SCS in Fig. 1). These previous approaches established criteria for productivity that are not applicable for
disproving productivity; furthermore, these methods are either applicable to general stream specifications, but cannot be
mechanised fully, or can be automated, but give a ‘productive’/‘don’t know’ answer only for a very restricted subclass. Our
approach combines the features of being automatable and of obtaining a definite ‘productive’/‘not productive’ decision for
a rich class of stream specifications.
Note that we obtain decidability of productivity by restricting only the stream function layer of an SCS (formalised as

an orthogonal TRS), while imposing no conditions on how the SCS layer makes use of the stream functions. The restriction
to weakly guarded SFSs in pure SCSs is motivated by the wish to formulate a format of stream specifications for which
productivity is decidable. More general formats to which our method can be applied are possible. In particular, we refer
to [10] where the restrictions imposed on the stream function layer are relaxed in favour of a single remaining condition:
stream function symbols do not occur nested on either side of their defining rules (again we do not impose any restrictions
on the stream constant layer). In this way we obtain the more general format of ‘flat stream specifications’ which allows for
the use of patternmatching on data for the definitions of stream functions. In [10]we give (i) a computable, ‘data-obliviously
optimal’, sufficient condition for productivity of flat stream specifications, and we show (ii) decidability of productivity for
flat stream specifications that are ‘pure’ (see Remark 3.5), a significant extension of the class of SCSs.
Beyond specific formats of stream specifications, our results can also be used in the following way: Suppose that

a stream specification T has the property that for the stream functions occurring it holds that their quantitative
consumption/production behaviour can be faithfully modelled by rational I/O sequences. Then the stream specification
is productive if and only if the pebbleflow net built for T according to Definition 5.2, using the assumed modelling
I/O sequences, rewrites to src(∞). Hence productivity is still decidable under the assumption that the user is able to come
up with modelling I/O sequences for the stream functions. Also lower and upper ‘rational’ bounds on the production of
stream functions can be considered to obtain computable criteria for productivity and its complement. This will allow us to
deal with stream functions that depend quantitatively on the value of stream elements and data parameters. Our approach
can also be extended to calculate the precise production modulus of stream functions that are contexts built up of weakly
guarded stream functions only, by reducing netswith free input ports to gates. All of these extensions of the result presented
here are the subject of ongoing research.
The reader is invited to visit http://infinity.few.vu.nl/productivity/ where all additional material is available presently or

http://en.wikipedia.org/wiki/ProPro for up-to-date links. Via these links also two software tools can be found: (i) an applet
for the animation of pebbleflow nets, and (ii) an implementation of the decision algorithm for productivity of SCSs as part of
a more powerful tool ProPro that automates a computable criterion for productivity on the substantially larger class of flat
stream specifications introduced in [10].We have tested the usefulness and feasibility of the implementation of our decision
algorithm on various pure SCSs from the literature, and so far have not encountered excessive run-times. However, a precise
analysis of the run-time complexity of our algorithm remains to be carried out.
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Appendix. Technical appendix

In this Appendix we provide a proof of Lemma 4.8, and foremost we prove preservation of production for the translation
from SCSs to pebbleflow nets, that is, Theorem 5.4.
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A.1. A Proof of Lemma 4.8:5N = 5P

The statement of the lemma,5P(N, α) = 5N (N, α) for all N ∈ N and α : X→ N, can be proved by a straightforward
induction on the number of µ-bindings of a net N , with a subinduction on the size of N . In the cases N ≡ box(σ ,N ′) and
N ≡ µx.M Lemmas A.1 and A.2 are applied, respectively. �

Lemma A.1. For N ∈ N , σ ∈ ±ω , α : V → N:5P(box(σ ,N), α) = πσ (5P(N, α)).

Proof. We show that the relation R ⊆ N× N defined as follows is a bisimulation:

R := {〈5P(box(σ ,N), α), πσ (5P(N, α))〉 | σ ∈ ±ω, N ∈ N , α : V → N} ,

that is, we prove that, for all k1, k2 ∈ N, σ ∈ ±ω ,N ∈ N , and α : V → N, if k1 = 5P(box(σ ,N), α) and k2 = πσ (5P(N, α)),
then either k1 = k2 = 0 or k1 = 1 + k′1, k2 = 1 + k

′

2 and 〈k
′

1, k
′

2〉 ∈ R. Let k1, k2, σ , N , α : V → N, be such that
k1 = 5P(box(σ ,N), α) and k2 = πσ (5P(N, α)). By definition of ±ω , we have that σ ≡ −n+τ for some n ∈ N and
τ ∈ ±ω . We proceed by induction on n. If n = 0, then k1 = 1 + k′1 with k

′

1 = 5P(box(τ ,N), α) and k2 = 1 + k′2
with k′2 = πτ (5P(N, α)), and 〈k′1, k

′

2〉 ∈ R. If n = n
′
+ 1, we distinguish cases: If 5P(N, α) = 0, then k1 = k2 = 0. If

5P(N, α) = 1+ m, then N �P •(M) for someM ∈ N with5P(M, α) = m. Thus we get k1 = 5P(box(−n
′

+τ ,M), α) and
k2 = π−n′+τ (5P(M, α)), and 〈k1, k2〉 ∈ R by induction hypothesis. �

Lemma A.2. For all nets M ∈ N and all assignments α, we have that 5P(µx.M, α) is the least fixed point of λn.5P(M, α[x 7→
n]).

Proof. Let α : V → N be an arbitrary assignment and M0 := Mα[x7→0]. Observe that 5P(µx.M, α) = 5P(µx.M0) and
consider a rewrite sequence of the form

µx.M0 �P . . . �P •
ni(µx.Mi) �P •

ni(µx.•pi(M ′i )) �P •
ni+pi(µx.Mi+1) �P . . .

where pi = 5P(Mi), n0 = 0, ni+1 = ni + pi, andMi+1 := M ′i (•
pi(x)). Note that limm→∞ nm = 5P(µx.M0); ‘≤’ follows from

∀m. µx.M0 �P •
nm(µx.Mm), and ‘≥’ since if limm→∞ nm < ∞ then ∃m ∈ N such that pm := 5P(Mm) = 0 and therefore

5P(µx.M0) = 5P(•
nm(µx.Mm)) = nm by confluence.

Let fi = λn.5P(Mi(•n(x))), and f ′i = λn.5P(M ′i (•
n(x))). We prove

∀k ∈ N. f0(nm + k) = nm + fm(k) (∗)

by induction over m. The base case m = 0 is trivial; we consider the induction step. We have Mm �P •
pm(M ′m) and by

substituting •k(x) for xwe get

∀k ∈ N. fm(k) = pm + f ′m(k). (∗∗)

Moreover, since fm+1(k) = f ′m(pm + k), we get nm+1 + fm+1(k) = nm+1 + f ′m(pm + k)

= nm + pm + f ′m(pm + k)
(∗∗)
= nm + fm(pm + k)

(∗)
= f0(nm + pm + k) = f0(nm+1 + k).

Let f := f0. We proceed with showing ∀m. f m(0) = nm by induction over m ∈ N. For the base case m = 0 we have

f 0(0) = 0 and n0 = 0, and for the induction step we get f m+1(0) = f (f m(0))
IH
= f (nm)

(∗)
= nm + fm(0) = nm + pm = nm+1.

Hence lfp(f ) = limm→∞ f m(0) = limm→∞ nm = 5P(µx.M0) = 5P(µx.M, α). �

A.2. A Proof of Theorem 5.4: Translating SCSs to nets preserves production

We recall the statement of Theorem 5.4: ΠT (M0) = 5P([M0]) for all SCSs T . For a given SCS T , the proof proceeds by
making intermediate steps via the production in a rewrite system µT for µ-terms over T with rewrite relation→µT , and
the production with respect to an alternative pebbleflow rewrite relation→P′ . Using these notions that are defined below
together with a translation of stream terms t in T intoµ-terms [t]µT inµT , the proof consists of the following three steps:
ΠT (M0) = ΠµT ([M0]µT ) = 5P′([M0]) = 5P([M0]), which are justified by Lemmas A.3–A.5, respectively (Fig. 10). �
For the lemmas used in this proof, we introduce the following concepts: For an SCS T , the rewrite systemµT is defined as

follows: its objects areµ-termsover the signatureΣ ofT , and its set of rewrite steps · →µT · consists of stepsC[lσ ] → C[rσ ]
applying rules l → r of T outside of µ-bindings, and of steps that are applications of unfolding µx.t(x) →unf t(µx.t(x)).
We denote by the symbolΠµT the production function, and its version relativised to assignments, onµ-terms inµT : these
functions are defined analogously to the definition of ΠT in Definition 3.2 with the difference that→µT is used instead
of→T .
We also define a translation of stream terms t in an SCS T into corresponding µ-terms [t]µT in µT that is very similar

to the translation into pebbleflow nets in Definition 5.2. For every t ∈ Ter(ΣS), the µ-term translation [t]µT of t is defined
as [t]µT

:= [t]µT
∅
, based on the following inductive definition of translations [t]µT

α of terms t ∈ Ter(ΣS) with respect to
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Fig. 10. The three steps in the proof of Theorem 5.4.

finite sets α of stream constant symbols inΣsc (the clauses below assumeM ∈ Σsc and f ∈ Σsf ):

[M]µT
α =

{
µM.[rhsM]

µT
α∪{M} ifM /∈ α

M ifM ∈ α

[u : s]µT
α = u : [s]

µT
α

[f(s1, . . . , s]s(f), u1, . . . , u]d(f))]
µT
α = f([s1]µT

α , . . . , [s]s(f)]
µT
α , u1, . . . , u]d(f)).

Let the rewrite relation→P′′ be defined by the rules P1, P3–P5 in Definition 4.2 (ignoring P2) and of the unfolding rule
µx.N(x) →unf N(µx.N(x)); all of these rules may be applied in arbitrary contexts. Using→P′′ , the alternative pebbleflow
relation→P′ is defined as the restriction of→P′′ to applications of pebbleflow rules outside of µ-bindings. By5P′ we mean
the production function, and its version relativised to assignments, that are defined analogously to the production functions
5P in Definition 4.6 with the difference of using→P′ instead of→P.
We use the following notation: for a binary relation→⊆ A×B and A′ ⊆ A let→(A′) := {b | ∃a ∈ A′.a→ b}; for a function
f : A→ B let f (A′) := {f (a) | a ∈ A′}.
Lemma A.3. For all t ∈ Ter(ΣS) in an SCS T : ΠT (t) = ΠµT ([t]µT ) holds.
Proof. For this proof we restrict the unfolding steps in the rewrite relation→µT to outermost-unfolding, noting that this
does not affect the production function. LetΣsc = {M1, . . . ,Mm}. Let s ∈ Ter(µT ), let ς(s) denote the term obtained from
s by replacing all subtermsMi andµMi.s′ withMi, respectively; we say that ‘s has the property℘(s)’ if for all subtermsµx.s′
of s: ∃i. x = Mi∧ς(s′) ≡ rhsMi . Note that (i)℘([u]

µT ) for every u ∈ Ter(T ), and (ii)℘ is preserved underµT reduction. We
show (∗) ∀n ∈ N.∀s ∈ Ter(µT )with ℘(s). →≤nT (ς(s)) = ς(→≤nµT (s)) by induction on the length n of reduction sequences.
The case n = 0 is trivial. For the induction step we employ→n+1 (_) =→n (→ (_)) together with (ii); therefore it suffices
to prove→T (ς(s)) = ς(→µT (s)). The→RS∪RD steps carry over directly in both directions. From ℘(s) we infer that→Rsc
steps in T can be translated into→unf steps in µT and vice versa. Finally (i) and (∗) imply ΠT (t) = ΠµT ([t]µT ). �

Lemma A.4. For all t ∈ Ter(ΣS) in an SCS T : ΠµT ([t]µT ) = 5P′([t]).

Sketch of proof. The statement of the lemma will ultimately be established by a close correspondence between µT -steps
and→P′-steps for SCSs in which none of the rules is collapsing, and neither erases nor permutes stream arguments. In order
to use this correspondence, we transform an SCS T in three steps into this special form in such a way that T -production
ΠT (t) and pebbleflow net translation [t] of terms t are preserved. For the sake of simplicity, we assume that stream function
symbols have no data parameters.
First, we eliminate collapsing rules by adding a fresh symbol id toΣsf and the rule id(x :σ)→ x : id(σ ) to Rsf , and by replacing
all collapsing rules l→ σj in Rsf by l→ id(σj), respectively.
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Second, we transform Rsf to be non-erasing. As a preprocessing, we replace every stream function symbol f ∈ Σsf by a symbol
f]s(f) that carries its stream arity as a subscript. Let m] := max ]s(Σsf ) the maximum stream arity in Σsf . For every fr now
inΣsf , and every n ∈ Nwith r < n ≤ m], add an additional stream function symbol fn. Then replace every stream function
rule ρ : fr1(sr1)→ t1 : . . . : tm : gr2(s′

r2) by the following rules:

fr1+n(s
r1 , τ1, . . . , τn)→ t1 : . . . : tm : gr1+n(s

′r2 , σi1 , . . . , σir1−r2 , τ1, . . . , τn)

for n = 0, . . . ,m] − r1 where σi1 , . . . , σir1−r2 are the erased stream variables of ρ and τ1, . . . , τn are stream variables for
matching so-called phantom arguments. As an example, consider Rsf = {f2(σ , x :τ)→ x :g1(σ ), g1(x :y :σ)→ x+y :g1(σ )}.
The first rule is transformed into the non-erasing rule f2(σ , x : τ) → x : g2(σ , τ ), and the second rule gives rise to
g1(x : y : σ)→ x+ y : g1(σ ) and g2(x : y : σ , τ1)→ x+ y : g2(σ , τ1).
Third, we remove permutations of stream arguments. We annotate function symbols with permutations instead of performing
the permutation. For every f ∈ Σsf and φ : N]s(f) → N]s(f) a bijection, where N]s(f) = {1, . . . , ]s(f)}, let fφ be a fresh symbol
having the same arity as f. For n ∈ N let sn be shorthand for s1, . . . , sn and for φ : Nn → Nn let sn(φ) denote the permutation
sφ−1(1), . . . , sφ−1(n) w.r.t. φ. We replace every stream function rule f(sr)→ t1 : . . . : tm : g(s′

r(φ−1f )
) by all rules

fφ(sr(φ))→ t1 : . . . : tm : gφ◦φ f(s
′r(φ))

for φ : Nr → Nr a bijection. Note that after the third transformation step all permutation functions φ f for f ∈ Σsf are the
identity on N]s(f), respectively.
It is technical but not difficult to prove that T -productionΠT (t) and pebbleflow net translation [t] of terms t are preserved
under these three transformations. Therefore in the sequel we can assume without loss of generality that none of the rules
of T is collapsing, and neither erases nor permutes stream arguments: ∀f ∈ Σsf . φ f = idN]s(f) .
To gain control about pebbleflow rewriting, we label gates with the function symbols from which they arise. In particular
the translation [f]` is a labelled gate:

[f] = gatef([f]1, . . . , [f]]s(f)) .

where gatef(. . .)means that the leftmost box is labelled with f. For closedµ-terms v we define [v]`, the translation of v into
a labelled pebbleflow net (using labelled gates), as follows: [µM.t]` = µM.[t]`, [t : u]` = •([u]`), and [f(u]s(f), t]d(f))]` =
[f]`([u]s(f)]`). Moreover, for labelled nets N we use \̀(N) to denote the pebbleflow net obtained from N by dropping the
labels. Note that [u] ≡ \̀([[u]µT

]
`) for every u ∈ Ter(T ).

For every f ∈ Σsf there exists g ∈ Σsf such that for every i ∈ N with 1 ≤ i ≤ ]s(f) we have [f]i = −in(f,i)+out(f)[g]i. On
labelled pebbleflow nets we define the rewrite system→bP′c to consist of unfolding µx.t(x)→unf t(µx.t(x)) of µ-bindings
and rewrite steps, outside of µ-bindings, with respect to the rules:

[f]`(•in(f,1)(N1), . . . , •in(f,]s(f))(N]s(f)))→bP′c •
out(f)([g]`(N1, . . . ,N]s(f)))

for every f(. . .) → . . . g(. . .) in Rsf . Note that \̀(→bP′c) ⊆ �P′ and from confluence of �P′ we infer: 5P′([t]) =
5bP′c([[t]µT

]
`).

We proceed with showing ΠµT ([t]µT ) = 5P′([t]). Employing the above observations it is sufficient to prove that
[�µT ([t]µT )]` = �bP′c([[t]µT

]
`). The latter is implied by the one-step correspondence: (∗) for all closed µ-terms s,

[→µT (s)]` =→bP′c([s]`), using induction over the length of the reduction sequence. Nowwe prove (∗), therefor let s be an
arbitrary closed µ-term. We start with ‘⊆’: let s′ with χ : s →µT s′. In case χ is an unfolding step, we get [s]` →bP′c [s′]`
likewise via an unfolding step. Otherwise χ is of the form:

C[f(uin(f,1)
1 : t1, . . . , u

in(f,]s(f))
]s(f)

: t]s(f))] → C[v1 : . . . : vout(f) : g(t1, . . . , t]s(f))]

due to a stream function rule in Rsf . Then

[s]` ≡ D[[f]`(•in(f,1)([t1]`), . . . , •in(f,]s(f))([t]s(f)]
`))]

[s′]` ≡ D[•out(f)([g]`([t1]`, . . . , [t]s(f)]
`))]

for some context D and clearly [s]` →bP′c [s′]`. The direction ‘⊇’ is analogous. �

Lemma A.5. For all N ∈ N : 5P′(N) = 5P(N) .

Proof. In view of Lemma 4.8 it suffices to prove that for all nets N ∈ N : 5P′(N) = 5N (N) holds, and moreover,
5P′(N, α) = 5N (N, α) for all assignments α. The proof of this statement proceeds by an inductive proof parallel to that
used in the proof of Lemma 4.8, making use of confluence of→P′ and of statements analogous to that of Lemma A.2, and
LemmaA.1. Confluence of→P′ follows easily from the fact that→P′′ , which can be viewed as an orthogonal HRS, is confluent.
The statement corresponding to Lemma A.1 can be shown analogously to the proof of that lemma.
It remains to show that (∗) 5P′(µx.M, α) = lfp(λn.5P′(M, α[x 7→ n])), for all assignments α and µx.M ∈ N . For this,
let µx.M(x) ∈ N and let α be an assignment. Furthermore, let us denote by FP the fixed point in (∗). Then it follows
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that {ni}i →i→∞ FP where the sequence {ni}i in N is defined as follows: n0 := 5P′(M, α[x 7→ 0]), and, for all i ∈ N,
ni+1 := 5P′(M, α[x 7→ ni]). Using confluence of→P′ , it is easy to show 5P′(N1(N2(x)), β[x 7→ 0]) = 5P′(N1(x), β[x 7→
5P′(N2(x), β[x 7→ 0])]) holds for all N1(x),N2(x) ∈ N and assignments β . Using this statement in a proof by induction,
(∗∗) nk = 5P′(Mk+1(x), α[x 7→ 0]) can be shown for all k ∈ N, whereMk+1 denotes the netM(M(. . .M(x) . . .))with k+ 1
occurrences of M . Now since µx.M(x) �P′ Mk(µx.M(x)) by k unfolding steps, for all k ∈ N, it follows for all k ∈ N that
5P′(µx.M, α) ≥ nk, and hence that ‘‘≥’’ holds in (∗).
For showing ‘‘≤’’ in (∗), let m ∈ N with m ≤ 5P′(µx.M, α) arbitrary. Then µx.M →P′ •

m(M ′) for some M ′ ∈ N .
If k + 1 is the number of unfolding steps applied to a subterm µx.M(x) in this rewrite sequence, then there also exists a
rewrite sequence µx.M(x) �unf Mk+1(µx.M(x)) �P′ •

m(M ′) for someM ′ ∈ N , where in the�P′-steps onMk+1(µx.M(x))
subtermsµx.M(x) are not rewritten. It follows that there is also a rewrite sequenceMk+1(x) �P′ •

m(M ′′), for someM ′′ ∈ N .
Now by (∗∗) it follows that m ≤ nk ≤ FP. Since m was assumed arbitrarily with m ≤ 5P′(µx.M, α), now also ‘‘≤’’ in (∗)
follows. �
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