Relating Proof Systems for Recursive Types

Clemens Grabmayer

$22^{\text {nd }}$ of March 2005

Types and Recursive Types

Types

- Basic types: Int (integers), Real (reals), Bool (booleans).
- Composite types: Int \times Int (pairs), Real \rightarrow Int (functions), Bool $+\operatorname{lnt}$ (elements of either).

Recursive Types

$$
\text { List }=\text { Empty }+(\text { Int } \times \text { List }) \quad \text { (type of integer lists) }
$$

because:
() \in Empty

$$
\text { e.g. }(5,8,13) \triangleq\langle 5,(8,13)\rangle \in \operatorname{Int} \times \text { List }
$$

Notation: List $=\mu \alpha .($ Empty $+(\operatorname{lnt} \times \alpha))$.

Recursive Type Equality

Example. The recursive types

$$
\text { List }_{1} \equiv \mu \boldsymbol{\alpha} \cdot(\text { Empty }+\operatorname{Int} \times \boldsymbol{\alpha}), \text { List }_{2} \equiv \mu \boldsymbol{\beta} \cdot(\text { Empty }+\operatorname{Int} \times(\text { Empty }+\operatorname{Int} \times \boldsymbol{\beta}))
$$

can be visualized as the different cyclic term graphs
and

and have the same tree unfolding $\operatorname{Tree}\left(\right.$ List $\left._{1}\right)=\operatorname{Tree}\left(\right.$ List $\left._{2}\right)=$ List $_{1}$ and List $_{2}$ are related by recursive type equality (notation: List $_{1}={ }_{\mu}$ List $_{2}$). Recursive types that are linked in this way satisfy the same recursive equations.

Proof Systems for Recursive Type Equality

- Sound and complete axiomatisations of $={ }_{\mu}$:
- AC= by Amadio and Cardelli (1993) is of "traditional form".
- $\mathrm{HB}^{=}$by Henglein and Brandt (1998) is coinductively motivated.

$$
\begin{aligned}
\tau={ }_{\mu} \sigma & \Longleftrightarrow \vdash_{\mathbf{A C}}=\tau=\sigma \\
& \Longleftrightarrow \vdash_{\mathbf{H B}}=\tau=\sigma .
\end{aligned}
$$

- A system on which "consistency-checking" can be based:
- AK $=$, by Ariola and Klop (1995), a "syntactic-matching" system.
$\tau={ }_{\mu} \sigma \Longleftrightarrow$ no "contradiction" is derivable in $\mathbf{A K}=$ from the assumption $\tau=\sigma$.

Specific Rules in $A C^{=}, H B^{=}$, and $A K=$

- in $\mathbf{A C}=: \frac{\sigma_{1}=\tau\left[\sigma_{1} / \alpha\right] \quad \sigma_{2}=\tau\left[\sigma_{2} / \alpha\right]}{\sigma_{1}=\sigma_{2}}$ UFP (if $\alpha \downarrow \tau$) $\left[\tau_{1} \rightarrow \tau_{2}=\sigma_{1} \rightarrow \sigma_{2}\right]^{u} \quad\left[\tau_{1} \rightarrow \tau_{2}=\sigma_{1} \rightarrow \sigma_{2}\right]^{u}$
- in $\mathrm{HB}^{=}$:

$$
\begin{array}{cc}
\mathcal{D}_{1} & \mathcal{D}_{2} \\
\tau_{1}=\sigma_{1} \\
\tau_{1} \rightarrow \tau_{2}=\sigma_{1} \rightarrow \sigma_{2}
\end{array} \tau_{2}^{=\sigma_{2}} \text { ARROW } / \text { FIX }, u
$$

- in $\mathbf{A K}=: \quad \tau_{1} \rightarrow \tau_{2}=\sigma_{1} \rightarrow \sigma_{2}$ DECOMP (for $i \in\{1,2\}$)

$$
\tau_{i}=\sigma_{i}
$$

Present in all systems: REFL, SYMM, TRANS, (FOLD/UNFOLD).

Questions investigated

- Main Question: What kind of proof-theoretic relationships do exist between the systems $\mathbf{A C}=, \mathbf{H B}=$, and $\mathbf{A K}=$?
- An initial observation suggested a close connection between $\mathbf{H B}=$ and $\mathbf{A K}=$. Can this be made precise?
- Can the "traditional" proofs in $\mathbf{A C}=$ be transformed into the "coinductive" proofs in $\mathbf{H B}=$?
And vice versa: Does there exist a transformation of proofs in $\mathbf{H B}^{=}$into proofs in $\mathbf{A C}=$?

Answers offered

- Introduction of variant systems $\mathbf{H B}_{0}^{=}$and $\mathbf{A K}_{\mathbf{0}}^{=}$with subformula properties.
- A network of proof-transformations:
- A duality via mirroring between derivations in $\mathbf{H B}_{0}^{=}$and "consistency-unfoldings" in $\mathbf{A K}_{\mathbf{0}}^{=}$.

```
AC=
```


Answers offered: A duality between $\mathrm{HB}_{0}^{=}$and $\mathrm{AK}_{0} \overline{=}$

$$
\begin{aligned}
& \frac{(\mathrm{REFL})}{\mathrm{E}=\mathrm{E}} \frac{\frac{(\mathrm{REFL})}{\mathrm{I}=\mathrm{I}} \quad \mathrm{List}_{1}^{*}=\mathrm{E}+\mathrm{I} \times \mathrm{List}_{2}^{*}}{\mathrm{I} \times \mathrm{List}_{1}^{*}=\mathrm{I} \times\left(\mathrm{E}+\mathrm{I} \times \mathrm{List}_{2}^{*}\right)} \times 1 \mathrm{FIX}, u \\
& \mathrm{E}+\mathrm{I} \times \mathrm{List}_{1}^{*}=\mathrm{E}+\mathrm{I} \times\left(\mathrm{E}+\mathrm{I} \times \mathrm{List}_{2}^{*}\right) \text { (} \mathrm{FoLD}_{l / r} \\
& \underbrace{\mu \alpha \cdot(\mathrm{E}+\mathrm{I} \times \alpha)}_{\equiv \text { List }_{1}^{*}}=\underbrace{\mu \alpha \cdot(\mathrm{E}+\mathrm{I} \times(\mathrm{E}+\mathrm{I} \times \alpha))}_{\equiv \text { List }_{2}^{*}} \\
& \text { derivation in } \mathbf{H B}_{\mathbf{0}}^{=}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { List }_{1}^{*}=\text { List }_{2}^{*}}{\overline{\left(\mathrm{E}+\mathrm{I} \times \mathrm{List}^{*}-\mathrm{E}+\mathrm{I} \times\left(\mathrm{E}+\mid \times \text { List }^{*}\right)^{u}\right.}}{ }^{\mathrm{FoLD}_{l / r}} \quad \text { consistency-unfolding in } \mathbf{A K} \mathbf{0}_{\mathbf{0}}^{=}
\end{aligned}
$$

$$
\begin{aligned}
& I=1 \quad \frac{\text { List }_{1}^{*}=\mathrm{E}+\mathrm{I} \times \text { List }_{2}^{*}}{\mathrm{E}+\mathrm{DECOMP}}{ }^{\text {FOLD }}
\end{aligned}
$$

Answers offered

- Introduction of variant systems $\mathbf{H B}_{\mathbf{0}}^{=}$and $\mathbf{A K}_{\mathbf{0}}^{=}$with subformula properties.
- A network of proof-transformations:
- A duality via mirroring between derivations in $\mathbf{H B}_{0}^{=}$and "consistency-unfoldings" in $\mathbf{A K}_{0}^{=}$.

Answers offered

- Introduction of variant systems $\mathbf{H B}_{0}^{=}$and $\mathbf{A K}_{\mathbf{0}}^{=}$with subformula properties.
- A network of proof-transformations:
- A duality via mirroring between derivations in $\mathbf{H B}_{0}^{=}$and "consistency-unfoldings" in $\mathbf{A K}_{0}^{=}$.
- A proof-transformation from $\mathbf{A C}=$ to $\mathbf{H B}^{=}$.
- A proof-transformation from $\mathbf{H B}^{=}$via $\mathbf{H B}_{0}^{=}$to $\mathbf{A C}=$.

The found network of proof-transformations

