Relating Proof Systems for Recursive Types

Clemens Grabmayer

 $22^{\rm nd}$ of March 2005

Types and Recursive Types

Types

- Basic types: Int (integers), Real (reals), Bool (booleans).
- Composite types: Int \times Int (pairs), Real \rightarrow Int (functions), Bool + Int (elements of either).

Recursive Types

 $List = Empty + (Int \times List)$ (type of *integer lists*)

because:

```
() \in \mathsf{Empty}
```

e.g.
$$(5, 8, 13) \triangleq \langle 5, (8, 13) \rangle \in \text{Int} \times \text{List}$$

Notation: List = $\mu \alpha$. (Empty + (Int $\times \alpha$)).

Recursive Type Equality

Example. The recursive types

 $\mathsf{List}_1 \equiv \mu \alpha. (\mathsf{Empty} + \mathsf{Int} \times \alpha), \ \mathsf{List}_2 \equiv \mu \beta. (\mathsf{Empty} + \mathsf{Int} \times (\mathsf{Empty} + \mathsf{Int} \times \beta))$

can be visualized as the different cyclic term graphs

Proof Systems for Recursive Type Equality

- Sound and complete axiomatisations of $=_{\mu}$:
 - **AC**⁼ by Amadio and Cardelli (1993) is of "traditional form".
 - **HB**⁼ by Henglein and Brandt (1998) is *coinductively motivated*.

$$\tau =_{\mu} \sigma \iff \vdash_{\mathbf{AC}^{=}} \tau = \sigma$$
$$\iff \vdash_{\mathbf{HB}^{=}} \tau = \sigma$$

- A system on which "consistency-checking" can be based:
 - **AK**⁼, by Ariola and Klop (1995), a *"syntactic-matching"* system.

$$\tau =_{\mu} \sigma \iff$$
 no "contradiction" is derivable in **AK**⁼ from the assumption $\tau = \sigma$.

Specific Rules in AC⁼, HB⁼, and AK⁼

• in AC⁼:
$$\frac{\sigma_1 = \tau[\sigma_1/\alpha] \quad \sigma_2 = \tau[\sigma_2/\alpha]}{\sigma_1 = \sigma_2}$$
 UFP (if $\alpha \downarrow \tau$)

• in **HB**⁼:
$$\begin{array}{cc} [\tau_1 \rightarrow \tau_2 = \sigma_1 \rightarrow \sigma_2]^{\boldsymbol{u}} & [\tau_1 \rightarrow \tau_2 = \sigma_1 \rightarrow \sigma_2]^{\boldsymbol{u}} \\ \mathcal{D}_1 & \mathcal{D}_2 \\ \hline \tau_1 = \sigma_1 & \tau_2 = \sigma_2 \\ \tau_1 \rightarrow \tau_2 = \sigma_1 \rightarrow \sigma_2 \end{array} \text{ARROW/FIX, } \boldsymbol{u}$$

• in
$$\mathbf{AK}^{=}$$
: $\frac{\tau_1 \rightarrow \tau_2 = \sigma_1 \rightarrow \sigma_2}{\tau_i = \sigma_i}$ DECOMP (for $i \in \{1, 2\}$)

Present in all systems: REFL, SYMM, TRANS, (FOLD/UNFOLD).

Questions investigated

- Main Question: What kind of proof-theoretic relationships do exist between the systems AC⁼, HB⁼, and AK⁼?
 - An initial observation suggested a close connection between $HB^{=}$ and $AK^{=}$. Can this be made *precise*?
 - Can the "traditional" proofs in AC⁼ be transformed into the "coinductive" proofs in HB⁼?

And *vice versa*: Does there exist a transformation of proofs in $HB^{=}$ into proofs in $AC^{=}$?

Answers offered

- Introduction of variant systems HB⁼ and AK⁼ with subformula properties.
- A **network** of proof-transformations:
 - A *duality* via *mirroring* between derivations in $HB_0^=$ and "consistency-unfoldings" in $AK_0^=$.

Answers offered: A duality between $HB_0^=$ and $AK_0^=$

$$\begin{array}{c} \text{List}_{1}^{*} = \text{List}_{2}^{*} \\ \hline (E + I \times \text{List}_{1}^{*} = E + I \times (E + I \times \text{List}_{2}^{*}))^{\boldsymbol{u}} \\ \hline E = E & I \times \text{List}_{1}^{*} = I \times (E + I \times \text{List}_{2}^{*}) \\ \hline I = I & \begin{array}{c} \text{List}_{1}^{*} = E + I \times \text{List}_{2}^{*} \\ \hline E + I \times \text{List}_{1}^{*} = E + I \times \text{List}_{2}^{*} \\ \hline E + I \times \text{List}_{1}^{*} = E + I \times \text{List}_{2}^{*} \\ \hline E = E & I \times \text{List}_{1}^{*} = I \times \text{List}_{2}^{*} \\ \hline I = I & \begin{array}{c} \text{List}_{1}^{*} = E + I \times \text{List}_{2}^{*} \\ \hline E + I \times \text{List}_{1}^{*} = E + I \times \text{List}_{2}^{*} \\ \hline E = E & I \times \text{List}_{1}^{*} = I \times \text{List}_{2}^{*} \\ \hline I = I & \begin{array}{c} \text{List}_{1}^{*} = E + I \times \text{List}_{2}^{*} \\ \hline E + \text{List}_{1}^{*} = I \times \text{List}_{2}^{*} \\ \hline E = E & I \times \text{List}_{1}^{*} = I \times \text{List}_{2}^{*} \\ \hline I = I & \begin{array}{c} \text{List}_{1}^{*} = L \text{Ist}_{2}^{*} \\ \hline (E + \text{List}_{1}^{*} \times I = E + I \times (E + I \times \text{List}_{2}^{*}))^{\boldsymbol{u}} \end{array}$$

Answers offered

- Introduction of variant systems HB⁼ and AK⁼ with subformula properties.
- A **network** of proof-transformations:
 - A *duality* via *mirroring* between derivations in $HB_0^=$ and "consistency-unfoldings" in $AK_0^=$.

Answers offered

- Introduction of variant systems HB⁼ and AK⁼ with subformula properties.
- A **network** of proof-transformations:
 - A *duality* via *mirroring* between derivations in $HB_0^=$ and "consistency-unfoldings" in $AK_0^=$.
 - A proof-transformation from $AC^{=}$ to $HB^{=}$.
 - A proof-transformation from $HB^{=}$ via $HB_{0}^{=}$ to $AC^{=}$.

The found network of proof-transformations

Amadio-Cardelli systems