
Relating Proof Systems for

Recursive Types

Copyright c© 2005 by Clemens Grabmayer
All rights reserved

ISBN 90-9019086-4

Typeset with LATEX2e
Cover design by Michel Klein and Clemens Grabmayer
Printed by PrintPartners Ipskamp, Enschede, the Netherlands

Author’s address:
Department of Computer Science
Vrije Universiteit Amsterdam
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
clemens@cs.vu.nl

http://www.cs.vu.nl/~clemens/

VRIJE UNIVERSITEIT

Relating Proof Systems for

Recursive Types

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op dinsdag 22 maart 2005 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Clemens Armin Grabmayer

geboren te Linz, Oostenrijk

promotor: prof.dr. J.W. Klop

copromotor: dr. R.C. de Vrijer

Contents

Preface v

1 Introduction 1

1.1 Proof Systems for Recursive Type Equality 1

1.2 Motivations for Relating Proof Systems for Recursive Type Equality 3

1.3 Overview . 4

1.3.1 The Chapters . 4

1.3.2 The Appendices and Indices 7

2 Preliminaries 9

2.1 Basic Mathematical Notions and Notation 9

2.1.1 Basic Set-Theoretic Notation 9

2.1.2 Functions and Partial Functions 10

2.1.3 Finite Multisets and Sequences 10

2.1.4 Strings . 11

2.1.5 Reduction Relations . 11

2.1.6 Logical Symbols . 12

2.1.7 Trees . 12

2.2 Proof-Theoretical Notation . 13

3 Recursive Types 17

3.1 Definition . 18

3.2 Contexts, Positions and Subterms . 20

3.3 Substitution Expressions . 23

3.4 Variant Relation . 33

3.5 Tree Unfolding and Leading Symbol 35

3.6 Recursive Type Equality . 41

3.7 Weak Recursive Type Equivalence 46

3.8 Transformation into Canonical Form 51

3.9 Generated Subterms . 55

ii Table of Contents

4 Derivability and Admissibility of Inference Rules 71

4.1 Relevance for the Construction of Proof-Transformations 71

4.2 Definitions and Results in Pure Hilbert Systems 75

4.2.1 Formal Systems . 75

4.2.2 Local (and Not Local) Rules 77

4.2.3 Pure Hilbert Systems . 78

4.2.4 Definitions of Rule Correctness, Admissibility and Derivability 80

4.2.5 Basic Results . 84

4.2.6 Rule Elimination . 86

4.3 Definitions and Results in Natural-Deduction Systems 87

4.3.1 Natural-Deduction Systems 88

4.3.2 Problems with Naive Definitions of Rule Correctness and Rule
Derivability . 89

4.3.3 Definitions of Rule Cr-Correctness, Admissibility and Deriv-
ability . 91

4.3.4 Basic Results . 95

4.3.5 Rule Elimination . 95

5 Proof Systems for Recursive Type Equality 97

5.1 Axiom Systems for Recursive Type Equality 97

5.2 Proof Systems for Consistency-Checking with Respect to Recursive
Type Equality . 116

5.3 Basic Differences between the Axiom Systems and the Systems for
Consistency-Checking . 130

6 A Duality between AK=
0 and HB=

0 143

6.1 The Basic Observation . 144

6.2 The Extension e-HB=
0 of HB=

0 . 153

6.3 Consistency-Unfoldings in AK=
0 . 163

6.4 Reflection Functions between Derivation-Trees in AK=
0 and Deriva-

tions in e-HB=
0 . 178

6.5 A Duality between Consistency-Unfoldings in AK=
0 and Derivations

in e-HB=
0 . 183

6.6 Specializing the Duality to Derivations in HB=
0 191

6.7 Concluding Remarks and a Consequence of the Duality 195

7 Transforming Derivations from AC= to HB= 199

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= . . 199

7.2 A Transformation of AC=-Derivations via AC=
−-Derivations into

HB=-Derivations . 223

8 Transforming Derivations from HB= to AC= 257

8.1 A Transformation of Derivations in HB=
0 into Derivations in AC= . 258

8.2 A Transformation of Derivations in HB= into Derivations in HB=
0 . 283

Table of Contents iii

9 Conclusion 321
9.1 The Obtained Network of Transformations 321
9.2 Directions for Possible Extensions . 324

9.2.1 Brandt-Henglein Systems with More Circular Rules 324
9.2.2 Syntactic-Matching Tableaux 326
9.2.3 Proof Systems for Subtyping on Recursive Types 326
9.2.4 Proof Systems for Equivalence of Regular Expressions 328

A Proofs of Statements in Chapter 3 333
A.1 Proofs of Statements in Section 3.3: Substitution Expressions 333
A.2 Proof of a Statement in Section 3.4: Variant Relation 336
A.3 Proofs of Statements in Section 3.5: Tree Unfolding and Leading

Symbol . 338
A.4 Proofs of Statements in Section 3.7: Weak Recursive Type Equivalence 340
A.5 Proofs of Statements in Section 3.9: Generated Subterms 341

B Abstract Proof Systems 359
B.1 Abstract Pure Hilbert Systems . 360
B.2 Abstract Natural-Deduction Systems 371

C Derivations in HB=
0 Without Redundancies 395

Bibliography 415

Index of Notations 419

Subject Index 423

Samenvatting (Summary in Dutch) 429

iv Table of Contents

Preface

At some universities, dissertations are required to carry a “declaration” to the effect
that the author states to have composed the thesis herself or himself. I find this a
nice piece of formality, and therefore, dear reader, please pardon me for declaring
the very obvious: the 435 pages of the main text of this thesis have been written
by myself, not by anybody else. However, it is not plainly a formality when I
feel the immediate urge to add: But I have enjoyed often invaluable help from my
supervisors, and from many others as well. Help from people who have made it
possible for me to start with my PhD-project in the first place, who have created
or contributed to a productive environment for research, who have advised and
encouraged me, or who have helped in another way; all enabling me, in their share,
to do the basic research, to write down this part or that, to carry on exploring and
writing, and finally, to complete this booklet. Without such help, or even without
some parts thereof, my task would have been a very much harder one indeed. It is
therefore that I want to acknowledge, below, some of the most important elements
of support from which I have benefited over the last nearly five years.

Some parts of this thesis originate from two reports and two papers I have
written earlier. So is Chapter 6 an extended version of the paper [Gra02b] and the
report [Gra02c]. Both Chapter 4 and Appendix B have grown out of work done in
the report [Gra03a], and for the poster [Gra03b] that is summarized by the paper
[Gra04b]; however, in each of Chapter 4 and Appendix B also a considerably more
involved situation is covered1. All other parts of the thesis are “new” in the sense
that they have not been published elsewhere.

Acknowledgements

First and foremost my thanks go to my supervisors Jan Willem Klop and Roel de
Vrijer: for accepting me, in the first place, as an AIO in the Theoretical Computer
Science group at the Vrije Universiteit (in early 2000), for helping me to find a place
within this group, for their interest in my work, and for their continued support at
many levels. (As an important note on the side, I want to mention that I am still

1Namely the situation of derivability and admissibility of inference rules in natural-deduction

systems. Contrasting with this, both the mentioned report and the paper deal with rule derivability
and admissibility only in (pure) Hilbert systems.

vi Preface

thankful to Dick de Jongh, the head of the Master-of-Logic program of the ILLC
at the Universiteit van Amsterdam in 1998-99, when I was part of that program,
for suggesting to get in contact with people from the VU.)

I am particularly thankful to Jan Willem for letting me work on his observation
of a ‘duality’ between the Brandt-Henglein and Ariola-Klop systems (which has led,
quite directly, to the article [Gra02b], to the report [Gra02c], and to Chapter 6 of
this thesis). It happened very often, in late afternoons, when Jan Willem came to
our room (Jeroen Ketema’s and mine) to take care of his and of my plants, that I
could take the opportunity to tell him about this aspect of my work or that. Jan
Willem would always listen and give stimulating and, if it was necessary, also critical
comments (critical ones, for example, when the language I wrote was too involved,
or the titles of my talks and papers were too long). I am very thankful to him for
this, and for always indicating possible directions for further investigations. Also,
I have the desire to mention that I very much enjoyed assisting Jan Willem in his
course on term rewriting systems in two successive years, and once also in a course
on process algebra. I think I have learned a lot of things from him in this way;
and I want to say my thanks to Jan Willem for supporting me during these first
werkcolleges that I have taught. Concerning a specific topic in this thesis, I want
to acknowledge what is actually not mentioned in the text: that I have been led to
Theorem 3.9.14 on page 64, which I hope provides a nice explicit characterization
of the “generated subterms” of a recursive type via its “subterms”, only by a little
example of Jan Willem written down on two tiny sheets of A6-format paper. For
all that and for much more: Thank you very much, Jan Willem!

Many thanks from me also go to Roel de Vrijer for his interest in my work, and
in particular for the regular meetings that I have had with him during my last year
as an AIO . These meetings (Jan Willem was sometimes present, too), at which Roel
let me have total access to his blackboard (“Alles mag weg! ”), provided me with
valuable feedback on what I had written, and they frequently translated into con-
crete improvements. Also, I want to acknowledge that I was led to the introduction
of “Abstract (Pure) Hilbert Systems” and “Abstract Natural-Deduction System”,
the two topics in Appendix B, by some (as I then felt) quite insistent questions
and critical comments by Roel about an abstract setting I had chosen for gathering
general results about the notions of rule derivability and admissibility in Hilbert
systems. But ultimately also these comments have contributed to make me explore
the mentioned topic in a much better framework (in [Gra03a], [Gra03b], [Gra04a]
as well as in Chapter 4 and in Appendix B of this thesis). Thanks a lot for all of
that, Roel!

Also, I want to thank the reading committee for this thesis, Wan Fokkink, Dick
de Jongh, Bas Luttik, and Albert Visser, for agreeing to the task of reading through
this admittedly voluminous thesis. I am grateful to Wan Fokkink for a long list of
corrections, and to Bas Luttik for many comments, some critical remarks, and for
many suggestions of improvements (as well as for the readiness to discuss these).

On a very different level, I am indebted to Bas Luttik also in his former function
as postdoc in our group: Bas regularly read drafts of my papers and always pro-
vided me with extensive and detailed comments. My feeling is that I have learned

Preface vii

very much from Bas, on the one hand, during discussions over specific topics in
mathematics and computer science, and on the other hand, from many of his sug-
gestions and critical remarks. Bas’ comments were frequently connected with the
very practical and very important things of how to write down formally technical
matters in a stringent, digestible, and non-confusing way. During much of the last
year, when revising already existing text for this thesis, and writing other parts for
the first time, some of my regular worries were: What would Bas think of this part
or that? How would he expect a topic in question to be written down properly?
– Also, I remember fondly the time in the fall semester 2002 when I was able to as-
sist Bas during his course on “Advanced Logic” (het college “Voortgezette Logica”)
by giving the accompanying practicum; and I am grateful for his support when, at
times, I was not satisfied with myself. For all of this, for encouraging me to take
the Staatsexamen NT2 , and for a lot more, let me say: Thanks very much, Bas!

I am also very thankful to Jan Rutten for the opportunity he gave me to assist
him twice, in successive years, by teaching de werkcolleges for his course on “Alge-
braic Specifications” (in which Jan treats the nice topic of coalgebraic specification
of streams and of functions on streams). I have enjoyed it a lot, and I want to thank
Jan for his support. I have profited a good deal from discussions with Jan after
his lectures, and also from his interest in my work. Furthermore, Subsection 9.2.4
in Chapter 9, concerned with a possible application of a proof-transformation de-
scribed in Section 8.1 of Chapter 8, has been stimulated by a talk of him in our
group’s weekly seminar. Also, I want to thank Jan for having had a short look at
this subsection and for a couple of valuable comments about it. For all that: Thank
you very much, Jan!

I am very grateful to Femke van Raamsdonk for letting me organize the weekly
seminar of our group twice when she was on leave. Each time this has been a
very nice experience for me, and I am thankful for the opportunity of being able
to contribute to this regular meeting point of our sectie Theoretische Informatica
at Friday afternoons. Apart from that, I want to thank Femke for being a tutor
for me regarding the writing of referee reports; and much more general, for always
being helpful in many respects, for prompt replies to my e-mails, and her regular
lively stories about her child(ren). Thanks very much for that, Femke!

Thanks are also due to Freek Wiedijk, for causing me a lot of work: he warned
me that if the thesis were typeset in 11pt fonts (as I had done so until a short time
ago) and if it were then reduced to B5-format by the printers, then the resulting
actual font size would be smaller than 9pt and thus really small indeed. This led me
to change the font size for my document to 10pt and the format to 170 × 240 mm
such that the output did not have to be reduced by the printers. However, it took
a big last-minute effort to keep the shape of the layout intact. But nevertheless:
Thank you, Freek!

My thanks go also to Wan Fokkink, the current head of our group and my room-
mate during the first half of 2001 (though for one day a week only). In particular, I
am indebted to Wan for providing me, much more than once, with extremely help-
ful information about procedural matters connected with a promotie, information
that he always illustrated with examples from the cases of his three promovendi

viii Preface

last year. Also, I thank Wan for helping me out twice recently by agreeing to give
a talk in our seminar. On a more general level, I am thankful for his interest in
how things are going, and for frequently reminding me of the necessity to submit
papers (if there should be any earnest in a scientific ambition—one such reminder
has motivated me to start writing [Gra02b]), and for his suggestion to extract per-
haps more articles from this thesis (which I hope I’ll be able to do). Thank you
very much, Wan!

And I want to say thanks to my present and former immediate colleagues Mirna
Bognar, Jeroen Ketema, Paulien de Wind, and Helle Hansen. My thanks go first to
Mirna for providing me with useful information when I was a new member in the
group, and for many discussions (even if we sometimes disagreed on this or on that
issue). Many thanks for that, Mirna!

Jeroen has been my roommate for three years. I have always been impressed by
his vast knowledge of many things, of both the theoretical part of computer science
and the its very practical aspects (of what really happens when one tries to execute
this or that command). I have undoubtedly profited from his company over the
years and his help in many situations and I am thankful for that (not long ago,
Jeroen helped me to install an urgently needed LATEX-package for typesetting the
thesis in the right format). Thank you very much, Jeroen!

To Paulien I am very thankful for more things than I can write down here
properly. I have frequently searched her advice in matters concerning the Dutch
language, in how to write more formal letters or e-mails, and more general, in
situations where I was uncertain, because of my foreign background, of how to
proceed in a sensible way (but yes, I have also consulted her with mundane prac-
tical questions such as ones about subtleties of XEmacs). Paulien always listened
very carefully, and then came up, either immediately or a little later, with very
thoughtful suggestions for solutions. Furthermore, she taught me how a “supported
head-stand” has to be performed correctly (the interested reader could be referred
to http://www.yogajournal.com/poses/481 1.cfm for the details). And also, I
must mention that I was and still am very thankful to her and to Bart for having
helped me move to my flat in Diemen last year in an “Ouke Baas” van rented and
safely driven by Bart; their help really mattered much to me in that situation and
I still value it a lot. Thank you very much, Paulien! (And thank you, Bart!)

My thanks and greetings go also to my new roommate Helle, for regularly telling
me about her work, for explaining me some basics about tableau methods in modal
logics, for her good company, and for the fact that I think we do not find it a
problem to have to work in a rather small room. Also, more than once I have
appreciated very much her energetic and effective help, for example in a situation
when a dysfunctional beamer cable nearly rendered most of my preparation for a
talk unusable. Many thanks, Helle!

Also I want to thank Mihály Petreczky for often dropping by when he was at
the VU, for telling me about his work in systems theory, for always being ready to
discuss a mathematical topic, and for teaching me about the use of formal power
series in the theory of formal languages and automata theory. Thank you very
much, Mihály!

Preface ix

I am also thankful to Natalia Silvis-Cividjian, for many conversations, for always
being interested in how things were going, for providing regular updates on how
her son Tigran is doing, for sending me to the course Academisch Nederlands in
2003 together with some of the students she was counseling at that time; and
perhaps most importantly, for the possibility to exchange thoughts with a kameraad-
allochtoon about things that often have surprised the both of us concerning the way
how things are done in the Netherlands (in contrast to what each one of us had
previously been used to in, respectively, Romania and Austria). And lastly, my
apologies go to Natalia for having had to come back on a word I had given, cancel
an invitation and twice ask for a raincheck for a lunch with her, Peter, Tigran,
Paulien and Bart, because of some big last-minute typesetting troubles with this
thesis. Apologies, Natalia, but more importantly: many thanks!

For some decisively important help while writing the Summary in Dutch of
the thesis I want to thank Michel Oey, Jan Willem Klop, and Roel de Vrijer. It
was Michel whose persistent argumentation that such a summary should form an
independently readable part of a thesis stimulated me to (at least) try to write a
text that is as self-contained as possible and that is not merely a short version of
the Introduction. Michel pointed me, as so did Roel and Jan Willem later on, to
many mistakes, and to sentences and phrases that simply were not Dutch (but had
been, most likely, bad translations from German). Eventually, Jan Willem allowed
me to continue submitting successive versions for corrections in what was set up to
be an approximation procedure aiming at a readable Dutch text. I have to take it
as my fault that convergence of this procedure was rather slow and that time did
ultimately not suffice to reach a zero of the number-of-corrections function. Still, I
want to express my sincere gratitude for all of the help in this matter!

Another great debt of mine is to Michel Klein, who was so very kind as to use
his expertise with Adobe InDesign for the purpose of turning my rough ideas for the
cover of the thesis into a concrete pdf-file. Apart from that, I have repeatedly been
able to profit from his experience concerning the printing process of a thesis, and
in particular, from his suggestion of Ipskamp as a reliable “print partner”. Finally,
Michel gave me, at a moment when that really mattered to me, the LATEX-commands
needed for typesetting the whole document in 170× 240 mm format. Thanks very
much, Michel!

It is also my desire to acknowledge the frequent competent help that I have
received over the last years by Gert Huisman from the departement’s (and the
faculty’s) ICT-group. Whether I had problems with my laptop, or my SUN-
workstation did not let me login, or the postscript-file of this thesis had not been
accepted by the printers (which was when I found myself without any idea at all
about how to carry on from there), I always received very helpful information from
Gert which located the problem and made it possible for me to find one or the other
way out and forward. I am very thankful for that! My thanks are also due to Ruud
Wiggers, who often helped me by directing me to the responsible person, and to
many of the young people from the helpdesk who also did their very best in helping
me.

Concerning Chapter 4, in which the notions of derivability and admissibility

x Preface

of inference rules are studied, I want to acknowledge the influence that the book
[HS86] of Hindley and Seldin had on me when writing the report on which this
chapter is based. For quite some time two lemmas in [HS86] provided a constant
reminder to me that it must be possible to find some precise statements about
connections between the notions of rule derivability and admissibility and my work
on proof-transformations. I want to thank Roger Hindley very much for his interest
in my work and for an exchange of e-mails in autumn 2003. It is through his mails
that I was led to some additional references regarding the history of the notions
“derivability” and “admissibility” of rules (that found their place in Remark 4.2.2
on page 81).

I also want to mention some of my colleagues from the Onderzoeksschool Logica
with whom I got in contact through regular meetings such as the OzsL-Schoolweek
and the yearly Accolade. Please let me just mention a few of them: Nick Bezhan-
ishvili, Annette Bleeker, Rafaella Bernardi, Balder ten Cate, Francien Dechesne,
Juan Heguiabehere, Eva Hoogland, Joost Joosten, Clemens Kupke, Fabrice Nauze,
Marc Pauly, Yoav Seginer, Merlijn Sevenster, and Willemijn Vermaat. Special
thanks go to Francien for inviting me for a talk to Eindhoven, and to Balder and
Juan for accepting an invitation for a talk at the VU. My greetings go also to Sebas-
tian Brand for the conversations we regularly had once a year at NTVI-Theoriedagen
in Utrecht (sometimes remembering our time together at Cleyndertweg 29 in 1999).

Then I want to express my thanks to many students of practica I have given,
and especially to those with whom I stayed in contact afterwards; I want to mention
Joris, Laurent, Erik, Francis, Ingmar, and quite certainly, Daphne. And as someone,
not a student, from quite a distance (not only spatially) apart from the university, I
have also promised myself to mention Youssra from de Baarsjes here (whom I came
to know in Bos and Lommer).

Furthermore it is my desire to mention the children playing in the courtyard just
outside of my flat in Diemen. Their energy, enthusiasm, and (on the whole) their
tolerance of each other and care for the younger ones have made it much easier for
me to get through Saturday and Sunday afternoons last year with beautiful weather
outside, staying inside, busy with typesetting this or xfig-ing that.

Thanks and greetings also go to my landlords in Amsterdam, Aad Wolsink and
José Antonio Castro. From Aad I learned a lot about the Netherlands, perhaps most
importantly, while learning Dutch I had the big advantage of the daily practice of
our conversations (about sport, television, music, cars, and . . . all the rest of life).
Thank you very much, Aad! And to José I am thankful for frequently cooking for
me; for helping me to find a good huisarts; for being worried about me in situations
like when the streets and de fietspaden were icy and I was not at home by the usual
time; for his frequent translations from and explanations about the Cerca De Ti
show on Spanish television; and most of all for his undoubtedly groot en goed hart
that only sometimes was hidden by a shadow. Hartelijk bedankt, José, voor alles,
en mijn beste wensen!

Towards the end of this long list of thank-you’s I want to convey my thanks
to my parents Erwin and Herta Grabmayer, to my father in German, and to my
mother in English (because she understands and speaks it quite well, and only lacks

Preface xi

a bit of practice recently).
Danke, Vater, für vieles, und für viel mehr als ich hier aufzählen kann: Für’s

Anfertigen-Lassen der beglaubigten Kopien, die ich fuer die Promotions-Formalitäten
nötig hatte; für’s Schicken der Trainingkleidung, der Handschuhe, und des Pulsfre-
quenz-Messers; fürs regelmässige Anrufen wenn Mutter in Wien ist; dafür, dass
Du mich immer über das sportliche Geschehen in Österreich und das Abschneiden
unserer Langläufer auf dem laufenden gehalten hast; und natürlich für die 14 Ta-
ge, die Du letztes Jahr zusammen mit Mutter und mir in das Bewohnbar-Machen
meiner Wohnung in Diemen investiert hast, mit dem Verlegen von mehr als 60 m2

Teppichfliessen und eines Küchenbodens verbracht hast, mit dem “Ausweissigen”
der Wände und des Plafonds, mit dem Durchführen von Elektroinstallationen, und
mit einer ganzen Reihe von Dingen mehr. Für das alles und mehr: Ein aufrichtiges
“Danke Schön”!

Also, I will not be able to exhaust the long list of things for which I am thankful
to my mother, but at least let me give it a try: for a lot of phone-calls that have been
much too long (in my father’s opinion); for a lot of e-mails from Vienna telling me
about her situation and asking me about mine; for regular parcels at Christmas and
Easter; for a lot of books that helped me to keep my intellectual balance; recently,
for much information about Elfriede Jelinek; for keeping me informed about the
situation at Austrian universities, and in Austrian politics; for offering help from the
psychological knowledge she acquires during her studies; for letting me stay at her
appartement in Vienna during CSL’03; for the idea of having Fiaker -trip through
the inner city of Vienna together with Bas, Simona, and me; for the mountain tours
on Plöckenstein, on Feuerkogel, on the Rax and on Schneeberg; and obviously, also
for all of her participation in the dusty work in my flat in Diemen during the two
weeks in summer last year! Danke, Mutter, für alles, und meine besten Wünsche
zur Fortsetzung und zum Abschluß Deines eigenen Studiums (auch wenn es noch
dauert, ich bin überzeugt, dass Du es schaffen wirst!).

On a different, also Austria-related note, I still want to thank Prof. Alexander
Leitsch from the TU-Wien (my supervisor with my Diplomarbeit), and Prof. Konrad
Kiener from the JKU-Linz for their help with the application for a scholarship that
made it possible for me to come to the Amsterdam in 1998 (it is perhaps not merely
a coincidence that both of them know the Netherlands very well).

Last, but not least I want to thank Mihály Petreczky and Paulien de Wind for
their readiness to act as my paranimfen at the defense of this thesis. I am happy
that both of you have agreed to this. Thanks, P’lien and Mihály!

Thank yous, well where do I finish? 2 – I have to, now, here.

Clemens Grabmayer Diemen/Amsterdam, January 2005

2The question Thank yous, well where do I start? is asked by Melanie C in the booklet
accompanying her CD “Reason”.

xii Preface

Chapter 1

Introduction

Recursive types are prime examples of cyclic objects occurring in computer science.
Two binary relations have been studied on classes of recursive types by a sequence of
authors (among these are [CaCo91], [AmCa93] and [BrHe98]): an equality relation,
frequently called “recursive type equality” or “strong recursive type equivalence”,
and a subtyping relation on recursive types. Although algorithms for deciding,
whether or not two recursive types are either equivalent or in the subtype relation,
have existed for quite some time, formal systems that allow the logical treatment in
a formal system of the equality and subtype relations between recursive types are
much more recent. Of these systems we have chosen those concerning the equality
relation as the objects of our investigation.

1.1 Proof Systems for Recursive Type Equality

Formal axiomatizations that are sound and complete for the equality and sub-
typing relations on recursive types have been given first by Amadio and Cardelli
in [AmCa93]. The authors of that paper also present an algorithm for deciding
whether or not two recursive types are in the subtyping relation1 and establish a
connection between the decision algorithm and the formal systems. Their axiom-
atization for the subtyping relation on recursive types is built on top of an axiom
system for recursive type equality. The axiomatization of recursive type equality is
hereby of a ‘traditional’ kind2 with the distinguishing feature of the presence of a
unique-fixed point rule with applications of the form

τ1 = τ [τ1/α] τ2 = τ [τ2/α]
(if α is “guarded” in τ)

τ1 = τ2

1Recursive type equality can be decided with the help of this algorithm, but it is better decided
by a similar, albeit simpler, algorithm.

2In [BrHe98] the axiom system by Amadio and Cardelli is called a “classical axiomatization”.

2 Introduction

(where τ , τ1 and τ2 are recursive types and α is a type variable) which is related
to different forms of fixed-point rules that make part of the logical apparatus of
a number of similar proof systems: the axiomatizations for the algebra of regular
events due to Salomaa in [Sal66], for the notion of ‘regular behaviour’ in process
algebra introduced by Milner in [Mil84], for Kleene algebras and algebras of regular
events given by Kozen in [Koz94], and for bisimulation equivalence of cyclic term
graphs denoted by µ-expressions presented by Ariola and Klop in [ArKl95, the
report version].

Alternative axiomatizations for the equality and subtyping relations on recursive
types were later given by Brandt and Henglein in [BrHe98], which “are motivated by
coinductive characterizations of type containment and type equality via simulation
and bisimulation, respectively”. The system for the subtyping relation allows, citing
the authors again, “a natural operational interpretation of proofs as coercions”
(coercions are type-adaptation functions between recursive types that are in the
subtyping relation). The main particularity of these proof systems are rules that
formalize certain forms of circular reasoning. In a natural-deduction formulation,
the system for recursive type equality contains a rule ARROW/FIX that allows
applications of the form

[τ1 → τ2 = σ1 → σ2]
u

D1

τ1 = σ1

[τ1 → τ2 = σ1 → σ2]
u

D2

τ2 = σ2 ARROW/FIX, u
τ1 → τ2 = σ1 → σ2

(1.1)

where τ1, τ2, σ1 and σ2 are recursive types (and where → is the type construc-
tor for function types), and where the assumption classes [τ1 → τ2 = σ1 → σ2]

u

at the top of the immediate subdeductions D1 and D2 of the deduction in (1.1)
are discharged at the displayed application of ARROW/FIX (as indicated by the
assumption marker u that is attached to this application). By such a rule appli-
cation a formula τ1 → τ2 = σ1 → σ2 is derived as the conclusion of a deduction
D of the form (1.1) in which τ1 → τ2 = σ1 → σ2 may also have been used as an
assumption, but where the conclusion of D eventually does not depend any more
on (some or all of the) assumptions of the form of its conclusion. Undoubtedly,
the rule ARROW/FIX describes a form of circular reasoning that may appear un-
sound at first sight, or at least paradoxical. The soundness with respect to recursive
type equality of deductions enabled by this rule is ultimately due to the following
fact: in an application of ARROW/FIX, assumptions of the form of the conclu-
sion τ1 → τ2 = σ1 → σ2 are not discharged from an arbitrary deduction with this
conclusion, but only from a deduction with conclusion τ1 → τ2 = σ1 → σ2 , with
an application of ARROW/FIX at the bottom, and with immediate subdeductions
that respectively end with τ1 = σ1 and with τ2 = σ2 (the formulas that result from
the conclusion formula by respectively equating the left and the right components
of the composite recursive types τ1 → τ2 and σ1 → σ2 there); deductions of this
form have the special property of being ‘contractive’ according to a definition by
Brandt and Henglein.

1.1 Relating Proof Systems for Recursive Type Equality: Motivations 3

Apart from the mentioned two kinds of axiomatizations for recursive type equal-
ity, we will also consider a ‘syntactic-matching’ proof system for equational testing
that is analogous to one that was introduced by Ariola and Klop in [ArKl95] for
the notion of bisimulation equivalence on cyclic term graphs. A specific feature of
this system is the presence of a decomposition rule (or “deconstruction rule”) that
allows applications of the form

τ1 → τ2 = σ1 → σ2 (for each i ∈ {1, 2})
τi = σi

for all recursive types τ1, τ2, σ1, σ2 and the composite types τ1 → τ2 and σ1 → σ2 .
This system does not axiomatize recursive type equality, but it allows to test the
“consistency” with respect to strong equivalence of given equations between recur-
sive types. It is sound and complete for recursive type equality in the sense that
“contradictions” become derivable if and only if an equation between two recur-
sive types that are not strongly equivalent is allowed to be used in derivations as
unproven assumption.

1.2 Relating Proof Systems for Recursive Type
Equality: Motivations and Aims

In the present study we set out to explore proof-theoretic connections between the
three mentioned proof systems for recursive type equality . Our initial motivation
consisted in an observation of J.W. Klop, who for slightly more general proof systems
recognized the following: a striking similarity between the activities of (a) trying to
demonstrate the consistency of an equation relative to a certain syntactic-matching
system by a ‘loop-checking’ procedure, and of (b) trying to derive the same equation
in an appropriate Brandt-Henglein-like proof system. Since this observation could
easily be reformulated in relation to the respective proof systems for recursive type
equality, the question arose of whether the purported close relationship of problems
could indeed be formulated as a precise statement, and as such be proved, at least
in the somewhat simpler situation considered here of proof systems for recursive
types.

By this apparently very close relation between the syntactic-matching and Brandt-
Henglein systems also the question was initiated whether there did exist also other
interesting proof-theoretic relationships between the mentioned proof systems for
recursive type equality. A particularly intriguing goal was to find out more about
connections between the coinductively motivated system of Brandt and Henglein
and the system of Amadio and Cardelli. Or, put differently, to find precise answers
to the question of whether, and if so then how, coinductive reasoning that is for-
malized by derivations in the Brandt-Henglein system could be translated into the
more ‘traditional’ form of reasoning as formalized by derivations in the system of
Amadio and Cardelli; and vice versa, whether, and if indeed then how, a translation
in the opposite direction could be achieved.

4 Introduction

The aim we pursue here is to contribute some concrete answers to questions of
the kind just mentioned. The main theorems that we will give state connections by
effective proof-theoretic transformations between the three kinds of proof systems
mentioned in Section 1.1 (and a number of additional variant systems); these trans-
formations will be established in the proofs as stepwise and effective operations on
formal derivations.

The predominant part of transformations that we will give are part of what
[TS00] call interpretational proof theory and describe as having “syntactical trans-
lations of one formal theory into another” as its tools. Only one operation on proofs
that we shall work out may be viewed as being part of structural proof theory that,
as [TS00] formulate, is concerned with “a combinatorial analysis of the structure of
formal proofs” and counts cut-elimination and normalization to its central methods.

1.3 Overview

Below we give a brief overview of the respective contents of the eight chapters
following this introduction, and of the three appendices. For precise page references
regarding respective chapters, appendices and sections we want to direct the reader
to the table of contents on page i.

1.3.1 The Chapters

In Chapter 2 we gather frequently used mathematical notation; and we explain
aspects of the notation used in our formal treatment in later chapters of derivations,
i.e. formal proofs.

InChapter 3 we set out to give a rather detailed survey of notions and notations
that are related to the formal treatment of recursive types. As the objects on
which our study is based, we formally introduce a restricted class of recursive types
denoted by µ-expressions with → as the only type constructor. We also introduce
the subclass of all recursive types that belong to the mentioned class and that are “in
canonical form”. It will be necessary to adopt suitable terminology and conventions
for the treatment of substitution expressions and of the variant relation (renaming
of bound variables) on recursive types.

Then the definition of the central notion of the “tree unfolding” of a recursive
type is given, which is able to provide ‘unwinding semantics’ for recursive types: in it
two recursive types are considered to be equal if and only if their tree unfoldings are
the same. This semantics gives rise to the equivalence relation “strong recursive type
equivalence”, or “recursive type equality”, on recursive types. Another relation,
“weak recursive type equivalence”, is defined as the smallest congruence relation
that is generated by the basic operations of “folding” and “unfolding” on recursive
types; it will be shown that this relation is in fact weaker than in strong recursive
type equivalence. Furthermore, an effective and natural transformation of recursive
types into recursive types in canonical form is given. And eventually the notion of

1.3 Overview 5

“generated subterm” of a recursive type is introduced, and later needed facts about
this concept are collected.

In Chapter 4 we gather the definitions and a couple of basic facts about the
notions of derivability and admissibility of inference rules in two kinds of formal
systems that we will encounter later on: in “pure” Hilbert systems, and in natural-
deduction systems. We explain the definition of rule derivability and admissibility
in these systems, and collect some useful basic facts about these notions. And in
particular, we give results concerning the relationships between the notions of rule
derivability and admissibility (in the respective kind of systems) and the possibility
to eliminate rule applications from derivations. Statements concerning such rela-
tionships will be of some use in later chapters, if only as background knowledge that
is able to help our understanding in certain situations.

In Chapter 5 we formally introduce, on the one hand, the axiom systems for re-
cursive type equality due to Amadio and Cardelli and due to Brandt and Henglein,
and on the other hand, a ‘syntactic-matching’ system that is fit for equational test-
ing with respect to recursive type equality; this latter system is an adaptation of a
similar ‘syntactic-matching’ system that was given by Ariola and Klop in [ArKl95].
We report (and partly also sketch proofs for) the soundness and completeness the-
orems of these systems with respect to recursive type equality. Furthermore, we
define respective ‘analytic’, or ‘normalized’, variants of the system by Brandt and
Henglein, and of the syntactic-matching system. Although being closely related to
the original systems, the variant systems possess stronger proof-theoretical proper-
ties as a consequence of the absence in them of the transitivity rule; in particular,
the variant systems enjoy respective “subformula properties”. Still in Chapter 5, we
gather basic facts about the difference in proof-theoretical properties between the
axiom systems on the one hand and the syntactic-matching systems for equational
testing on the other hand. For instance, we examine the ‘theory’ of the syntactic-
matching systems, and we ask what notions of relative consistency are induced by
each of the axiom systems.

In Chapter 6 we investigate the mentioned observation by J.W. Klop regarding
a similarity between the problems of checking the consistency of a given equation
with respect to the syntactic-matching system, and of finding a proof in the axiom
system of Brandt and Henglein. As a start, we show that this similarity can be
described particularly well for the earlier defined ‘analytic’ variants of the Brandt-
Henglein and syntactic-matching systems (in fact, the search for an easy way to
put this observation has provided a strong motivation for defining these variant
systems). For extracting a precise statement, however, a couple of further prereq-
uisites will be needed. Firstly, we introduce a conservative extension of the variant
Brandt-Henglein system by adding some more rules of a circular nature. And sec-
ondly, we define “consistency-unfoldings” in the analytic syntactic-matching system
as certain downwards-growing derivation-trees that formalize successful consistency-
checks with respect to this system. Relying on these notions, our main result in
Chapter 6 will then consist in the following assertion: there exists a duality be-
tween derivations in the extended variant Brandt-Henglein system and consistency-
unfoldings in the variant syntactic-matching system via easily definable reflection

6 Introduction

mappings. And what is more, this duality between derivations and consistency-
unfoldings can geometrically be visualized .

The following two chapters, Chapter 7 and Chapter 8, are devoted to the goal
of developing effective transformations between derivations in the axiom systems of
Amadio and Cardelli and of Brandt and Henglein. Neither of the transformations
that we will describe are of an entirely straightforward nature, for which there are
reasons, likely to be inherent ones, connected with essential differences in the logical
features of these systems. The most important distinction consists hereby in the fact
that the Amadio-Cardelli system is a pure Hilbert system, whereas our formulation
of the Brandt-Henglein system is a natural-deduction system (in [BrHe98] it has
been introduced as a sequent-style Gentzen-system).

In Chapter 7 we build a transformation from derivations in the Amadio-
Cardelli system into respective derivations in the Brandt-Henglein system. In the
first of the two sections of this chapter we carry out some preparations: we obtain
further basic facts (beyond those already treated in Chapter 5) about the ‘proof the-
ory’ of the Amadio-Cardelli system. We show that three kinds of substitution rules
are admissible in this system, and that applications of these rules can always be
removed, by an effective procedure, from derivations in the extension of the Amadio-
Cardelli system with the substitution rules. And then we prove that a particular
rule of the Amadio-Cardelli system, the µ-compatibility rule, can be dispensed with
in a close variant system, or to be more precise, it is an admissible rule in a variant
Amadio-Cardelli system; we also explain how to eliminate applications of this rule
effectively. And subsequently in the second and last section of this chapter, we
develop an effective translation of such derivations in the Amadio-Cardelli system
that do not contain applications of the µ-compatibility rule into derivations in the
Brandt-Henglein system. Together with results obtained in the first section this
will eventually establish the existence of an effective transformation of derivations
in the Amadio-Cardelli system into derivations in the Brandt-Henglein system.

In Chapter 8 we develop an effective transformation in the opposite direc-
tion, namely, from derivations in the Brandt-Henglein system into derivations in
the Amadio-Cardelli system. Such a transformation will be built in two steps.
Firstly, we give an effective transformation from derivations in the analytic variant
Brandt-Henglein system via derivations in an annotated version of this system into
derivations in the system of Amadio and Cardelli. And secondly, we complement
this transformation by one that is able to ‘normalize’ an arbitrary derivation in the
Brandt-Henglein system with the outcome of a respective derivation in the analytic
variant of this system.

In Chapter 9, the conclusion, we summarize the transformations developed in
previous chapters, and then try to get them into a somewhat broader perspective.
We give a figure that shows how the proof systems belonging to one of the three
considered groups are linked by the main ones of our transformations, and we discuss
some noticeable features of our transformations in the light of this picture. And
eventually, we describe four directions for possible extensions of our results.

1.3 Overview 7

1.3.2 The Appendices and Indices

In Appendix A we gather some of the more technical proofs for statements in
Chapter 3. There, proofs are contained from the sections regarding substitution
expressions involving recursive types, the variant relation on recursive types, the tree
unfolding and the leading symbol of a recursive type, and the generated subterms
of a recursive type.

In Appendix B we gather precise versions of statements reviewed in Chap-
ter 4 about the notions of derivability and admissibility of inference rules. We
introduce the notions of “abstract pure Hilbert system” (APHS) and “abstract
natural-deduction system” (ANDS), adapt the notions of rule derivability and ad-
missibility to this systems, and collect basic facts about them. Hereby we are in
particular interested in results concerning the relationship between rule derivability
and admissibility and the possibility to eliminate applications of rules from given
derivations.

In Appendix C results are stated and proved that assert a bound on the depth
of such derivations in the analytic version of the Brandt-Henglein system that do not
contain certain kinds of redundancies. These results are designed for their use in the
proof of statements in Chapter 7 and in Chapter 8; in particular, they are invoked
for showing termination of procedures that build up “redundancy-free” derivations
in the variant Brandt-Henglein system in a bottom-up manner.

The Bibliography is given starting on page 415. On page 419 it is then suc-
ceeded by the Index of Notations, which contains page references to the elements
of notation we use; a Subject Index follows, beginning at page 423. Finally, a
Summary in Dutch (the Samenvatting) is given on page 429.

8 Introduction

Chapter 2

Preliminaries

In this chapter we gather some of the more frequently used basic notions and no-
tations. In Section 2.1 we explain how we designate and treat basic mathematical
objects and entities, and in Section 2.2 we gather the basic proof-theoretic termi-
nology and notation that we will use.

2.1 Basic Mathematical Notions and Notation

Some general abbreviations that will be used here are “iff” for “if and only if”,
“i.e.” for “id est” (latin for “this is” or “this means”), and “w.l.o.g.” for “without
loss of generality”.

We will use the symbol ≡ for literal identity of formal expressions (such as strings
over a given alphabet, see Subsection 2.1.4, or recursive types, see Definition 3.1.1,
Section 3.1, Chapter 2). The symbols =def and⇔def are used to indicate definitions:
for example, in an expression of the form s =def t , the object s is defined as the
object t, and in a stipulation of the form P ⇔def Q the property P is defined as
the property Q. In definitions of formal grammars we will however use the symbol
::= for defining the non-terminal symbol on the left-hand side by a sequence of
construction clauses, separated by the symbol | , on the left-hand side.

We use the symbol for marking the end of proofs; and we use £ and at the
end of definitions and examples, respectively.

2.1.1 Basic Set-Theoretic Notation

We abbreviate the set {0, 1, 2, 3, . . .} of natural numbers including zero by ω, and
the set {1, 2, 3, . . .} of natural numbers by ω\{0}. Standard set-theoretic notations
such as, for example, the membership relation ∈, and the subset relation ⊆ are used
in their usual meaning; the proper subset relation is abbreviated by $.

Let A be a set. We designate by P(A) the powerset of A, i.e. the set of all
subsets of A; by Pf(A) we denote the set of all finite subsets of A. We denote by

10 Preliminaries

|A| the cardinality of A (however, only finite cardinalities will occur, i.e. we will
encounter expressions |B| only for finite sets B, thereby denoting the number of
elements of B).

The Cartesian product {〈a, b〉 | a ∈ A, b ∈ B} of two sets A and B is denoted
by A×B ; and in particular, pairs are denoted in angle-brackets notation: a pair
over A and B is a member 〈a, b〉 of A×B . Angle brackets are also used for triples
〈a1, a2, a3〉 , quadrupels 〈a1, a2, a3, a4〉 , . . . of elements a1, a2, a3, a4, . . . of a set A
(so as to ensure that these can be viewed as sequences over A as defined below).

2.1.2 Functions and Partial Functions

The terms function and mapping are used synonymously. Given that f : A→ B is
a function between two sets A and B, we denote by f(C) =def {f(x) | x ∈ C} , for
all sets C ⊆ A , the image of C under f ; and for all b ∈ B , we denote by f−1(b) the
set {a ∈ A | f(a) = b} . The composition g ◦ f : A→ C of two functions f : A→ B
and g : B → C is defined, for all a ∈ A , by g ◦ f(a) =def g(f(a)) .

A partial function f between two sets A and B will be denoted by

f : A ⇀ B (2.1)

(underlying such a partial function is a function on a subset of A); for all a ∈ A ,
we denote by f(a)↓ , and by f(a)↑ , the statements that f is defined for a, and that
f is not defined for a, respectively; clearly, if f(a)↑ holds, then we denote by f(a)
the element of B that is the result of applying f to a. For a partial function of the
form (2.1), we respectively denote and define by

dom(f) =def {x ∈ A | f(x)↓} ,

ran(f) =def

{
y ∈ B

∣
∣ (∃x ∈ A)

[
f(x)↓ & y = f(x)

]}

the domain, and the range of f (the symbol “&” occurring in the definition of ran(f)
expresses the logical conjunction of the statements to its left and to its right; such
use of “&” for denoting informal conjunctions will be stipulated in Subsection 2.1.6).

2.1.3 Finite Multisets and Sequences

Let A again be a set. By Mf(A) and Seqcsf(A) we respectively denote the set of
all finite multisets over A and the set of all finite sequences over A, i.e. we let

Mf(A) =def {M : A→ ω |M(a) 6= 0 holds only for finitely many a ∈ A} ,

Seqcsf(A) =def {〈〉} ∪ {〈a1, . . . , an〉 | n ∈ ω\{0}, a1, . . . , an ∈ A} ,

where 〈〉 denotes the sequence of length 0 , and where 〈a1, . . . , an〉 denotes a se-
quence of n elements, starting with a1, a2, a3, . . . and ending with an. The union
of two finite multisets M1,M2 ∈Mf(A) over A is defined and designated by

M1]M2 : A→ ω

x 7→ (M1]M2)(x) =def M1(x) +M2(x) .

2.1 Basic Mathematical Notions and Notation 11

By lg : Seqcsf(A) → ω we designate the function that to every sequence σ ∈
∈ Seqcsf(A) assigns its length lg(σ) (for example, lg(〈x1, x2, x3, x4〉) = 4 and
lg(〈〉) = 0). Furthermore we define, for all sets A and for all i ∈ ω\{0} , the partial
function

proji : Seqcsf(A)⇀ A

ξ 7→

{

xi . . . ξ = 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 for some n ∈ ω, n ≥ i

↑ . . . else

on Seqcsf(A) , and we call proji the i-th projection function on Seqcsf(A) .
Eventually, we define the operations set(·) and mset(·) that ‘convert’ finite mul-

tisets or sequences to finite sets, and finite sets or sequences to finite multsets,
respectively. More precisely, we define, for arbitrary sets A, the functions

set :Mf(A) ∪ Seqcsf(A)→ Pf(A) , mset : Pf(A) ∪ Seqcsf(A)→ Mf(A)

in the following way: the function set(·) assigns to every finite multiset M ∈Mf(A)
the finite set set(M) of all elements of A that occur in M (once or more often)1,
and to every finite sequence σ ∈ Seqcsf(A) the finite set set(σ) of all elements of A
that occur in σ. And the function mset(·) assigns to every finite subset Y of A the
finite multiset mset(A) in which every element of Y occurs precisely once and no
other elements of A occur, and to every sequence σ ∈ Seqcsf(A) the finite multiset
mset(σ) in which every element of A occurs precisely as often as in σ and no other
elements of A occur.

2.1.4 Strings

Let A be a set. By A∗ we designate the set of all strings (or words) over alphabet
A including the empty string ε. For a string w ∈ A∗ , we denote by |w| the length
of the string w. Strings of length 1 are identified with the element they contain.
For the concatenation of two strings u and v over A we write u.v ; we will however
frequently drop the concatenation symbol . from a notation like u.v and write uv
instead. For all words w ∈ A∗ , we denote by

Pref(w) =def

{
u ∈ A∗

∣
∣ (∃ v ∈ A∗) [uv = w]

}

the set of all prefixes of w. Using the symbol ≡ , the literal identity of two strings
u, v ∈ A∗ will be designated by u ≡ v .

2.1.5 Reduction Relations

By a reduction relation on a set A we understand just a binary relation → ⊆ A×A.
An abstract reduction system is a structure A = 〈A,→〉 consisting of a set A and
a reduction relation → on A.

1For all M ∈Mf(A) , a ∈ A and n ∈ ω , we say that a occurs n times in M if and only if
M(a) = n .

12 Preliminaries

Let A be a set and let → be a reduction relation on A. The inverse relation
of → is denoted by ←. By ³ we denote the reduction relation on A that is the
reflexive and transitive closure of →, which is also called the more-step reduction
relation with respect to → ; by ´ we mean the inverse relation of ³. By →+ we
denote the transitive closure of →, and by ←+ the inverse relation of →+. By ←→
we denote the symmetric closure of →, i.e. we let ←→=def→ ∪ ← . And finally, by
³́ we denote the convertibility relation (also called the conversion) belonging to
→, i.e. the reflexive, symmetric and transitive closure of → (in other words, the
equivalence relation generated by →).

Analogous designations are used for reduction relations that are denoted by
the symbol → decorated with some name label (for example, ³ren/out-unf and
³́ren/out-unf respectively denote the more-step reduction relation and the convert-
ibility relation belonging to the reduction relation →ren/out-unf that will be intro-
duced in Definition 5.3.5 on p. 138).

2.1.6 Logical Symbols

In definitions we frequently use the standard language of predicate logic with the
logical operators ∨, &, →, ↔ (we follow [Shoe67] in using & in place of ∧) and
the quantifier ∃ and ∀. Informal quantifications in definitions, proofs, etc. will be
represented similar as in the example (∀a ∈ A) (∃ b ∈ B) [R(a, b)] . When referring
to proof systems in [TS00] concerned with predicate logic, we will however conform
to the precise way how the formula language of predicate logic is defined according
to [TS00, p.2] (and then, in particular, use the operator ∧ in place of &).

2.1.7 Trees

In this subsection, we follow the stipulations for trees in [TS00, 1.1.8, p.9]. A tree
is a partially ordered set 〈X,≤〉 with a smallest element and with the property
that, for all x ∈ X , the set {y | y ≤ x} is totally ordered (i.e. it is a linear order).
The elements of X are called the nodes of the tree; branches are maximal totally
ordered subsets of X (i.e. subsets that cannot be extended without introducing
incomparable elements).

Trees are usually expected to grow upwards, in a nature-like manner; however
the derivation-trees introduced in Chapter 6 will be an exception to this rule. If a
branch of a tree is finite, it ends in a leaf or top node of the tree. If n, m are nodes
of a tree with partial ordering ≤, and n < m holds (i.e. n ≤ m and n 6= m hold),
then m is called a successor of n, and n a predecessor of m. If n < m holds and if
there are no nodes in between n and m, then n is called the immediate predecessor
of m, and m an immediate successor of n.

Also labeled trees will be considered (in particular, “prooftrees” will be labeled
trees), with functions assigning objects (usually formulas) to the nodes. The termi-
nology for trees also applies for labeled trees.

2.2 Proof-Theoretical Notation 13

2.2 Proof-Theoretical Notation

Apart from a few minor exceptions (that will be pointed out clearly), we will base
ourselves on the introduction of the basic proof-theoretic notions in [TS00] and on
the particular notation for formal derivations developed and used there. The basic
stipulations from [TS00] for the formal treatment of such systems are reported and
slightly adapted in the sequel below.

Derivations (in [TS00] also called “deductions”) are viewed as labeled trees that
are presented in a nature-like manner with the root at the bottom; each node carries
a formula as its label. The formulas at the immediate successors of a node ν are
the premises of a rule application a, the label of ν is the conclusion of a. At the
root of the tree we find the conclusion of the whole deduction.

The word proof is restricted in its use to arguments on the meta-level; for formal
demonstrations either of the terms derivation or deduction is used. But prooftree
will mean the same as deduction tree and will be used synonymously for “derivation”
and “deduction” when we want to emphasize the graphical aspects of the represen-
tation of a derivation. We will speak of a symbolic prooftree if parts of a prooftree
are abbreviated symbolically in ways described in more detail below. We will not
use the term derivation tree in the way [TS00] do, namely, in the same meaning
as “prooftree” and “deduction tree”, but we will refer by this expression to certain
downwards-growing and downwards-branching labeled “trees of consequences” that
we will use in Chapter 6 and that will be defined there in a very similar way as
derivations. We will use the symbol D (possibly sub- or superscripted or with a
modification like ˜ attached on its top) as a syntactical variable for derivations and
the symbol C for derivation trees.

Although this is also in slight contradiction with the suggestion in [TS00] to use
the word ‘proof’ only for meta-level objects, we follow quite common usage of the
term proof system for formal systems. In particular, we will subsume under it (as
we have already done so in the title of this thesis and in the Introduction) both
axiom systems and formal systems that are fit for testing the ‘consistency’ of given
formulas.

Rules are generally considered to be schemes consisting of applications, infer-
ences or instances of the rule. However, a different, and more abstract, notion of
rule is suggested in Appendix B, where the concepts “abstract pure Hilbert system”
(APHS) and “abstract natural-deduction system” (ANDS) are introduced. In the
case of APHS’s, a rule is a set of instances endowed with a premise and a conclusion
function; instances of such rules can be viewed as “hyperedges” of the concept of
“hypergraph” (for example, see [Plu93]). In the case of ANDS’s the situation is
slightly more complex.

Derivations are displayed in a way that is slightly different from how labeled
trees are usually drawn: if in a derivation the immediate neighborhood of a node
with two predecessors and one successor looks like the tree on the left, then this
part of the deduction is instead represented more compactly as on the right:

14 Preliminaries

Figure 2.1: Example for the formalization of the common practice of denoting
the names of applied rules in derivations by rule name labels (see the indicated
derivation on the right-hand side) by viewing derivations as labeled ‘hypertrees’
(on the left-hand side).

name(R1)

C

name(R2)

D

A B

...
A

...
B

name(R1)

C
name(R2)

D
...

A
AA

B
}}

C

D

...
A

...
B

C

D
...

The general practice, however, is perhaps more adequately represented by the way
how derivations are introduced in the abstract concepts of proof systems in Ap-
pendix B: inferences within derivations are supposed to carry also the names
name(R) of applied (named) rules R (and in the case of derivations in abstract
natural-deduction systems, to carry also markers representing classes of open as-
sumptions that get discharged). For instance, in APHS’s, where rule applications
can be viewed as hypergraph hyperedges, derivations can be represented as hyper-
trees, i.e. hypergraphs with an ‘underlying’ tree such that the nodes of the hyper-
graph are labeled by formulas, and connected by hyperedges that correspond to rule
applications and are labeled by the respective rule name. We do not make these
notions precise here, but instead refer to Figure 2.1 for an appealing example.

Characteristic for systems of natural deduction is the use of assumptions that
may be discharged (or closed) at some later step in the deduction. Assumptions
are provided with markers. We will always assume a countably infinite set Mk of
assumption markers to be given. Markers from this set will be attached to unproven

2.2 Proof-Theoretical Notation 15

assumptions at the top of a prooftree and will enable to do bookkeeping as to
(A) whether or not a particular assumption at the top of a considered prooftree has
already been discharged and as to (B) by which rule application in a derivation an
assumption, on which the conclusion does not depend any more, has actually been
discharged. We will generally use variables u, v, w as syntactical variables that vary
through markers in Mk; however, an exception will be Section 8.1 of Chapter 8,
where we will define a proof systems in which type variables (indicated by the
syntactical variables using small Greek letters α, β, . . .) are used as assumption
markers.

The notations

[A]u

D

B

(A)

D

B

D′

[A]

D

B

D′

(A)

D

B

—to which we will refer to from left to right by the numbers (1)–(4) —have the
following meaning (our understanding of these notions deviates slightly from the
explanation given for them in [TS00] on p. 21): (1) denotes a derivation D with
conclusion B and a set [A]u of open assumptions that consists of all undischarged or
open occurrences of the formula A at the top nodes of the prooftree D with marker
u (note: both B and the formulas in [A]u are part of D and the set [A]u may
be empty); (2) stands for a derivation D with conclusion B, in which a particular
occurrence of the formula A at the top of D is singled out by the context (of an
argument, a proof, a statement, etc.) in which this derivation occurs (note: this
notation entails that there does exist at least one occurrence of a formula A at the
top of the prooftree D); (3) means a derivation with conclusion B that arises from
a derivation D′ with conclusion A and a derivation D of the form (1) (with some
u ∈Mk) by extending D above each of the marked assumptions Au belonging to the
assumption class [A]u by copies ofD′ (note that the marker u for the assumptions Au

above whichD is extended is not relevant any more); (4) denotes the result of placing
a copy of the derivationD′ with conclusion A above the particular occurrence singled
out in a derivation D of the form (2) with conclusion B.

We mention a later frequently used way to shorten complicated prooftrees that
is widely used in proof-theory and that dates back to the seminal work [Gen35] of
Gentzen: a sequence of two or more, rather straightforward, one-premise applica-
tions of rules in which sequence the order of the applications is either obvious or
not relevant is allowed to be indicated by a double line. For example, a symbolic
prooftree of the form

A
R1, R2, . . . , Rn

B

is allowed to be used for a deduction of the formula B from the formula A by n
one-premise applications of the rules R1, R2, . . . , Rn, respectively; the order in
which these rule applications are carried out is either arbitrary, or it is assumed to
be obvious from the rules R1, . . . , Rn and the context in which such a deduction

16 Preliminaries

appears (and usually it is determined by the succession from left to right in the list
R1, R2, . . . , Rn of rules attached to such a ‘multi-step inference’).

In Chapter 4, Section 4.3.3, and in Appendix B, Section B.2, we introduce the
notion of “derivation context” in natural-deduction systems: derivation contexts
are the respective result of replacing some subderivations of a derivation in such a
system by context-holes. By a k-ary derivation context a derivation context with
holes among []1, . . . , []k is meant. For a k-ary derivation contextDC and derivations
D1, . . . ,Dk with respective conclusions A1, . . . , Ak , the result DC[D1, . . . ,Dk] of
hole-filling will be visualized as the symbolic prooftree

D1

[A1]1

Dk
[Ak]k

DC
B

which is defined by extending the labeled tree corresponding to DC above each of
the occurrences of a context hole []i, where i ∈ {1, . . . , k} , by the derivation Di.

More specific proof-theoretic notations will be introduced at a number of places
later on. Most notably, notation for describing (and handling of) finite downwards-
growing derivation-trees is agreed in Notation 6.3.3 and in Notation 6.3.7, Chapter 6.
And useful notation for describing the open assumption classes of derivations in
natural-deduction systems is stipulated in Notation 8.1.3, Chapter 8.

Chapter 3

Recursive Types

In this chapter we introduce basic definitions regarding the particular, restricted
class of recursive types for which we will consider, in a later chapter, proof systems
that formalize a notion of equality between recursive types. A first such proof
system is already encountered here, but most of them will be introduced only in
Chapter 5.

In Section 3.1, we define a restricted class of recursive types in which only
→ appears as type formation symbol. We give definitions for “recursive types”,
and for “recursive types in canonical form”, as terms with a µ-binding as well
as for the notions of the syntactical depth and the size of recursive types. In
Section 3.2 we introduce the notions of contexts and subterms of a recursive type,
together with the technical concept of positions in a recursive type. In the following
section, Section 3.3, we assemble definitions and conventions for the way how we will
treat substitution expressions involving recursive types. In Section 3.4, we gather
definitions, properties and notation for the variant relation between recursive types
which is the counterpart of α-conversion on λ-terms for the recursive types in µ-term
notation considered here.

The important notions of the tree unfolding, and of the leading symbol of a
recursive type are then defined in Section 3.5. Relying on the concept of tree un-
folding, in Section 3.6 the notion of “strong recursive type equivalence”, also called
“recursive type equality” is defined, which is fundamental for proof systems that
will be introduced later in Chapter 5. The weaker notion of “weak recursive type
equivalence” is subsequently defined and studied in Section 3.7; it is in the definition
of this notion that a proof system for a notion of equality between recursive types
will be encountered for the first time here. In Section 3.8 we explain a well-known
transformation that takes general recursive types to recursive types in canonical
form. Finally, in Section 3.9 we define the important notion of generated subterm
of a recursive type and gather the most important results related to this notion,
which we will need for our proof-theoretical investigations in later chapters.

18 Recursive Types

3.1 Definition

We start with the formal definition of recursive types and recursive types in, so
called, canonical form.

Definition 3.1.1 (Recursive types and recursive types in canonical form).
Let TVar be a countably infinite set of type variables

(i) The set µTp of recursive types is generated by the following grammar that is
given in Backus-Naur-Form:

α ::= α1 |α2 |α3 | . . .

τ ::= ⊥ |> |α | (τ → τ) | (µα. τ)

}

(3.1)

where TVar = {α1, α2, α3, . . .}. ⊥ is called the bottom type, and > the top
type. The members of µTp are called recursive types. Recursive types that
are of the form τ1 → τ2 , for some τ1, τ2 ∈ µTp , i.e. recursive types which are
formed according to the fourth disjunctive clause for the non-terminal symbol
τ in the grammar (3.1), are called composite.

In a recursive type (µα. τ) the µ-operator acts as a binding for all occurrences
of the variable α in τ that are not located within subexpressions of τ of the
form (µα. τ0) (and which consequently are already bound inside τ by another
µ-binding of α). Thus an occurrence of the type variable β in a recursive type
σ is called a bound occurrence of β in σ iff it is contained in some subexpression
(µβ. ρ) of σ (i.e. iff for some subexpression (µβ. ρ) of σ it either falls within ρ
or is just the occurrence of β immediately following the leading µ-operator in
(µβ. ρ)). Conversely, a variable occurrence of a type variable γ in a recursive
type σ is called free iff it is not a bound occurrence of γ in σ. For every
recursive type χ, the set of bound variables of (i.e. the set of variables occurring
bound in) χ is designated by bv(χ), and the set of free variables of (i.e. the
set of variables occurring free in) χ by fv(χ).

(ii) The set can-µTp of recursive types in canonical form, a subset of the set µTp
of all recursive types, is generated by the following grammar that is given in
an informal Backus-Naur-Form:

τ ::= ⊥ |> |α | (τ1 → τ2) | (µα. (τ1 → τ2)
︸ ︷︷ ︸

where α ∈ fv((τ1 → τ2))

) (3.2)

Hereby α varies through type variables in TVar and τ1, τ2 both refer to the
non-terminal symbol τ of the grammar.1 As indicated below the µ-expression
in the above defining grammar for can-µTp, a type (µβ. σ) can only be a
recursive type in canonical form, if β ∈ fv(σ) , i.e., if β has indeed at least

1τ1 and τ2 have been used here as differently indexed symbols in order to make the form of
the parsed expressions more readily understandable in the case of a leading µ-symbol where a
side-condition on the variables occurring free comes into play.

3.1 Definition 19

one free occurrence in σ, and if σ is furthermore of the form (σ1 → σ2) for
some σ1, σ2 ∈ can-µTp.

(iii) The (syntactical) depth |τ | of a recursive type τ ∈ µTp or τ ∈ can-µTp is a
natural number or zero that is defined by induction on the formal structure
of τ (described by the grammar in (i)) using the clauses:

|⊥| =def 0 , |>| =def 0 , |α| =def 0 (for all α ∈ TVar) ,

|τ1 → τ2| =def 1 + max{|τ1|, |τ2|} (for all τ1, τ2 ∈ µTp) ,

|µα. τ0| =def 1 + |τ0| (for all α ∈ TVar and τ0 ∈ µTp) .

The size or (syntactical) length s(τ) of a recursive type τ ∈ µTp is a natural
number that is defined by induction with the following clauses:

s(⊥) =def 1 , s(>) =def 1 , s(α) =def 1 (for all α ∈ TVar) ,

s(τ1 → τ2) =def s(τ1) + s(τ2) (for all τ1, τ2 ∈ µTp) ,

s(µα. τ0) =def 1 + s(τ0) (for all α ∈ TVar and τ0 ∈ µTp) .
£

With respect to a semantics for recursive types as labeled trees (that will be
introduced in Section 3.5) recursive types in canonical form can be seen to describe
the labeled trees they represent in a more concise way than recursive types that are
not (recursive types) in canonical form. But it will be shown (in Section 3.8) that
every recursive type τ in µTp can effectively be transformed into a recursive type
τ c in can-µTp such that τ and τ c represent the same labeled tree; on the way from
τ to τ c a number of syntactical redundancies are removed concerning the way how
τ describes the labeled tree it denotes.

In the context of the investigation here later of relationships between known
proof systems for the equivalence relation “recursive type equality” on recursive
types, the distinction between the set µTp and its subset can-µTp is relevant for
the following reason: one axiom system, due to Amadio and Cardelli, is formulated
for equations between recursive types in µTp, whereas another, given by Brandt and
Henglein, is based on equations between recursive types in canonical from the set
can-µTp. But while it can be of considerable technical convenience to let a proof
system be based on formulas containing exclusively recursive types in canonical
form (this is the case for the system of Brandt and Henglein), there is in general
no intrinsic need to do so. We will base all proof systems that are studied here
on equations between recursive types in µTp (see the systems in Section 3.7, and
especially in Chapter 5). In particular, we will extend the system of Brandt and
Henglein in a straightforward way to one that axiomatizes the notion “recursive
type equivalence” between all recursive types in µTp.

Agreement 3.1.2 (On the dropping of outermost parentheses and the use
of shorthands for recursive types). In the following outermost parentheses

of recursive types or recursive types in canonical form are dropped as good as always;

20 Recursive Types

this means that, for instance, in place of the recursive type (µα. (α→ (α→ α)))
in can-µTp just µα. (α→ (α→ α)) will be written.

Furthermore, for arbitrary variables α1, . . . , αn ∈ TVar and recursive types
τ ∈ µTp , the notation µα1α2 . . . αn. τ shall be allowed to be used as a shorthand
for the recursive type (µα1. (µα2. (. . . (µαn. τ) . . .))) .

The countably infinite set TVar of type variables will be considered as fixed
together with an implicit numbering TVar = {α1, α2, α3, . . .} and will be referred to
explicitly only at a few places from now on. Small Greek letters α, β, γ, δ, ε (possibly
indexed, primed, barred or etc.) will be used as syntactical variables, which vary
through type variables; letters τ, σ, ρ, ω, χ (again possibly indexed, primed, etc.) will
be used as syntactical variables, which vary through recursive types (it will have to
be made clear in the context, whether types in µTp or in can-µTp are meant).

Recursive Types τ and τ ′, that are variants of each other, i.e. that can be
transformed into one another by a finite sequence of admissible renamings of bound
variables, are not identified from the outset here (as this is done so quite frequently
in the literature). In particular, we do not introduce here, neither explicitly nor
as an implicit convention on how to view occurrences of recursive types, the use
of equivalence classes modulo renaming of bound type variables (“α-conversion”
equivalence classes on recursive types). For some comments on the reason for this,
see the start for Section 3.4. As a consequence of this decision, we have to care for
bound-variable renaming explicitly; formal notions and notations concerning the
variant relation between recursive types will be introduced in Section 3.4. Further-
more, also substitution in recursive types will be approached rather explicitly here
by the definition of the notion “admissible substitution expression” in Section 3.3.

3.2 Contexts, Positions and Subterms

At some occasions we will rely on the following definition of contexts for recursive
types. Informally, a “context for a recursive type” can be understood as the result
of replacing in a recursive type precisely one variable symbol, or one symbol ⊥ or
>, by a hole 2.

Definition 3.2.1 (Contexts for recursive types). The set µTp–Ctxt of contexts
for recursive types is generated by the following grammar in informal Backus-Naur-
Form

C ::= 2 | (C1 → τ2) | (τ1 → C2) | (µα.C0) (3.3)

where τ1, τ2 ∈ µTp , α ∈ TVar and where we use C as a syntactical variable over
contexts. The elements of µTp–Ctxt are called contexts for recursive types.

The (syntactical) depth |C| and the (syntactical) size s(C) of a context for re-
cursive types C ∈ µTp–Ctxt can be defined inductively by adding the base cases

|2| =def 0 , and s(2) =def 1

to the respective five clauses in the inductive definitions of the depth and the size
of a recursive type in Definition 3.1.1, (iii).

3.2 Contexts, Positions and Subterms 21

Figure 3.1: Illustration of the positions in the two recursive types in canonical
form µα. ((α→ ⊥)→ ⊥) and µα. (β → µβ. (α→ β)) .

ε

α ⊥

⊥→

→

µα

112111

1211

1

βα

→

µββ

→

µα
ε

12

1211

11

1212

121

1

Hole-filling in contexts for recursive types is defined in the obvious way: for all
C ∈ µTp–Ctxt and all τ ∈ µTp , the recursive type C[τ] is defined by replacing the
(single) occurrence of 2 in C by τ . £

In the two following definitions we formally define what we will mean by the set
of “positions” of a recursive type, and by the “subterm” of a recursive type τ at
some given position in τ .

Definition 3.2.2 (Positions in a recursive type). We define the function

Pos : µTp −→ P({1, 2}∗)

that assigns to every recursive type τ ∈ µTp the set Pos(τ) of positions of τ by
induction on the depth |τ | of τ , using the following clauses:

Pos(τ) =def

{ε} if τ ≡ ⊥, or τ ≡ >,

or τ ≡ α for some α ∈ TVar

{ε} ∪ {i.p | i ∈ {1, 2}, p ∈ Pos(τi)}

if τ ≡ τ1 → τ2 for some τ1, τ2 ∈ µTp

{ε} ∪ {1.p | p ∈ Pos(τ0)} if τ ≡ µα. τ0 for α ∈ TVar , τ0 ∈ µTp

£

22 Recursive Types

We refer to Figure 3.1 for an illustration of the set of positions in the two
recursive types τ ≡ µα. ((α→ ⊥)→ ⊥) and σ ≡ (β → µβ. (α→ β)) . There, the
positions of the recursive types τ and σ are associated with nodes in the ‘formation
trees’ of the µ-terms τ and σ, respectively.

Definition 3.2.3 (Subterms of a recursive type). The partial function

·|· : µTp× {1, 2}∗ ⇀ µTp

〈σ, p〉 7→ σ|p ,

which assigns to every recursive type σ ∈ µTp and to every position p ∈ Pos(σ)
the subterm σ|p of σ at position p (and which is undefined for all other positions),
is defined by induction on the length |p| of p by using the following clauses: for all
i ∈ {1, 2} and p0 ∈ {1, 2}

∗ , we let

σ|ε =def σ (for all σ ∈ µTp) ,

(⊥|i.p0) ↑ , (>|i.p0) ↑ , (α|i.p0) ↑ (for all α ∈ TVar) ,

(σ1 → σ2)|i.p0 =def σi|p0 (for all σ1, σ2 ∈ µTp) ,

(µα. σ0)|1.p0 =def σ0|p0 , ((µα. σ0)|2.p0) ↑ (for all α ∈ TVar and σ0 ∈ µTp) .

Let σ ∈ µTp . A recursive type τ is a subterm of σ (symbolically denoted by
τ E σ) if and only if there exists p ∈ Pos(σ) such that τ = σ|p holds, i.e. such that
τ is the subterm of σ at position p. And we denote by

Subt(σ) =def {τ ∈ µTp | τ E σ}

the set of subterms of σ. £

The proposition below formulates the easy provable statement that the number
of positions in a recursive type τ equals the size of τ .

Proposition 3.2.4. For all τ ∈ µTp it holds that |Pos(τ)| = s(τ) .

The main statement of the subsequent proposition is that the definition above
of the subterms of a recursive type σ, which hinges on the set of positions in σ,
coincides with an obvious recursive definition of what is meant by a “subterm of
σ”: an “immediate subterm of σ” or a “subterm of an ‘immediate subterm of σ’ ”.

Proposition 3.2.5. Let σ, σ0, σ1, σ2 ∈ µTp and β ∈ TVar . Then the following
three statements hold for the set Subt(σ) of subterms of σ :

(i) Subt(σ) = {σ} for all σ ∈ {⊥,>} ∪ TVar .

(ii) Subt(σ1 → σ2) = {σ1 → σ2} ∪ Subt(σ1) ∪ Subt(σ2) .

(iii) Subt(µβ. σ) = {µβ. σ} ∪ Subt(σ) .

3.3 Substitution Expressions 23

And furthermore it holds that

|Subt(σ)| ≤ s(σ) ,

i.e. that the number of subterms of a recursive type σ is bounded by the size of σ.

And furthermore we define, for all recursive types τ , the set of positions in τ of
subterms that start with a µ-binding.

Definition 3.2.6 (Subterms starting with a µ-binding in a recursive type).
We define the functions

µPos : µTp −→ P({1, 2}∗)

τ 7−→ µPos(τ) =def

{
p ∈ Pos(τ) | τ |p = µβ. ρ, β ∈ TVar, ρ ∈ µTp

}
,

µSubt : µTp −→ µTp

τ 7−→ µSubt(τ) =def

{
σ | σ ∈ TVar, (∃ p ∈ µPos(τ)) [σ = τ |p]

}
,

which assign to every recursive type τ the set of all positions p in τ such that τ |p
starts with a µ-binding, and respectively, the set of all subterms of τ that start with
a µ-binding. £

3.3 Substitution Expressions

In this section we describe how we will formally treat expressions involving the sub-
stitution operation on recursive types. We have chosen not to define substitution
as a total operation in the style of Curry’s definition of the substitution operation
in λ-calculus (for example, see [HS86, Def. 1.11, p.7]). Instead, we will admit an
expression involving a substitution operation between recursive types only if the
substitution can be carried out as a direct replacement that does not lead to un-
wanted bindings of free variables from the substituted terms. This approach leads us
to a formal definition of “substitution expressions involving recursive types” (in Def-
inition 3.3.1), and to a stipulation of when a substitution expression is “admissible”
as well as of which recursive type, if any, “is denoted” by an “admissible” substitu-
tion expression (in Definition 3.3.2). Eventually, we are being led to the adoption of
an implicit side-condition on the occurrence of a substitution expressions (in Con-
vention 3.3.6): basically, later only “admissible” substitution expressions will be
allowed to occur.

For the purpose of describing and justifying such transformation-steps between
substitution expressions that preserve admissibility and the denoted recursive types,
we introduce the notion of “equality implications” between substitution expressions
(in Definition 3.3.8). These are formal statements about two substitution expres-
sions, asserting that the implicit side-condition on one substitution expression en-
tails the implicit side-condition on the other and that both of them denote the same
recursive type. In a similar way, also “equality equivalences” will be defined. Fur-
thermore, we give two basic lemmas that contain conditions under which easy kind

24 Recursive Types

of transformations between substitution expressions are possible. The second one
of these lemmas is concerned with ‘commuting’ an application of the substitution
operation over another such application. Finally, and at first sight not related to
substitution expressions, we define three “variable conditions” for recursive types
that will play a role in proving a theorem in Section 3.9.

The occurrence of a “substitution expression” of the form τ [σ/α] will, apart
from certain exceptional cases mentioned below in Convention 3.3.6, later (that is,
from Convention 3.3.6 onwards) always be subject to the implicit side-condition on
τ, σ and α that the substitution of σ for α in τ can be performed directly. By this
we mean that it can be carried out as the mere replacement of all free occurrences
of α in τ by σ without giving rise to unwanted bindings2, i.e. bindings of free
variables of σ by binders within τ . In this way the occurrence of a substitution
expression τ [σ/α] is restricted to the case in which it is not necessary to rename
bound variables of τ to guarantee that during the process of inserting σ for the free
occurrences of α in τ bindings of free variables in σ are avoided. A consequence is
that, for given τ, σ ∈ µTp and α ∈ TVar, generally renamings of bound variables
in τ have to be cared for, with the result of a recursive type τ ′ that differs from τ
only by the names of (some, possibly all, of its) bound variables, to make the use
of a substitution expression τ ′[σ/α] possible.

Let τ, σ ∈ µTp and α ∈ TVar . We say that σ is substitutible for α in τ if
and only if it holds for every variable β ∈ fv(σ) that there does not exist a free
occurrence of α in τ within a subterm of the form µβ. ρ of τ .3

In the following definition, we fix a notion of “substitution expression” involving
recursive types by giving a grammar that generalizes the defining grammar for
recursive types: in addition to the productions of grammar (3.1), “substitution
expressions” may also be formed, and typically will be formed, by applications of
a ternary operator (·)[·/·] that is used to symbolize single substitutions, and/or by
applications of operators (·)[·/·, . . . , ·/·] with arity (2n+1) (for n ∈ ω , n ≥ 2) that
are used to symbolize n parallel substitutions.

Definition 3.3.1 (Substitution Expressions). Let TVar be an infinite set of
type variables. Then the set SubstExpr(TVar) of substitution expressions involving
recursive types (for short, the set of substitution expressions) on TVar is generated
by the following grammar:

s : : = ⊥ | > | α | s→ s | µα. s | s[s/α] | s[s/α1, . . . , s/αn]

(where α ∈ TVar, n ∈ ω\{0}, and α1, . . . , αn ∈ TVar) .
(3.4)

Here and later, we use s and t, possibly indexed and/or with attached accents, stars,
etc., as syntactical variables that vary through substitution expressions. We will
usually write SubstExpr for the set SubstExpr(TVar) of substitution expressions

2For the undesirable situation of bindings that are able to distort the intended meaning of a
substitution sometimes also the expression “clashes of variables” is used.

3By using terminology that also occurs frequently in the literature, the condition “σ is substi-
tutible for α in τ” could, equally well, be referred to as “τ is free for α in σ”.

3.3 Substitution Expressions 25

on TVar, and in doing so, we leave the set of type variables implicit on which
SubstExpr depends.

We call a substitution expression s trivial if and only if s does not contain
substitution operators [·/·] nor [·/·, . . . , ·/·] at all, or more precisely, if during the
generation of s according to the grammar (3.4) the sixth and the seventh production
are never employed. £

From the definition of recursive types by grammar (3.1), and the definition of
substitution expressions by grammar (3.4), it obviously follows that a substitution
expression is trivial if and only if it is a recursive type.

Let τ, σ ∈ µTp and α ∈ TVar , and let s be the substitution expression τ [σ/α] .
We mentioned above that a substitution expression like s will later only be admit-
ted, apart from definite exceptions, if the substitution it formalizes can be carried
out without leading to unwanted bindings: in the case of s this means that s will be
“admissible” if and only if σ is substitutible for α in τ . In the definition below this
notion of “admissibility” for basic substitution expressions such as s is extended to
the set of all substitution expressions in a straightforward way. For auxiliary pur-
poses, and as a related notion of obvious interest, we also define, for all substitution
expressions t, the recursive type that “is denoted” by t in case that t is “admissi-
ble”. With regard to this notion of “denoted recursive type”, the definition below
generalizes the stipulation suggested by the example of the substitution expression
s ≡ τ [σ/α] : if s is “admissible”, then s “denotes” the result of replacing all free
occurrences of α in τ by σ.

Definition 3.3.2 (Admissible substitution expressions; the recursive type
that is denoted by a substitution expression). For all substitution expres-

sions s ∈ SubstExpr , we define when s is called admissible: this is done, using the
clauses (i)–(v) below, by induction on the formation of s according to the gram-
mar (3.4). In parallel with admissibility of substitution expressions, also the partial
function

J·K : SubstExpr ⇀ µTp

is (and needs to be) defined that to every substitution expression s that is admissible
assigns the recursive type JsK that is denoted by s (we also will say that s denotes
JsK).
(i) Suppose that s ∈ {⊥,>} ∪ TVar . Then we stipulate that s is admissible; and

we agree that s denotes itself (the recursive type s), i.e. we let JsK =def s .

(ii) Suppose that s ≡ s1 → s2 for some s1, s2 ∈ SubstExpr . Then we stipulate
that s1 → s2 is admissible if and only if both s1 and s2 are admissible. If
s is indeed admissible, the recursive type denoted by s1 → s2 is defined by
JsK =def Js1K→ Js2K ; otherwise JsK is undefined.

(iii) Suppose that s ≡ µα. s0 for some substitution expression s0 ∈ SubstExpr
and some type variable α ∈ TVar . We say that s is admissible if and only
if s0 is admissible. And if s is admissible, then it denotes the recursive type
JsK =def µα. Js0K ; otherwise we let JsK↑ .

26 Recursive Types

(iv) Suppose that s ≡ s0[s1/α] for some α ∈ TVar and some s0, s1 ∈ SubstExpr .
Then we say that s is admissible if and only if s0 and s1 are admissible and if
additionally Js1K is substitutible for α in Js0K. If s is indeed admissible, then
we let the recursive type JsK denoted by s be the result of replacing all free
occurrences of α in the recursive type Js0K by the recursive type Js1K; it s is
not admissible, then JsK is undefined.

(v) Suppose that s ≡ s0[s1/α1, . . . , sn/αn] for some n ∈ ω \{0, 1} , α1, . . . , αn ∈
∈ TVar , and s1, . . . , sn ∈ SubstExpr . Then we call s admissible if and only if
the following three conditions hold: (1) for all i, j ∈ {1, . . . , n} such that i 6= j ,
αi 6≡ αj holds, (2) the substitution expressions s0, s1, . . . , sn are admissible,
and (3) for all i ∈ {1, . . . , n} , JsiK is substitutible for α in Js0K. And if s
is indeed admissible, then the recursive type JsK denoted by s is defined as
the result of simultaneously replacing the free occurrences of α1, . . . , αn in
Js0K by Js1K, . . . , JsnK, respectively. If s is not admissible, then we let JsK be
undefined. £

The proposition below formulates the obvious consequence of Definition 3.3.2
that a substitution expression is admissible if and only if it denotes a recursive
type.

Proposition 3.3.3. For all substitution expressions s ∈ SubstExpr it holds:

s is admissible ⇐⇒ JsK↓ & JsK ∈ µTp .

As an illustration of the notions introduced in Definition 3.3.2, we consider
substitution expressions which are of a form that plays a role in Lemma 3.3.11
below.

Example 3.3.4. Let τ, σ1, σ2 ∈ µTp and α, β ∈ TVar . We consider the substitu-
tion expression

s ≡ τ [σ2/β] [σ1[σ2/β]/α] . (3.5)

By Definition 3.3.2, we find that s is admissible if and only if the following three
conditions are fulfilled:

[C1] σ2 is substitutible for β in τ ;

[C2] σ2 is substitutible for β in σ1;

[C3] the recursive type Jσ1[σ2/β]K that is denoted by (the admissible substitution
expression) σ1[σ2/β] is substitutible for α in the recursive type Jτ [σ2/β]K that
is denoted by (the admissible substitution expression) τ [σ2/β] .

Given that the conditions [C1], [C2], and [C3] hold, the substitution expression s
denotes the recursive type τ̃ that is the result of replacing all free occurrences of α
in Jτ [σ2/β]K by Jσ1[σ2/β]K ; in this case we have

JsK =
q
τ [σ2/β]

[
σ1[σ2/β]/α

] y
=

q
Jτ [σ2/β]K

[
Jσ1[σ2/β]K/α

] y
= τ̃ .

3.3 Substitution Expressions 27

Now we define what will be meant by the “implicit side-condition” of a substitu-
tion expression, and subsequently we state the convention to which we will adhere
concerning the use of substitution expressions.

Definition 3.3.5 (Implicit side-condition on a substitution expression).
Let s be a substitution expression. By the implicit side-condition on s we mean the
condition that s is admissible. £

Convention 3.3.6 (The occurrence of substitution expressions). In this and
in all later chapters, we will use the following convention on the occurrence of sub-
stitution expressions: with the exception of the situations described in items (Exc1)
and (Exc2) below, we allow a substitution expression s to occur only if the implicit
side-condition on s is fulfilled. The two kinds of exceptions to this convention are:

(Exc1) If in a certain context there is the need to state explicitly for a considered
substitution expression s that the implicit side-condition on s is not satisfied,
then the expression s will be allowed to occur in a sentence of a form like “s
is not an admissible substitution expression” or “the implicit side-condition
on s is not satisfied”.

(Exc2) The second kind of exceptions regards statements of equality implications
between substitution expressions in the sense of Definition 3.3.8 below.

£

Remark 3.3.7. The reason for exception (Exc2) in item (i) of Convention 3.3.6
on the use of substitution expressions is, informally, the following. The meaning of
an “equality implication” sV t , for some substitution expressions s and t, will be
defined as the assertion that admissibility of s implies admissibility of t, and that s
and t denote the same recursive type. Hence in such statements an interdependence
between the implicit side-conditions on two different substitution expressions is
asserted and therefore these conditions are not imposed from the outset (otherwise
such “equality implication” statements would all be true trivially).

For the practical treatment of substitution expressions, we need to be able to
carry out a number of such simple transformations on substitution expressions that
preserve admissibility and the denoted recursive types. As a formalization of state-
ments that justify such transformations, we introduce “equality implications” and
“equality equivalences” between substitution expressions. Hereby a substitution
expression s is understood to ‘syntactically imply’ another substitution expression
t if and only if (i) the implicit side-condition on s implies the implicit side-condition
on t and (ii) the recursive types denoted by s and t are syntactically equal. This is
what is stipulated by the following definition.

Definition 3.3.8 (Equality implications and equality equivalences). For-
mally, an equality implication is an expression sV t or sW t , where s and t are
substitution expressions. An equality equivalence is an expression sWV t for two
substitution expressions s and t.

28 Recursive Types

Let s and t be substitution expressions. We say that the equality implication
sV t holds if and only if

s is admissible =⇒ t is admissible & JsK = JtK

holds. We say that sW t holds if and only if tV s holds. And we stipulate
that the equality equivalence sWV t holds iff both of sV t and sW t hold, or
equivalently, iff

s is admissible ∨ t is admissible =⇒ s and t are admissible & JsK = JtK

holds. £

We give the following example with the aim of illustrating Definition 3.3.8.

Example 3.3.9. Let τ, σ1, σ2 ∈ µTp and α, β ∈ TVar . We consider the equality
implication

τ [σ1/α] [σ2/β] V τ [σ2/β] [σ1[σ2/β]/α] , (3.6)

which occurs in a lemma below. By spelling out, rather explicitly, the conditions
for this statement to hold, we find: (3.6) holds if and only if the following statement
is true:

Suppose, that the substitution expression on the left side of (3.6) is admissible,
which means: σ1 is substitutible for α in τ , and that σ2 is substitutible for β
in the recursive type Jτ [σ1/α]K that is denoted by (the admissible substitution
expression) τ [σ1/α] . Then it follows, that:

• the substitution expression on the left side in (3.6) is admissible, which
means: σ2 is substitutible for β in τ , σ2 is substitutible for β in σ1,
and the recursive type Jσ1[σ2/β]K that is denoted by (the admissible
substitution expression) σ1[σ2/β] is substitutible for α in Jτ [σ2/β]K , the
recursive type that is denoted by (the admissible substitution expression)
τ [σ2/β] ; and

• the substitution expressions on either side of (3.6) denote the same re-
cursive type: in particular it holds that the recursive types denoted
by (the two admissible substitution expressions) Jτ [σ1/α]K [σ2/β] and
Jτ [σ2/β]K [Jσ1[σ2/β]K/α] are syntactically equal; it follows that

q
τ [σ1/α] [σ2/β]

y
=

q
Jτ [σ1/α]K [σ2/β]

y
=

q
Jτ [σ2/β]K

[
Jσ1[σ2/β]K/α

]y

=
q
τ [σ2/β] [σ1[σ2/β]/α]

y

is the case.

As a first useful statement for the purpose of transforming substitution expres-
sions, we give the following lemma.

Lemma 3.3.10. Let τ, σ ∈ µTp and α, β be different type variables, i.e. α 6≡ β .
Then the following three statements are true:

3.3 Substitution Expressions 29

(i) (µβ. τ0)[σ/α]V µβ. τ0[σ/α] .

(ii) If α /∈ fv(τ0) or β /∈ fv(σ), then (µβ. τ0)[σ/α] W µβ. τ0[σ/α] .

(iii) If α /∈ fv(τ0) or β /∈ fv(σ), then (µβ. τ0)[σ/α] WV µβ. τ0[σ/α] .

Proof. We will only prove item (ii) of the lemma because item (i) can be shown
analogously and in an easier way, and because item (iii) is an immediate logical
consequence of the assertions in (i) and (ii). But we start with the following general
observation, which is the key to the proofs of all three items.

Let τ, σ ∈ µTp and α, β ∈ TVar such that α 6≡ β . Then the substitution expres-
sion (µβ. τ0)[σ/α] is admissible if and only if it holds that (a) τ0[σ/α] is admissible
and that (b) if α ∈ fv(τ0) then also β /∈ fv(σ) is the case. Hence the admissibility
of (µβ. τ0)[σ/α] entails the admissibility of µβ. τ0[σ/α] , whereas for (µβ. τ0)[σ/α]
to be admissible also the condition α /∈ fv(τ0) ∨ β /∈ fv(σ) is needed additionally to
the assumption that µβ. τ0[σ/α] is admissible.

To prove (ii) now, we let τ, σ ∈ µTp and α, β ∈ TVar such that α 6≡ β , and we
assume that s2 ≡ µβ. τ0[σ/α] is admissible and that α /∈ fv(τ0) or β /∈ fv(σ) holds.
Then we have to show that s1 ≡ (µβ. τ0)[σ/α] is admissible and that s1 and s2
denote the same recursive type. In the preceding paragraph we have observed that
the condition α /∈ fv(τ0) ∨ β /∈ fv(σ) is sufficient to conclude the admissibility of s1
from the admissibility of s2. Since this condition is fulfilled here by assumption,
it follows that s1 is admissible as well. Furthermore s1 and s2 denote the same
recursive type because, due to α 6≡ β , the result of replacing all free occurrences of
α in µβ. τ0 is the same as the result of inserting the outcome of replacing all free
occurrences of α in τ0 by σ into the context (µβ.2) .

In later proofs we furthermore have to be able to treat the operation of ‘com-
muting’ (interchanging) substitutions in a precise way. For this purpose we need
an appropriate analogue for a well-known substitution lemma in λ-calculus with
respect to our convention on the use of substitution expressions. In particular we
consider the question whether, for all τ, σ1, σ2 ∈ µTp and α, β ∈ TVar with the
properties α 6≡ β and α /∈ fv(σ2) , it is true that

τ [σ1/α] [σ2/β] WV τ [σ2/β] [σ1[σ2/β]/α] (3.7)

holds. Perhaps surprisingly it turns out that this is not always the case. Although,
under the assumptions α 6≡ β and α /∈ fv(τ2), it never happens that the substitution
expressions on the left and on the right side of (3.7) are both admissible but denote
different recursive types, it is possible that one of them is admissible whereas the
other is not. For instance, “V” in the equality equivalence “WV” in (3.7) goes
wrong for τ, σ1, σ2 ∈ µTp and α, β ∈ TVar with α 6≡ β and α /∈ fv(τ2), if it holds
that α /∈ fv(τ), τ [σ2/β] is admissible and σ2 is not substitutible for β in σ1. Then
τ [σ1/α] [σ2/β] is an admissible substitution expression, but τ [σ2/β] [σ1[σ2/β]/α]
is not admissible, because σ1[σ2/β] is not admissible. It is easy to give concrete
counterexamples that follow this argumentation.

30 Recursive Types

On the other hand, “W” in the equivalence “WV” in (3.7) fails for τ, σ1, σ2 ∈ µTp
and α, β with α 6≡ β and α /∈ fv(τ2) in the case that τ [σ2/β] [σ1[σ2/β]/α] is ad-
missible, but that σ1 is not substitutible for α in τ (then neither τ [σ1/α] nor
τ [σ1/α] [σ2/β] can be admissible). For an example, choose three mutually different
variables α, β, and γ, and let τ ≡ µβ. α , σ1 ≡ β , and σ2 ≡ γ . Then the substitu-
tion expression τ [σ2/β] [σ1[σ2/β]/α] is admissible and it denotes the recursive type
µβ. γ , as can be seen in detail from

τ [σ2/β] [σ1[σ2/β]/α] ≡ (µβ. α) [γ/β] [β[γ/β]/α] WV (µβ. α) [β[γ/β]/α]

WV (µβ. α) [γ/α]

WV µβ. α[γ/α]

WV µβ. γ ,

(the equality equivalences used above are each of an easily justifiable kind). How-
ever, since β is not substitutible for α in µβ. α , τ [σ1/α] is not admissible and so
neither τ [σ1/α] [σ2/β] can be admissible.

As a way to remedy the undesirable situation that the equality implication (3.7)
cannot always be relied on, we give the the following lemma. In its statement the
two equality implications “V” and “W” within the equality equivalence (3.7) are
considered separately, and conditions are given under which each of them does in
fact hold.

Lemma 3.3.11 (Interchanging of Substitutions). Let τ, σ1, σ2 ∈ µTp and
α, β ∈ TVar be such that α 6≡ β and α /∈ fv(σ2). Then the following three state-
ments are true:

(i) If σ1[σ2/β] is admissible, i.e. if σ2 is substitutible for β in σ1, then it holds
that

τ [σ1/α] [σ2/β] V τ [σ2/β] [σ1[σ2/β]/α] .

(ii) If β /∈ fv(σ1) or if τ [β/α] is admissible (that is, if β is substitutible for α in
τ), then it holds that

τ [σ1/α] [σ2/β] W τ [σ2/β] [σ1[σ2/β]/α] .

(iii) If both of the substitution expressions τ [σ1/α] [σ2/β] and τ [σ2/β] [σ1[σ2/β]/α]
are admissible, then they denote the same recursive type.

A proof for this lemma is given in Appendix A, Section A.1, on page 333.

Remark 3.3.12. The assumptions in assertions (i) and (ii) of the lemma can be
weakened slightly with the result of variant assumptions that may be easier to check
in some cases.

In (i), the assumption “σ1[σ2/β] is admissible” can be replaced by “α ∈ fv(τ)
or σ1[σ2/β] is admissible”, or equivalently by

α /∈ fv(τ) =⇒ σ1[σ2/β] is admissible , (3.8)

3.3 Substitution Expressions 31

and the resulting assertion is equivalent to (i). This is because if α ∈ fv(τ) holds
and if τ [σ1/α] [σ2/β] is admissible, then also σ1[σ2/β] is admissible.

And in (ii), the assumption “β /∈ fv(σ1) or τ [β/α]” can be replaced by “β 6∈
fv(σ1) or β ∈ fv(σ2) or τ [β/α] is admissible”, or equivalently by

β ∈ fv(σ1) & β /∈ fv(σ2) =⇒ τ [β/α] is admissible , (3.9)

and the resulting assertion is equivalent to (ii) in the lemma. The reason for this is
that if β ∈ fv(σ2) and β ∈ fv(σ1) holds, then the admissibility of the substitution
expression τ [σ2/β] [σ1[σ2/β]/α] implies that β is substitutible for α in τ . What is
more, condition (3.9) can further be weakened formally to the equivalent statement

α ∈ fv(τ) & β ∈ fv(σ1) & β /∈ fv(σ2) =⇒ τ [β/α] is admissible . (3.10)

(3.10) is equivalent to (3.9), because if α /∈ fv(τ) is the case then τ [β/α] is admis-
sible.

The following lemma is an easy consequence of the assertions (i) and (ii) in
Lemma 3.3.11.

Lemma 3.3.13. Let τ, σ1, σ2 ∈ µTp and α, β ∈ TVar.
If α 6≡ β , α /∈ fv(σ2), and if one of the two conditions

(i) α ∈ fv(τ) and σ1 is substitutible for α in τ , or

(ii) both of the substitution expressions τ [σ1/α] and σ1[σ2/β] are admissible, i.e.
σ1 is substitutible for α in τ , and σ2 is substitutible for β in σ1,

is fulfilled, then it holds that

τ [σ1/α] [σ2/β] WV τ [σ2/β] [σ1[σ2/β]/α] .

The following lemma is an easy generalization of Lemma 3.3.11: under some
straightforward adaptations of hypotheses, the statements (i), (ii), and (iii) of
Lemma 3.3.11 stay correct when the recursive types occurring there are replaced by
substitution expressions.

Lemma 3.3.14 (Interchanging of substitutions, general version). Let α, β ∈
∈ TVar and t, s1, s2 ∈ SubstExpr be such that α 6≡ β , and that, if s2 is admissi-
ble, also α /∈ fv(Js2K) holds. Then the following statements are true:

(i) If the substitution expression s1[s2/β] is admissible, then it holds that

t[s1/α] [s2/β] V t[s2/β] [s1[s2/β]/α] .

(ii) If in case that s1 is admissible β /∈ fv(Js1K) holds, or if t[β/α] is admissible,
then it holds that

t[s1/α] [s2/β] W t[s2/β] [s1[s2/β]/α] .

32 Recursive Types

(iii) If both of the substitution expressions t[s1/α] [s2/β] and t[s2/β] [s1[s2/β]/α]
are admissible, then they denote the same recursive type.

The proof of this lemma follows easily from Lemma 3.3.11, using the notions
introduced in Definition 3.3.2 and Definition 3.3.8, and therefore it is omitted here.

Concluding this section on substitution expressions, we introduce three vari-
able conditions for recursive types, which form important assumptions for Theo-
rem 3.9.12 in Section 3.9. In the proof of this theorem the fact that the variable
conditions defined below are fulfilled for a certain recursive type will be crucial for
showing the admissibility of a number of occurring substitution expressions.

Definition 3.3.15 (The variable conditions VC0, DB and VC). Let τ ∈ µTp .
We say that τ fulfills the variable condition VC0 (denoted symbolically by VC0(τ))
if and only if

fv(τ) ∩ bv(τ) = ∅ (3.11)

holds, i.e. if no type variable has both a free and a bound occurrence in τ . And
we say that τ fulfills the variable condition DB (formally abbreviated by DB(τ)) if
and only if

¬ (∃ p1, p2 ∈ Pos(τ)) (∃α ∈ TVar) (∃ τ1, τ2 ∈ µTp)
[
p1 6= p2 & τ |p1 = µα. τ1 & τ |p2 = µα. τ2

]
(3.12)

holds, i.e. if τ is distinctly bound , that is, if all µ-bindings in τ bind different type
variables. And finally, we stipulate that τ fulfills the variable condition VC (denoted
symbolically by VC(τ)) if and only if

VC0(τ) & DB(τ) (3.13)

holds, i.e. if no type variable occurs both bound and closed in τ and if all µ-bindings
in τ bind different type variables. £

Remark 3.3.16. The variable condition VC0 corresponds with what in the litera-
ture on λ-calculus is known as the “Variable Convention” (or “Barendregt’s Variable
Convention”); for instance, compare [Ba81, p.26]:

“2.1.13 VARIABLE CONVENTION. If M1, . . . ,Mn occur in a certain
mathematical context (e.g. definition, proof), then in these terms all
bound variables are chosen to be different from the free variables.”

On the other hand, the variable condition VC corresponds to a property of terms
in λ-calculus that in the more recent paper [VB01], which is concerned with the
role of α-conversion in confluence-proofs for λ-calculus, is called “Barendregt Con-
ventional Form” (BCF). The analogous property in λ-calculus to the property DB
for recursive types, which demands that distinct µ-binders bind distinct variables,
is called UB in [VB01] (variables are “uniquely bound” by λ-binders).

3.4 Variant Relation 33

3.4 Variant Relation

As already mentioned in Section 3.1, we do not identify from the outset such recur-
sive types that are variants of each other in the sense that they differ only by names
of bound type variables. Neither do we introduce equivalence classes of recursive
types with respect to renaming of bound type variables; our basic formal objects
are just the recursive types as defined by Definition 3.1.1.

The reason for this approach is that for studying proof-theoretic interrelations
between different proof systems for a notion of equality on recursive types it is,
at some places, necessary to justify such transformation steps in which a subtle
interplay takes place between the operations of bound-variable renaming, of substi-
tution, and of “folding/unfolding” (see (3.35) and (3.34) in Section 3.7 below) on
recursive types. In particular this is the case for the proof-theoretic justifications
that we will give for the admissibility of substitution rules in known proof systems
for recursive types. There, for a number of arguments a detailed analysis of the
interaction between the mentioned three operations on recursive types could not be
avoided.

However, the decision not to identify all variants of a recursive type ‘on a syn-
tactic level’ creates the need for some explicit notation for expressing and proving
precise statements involving the property of two types being variants of each other.
Such a notation is provided by the following definition.

Definition 3.4.1 (Renaming of bound variables in recursive types).

(i) The relation →ren between two recursive types τ1 and τ2, which describes an
atomic admissible renaming-step of a bound variable in τ1, is defined for all
τ1, τ2 ∈ µTp by

τ1 →ren τ2 ⇐⇒def There exists a subterm occurrence of µα. ρ in τ1
such that, for some α̃ with α̃ 6≡ α, α̃ /∈ fv(ρ) and
α̃ substitutible for α in ρ, the recursive type τ2
is the result of replacing this subterm occurrence
of µα. ρ in τ1 by µα̃. ρ[α̃/α].

(For an alternative definition of →ren that relies on contexts for recursive
types, see Definition 3.7.7.)

(ii) The variant relation ≡ren⊆ µTp× µTp between recursive types is defined as
the reflexive, transitive, and symmetrical closure ³́ren of →ren, that is, we
set ≡ren =def ³́ren . For all τ1, τ2 ∈ µTp , we call τ1 a variant of τ2 if and
only if τ1 ≡ren τ2.

Whenever this is possible, we will adhere to the following practice of denoting
variants of recursive types by using single accents: if a recursive type is de-
noted by a syntactical variable like τ, σ, . . . , then we will let variants of this
recursive type be denoted by the respective one of the syntactical variables
τ ′, σ′,

£

It is rather obvious to see that →ren is symmetrical, and that therefore also the

34 Recursive Types

transitive and reflexive closure ³ren of →ren is symmetrical. It follows that the
relations ³ren and ≡ren are identical.

As a consequence of the decision to deal with renamings of bound variables
in recursive types explicitly here, we will have to rely, at numerous places, on
some basic properties of the equivalence relation ≡ren between recursive types. The
most frequently required properties, which will sometimes be used without explicit
reference, are listed in the following lemma.

Lemma 3.4.2. The following statements hold for all α, β ∈ TVar , C ∈ µTp–Ctxt,
and for all τ, τ0, τ1, τ2, τ

′, τ ′1, τ
′
2, σ, σ

′ ∈ µTp :

τ ≡ren τ
′ =⇒ fv(τ) = fv(τ ′) (3.14)

τ ≡ren τ
′ =⇒ τ → σ ≡ren τ

′ → σ & σ → τ ≡ren σ → τ ′ (3.15)

τ ≡ren τ
′ =⇒ µα. τ ≡ren µα. τ

′ (3.16)

τ ≡ren τ
′ =⇒ C[τ] ≡ren C[τ ′] (3.17)

τ ≡ren τ
′ =⇒ τ [σ/α] ≡ren τ

′[σ/α] (3.18)

τ ≡ren τ
′ & σ ≡ren σ

′ =⇒ τ [σ/α] ≡ren τ
′[σ′/α] (3.19)

τ ∈ {⊥,>, α} & τ ′ ≡ren τ =⇒ τ ′ ≡ τ (3.20)

τ ′ ≡ren τ1 → τ2 =⇒ (∃ τ ′1, τ
′
2 ∈ µTp)
[
τ ′ ≡ τ ′1 → τ ′2 & τ ′1 ≡ren τ1 & τ ′2 ≡ren τ2

]

}

(3.21)

τ ′ ≡ren µα. τ0 =⇒ (∃ τ̃0 ∈ µTp) (∃ α̃ ∈ TVar)
[
τ ′ ≡ µα̃. τ̃0

]
(3.22)

µα. τ ≡ren µα. τ
′ =⇒ τ ≡ren τ

′ (3.23)

µα. τ ≡ren µβ. σ =⇒ τ [µα. τ/α] ≡ren σ[µβ. σ/β] (3.24)

Furthermore, also the following two statements hold, which assert that substitutions
in recursive types are always facilitated by going over to appropriate variants: firstly

(∀σ ∈ µTp) (∀α ∈ TVar)

(∀τ ∈ µTp) (∃ τ ′ ∈ µTp)
[
τ ′ ≡ren τ & σ is substitutible for α in τ ′

]
(3.25)

holds, and as a refinement of a special case of this statement, secondly it is the case
that:

(∀σ ∈ µTp) (∀α ∈ TVar)

(∀µβ. τ ∈ µTp) (∃ τ ′ ∈ µTp) (∃ β̃ ∈ TVar)
[
τ ′ ≡ren τ & µβ̃. τ ′[β̃/β] ≡ren µβ. τ &

& σ is substitutible for α in µβ̃. τ ′[β̃/β]
]
. (3.26)

About the Proof. Some of the assertions of the lemma associated with (3.14)–(3.26)
are fairly straightforward to prove; others need more subtle arguments. In particu-
lar, (3.14)–(3.17) and (3.20)–(3.22) can be shown easily by induction on the length of
a conversion with respect to the reduction relation→ren between τ and τ ′ (however,

3.5 Tree Unfolding and Leading Symbol 35

(3.16) is an immediate consequence of (3.17)). As an example of an assertion that
needs a more involved proof, the statement that (3.18) holds for all τ, τ ′, σ ∈ µTp
and α ∈ TVar is shown in Appendix A, Section A.2, starting on page 336. While
not being substantially more difficult to prove, we do not give proofs here for the
statements associated with (3.19) and (3.23)–(3.26).

3.5 Tree Unfolding and Leading Symbol

In this section we give formal definitions of the notions of “tree unfolding” of a
recursive type and of the simpler, but related notion of “leading symbol” of a
recursive type.

Definition 3.5.1 (Type Trees). A type tree t is a partial function

t : {1, 2}∗ ⇀ {⊥,>,→} ∪ TVar

with domain Acc(t) =def dom(t), whose members are called access paths of t such
that the following two properties hold:

(i) Acc(t) 6= ∅ and Acc(t) is prefix-closed, i.e. it holds:
(
∀ p, p1, p2 ∈ {1, 2}

∗
) [
p ≡ p1p2 & p ∈ Acc(t) ⇒ p1 ∈ Acc(t)

]
,

i.e. all prefixes of access paths of t are again access paths of t.

(ii) For the arity of the symbol labeling some node p in t (which arity is 2 for the
type implication symbol→ and 0 for the symbols ⊥,> and all type variables)
is equal to the number of successors of p in t, i.e.

(∀ p ∈ {1, 2}∗)
[(

t(p) ≡→ ⇒ p1, p2 ∈ Acc(t)
)

&

&
(
t(p) ∈ {⊥,>} ∪ TVar ⇒ p1, p2 /∈ Acc(t)

)]

.

We denote by TpTrees the set of all type trees.
Following the stipulations in Chapter 2, Subsection 2.1.2, the symbols ↓ and

↑ are used to designate definedness and undefinedness of a partial function on an
argument, respectively. Here in particular, for a given type tree t and a path
p ∈ {1, 2}∗ , the expression t(p) ↓ means that p ∈ Acc(t), and the expression t(p) ↑
means that p /∈ Acc(t) .

We furthermore assume the following partial order on {1, 2}∗ , which is induced
by the “prefix”-relation and which is able to partially order the set Acc(t) of access
paths of an arbitrary type tree t: for all p1, p2 ∈ {1, 2}

∗ , we let

p1 ≤ p2 ⇐⇒def p1 is a prefix of p2
(
⇐⇒ (∃ p̃ ∈ {1, 2}∗) (p2 = p1p̃)

)
.

£

36 Recursive Types

Next we define the notion of subtree of a type tree. The well-definedness of
subtrees of type trees as type trees will be stated by the subsequent proposition.

Definition 3.5.2 (Subtrees of type trees). Let t ∈ TpTrees be a type tree and
let p ∈ Acc(t) be arbitrary. The subtree t|p of the type tree t determined by p is
the partial function defined by

t|p : {1, 2}∗ ⇀ {⊥,>,→} ∪ TVar

p̃ 7−→ t|p(p̃) =def t(p.p̃) .
(3.27)

£

Proposition 3.5.3. Let t ∈ TpTrees and p ∈ Acc(t) . Then the subtree t|p of t
determined by p is a type tree with the property

Acc(t|p) = { p̃ ∈ {0, 1}∗ | p.p̃ ∈ Acc(t)} . (3.28)

Proof. The representation (3.28) of the set of access paths of a subtree t|p deter-
mined by p is an obvious consequence of the definition of tp.

For the definition of the “tree unfolding” of a recursive type, we will need the
notion of the “number of leading µ-bindings” of a recursive type.

Definition 3.5.4 (Number of leading µ-bindings of a recursive type). The
number of leading µ-bindings nlµb(τ) of a recursive type τ is a natural number or
zero that is defined by induction on the formal structure of τ (as defined in the
grammar (3.1) in Definition 3.1.1) using the following clauses:

nlµb(⊥) =def 0 , nlµb(>) =def 0 , nlµb(α) =def 0 (for all α ∈ TVar) ,

nlµb(τ1 → τ2) =def 0 (for all τ1, τ2 ∈ µTp) ,

nlµb(µα. τ0) =def 1 + nlµb(τ0) (for all α ∈ TVar and τ0 ∈ µTp) .

£

Example 3.5.5. It is obvious to verify that, according to the definition above,

nlµb(µα. α) = nlµb(µα. β) = 1 , nlµb(α) = 0 , nlµb(µα1 . . . αn. (ρ1 → ρ2)) = n

holds, for all α, β, α1, . . . , αn ∈ TVar and ρ1, ρ2 ∈ µTp .

As a first, and quite obvious, property of the function nlµb(·), we note that it
is invariant under renaming of bound variables in recursive types.

Proposition 3.5.6. For all τ, τ ′ ∈ µTp with τ ′ ≡ren τ , nlµb(τ ′) = nlµb(τ) holds.

Proof. The proposition follows from the following assertion by induction on the
length of a conversion with respect to the reduction relation→ren between recursive
types τ and τ ′ : For all τ, τ ′ ∈ µTp such that τ →ren τ

′ is the case, it holds that
nlµb(τ) = nlµb(τ ′) . This, in its turn, can be shown by induction on |τ |, where in
the induction step the following assertion is used: for all τ ∈ µTp and α, α̃ ∈ TVar ,
it holds that nlµb(τ [α̃/α]) = nlµb(τ) (which can again be proved by induction on
|τ |).

3.5 Tree Unfolding and Leading Symbol 37

In the following lemma we give a characterization of the effect that “outermost-
unfolding” has in a recursive type τ on the measure nlµb(τ) . By “outermost-
unfolding” we hereby mean the operation that takes a recursive type µα. τ over to
a recursive type τ ′[µα. τ/α] , where τ ′ is a variant of τ with the property that µα. τ
is substitutible for α in τ ′ (for a definition of “outermost-unfolding” as a reduction
relation on µTp see Definition 3.9.1).

Lemma 3.5.7. For all τ, τ ′ ∈ µTp and α1 ∈ TVar such that τ ′ ≡ren τ and µα1. τ
is substitutible for α1 in τ ′ the following two (independent) equivalences hold:

nlµb(τ ′[µα1. τ/α1]) < nlµb(µα1. τ) ⇐⇒

⇐⇒ ¬ (∃n ∈ ω\{0}) (∃α2, . . . , αn ∈ TVar)
[
τ ≡ µα2 . . . αn. α1 & α1 6≡ α2, . . . , αn

]

⇐⇒ nlµb(τ ′[µα1. τ/α1]) = nlµb(µα1. τ)− 1 .

(3.29)

A proof of this lemma is given in Appendix A, Section A.3, on page 338. We
are now able to give the definition of the notion of “tree unfolding” of a recursive
type.

Definition 3.5.8 (Tree unfolding of a recursive type). The function

Tree : µTp −→ TpTrees

τ 7−→ Tree(τ) : {1, 2}∗ −→ {⊥,>,→} ∪ TVar

p 7−→ Tree(τ)(p)

that assigns to every recursive type τ ∈ µTp its tree unfolding Tree(τ) is defined
as follows. For all τ ∈ µTp and all p ∈ {1, 2}∗, the symbol Tree(τ)(p) is defined by
induction on |p| together with a sub-induction on nlµb(τ), the number of leading
µ-bindings in τ , according to the five clauses below. According to the stipulations in
Section 2.1.2 of Chapter 2, the symbol ↑ is used here in expressions like Tree(τ)(p) ↑
to denote undefinedness of the partial function Tree(τ) on an argument p ∈ {1, 2}∗ .

(1) If nlµb(τ) = 0, and τ ≡ ⊥ or τ ≡ > or, for some α ∈ TVar, τ ≡ α, then

Tree(τ)(ε) =def τ , Tree(τ)(p) ↑ (if p 6= ε) .

(2) If nlµb(τ) = 0 and τ ≡ τ1 → τ2 and p = i p0 , for some τ1, τ2 ∈ µTp, i ∈ {1, 2}
and p0 ∈ {1, 2}

∗ , then

Tree(τ)(ε) =def → , Tree(τ)(p) =def Tree(τi+1)(p0) .

(3) If nlµb(τ) = n , for some n ≥ 1, and τ ≡ µα1. τ0 , for some τ0 ∈ µTp and
α1 ∈ TVar with α1 /∈ fv(τ0) , then

Tree(τ)(p) =def Tree(τ0)(p) .

38 Recursive Types

(4) If nlµb(τ) = n , for some n ≥ 1, and τ ≡ µα1. τ0 , for some τ0 ∈ µTp and
α1 ∈ TVar such that with α1 ∈ fv(τ0), and if furthermore τ ≡ µα1 . . . αn. α1
for some type variables α2, . . . , αn ∈ TVar (it follows that α1 6≡ α2, . . . , αn),
then

Tree(τ)(ε) =def ⊥ , Tree(τ)(p) ↑ (if p 6= ε) .

(5) If nlµb(τ) = n , for some n ≥ 1, and τ ≡ µα1. τ0 , for some α1 ∈ TVar and
τ0 ∈ µTp such that α1 ∈ fv(τ0), and if furthermore τ 6≡ µα1 . . . αn. α1 for all
α2, . . . , αn ∈ TVar (it follows that τ must be of the form µα1 . . . αn. (ρ1 → ρ2)
for some α2 . . . αn ∈ TVar and ρ1, ρ2 ∈ µTp), then we set:

Tree(τ)(p) =def Tree(τ ′0 [τ/α1])(p) ,

where τ ′0 is a variant of τ0 with the property that τ is substitutible for α in
τ ′0 ; to disambiguate this definition (with respect to the possibility of choosing
different appropriate variants τ ′0 of τ0), we furthermore assume at this point
that τ ′0 is actually the outcome of a computation of an effective deterministic
algorithm A on input τ , where A is supposed to satisfy

“For all σ0 ∈ µTp and all variables β on input µβ. σ0 the al-
gorithm A produces after a finite number of steps as output a
variant σ′0 of σ0, which has the property that µβ. σ0 is substi-
tutible for β in σ′0.”

(3.30)

and where A is furthermore assumed to be given as an underlying and inde-
pendent tool for the entire definition of Tree here.4

£

Some well-definedness issues in connection with this definition are considered
and treated in the following remark.

Remark 3.5.9. (i) The well-definedness of the tree unfolding Tree(τ) of a re-
cursive type τ in clause (5) of Definition 3.5.8, i.e. that nlµb(τ ′0[µα1. τ0/α1]) <
< nlµb(µα1. τ0) holds (we have τ ≡ µα1. τ0 in this case), follows directly from
Lemma 3.5.7.

(ii) It is possible to subsume the treatment of case (3) in the inductive definition
of Tree(τ) for τ ∈ µTp in Definition 3.5.8 under the treatment of case (5).
We have chosen not to do so for the sake of clarity and to ease the proof of a
lemma below.

4It is clear, that algorithms with the property (3.30) can in fact be built: for example, an
algorithm can be constructed, which for input µβ. σ0 always performs a finite sequence of →ren-
steps to σ0 such that for the last type σ′0 of the sequence the sets fv(σ′0) of free and bv(σ′0) of
bound variables of σ′0 are ultimately disjoint; for such a recursive type σ′0 it then clearly holds
that µβ. σ0 is substitutible for β in σ′0.

3.5 Tree Unfolding and Leading Symbol 39

(iii) It is not hard to prove that the particular way of choosing, in item (5) of
Definition 3.5.8, an appropriate variant τ ′0 of τ0 (by means of an algorithm
that is not specified there but assumed to be given and underlying the entire
definition) is actually of no consequence to the definition of the tree unfolding
function Tree. More precisely, it holds that, if the definition of a function
Tree1 : µTp → TpTrees were based on the same clauses (1)–(5) as Tree
in Definition 3.5.8, but on a different and perhaps even non-deterministic
algorithm A1 with the property (3.30), then the newly defined function Tree1
and the function Tree from the above definition would nevertheless coincide.
This can be seen by a proof, which uses item (i) of the following lemma in an
induction of the same form as used in Definition 3.5.8.

The following lemma states that the operation of taking the tree unfolding of a
recursive type is invariant under the reduction relations ³ren and →unfold.

Lemma 3.5.10. (i) Recursive types that are each others variant possess the same
tree unfolding, i.e. for all τ, τ ′ ∈ µTp it holds that:

τ ≡ren τ
′ =⇒ Tree(τ) = Tree(τ ′) .

(ii) The tree unfolding of a recursive type is invariant under the operation of
unfolding. This means that, for all α ∈ TVar and all τ0, τ

′
0 ∈ µTp, it holds:

τ ′0 ≡ren τ0 & µα. τ0 is substitutible for α in τ ′0 =⇒

=⇒ Tree(µα. τ0) = Tree(τ ′0 [µα. τ0/α]) .

A proof of this lemma is given in Appendix A, Section A.3, on page 339. For
stating an important fact about the tree unfolding of recursive types, we need the
following terminology: A type tree is called regular if it has only a finite number of
different subtrees.

Fact 3.5.11. Let σ ∈ µTp. The tree unfolding Tree(σ) of a recursive type σ is a
regular tree. The number of different subtrees of Tree(σ) is bounded by the size |σ|
of σ.

This fact will be proved on page 63 in Section 3.9 as a corollary, Corollary 3.9.13,
to a theorem about the notion defined there of “generated subterm” of a recursive
type.

Next we give the definition of what we will mean by the “leading symbol of a
recursive type”. We introduce two leading symbol functions, one that is a partial
and another one that is total, and we will notice shortly that the second is an
extension of the first.

Definition 3.5.12 (Leading symbol functions L and L′). We define the func-
tions L, L′ and the leading symbol of a recursive type in the following three items:

40 Recursive Types

(i) The leading symbol function L : µTp⇀ {⊥,>,→} ∪ TVar is a partial func-
tion that is defined on the subset can-µTp of µTp by the clauses

L(⊥) =def ⊥ , L(>) =def > , L(α) =def α (for all α ∈ TVar) ,

L(τ1 → τ2) =def → (for all τ1, τ2 ∈ TVar) ,

L(µα. (τ1 → τ2)) =def (for all τ1, τ2 ∈ TVar and α ∈ TVar) ,

and which is undefined on µTp \ can-µTp (i.e. L is defined for precisely all
recursive types in canonical form).

(ii) The leading symbol function L′ : µTp −→ {⊥,>,→} ∪ TVar is defined for
all recursive types τ ∈ µTp by

L′(τ) =def Tree(τ)(ε) , (3.31)

i.e. L′(τ) is that symbol, which labels the root in the tree unfolding Tree(τ)
of τ .

(iii) For every recursive type τ ∈ µTp , the leading symbol of τ is defined as L′(τ).
£

Remark 3.5.13. As we will see in the following proposition, the leading-symbol
function L′ is the extension of the partial leading-symbol function L to the set µTp
of all recursive types. We have defined the partial function L separately from its
proper extension L′ here in an effort to make the slightly more involved definition of
L′ directly accessible in the special case of defining the leading symbol of a recursive
type in canonical form.

It is easy to see that the definition of L′ can be given in a more explicit and non-
inductive way by expanding the right side of (3.31) according to the definition of the
tree unfolding in Definition 3.5.8. We have avoided doing this here because we would
essentially have repeated a special case of the clauses (i)–(iv) in Definition 3.5.8.
However, it is important to note that the definition of the leading symbol L′(τ) of a
recursive type τ does not presuppose full knowledge of the tree unfolding Tree(τ)
of τ , which usually is infinite. In fact, L′(τ) can actually always be produced from
τ ‘in a linear amount of time’.

Proposition 3.5.14. The leading symbol function L′ is an extension of the leading
symbol function L to a total function with the set µTp of recursive types as its
domain. In particular, L′(τ) = L(τ) holds for all τ ∈ can-µTp.

Proof. Due to the definition of L′ via the notion of tree unfolding, it suffices to show
that the leading symbol functions L and L′ agree on can-µTp, the set of recursive
types in canonical form.

The statement, that, for all τ ∈ can-µTp , L′(τ) = L(τ) holds, can be shown by
distinguishing the five possible cases for the last generation step of τ with respect
to the defining grammar (3.2) for the set can-µTp. Here, we consider only the not

3.6 Recursive Type Equality 41

entirely obvious case that τ ≡ µα. (τ1 → τ2) for some τ, τ1, τ2 ∈ µTp and α ∈ TVar
. In this case we find, by expanding the definitions of L′, of Tree, and of L , that,
with appropriate respective variants τ ′1 and τ ′2 of τ1 and τ2, the following holds:

L′(µα. (τ1 → τ2)) = Tree(µα. (τ1 → τ2))(ε)

= Tree(τ ′1[τ/α]→ τ ′2[τ/α]) = → = L(µα. (τ1 → τ2)) .

Hence the functions L′ and L do indeed coincide on τ in this case.

Example 3.5.15. We want to find the leading symbols of the recursive types
µα1α2. α2, µα1α2. α3, and µα. (α→ ⊥). By expanding the definitions of the leading-
symbol function L′ and of the tree unfolding function Tree, we find

L′(µα1α2. α2) = Tree(µα1α2. α2)(ε) = Tree(µα2. α2)(ε) = ⊥ ,

L′(µα1α2. α3) = Tree(µα1α2. α3)(ε) = Tree(µα2. α3)(ε) = Tree(α3)(ε) = α3 ,

L′(µα. (α→ ⊥)) = Tree(µα. (α→ ⊥))(ε) = Tree((µα. (α→ ⊥))→ ⊥)(ε) =→ .

Hence the leading symbols of µα1α2. α2, µα1α2. α3, and µα. (α→ ⊥) are ⊥, α3,
and →, respectively.

We conclude this section with a proposition that characterizes those recursive
types that have the type composition symbol → as their leading symbol.

Proposition 3.5.16. For all τ ∈ µTp it holds:

L′(τ) =→ ⇐⇒ (∃n ∈ ω) (∃α1, . . . , αn ∈ TVar)

(∃ ρ1, ρ2 ∈ µTp)
[
τ ≡ µα1 . . . αn. (ρ1 → ρ2)

]
.

}

(3.32)

Proof. The proposition follows from the chain of equivalences (7.7) that are justified,
and used, in the proof of Lemma 7.1.1 in Chapter 7.

3.6 Recursive Type Equality

Based on the notion of tree unfolding of recursive types, it is now possible to define
the relation “recursive type equality”, or “strong equivalence”, on recursive types.

Definition 3.6.1 (Recursive Type Equality (strong recursive type equiv-
alence)). Two recursive types τ and σ are called strongly equivalent (which we
denote symbolically by τ =µ σ) if and only if they possess the same tree unfolding.
And furthermore, the relation =µ⊆ µTp× µTp that is defined by stipulating, for
all τ, σ ∈ µTp ,

τ =µ σ ⇐⇒def Tree(τ) = Tree(σ) (3.33)

is called recursive type equality , or strong recursive type equivalence (shorter, strong
equivalence), in accordance with already introduced symbolic notation for “strongly
equivalent”. £

42 Recursive Types

We are going to give two examples for the above defined notions of the tree
unfolding of a recursive type and of the strong recursive type equivalence relation.
Instead of arguing formally precise, we thereby admit a more informal argumenta-
tion, that involves pictures of labeled trees and of cyclic term graphs. In particular,
we use a graphical representation of recursive types as cyclic term graphs. We
thereby base ourselves on what is surely a standard translation of recursives types
τ into cyclic term graphs G(τ) that is made precise in the more general setting of
µ-terms over a first-order signature in the report version of [ArKl95]. It can be
found there in Definition 2.7 on page 7 (in an informal and graphical but rather
instructive way) as well as in Section 5.1 on page 36 (there in a formal way, by
which a recursion system—that is itself assumed to represent a cyclic term graph
uniquely—is assigned to an arbitrary given µ-term over a first order signature).

For the sake of the two examples below, we also assume tacitly a soundness
statement for our informal argumentation, which asserts, for all τ ∈ µTp , that the
outcome Tree(G(τ)) of taking the tree unfolding (in a “canonically” defined way5)
of the cyclic-term graph G(τ) associated in the above mentioned way with τ is
actually equal to Tree(τ) as defined in Definition 3.5.8. – We do not prove this
statement here, since (1) it is beyond the scope of the present study, and because
(2) it is not inherently necessary for the purpose at hand here of constructing and
convincing ourselves of the geometrical shape of the tree unfolding Tree(τ) of a
given recursive type τ as defined in Definition 3.5.8 (but the detour via the cyclic
term graph G(τ) can provide some helpful visualization).

Example 3.6.2 (Tree unfolding, strong recursive type equivalence). We
consider the recursive types in canonical form

τ1 ≡ µα. (α→ ⊥) and σ1 ≡ µβ. ((β → ⊥)→ ⊥) .

The term trees of τ1 and σ1 are of respective shape

µα

→

⊥α

β

µβ

⊥

⊥→

→

From these term trees the cyclic term graphs that correspond, under the mentioned
standard translation from [ArKl95], to τ1 and σ1, respectively, can be found as

5Building the tree unfolding Tree(g) of a given cyclic term graph g means informally: to
associate with every path p in the graph g, which leads to a node n in g with label l, a node
np in the tree unfolding Tree(g) of g, which is accessible from the root of Tree(g) by a path
corresponding to p, and which node np carries also label l.

3.6 Recursive Type Equality 43

follows: firstly, remove nodes corresponding to bound variables and redirect the
respective incoming edge to the node with the µ-binding by which the variable was
bound, thereby reaching the cyclic graphs

µα

→

⊥

µβ

⊥

⊥→

→

And secondly, “collapse” nodes with µ-bindings to the nearest node below that is
labeled by a symbol → (if, other than in the example here, such a node does not
exist, “collapse” to a “black hole”), carrying backbindings to the node with the
µ-binding along during this movement. In this way we find the cyclic term graphs

→

⊥

→

→ ⊥

⊥

as the result here.

Now it is easy to see that these two cyclic term graphs have the same tree
unfolding, see the picture of the labeled tree below. And also it can be shown
by induction on the length of paths p ∈ {1, 2}∗) that τ1 and τ2 possess the same
tree unfolding. However, it is easy to show (by induction on the length of paths
p ∈ {1, 2}∗) that τ1 and τ2 possess the same tree unfolding, a type tree of the form

44 Recursive Types

Tree(τ1) = Tree(σ1) = /.-,()*+→

}}{{
{{
{{
{{
{

ÃÃ
BB

BB
BB

BB
²²

/.-,()*+→

~~}}
}}
}}
}}
}

ÃÃ
AA

AA
AA

AA
A

/.-,()*+⊥

/.-,()*+→
Ä

Ä
Ä
Ä
Ä

ÃÃ
AA

AA
AA

AA
A

/.-,()*+⊥

/.-,()*+⊥

Such a (type) tree is sometimes called a “comb” because of its geometrical shape.
Hence we find τ1 =µ σ1 , i.e. that τ1 and σ1 are strongly equivalent, by Defini-
tion 3.6.1.

The situation is different, however, if we consider the slightly different recursive
type in canonical form

σ̃1 ≡ µβ. ((β → γ)→ ⊥) (where γ 6≡ β)

in place of σ1. The recursive type σ̃1 corresponds, via the mentioned standard
translation, to the cyclic term graph

→

→ ⊥

γ

and has the
tree unfolding Tree(σ̃1) =

/.-,()*+→

}}||
||
||
||
|

ÃÃ
AA

AA
AA

AA
A

²²

/.-,()*+→

ÄÄÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä

ÂÂ
??

??
??

??
?

76540123⊥

/.-,()*+→

ÄÄÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä

ÂÂ
??

??
??

??
?

76540123γ

/.-,()*+→
Ä

Ä
Ä
Ä
Ä

ÂÂ
??

??
??

??
?

76540123⊥

76540123γ

Obviously Tree(σ̃1) is different from Tree(τ1), and hence τ1 6=µ σ̃1 follows. Anal-
ogously we recognize that also σ1 6=µ σ̃1 is the case. Thus the recursive type σ̃1 is
not strongly equivalent to either of the recursive types τ1 or σ1.

3.6 Recursive Type Equality 45

We continue with giving a second example.

Example 3.6.3 (Tree unfolding, strong recursive type equivalence). We
consider the three recursive types in canonical form

τ2 ≡ µα. ((α→ α)→ α) , ρ2 ≡ µα. (α→ α) , and σ2 ≡ µα. (α→ (α→ α)) .

The term trees of τ2, ρ2 and σ2 are of the respective shape

α→

αα

→

µα

µα

→

αα

αα

→α

→

µα

By redirecting arrows to bound variables at the bottom of these term trees to the
respective nodes with the µ-binding by which they are bound, we arrive here at the
cyclic graphs

µα

→

→
µα

→

µα

→

→

And by a second step of collapsing nodes with a µ-binding to the nearest nodes
with a symbol → below, we reach the two cyclic term graphs

→

→

→

→

→

From these cyclic term graphs it is easy to guess that τ2, ρ2, and σ2 possess
actually the same tree unfolding, namely a type tree of the form

46 Recursive Types

Tree(τ2) = Tree(ρ2) = Tree(σ2) =

/.-,()*+→²²

wwnn
nn
nn
nn
nn
nn
n

''P
PP

PP
PP

PP
PP

PP

/.-,()*+→

~~~~
~~
~~
~~

ÃÃ
@@

@@
@@

@@
/.-,()*+→

~~~~
~~
~~
~~

ÃÃ
@@

@@
@@

@@

/.-,()*+→
Ä

Ä
Ä
Ä
Ä ?

?
?
?

?
/.-,()*+→
Ä

Ä
Ä
Ä
Ä ?

?
?
?

?
/.-,()*+→
Ä

Ä
Ä
Ä
Ä ?

?
?
?

?
/.-,()*+→
Ä

Ä
Ä
Ä
Ä ?

?
?
?

?

Also, this can easily be verified formally.
Hence by Definition 3.6.1 each two of the three recursive types τ2, ρ2, and σ2

are strongly equivalent.

3.7 Weak Recursive Type Equivalence

In this section we introduce a weaker notion of equality between recursive types
and gather some important results about it. In contrast with strong recursive type
equivalence, which is defined via the semantical denotation of recursive types as type
trees, the notion of “weak recursive type equivalence” is defined in a syntactical way:
Two recursive types τ and σ are called “weakly equivalent” if the equation τ = σ is
derivable from a few basic axioms that formulate some obvious properties of strong
recursive type equivalence =µ. We will give a definition of this weaker notion of
equality by means of a Hilbert-style proof system, present a characterization for it
via a certain reduction relation, and show that it is in fact weaker than =µ.

Whereas the relation of “strong recursive type equivalence” on recursive types
was suggested and used for a type assignment system with recursive types by Car-
done and Coppo6 in [CaCo91], some earlier type assignment systems with recur-
sive types were based on a weaker notion of equivalence; in [CaCo91] references
to [MPS86] and [Men86] are given in this respect. This weaker concept of recur-
sive type equivalence is, considered on the set of recursive types in canonical form,
the smallest congruence relation on can-µTp that is generated by the operations of
unfolding and folding , which are defined by the rewrite rules

µα. τ →unfold τ [µα. τ/α] (for all α ∈ TVar, τ ∈ µTp) and (3.34)

σ[µβ. σ/β] →fold µβ. σ (for all β ∈ TVar, σ ∈ µTp) (3.35)

on the set µTp of recursive types; for a formal definition of →fold and →unfold

as reduction relations on µTp see Definition 3.7.7 below. We will introduce this
congruence relation, which is generally called “weak (recursive type) equivalence”,
by means of an axiom system that has the equations between recursive types as

6Coppo and Cardone did not use any of the terms “strong recursive type equivalence” or
“recursive type equality” in [CaCo91].

3.7 Weak Recursive Type Equivalence 47

Figure 3.2: The formal system EQL of equational logic with equations between
recursive types in µTp as its formulas.

The axioms of EQL:

(REFL) τ = τ

The inference rules of EQL:

σ = τ
SYMM

τ = σ

τ = ρ ρ = σ
TRANS

τ = σ

τ = σ
SUBST

τ [ρ/α] = σ[ρ/α]
τ = σ

CTXT
C[τ] = C[σ]

its formulas and that is an extension of the basic system of “equational logic on
recursive types” (which is also introduced below). And we will show that the formal
system that we introduce for this purpose does not axiomatize strong recursive type
equivalence =µ completely . However, a proof system as the one introduced below
for “weak recursive type equality” is likely to have played the role of an important
stepping stone towards the formalization of a sound and complete axiom system
for strong recursive type equivalence by Amadio and Cardelli (for this system, see
Chapter 5).

For the purpose of introducing proof systems for notions of equality between
recursive types, we first fix some notation for sets of “equations between recursive
types”.

Definition 3.7.1 (Equations between recursive types). An equation between
recursive types is a formula of the form τ = σ, where τ, σ ∈ µTp and where the
equality symbol = acts as a predicate symbol. The set of all equations between
recursive types is designated by µTp–Eq.

Accordingly, an equation between recursive types in canonical form is an expres-
sion of the form τ = σ, where τ, σ ∈ can-µTp . The set of all equations of recursive
types in canonical form is designated by can-µTp–Eq. £

The basic formal system of “equational logic on recursive types” formalizes five
basic properties of notions of equality on the set of recursive types, namely, reflex-
ivity, symmetry, transitivity, closedness under substitution, and closedness under
contexts. It is defined as follows.

Definition 3.7.2 (Equational logic on recursive types). The (pure) Hilbert-
style proof system EQL of equational logic on recursive types has the equations
between recursive types in µTp–Eq as its formulas. Its axioms are all those that
belong to the scheme (REFL) shown in Figure 3.2. And as its inference rules
EQL contains precisely the rules SYMM, TRANS, SUBST, and CTXT that are
schematically defined in Figure 3.2. £

48 Recursive Types

Figure 3.3: The axiom system WEQ for weak recursive type equality =wµ .

The axioms of WEQ:

(REFL) τ = τ (REN) τ = τ ′ (if τ ≡ren τ
′)

(µ−⊥) µα. α = ⊥ (FOLD/UNFOLD) µα. τ = τ [µα. τ/α]

The inference rules of WEQ:

σ = τ
SYMM

τ = σ

τ = ρ ρ = σ
TRANS

τ = σ

τ = σ µ-COMPAT
µα. τ = µα. σ

τ1 = σ1 τ2 = σ2
ARROW

τ1 → τ2 = σ1 → σ2

Now we are going to introduce the proof system WEQ. Later we will see that
WEQ forms the basis for a complete axiomatization of =µ due to Amadio and
Cardelli, which will be presented in Chapter 5. Actually only one additional rule
will be necessary to extend WEQ to a complete axiom system for =µ.

Definition 3.7.3 (The proof system WEQ). The (pure) Hilbert-style proof
system WEQ is defined as the following formal system: The formulas of WEQ
are the equations between recursive types, i.e. all elements in µTp–Eq. The axioms
of WEQ are all those equations between recursive types that belong to one of the
four different schemes (REFL), (VAR), (µ − ⊥) and (FOLD/UNFOLD) depicted
in Figure 3.3. The inference rules of WEQ are the rules SYMM, TRANS, AR-
ROW and µ-COMPAT whose respective applications are schematically defined in
Figure 3.3. £

Relying on the axiom system WEQ, the relation of “weak recursive type equiv-
alence” is now defined via (formula) derivability in WEQ.

Definition 3.7.4 (Weak recursive type equivalence). The relation =wµ ⊆
⊆ µTp× µTp , called weak recursive types equivalence, is defined by stipulating, for
all τ, σ ∈ µTp ,

τ =wµ σ ⇐⇒def `WEQ τ = σ . (3.36)

If, for some τ, σ ∈ µTp , τ =wµ σ holds, then we say that τ and σ are weakly equiv-
alent . We will permit ourselves to speak of =wµ just as of weak equivalence. £

It is not entirely obvious that the system WEQ is an extension of the system
EQL for equational logic, because the rules SUBST for substitution, and CTXT for
compatibility with contexts of EQL are not part of the system WEQ. However, it
turns out that both of these rules are admissible in WEQ, and as a consequence,
that every theorem of EQL is also a theorem of WEQ.

3.7 Weak Recursive Type Equivalence 49

Proposition 3.7.5. (i) The rule SUBST of EQL is admissible in WEQ, and
the rule CTXT of EQL is derivable in WEQ.

(ii) WEQ is an extension of EQL.

The proof of this proposition is deferred to Appendix A, where it is given on
page 340 in Section A.4. There are two reasons for that: firstly, Proposition 3.7.5
will not be used later on, but it is given here only with the intention of signalizing
basic properties of the systems EQL and WEQ and of describing their relation-
ship towards each other; and secondly, it turns out that this proposition can be
demonstrated rather easily by using special cases of results and proofs given in
later chapters (the proposition is actually proven in such a way in Appendix A).

Remark 3.7.6. The axioms (REN) of WEQ that formulate bound variable re-
naming in recursive types could be replaced by the axioms

(RENSTEP) µα. τ = µβ. τ [β/α] (if β 6≡ α and β /∈ fv(τ)) ,

which are equations σ1 = σ2 between recursive types σ1 and σ2 where σ2 results
from σ1 by an atomic renaming step of bound variables that takes place at the
outermost position in σ1. More precisely, the formal system WEQ′ that differs
from WEQ only by the absence of the axioms (REN) and by the additional pres-
ence of the axioms (RENSTEP) is equivalent to WEQ. This is a consequence of
the fact that the rule CTXT is also derivable in WEQ′ (because in the proof of
Proposition 3.7.5, (i), on page 340, axioms (REN) are never used for mimicking
CTXT-applications by WEQ-derivations) and that, due to this and the presence
of TRANS in WEQ, the axioms (REN) are derivable in WEQ′.

We also want to give a characterization of the relation =wµ in terms of a certain
rewriting relation on µTp. For this we will need the following definition.

Definition 3.7.7 (The rewrite relations →unfold, →fold, →ren, →(unf/ren),
→(µ−⊥), and →(unf/ren/µ⊥) on the set µTp).

The rewrite relations →unfold, →fold, →ren, →(µ−⊥), and →(unf/ren) on µTp are
defined as subsets of µTp× µTp :

→unfold =def

{
〈
C[µα. τ], C[τ [µα. τ/α]]

〉
∣
∣
∣
α ∈ TVar, τ ∈ µTp,
C ∈ µTp–Ctxt

}

→fold =def ←unfold

→ren =def

{〈
C[µα. τ], C[µα̃. τ [α̃/α]]

〉
∣
∣
∣
α, α̃ ∈ TVar, α̃ 6≡ α ,
τ ∈ µTp , α̃ /∈ fv(τ)

}

→(µ−⊥) =def

{〈
C[µα. α], C[⊥]

〉
| α ∈ TVar, C ∈ µTp–Ctxt

}

→(unf/ren) =def →unfold ∪ →ren

→(unf/ren/µ⊥) =def →unfold ∪ →ren ∪ →(µ−⊥)

50 Recursive Types

Hereby we have given for the relation →ren, which has already been introduced
in Definition 3.4.1, an alternative, but equivalent, definition (this is easy to see).
The relation ←unfold denotes the inverse of the relation →unfold , according to our
stipulations in Subsection 2.1.5, Chapter 2. These stipulations are also enacted for
the other reduction relations defined here: for example, ³́(unf/ren/µ⊥) denotes the
convertibility relation with respect to the rewrite relation →(unf/ren/µ⊥). £

With these notions it is now possible to formulate the following characterization
of weak recursive type equivalence =wµ .

Lemma 3.7.8 (A characterization of =wµ). For all τ, σ ∈ µTp it holds that:

τ =wµ σ ⇐⇒ τ ³́(unf/ren/µ⊥) σ .

Proof. The direction “⇒” can be shown by an easy induction on the depth |D| of an
arbitrary derivation D in WEQ with conclusion τ = σ (for arbitrary τ, σ ∈ µTp).
In this induction the property is used, that the conversion ³́(unf/ren/µ⊥) is com-
patible with µTp-contexts (or: is “closed under context-formation in µTp”), i.e. that
it has the property that, whenever τ ³́(unf/ren/µ⊥) σ is true for some τ, σ ∈ µTp ,
then also C[τ] ³́(unf/ren/µ⊥) C[σ] holds for arbitrary contexts C ∈ µTp–Ctxt . The
conversion ³́(unf/ren/µ⊥) does have this property, because each of the the rewrite
relations→unfold,→ren and→(µ−⊥) is actually compatible with µTp-contexts (these
facts can be observed easily from the definition of these relations in Definition 3.7.7).

The direction “⇐” follows by an induction of a conversion ³́(unf/ren/µ⊥) be-
tween τ and σ (where τ and σ are arbitrary recursive types), in which induction
the presence of the rules SYMM and TRANS in WEQ and the assertion

(∀τ, σ ∈ µTp)
[
τ →(unf/ren/µ⊥) σ =⇒ `WEQ τ = σ

]
(3.37)

is used. (3.37) follows from the presence of the axioms (FOLD/UNFOLD), (VAR)
and (µ−⊥) in WEQ and from the above mentioned fact that the rule CTXT of
EQL is a derivable rule in WEQ. (As a consequence of the fact that the rule
CTXT is a derivable rule inWEQ, the relation =wµ of weak recursive type equality
is also compatible with µTp-contexts).

We proceed by giving the soundness theorem for WEQ with respect to =µ.

Lemma 3.7.9 (Soundness of WEQ with respect to =µ). The system WEQ
is a sound axiomatization of strong recursive type equivalence. This means that for
all τ, σ ∈ µTp the following is true:

(τ =wµ σ ⇐⇒) `WEQ τ = σ =⇒ τ =µ σ .

Put differently, this means, that =wµ⊆=µ is true, i.e. that weak recursive type
equivalence is contained in strong recursive type equivalence.

3.8 Transformation into Canonical Form 51

Although this lemma could certainly be proved directly here, we defer to give
a proof to page 340 in Section A.4 of Appendix A; there, the lemma is settled
as a special case of the soundness theorem, due to Amadio and Cardelli, for their
extension AC= of WEQ which will be introduced in Section 5.1 of Chapter 5.

Notwithstanding the soundness of WEQ with respect to =µ, we find that this
system is actually not complete with respect to =µ.

Lemma 3.7.10. There exist recursive types τ and σ such that τ and σ are strongly,
but not weakly equivalent. This entails =wµ + =µ .

Proof. We shall consider the recursive types

τ1 ≡ µα. (α→ ⊥) and

σ′1 ≡ µα. ((α→ ⊥)→ ⊥) ,

where we have already used τ1 in Example 3.6.2 and where σ′1 is a variant of the re-
cursive type σ1 ≡ µβ. ((β → ⊥)→ ⊥) in Example 3.6.2. We saw in Example 3.6.2,
that τ1 and σ1 are strongly equivalent. From this it follows with Lemma 3.5.10, (i),
that then also τ1 and σ′1 are strongly equivalent, i.e. that τ1 =µ σ

′
1 holds.

We will show now, that τ1 and σ′1 are not weakly equivalent. Using the charac-
terization of =wµ in Lemma 3.7.8, the assertion that for all ρ ∈ µTp

τ1 =wµ ρ =⇒ ρ ≡ (. . . ((τ ′1 → ⊥)→ ⊥) . . .→ ⊥
︸ ︷︷ ︸

n

)

for some n ∈ ω and a variant τ ′1 of τ1

holds, can be proved easily by induction on the length of a conversion ³́(unf/ren/µ⊥)

(which conversion must clearly also be a conversion ³́(unf/ren)) between τ1 and ρ.
But since clearly τ ′1 6≡ren σ

′
1 holds for all τ ′1 ∈ µTp with τ ′1 ≡ren τ1 (because actually

τ1 6≡ren σ
′
1 is the case), τ1 =wµ σ

′
1 cannot be the case. Thus τ1 6=wµ σ

′
1 follows.

To summarize the facts proved about the relationship between =wµ and =µ we
formulate the following theorem:

Theorem 3.7.11. Weak recursive type equivalence is properly contained in strong
recursive type equivalence, i.e. it holds: =wµ $ =µ .

Proof. This follows from Theorem 3.7.9 and Lemma 3.7.10.

3.8 Transformation into Canonical Form

We have remarked earlier that it is possible to transform every recursive type into
a recursive type in canonical form that is denotationally equal under the stan-
dard denotation of “taking the tree unfolding”. We show in this section that there
exists an effective method for transforming an arbitrary recursive type τ ∈ µTp

52 Recursive Types

Figure 3.4: Inductive definition of a transformation (·)c from µTp to can-µTp.

τ τ c

⊥ ⊥

> >

α α

τ1 → τ2 τ c1 → τ c2

µα. τ0 τ c0 . . . if α /∈ fv(τ c0)

⊥ . . . if τ c0 ≡ α

µα.τ c0 . . . if τ c0 ≡ ρ1 → ρ2 and α ∈ fv(τ c0)
(for some ρ1, ρ2 ∈ µTp)

µγ. (ρ1 → ρ2)[γ/α][γ/β]
. . . if τ c0 ≡ µβ. (ρ1 → ρ2) (for some β ∈ TVar

and ρ1, ρ2 ∈ µTp) and α ∈ fv(τ c0),
and γ is the first variable in TVar
such that γ is substitutible
in ρ1 → ρ2 for both α and β, and
(
γ /∈ fv(ρ1 → ρ2) or γ ≡ α or γ ≡ β

)

into a recursive type τ c ∈ can-µTp with the same tree unfolding, i.e. such that
Tree(τ) = Tree(τ c) holds, and hence such that τ and σ are strongly equivalent.
For this we define an effective transformation (·)c : µTp→ µTp , and subsequently
demonstrate that it has the following two properties: firstly, (·)c maps every recur-
sive type τ to a recursive type τ c in canonical form, and secondly, (·)c maps every
recursive type τ to a recursive type τ c that is strongly equivalent with τ .

Although some important steps towards the proof of this main assertion about
the transformation (·)c will be given here, we are not going to present a direct proof
(which would also be possible) at this stage. Instead, we defer one step of the proof,
which relies on the soundness theorem of a later defined axiom system for =µ, to
Chapter 5 where this proof system will be defined.

Now we define the transformation (·)c right away.

Definition 3.8.1 (The function (·)c). The function

(·)c : µTp → µTp , τ 7→ τ c

is defined, for all recursive types τ ∈ µTp , by induction on the syntactical depth |τ |
of τ , according to the clauses gathered in Figure 3.4.

In item (ii) of the lemma below the first desired property of (·)c is shown: it is
indeed a function that maps recursive types to recursive types in canonical form.

3.8 Transformation into Canonical Form 53

Lemma 3.8.2. (i) Let τ, σ ∈ can-µTp and α ∈ TVar be such that σ is substi-
tutible for α in τ . Then also τ [σ/α] ∈ can-µTp follows.

(ii) For all τ ∈ µTp it holds that τ c ∈ can-µTp. Consequently the range of (·)c

is contained in can-µTp.

Proof. (a) Part (i) is shown by a straightforward induction on the syntactical
depth |τ | of τ .

(b) Also (ii) is shown by induction on |τ |. Here all cases are immediate except
the single one in which τ ≡ µα. τ0, τ

c
0 ≡ µβ. (ρ1 → ρ2), and α ∈ fv(τ c0)

for some α, β ∈ TVar and τ, τ0, ρ1, ρ2 ∈ µTp . Since |τ0| < |τ | , it follows by
the induction hypothesis that τ c0 ∈ can-µTp. A look at the grammar in
Definition 3.1.1, (ii), which generates can-µTp, makes it clear that then also
ρ1, ρ2 ∈ can-µTp , and that β ∈ fv(ρ1 → ρ2) must hold. Now applications of
item (i) of the lemma give that for i = 1, 2 first ρi[γ/α] ∈ can-µTp and then
ρi[γ/α, γ/β] ≡ ρi[γ/α][γ/β] ∈ can-µTp follows, where γ is the first variable
in TVar such that (γ /∈ fv(ρ1 → ρ2) ∨ γ ≡ α ∨ γ ≡ β) and γ is substitutible
for both α and β in ρ1 → ρ2. Since both α, β occur free in ρ1 → ρ2, γ does
so in ρ1[γ/α, γ/β] → ρ2[γ/α, γ/β] ≡ (ρ1 → ρ2)[γ/α, γ/β]. Hence, with the
definition of τ c in the case considered here, τ c ≡ µγ. (ρ1 → ρ2)[γ/α, γ/β] ≡
≡ µγ. (ρ1[γ/α, γ/β]→ ρ2[γ/α, γ/β]) ∈ can-µTp.

Extending Lemma 3.8.2, (ii), the following theorem states that the function (·)c

has indeed also the second of the two desired properties: it maps a recursive type
τ to a recursive type τ c that has the same tree unfolding as τ .

Theorem 3.8.3 (Desired properties of (·)c). The function (·)c : µTp→ can-µTp
defined in Definition 3.8.1 maps every recursive type τ to a strongly equivalent re-
cursive type τ c in canonical form, i.e. it holds:

(∀ τ ∈ µTp)
[
τ c ∈ can-µTp & τ =µ τ

c
]
. (3.38)

A proof of this theorem will only be given on page 104 in Chapter 5. However,
we formulate and prove a slightly weaker statement here, Lemma 3.8.4 below, the
application of which will constitute an important step in the proof of Theorem 3.8.3
given later.

For the formulation of this lemma, we denote by (µµ−µ) the following scheme
of axioms

(µµ−µ) µα. µβ. τ = µγ. τ [γ/α, γ/β]
(
if (α, β ∈ fv(τ) & α 6≡ β) &

& (γ /∈ fv(τ) ∨ γ ≡ α ∨ γ ≡ β)
)

for a proof system with µTp–Eq as its set of formulas.

54 Recursive Types

Lemma 3.8.4. For all τ ∈ µTp, the formula τ = τ c is provable in the extension
WEQ+(µµ−µ) of the system WEQ by adding the axioms of the scheme (µµ−µ) .
More formally, the statement

`WEQ+(µµ−µ) τ = τ c

holds for all τ ∈ µTp.

Proof. By induction on the |τ |. It is clear from a look at the table in Definition 3.8.1
that for |τ | = 0 the formula τ = τ c is an axiom (REFL) of WEQ.

Only two cases shall be shown for the induction step if |τ | > 0. The other cases
can be settled similarly, or even much easier.

Suppose that τ ≡ µα. τ0 and τ c0 ≡ α . Then by definition τ c ≡ ⊥. By the induc-
tion hypothesis there exists a derivation D0 inWEQ+(µµ−µ) without assumptions
and with conclusion τ0 = τ c0 ; we choose such a derivation D0. Then the derivation
D

D0

τ0 = τ c0
︸︷︷︸

≡ α
µ-COMPAT

µα. τ0
︸ ︷︷ ︸

≡ τ

= µα. α

(µ−⊥)

µα. α = ⊥
︸︷︷︸

≡ τc

TRANS
τ = τ c

is a derivation inWEQ+(µµ−µ) without assumptions and with conclusion τ = τ c.
Suppose that τ = µα. τ0 and τ c0 ≡ µβ. (ρ1 → ρ2) with α ∈ fv(τ c0). Then τ c

is defined as τ c ≡ µγ. (ρ1 → ρ2)[γ/α, γ/β] for γ in TVar minimal such that (γ /∈
fv(ρ1 → ρ2) or γ ≡ α or γ ≡ β) and γ is substitutible in ρ1 → ρ2 for α and β. By
the induction hypothesis there exists a derivation D0 in WEQ+(µµ−µ) without
assumptions and with conclusion τ0 = τ c0 ; we choose such a derivation D0. From
this the derivation D in WEQ+(µµ−µ) of the form

D0

τ0 = τu0
︸︷︷︸

≡ µβ. (ρ1→ρ2)
µ-COMPAT

µα. τ0
︸ ︷︷ ︸

≡ τ

= µα. µβ. (ρ1 → ρ2)

(µµ−µ)

µα. µβ. (ρ1 → ρ2) = µγ. (ρ1 → ρ2)[γ/α, γ/β]
︸ ︷︷ ︸

≡ τc
TRANS

τ = τ c

can be built: D has the conclusion τ = τ c and does not contain assumptions.

Concluding this section, we want to remark that the statement

(∀ τ ∈ µTp) [τ =wµ τ
c] , (3.39)

3.9 Generated Subterms 55

which results by replacing strong equivalence =µ in (3.38) by weak equivalence =wµ

(and by dropping the part τ c ∈ can-µTp of (3.38) that is guaranteed by the state-
ment in by Lemma 3.8.2, (ii)), is actually not true. Due to Lemma 3.8.4, (3.39)
holds if and only if the formulas of the scheme (µµ−µ) are theorems of WEQ. But
this latter assertion is false, as can be shown by a very similar argument as used in
the proof of Lemma 3.7.10.

3.9 Generated Subterms

An important fact about recursive types consists in the following assertion: for every
recursive type σ there exist, up to taking variants, only finitely many recursive types
that can be reached from σ by successive applications of the operations “renaming
of bound variables”, “unfolding at the outermost position”, and “decomposition
of a composite type χ1 → χ2 into χ1 or χ2”. This fact plays a vital part for
showing completeness of coinductively motivated proof systems for recursive types
([BrHe98], for these systems see Chapter 5), and it will also be used for some of the
proof-theoretic transformations developed in later chapters.

In this section we introduce, with the aim of a formalization of the mentioned
statement, the notion of “generated subterm” of a recursive type. “Generated
subterms” in our formalization are called “syntactical subterms” in [BrHe98]; in
Remark 3.9.3 below we explain why we have chosen a different name for this notion
here. We will gather some basic properties of this concept, among which the most
important is the assertion, referred to above, that every recursive type has, up to
variants, only a finite number of “generated subterms”. And at the end of this
section we will consider a certain extension of the notion “generated subterm” that
will be useful later. Not all of the proofs for assertions in this section are given here.
Some rather more tedious proofs for a couple of technical lemmas are deferred to
Appendix A, Section A.5.

We are going to define, for all σ ∈ µTp, a “generated subterm” of σ to be a ‘more-
step reduct’ of σ with respect to a reduction relation→roud on µTp that is the union
of the three reduction relations →ren for renaming bound variables, →out-unf for
unfolding a recursive type at its outermost position, and →out-dec for decomposing
a recursive type at its outermost position. For the purpose of this stipulation for
“generated subterms”, we first introduce the reduction relations→out-unf, →out-dec,
and →roud in a precise manner.

Definition 3.9.1 (The reduction relations →out-unf , →out-dec , →roud). The
reduction relations→out-unf,→out-dec, and→roud on µTp are defined as the following
sets of pairs contained in µTp× µTp :

→out-unf =def { 〈µα. τ, τ [µα. τ/α]〉 | α ∈ TVar, τ ∈ µTp } ,

→out-dec =def { 〈τ1 → τ2, τi〉 | τ1, τ2 ∈ µTp, i ∈ {0, 1}} ,

→roud =def →ren ∪ →out-unf ∪ →out-dec .

56 Recursive Types

In the definition of →roud we have used the single-step renaming reduction →ren

from Definition 3.4.1. £

We can now proceed to define “generated subterms” of a recursive type in the
way as outlined prior to the definition above. We furthermore introduce notation for
≡ren-equivalence classes on µTp, for the set of “generated subterms” of a recursive
type, and for the set of ≡ren-equivalence classes of generated subterms of a recursive
type.

Definition 3.9.2 (Generated subterms, ≡ren-equivalence classes of gener-
ated subterms). In the following three items, we define the notion “gener-

ated subterm of a recursive type” (this is done in (i)), and introduce some related
terminology and notation.

(i) Let σ be a recursive type. For all τ ∈ µTp , we say that τ is a→roud-generated
subterm of σ, for short a generated subterm of σ, if and only if τ is a reduct of
σ with respect to the reduction relation →roud, i.e. iff σ ³roud τ holds. For
all τ ∈ µTp , we denote by τ v σ the assertion that τ is a generated subterm
of σ , in accordance with the next stipulation: the generated-subterm relation
v⊆ µTp× µTp is the inverse relation of ³roud, and more formally, it is
defined, for all τ, σ ∈ µTp , by

τ v σ ⇐⇒def σ ³roud τ .

Furthermore, we denote by G(σ) the set of generated subterms of σ, i.e. we
let

G(σ) =def {τ ∈ µTp | τ v σ} ;

we also call G(σ) the renaming-outermost-unfolding-outermost-decomposition
closure of σ, for short the roud-closure of σ.

(ii) For all ρ ∈ µTp , the notation [ρ]≡ren will be used for the equivalence class of
ρ with respect to the variant relation ≡ren on µTp, i.e. we set more formally

[ρ]≡ren =def {ρ
′ | ρ′ ∈ µTp, ρ′ ≡ren ρ} .

The quotient set µTp/≡ren =def

{
[ρ]≡ren | ρ ∈ µTp

}
of µTp with respect to

≡ren is the set of ≡ren-equivalence-classes on µTp.

(iii) Let σ ∈ µTp . The set G∗(σ) of equivalence classes with respect to ≡ren of
generated subterms of σ, also called the roud∗-closure of σ, is defined by

G∗(σ) =def

{
[τ]≡ren | τ v σ

}
.

£

Remark 3.9.3. Recursive types τ that are the result of a finite number of successive
applications of one of the three operations “renaming”, “outermost-unfolding” or
“outermost-decomposition” to a recursive type σ are called “syntactical subterms”

3.9 Generated Subterms 57

of σ in [BrHe98] (or, in [Br97], even just “subterms”). We have chosen not to use
the expression “syntactical subterm of σ” for such recursive types τ , but speak of
the generated subterms of σ instead, for the following reason: there does not exist
a set-theoretical inclusion in either direction between the set of subterms and the
set of “generated subterms” of a recursive type. It is neither always the case that a
subterm of a recursive type σ is a “generated subterm” of σ, nor that a “generated
subterm” of some σ ∈ µTp is also a subterm of σ.

However, there is nevertheless a certain flavour of “subterm” about “generated
subterms”, as the following two facts indicate:

1. Every recursive type τ is both a subterm and a generated subterm of itself.

2. If τ is a subterm, or respectively a generated subterm, of a recursive type σ,
then τ is also a subterm, or respectively a generated subterm, of the recursive
types σ → χ and χ→ σ , for all χ ∈ µTp .

We will be able to restate this observation below after introducing a proof system
for the generated-subterm relation v ; then we will be able to compare this proof
system with a similar one for the subterm relation E between recursive types.

A first observation about generated subterms of a recursive type is that both of
the operations G(·) and G∗(·) on recursive types do not distinguish between different
variants of a recursive type.

Proposition 3.9.4. If two recursive types σ and σ′ are variants of each other,
then they possess the same generated subterms, i.e. for all σ, σ′ ∈ µTp it holds: If
σ ≡ren σ

′ , then G(σ) = G(σ′) and G∗(σ) = G∗(σ
′) hold.

Proof. Due to the fact that→ren is a symmetrical reduction relation, it follows that

σ ≡ren σ
′ ⇐⇒ σ ³ren σ

′

holds for all σ, σ′ ∈ µTp . As a consequence, it holds for all σ, σ′, τ ∈ µTp that

σ ≡ren σ
′ =⇒

(
σ ³roud τ ⇐⇒ σ′ ³roud τ

)
.

Thus, if σ and σ′ are variants of each other, then they have the same generated
subterms.

Furthermore, it is obvious from the definition of the generated-subterm rela-
tion v as the inverse relation ´roud of the more-step reduction relation ³roud

with respect to →roud that v is reflexive and transitive. It is easy to verify that
v/≡ren ⊆ µTp/≡ren × µTp/≡ren , the quotient relation of v with respect to ≡ren, is
well-defined by the clause

[τ]≡ren v/≡ren [σ]≡ren ⇐⇒def τ v σ (for all τ, σ ∈ µTp),

and that v/≡ren is again reflexive and transitive. However, neither of the relations
v and v/≡ren is anti-symmetric, which can be seen, for example, from the two

58 Recursive Types

recursive types τ ≡ µα. (⊥ → (> → α)) and σ ≡ > → τ , for which τ 6≡ren σ and
τ →roud ⊥ → (> → τ) →roud σ hold; hence, in particular, τ is a generated subterm
of σ and σ is a generated subterm of τ .

Example 3.9.5. (i) Considering the recursive type µαβ. γ , we notice that the
only reduction sequence from this recursive type that avoids →ren-steps is

µαβ. γ →out-unf µβ. γ →out-unf γ . (3.40)

It is obvious that additional →ren-steps do not enable →roud-reduction se-
quences leading to recursive types that are not variants of one of the three
types in (3.40). Hence we find

G(µαβ. γ) = [µαβ. γ]≡ren ∪ [µβ. γ]≡ren ∪ {γ} ,

G∗(µαβ. γ) =
{
[µαβ. γ]≡ren , [µβ. γ]≡ren , {γ}

}

for the roud-closure and the roud∗-closure of µαβ. γ .

(ii) Every →ren-avoiding reduction from µαβγδ. γ is an initial segment of the
reduction

µαβγδ. γ →out-unf µβγδ. γ →out-unf µγδ. γ →out-unf

→out-unf µδγδ. γ →out-unf µγδ. γ →out-unf . . . , (3.41)

which enters a loop of length two after two reduction steps. Additional
→ren-steps do not lead to generated subterms of µαβγδ. γ that are not vari-
ants of one of the four recursive types in (3.41). Hence we conclude

G(µαβγδ. γ) = [µαβγδ. γ]≡ren ∪ [µβγδ. γ]≡ren ∪ [µγδ. γ]≡ren ∪ [µδγδ. γ]≡ren ,

G∗(µαβγδ. γ) =
{
[µαβγδ. γ]≡ren , [µβγδ. γ]≡ren , [µγδ. γ]≡ren , [µδγδ. γ]≡ren

}
.

(iii) For the recursive type σ1 ≡ µα. ((α→ ⊥)→ >) , we find the →ren-step-free
reduction sequences

µα. ((α→ ⊥)→ >)
︸ ︷︷ ︸

≡σ1

→out-unf ((σ1 → ⊥)→ >) →out-dec

→out-dec

(σ1 → ⊥) →out-dec

{

σ1 →out-unf . . .

⊥
>

where we recognize a loop of length three. Furthermore, it is quite obvi-
ous that extending any of these reduction sequences by →ren-steps and other
→roud-steps does not lead to generated subterms of σ1 that are not variants of
any of the five subterms of σ1 as encountered above. Hence we can conclude
for the roud-closure and the roud∗-closure of σ1:

G(σ1) =
{
σ′1, (σ

′
1 → ⊥)→ >, σ

′
1 → ⊥, ⊥, > | σ

′
1 ∈ µTp, σ

′
1 ≡ren σ1

}
,

G∗(σ1) =
{
[σ1]≡ren , [σ1 → ⊥]≡ren , [(σ1 → ⊥)→ >]≡ren , {⊥}, {>}

}
.

3.9 Generated Subterms 59

(iv) Concerning the recursive type σ2 ≡ µα. (β → µβ. (α→ β)) , we observe the
following →roud-steps:

µα. (β → µβ. (α→ β))
︸ ︷︷ ︸

≡σ2

→ren µα. (β → µγ. (α→ γ))
︸ ︷︷ ︸

≡σ′2

→out-unf

→out-unf (β → µγ. (σ′2 → γ)) →out-dec

{

β

µγ. (σ′2 → γ) ,

(3.42)

where the →ren-step was necessary to facilitate the subsequent →out-unf-step,
and

µγ. (σ′2 → γ)
︸ ︷︷ ︸

≡χ

→out-unf σ′2 → χ →out-dec

{

σ′2 →out-unf . . .

χ →out-unf

(3.43)

We find two loops in the reductions described by (3.42) and (3.43), of length
five and another one of length two. It is easy to see that additional applica-
tions of →ren, followed by other →roud-reduction steps, do not increase the
set of ≡ren-equivalence classes of generated subterms occurring in one of the
reduction sequences as sketched above. Hence we find in particular:

G∗(σ2) =
{
[σ2]≡ren , [β → µγ. (σ′2 → γ)]≡ren ,

{β}, [χ]≡ren , [σ
′
2 → χ]≡ren

}
. (3.44)

For the purpose of making it possible to prove assertions about the generated-
subterm relation v by proof-theoretic means, we introduce the following formal
system.

Definition 3.9.6 (The axiom system gST). The formal system gST, a (pure)
Hilbert system, possesses as its formulas precisely all expressions τ v σ with ar-
bitrary τ, σ ∈ µTp .7 Its axioms are all those of the form (REFL) in Figure 3.5
and its inference rules are the rules RENr, FOLDr, and B→CTXTr, applications
of which are gathered and described as respective inference schemes in Figure 3.5.

£

The name of the rule B→CTXTr of gST is motivated by the operation on
formulas of gST that it allows to perform: to replace the recursive type τ on the
right-hand side of a formula by the substitution C[τ] of τ into a “basic →context”
C ∈ µTp–Ctxt of the form 2→ σ or σ → 2 , for some σ ∈ µTp .

We can now give the following characterization of the generated-subterm relation
v in terms of derivability in gST.

7Note the difference between the symbol v used in formulas of gST and its boldface-version v
that denotes the generated-subterm relation according to Definition 3.9.2 (the difference between
the symbols v and v is better visible in the font size used for the text).

60 Recursive Types

Figure 3.5: The axiom system gST for the generated-subterm relation v on µTp.

The axioms of gST :

(REFL) τ v τ

The inference rules of gST :

τ v σ′
RENr (if σ ≡ren σ

′)
τ v σ

τ v σ[µβ. σ/β]
FOLDr

τ v µβ. σ

τ v σj
B→CTXTr (where j ∈ {1, 2})

τ v σ1 → σ2

Proposition 3.9.7 (Characterization of generated subterms in terms of
derivability in gST). For all τ, σ ∈ µTp it holds that

τ is a generated subterm of σ ⇐⇒ `gST τ v σ . (3.45)

Hint on the Proof. The assertion of the lemma can be reformulated as

(∀τ, σ ∈ µTp)
[
σ ³roud τ ⇐⇒ `gST τ v σ

]
. (3.46)

The logical implication “⇒” within (3.46) can be shown by a straightforward in-
duction on the length of →roud-reduction sequences, and the implication “⇐” by
an easy induction on the depth of derivations in gST with conclusion τ = σ and
without assumptions.

Remark 3.9.8. The axiomatization gST for the generated-subterm relation v on
µTp is similar to the proof system SUBT, given in Figure 3.6, that can easily be
recognized to be sound and complete with respect to the subterm relation E on µTp
(as this has been defined in Definition 3.2.3), i.e. for which

(∀ τ, σ ∈ µTp)
[
τ E σ ⇐⇒ `SUBT τ E σ

]

holds. An obvious similarity between the systems gST and SUBT consists in the
presence in both systems of the axioms (REFL), and of the analogous respective
basic-→-context rules B→CTXTr (this fact is a reformulation of the observations
(I) and (II) in Remark 3.9.3). However, these systems differ with respect to rules
involving µ-terms as the recursive types on the right-hand side in the conclusions
of their instances: whereas gST allows folding of a recursive type at the right-hand
side of a formula, SUBT admits the formation of a “basic µ-context”.

For the purpose of proving the main theorem about generated subterms of re-
cursive types, we formulate a number of technical lemmas all of which are proved

3.9 Generated Subterms 61

Figure 3.6: The axiom system SUBT for the subterm relation E on µTp.

The axioms of SUBT :

(REFL) τ E τ

The inference rules of SUBT :

τ E σj
B→CTXTr (for j ∈ {1, 2})

τ E σ1 → σ2

τ E σ
BµCTXTr

τ E µβ. σ

in Appendix A, Section A.5. There, all of these lemmas are demonstrated by
proof-theoretical arguments, exploiting the characterization (3.45) of the generated-
subterm relation v via derivability in the formal system gST.

The first lemma states, for all recursive types σ, that every variable that occurs
freely in σ is a generated subterm of σ, and that the free variables of generated
subterms of σ are contained among the free variables of σ.

Lemma 3.9.9. (i) For all τ, σ ∈ µTp it holds: τ ∈ G(σ) ⇒ fv(τ) ⊆ fv(σ) .

(ii) For all σ ∈ µTp and α ∈ TVar it holds: α ∈ fv(σ) ⇒ α ∈ G(σ) .

The proof of this lemma is given in Appendix A, Section A.5, on page 341.
The second lemma gives a representation of the set of generated subterms of

σ[ρ/α] , for all τ, σ, ρ ∈ µTp and α ∈ TVar , in terms of the generated subterms of
σ and ρ.

Lemma 3.9.10. Let σ, ρ ∈ µTp and α ∈ TVar such that ρ is substitutible for α
in ρ. Then for the set G(σ[ρ/α]) of subterms of σ[ρ/α] it holds that

G(σ[ρ/α]) ⊆
{
τ | τ ∈ µTp, τ ≡ren χ[ρ/α], χ ∈ G(σ)

}
∪ G(ρ) .

The proof of this lemma uses Lemma 3.9.9 and is given in Appendix A, Sec-
tion A.5, on page 345. It depends on a technical statement, Lemma A.5.1, in the
same section of Appendix A, about the possible forms of derivations in gST without
assumptions and with conclusion τ v σ[ρ/α] , where τ, σ, ρ,∈ µTp and α ∈ TVar .

The last lemma needed for the main theorem on generated subterms gives re-
spective representations of the sets of generated subterms of a recursive type σ in
terms of the sets of generated subterms of ‘immediate’ subterms of σ, by which we
mean subterms of σ from which σ has been built in the last formation step according
to the grammar (3.1).

Lemma 3.9.11. Let σ, σ0, σ1, σ2 ∈ µTp and β ∈ TVar . Then the following three
statements hold for the set G(σ) of generated subterms of σ :

(i) G(σ) = {σ} for all σ ∈ {⊥,>} ∪ TVar .

62 Recursive Types

(ii) G(σ1 → σ2) = [σ1 → σ2]≡ren
∪ G(σ1) ∪ G(σ2) .

(iii) G(µβ. σ) ⊆ [µβ. σ]≡ren
∪
{
ρ | ρ ≡ren χ[µβ. σ/β], χ ∈ G(σ)

}
.

The proof for this lemma, which uses the assertion of Lemma 3.9.10 for the
demonstration of item (iii), can be found in Appendix A, Section A.5, on page 345.

Eventually, we are able to state and prove, by using just Lemma 3.9.11, the
main theorem about generated subterms.

Theorem 3.9.12. Every recursive type has only a finite number of generated sub-
terms if variants of each other are not counted separately. That is, the set G∗(σ) is
finite for all σ ∈ µTp. And what is more, the bound

|G∗(σ)| ≤ s(σ) (for all σ ∈ µTp) (3.47)

holds, i.e. for all σ ∈ µTp the cardinality of G∗(σ) is bounded by the size of σ.

Proof. Obviously, it suffices to show (3.47). We will prove this statement by using
Lemma 3.9.11 in a proof by induction on the depth |σ| of a recursive type σ.

For the base case of the induction, let σ ∈ µTp be such that |σ| = 0. Then it
must be the case that σ ∈ {⊥,>} ∪ TVar . By Lemma 3.9.11, (i), we know that
G(σ) = {σ} . Since there is no occurrence of a µ-binding in σ, also G∗(σ) = {{σ}}
follows. Hence clearly |G∗(σ)| = 1 = s(σ) .

For the treatment of the induction step, let σ ∈ µTp such that |σ| > 0. We
distinguish two cases, according to whether σ starts with a µ-operator or not.

If σ does not start with a µ-binder, σ is of the form σ1 → σ2 for some σ1, σ2 ∈ µTp.
By Lemma 3.9.11, (ii), it follows

G∗(σ) = G∗(σ1 → σ2) = {[σ1 → σ2]≡ren} ∪ G∗(σ1) ∪ G∗(σ2) .

Hence, by this and the use of the induction hypothesis, we obtain

|G∗(σ)| ≤ 1 + |G∗(σ1)|+ |G∗(σ2)|

≤ 1 + s(σ1) + s(σ2) = s(σ) .

In the second case, σ is of the form µβ. σ0 for some σ0 ∈ µTp and β ∈ TVar .
Here

G∗(µβ. σ0) ⊆ { [µβ. σ0]≡ren } ∪
{
[χ [µβ. σ0/β]]≡ren | χ ∈ G(σ0)

}
(3.48)

follows as a consequence of Lemma 3.9.11, (iii). Since the assertion associated
with (3.18) in Lemma 3.4.2 implies that, for all χ1, χ2 ∈ µTp such that µβ. σ0 is
substitutible for β in χ1 and χ2,

χ1 ≡ren χ2 =⇒ [χ1 [µβ. σ0/β]]≡ren = [χ2 [µβ. σ0/β]]≡ren

holds, it follows

|
{
[χ [µβ. σ0/β]]≡ren | χ ∈ G(σ0)

}
| ≤ |G∗(σ0)| . (3.49)

3.9 Generated Subterms 63

Using (3.48), (3.49), and the induction hypothesis, we eventually find:

|G∗(σ)| = |G∗(µβ. σ0)| ≤ 1 + |G∗(σ0)|

≤ 1 + s(σ0) = s(µβ. σ0) = s(σ) .

This concludes the induction step and thus the proof of the theorem.

As a corollary to Theorem 3.9.12, we are now able to prove Fact 3.5.11 from
Section 3.5, that is, the assertion that the tree unfolding of a recursive type is a
regular (type) tree.

Corollary 3.9.13. For every recursive type σ, its tree unfolding Tree(σ) is a regu-
lar tree, i.e. Tree(σ) has only finitely many subtrees. Moreover, for every σ ∈ µTp,
the number of different subtrees of the tree unfolding Tree(σ) of σ is limited by the
size s(σ) of σ.

Sketch of Proof. We perform the proof in the following two items, where the proof
of a statement in the first item is merely sketched.

(a) It is straightforward to check from the clauses (1)–(5) in Definition 3.5.8
that the inductive definition of Tree(σ)(p), for arbitrary σ ∈ µTp and paths
p ∈ {0, 1}∗ , recurs on the definition of Tree(σ0)(p0) only for such σ0 ∈ µTp
and p0 ∈ {0, 1}

∗ , for which |p0| ≤ |p| and σ0 is a generated subterm of σ. This
implies that, for all σ ∈ µTp and p ∈ {0, 1}∗ for which Tree(σ)(p) is in fact
defined, a generated subterm τ of σ with the property Tree(σ)|p = Tree(τ)
can always be found effectively by expanding the definition of Tree(σ)(p).
More precisely, the statement

(∀σ ∈ µTp) (∀p ∈ {0, 1}∗)
[
Tree(σ)(p) ↓ =⇒

=⇒ (∃ τ ∈ G(σ)) [Tree(σ)|p = Tree(τ)]
]

(3.50)

can be shown by demonstrating the statement in (3.50) without the two lead-
ing quantifications, for all pairs (σ, p) ∈ µTp× {0, 1}∗ , by induction on pairs
(|p|,nlµb(σ)) in ω × ω with respect to the lexicographic ordering on this set,
where |p| means the length of the string p and nlµb(σ) is the number of the
leading µ-bindings in σ as defined in Definition 3.5.4 (phrased differently the
proof amounts, as this was the case with Definition 3.5.8, to the use of induc-
tion on the length of p together with a subinduction on nlµb(σ)).

(b) Since, for all σ ∈ µTp, an arbitrary subtree ofTree(σ) is of the form Tree(σ)|p
for some path p ∈ {0, 1}∗ , we can now conclude the following from state-
ment (3.50): For arbitrary σ ∈ µTp there can be at most as many different
subtrees of the tree unfolding Tree(σ) as there are different generated sub-
terms of σ. Since by Lemma 3.5.10 the operation Tree of producing the tree
unfolding of a recursive type has the same result Tree(σ̃) for all variants σ̃′ of
a recursive type σ̃, it follows that the number of different subtrees of σ ∈ µTp

64 Recursive Types

is even limited by |G∗(σ)| , the number of the ≡ren-equivalence-classes of gen-
erated subterms of σ. But from the theorem we know that |G∗(σ)| ≤ s(σ) for
all σ ∈ µTp , and hence the statement of the corollary follows.

In Lemma 3.9.11 we have encountered a representation of the set of generated
subterms of a recursive type σ in terms of the sets of generated subterms of imme-
diate subterms of σ. Extending and sharpening this statement, we now also give
the following theorem that provides, for all recursive types σ that fulfill the vari-
able condition VC, an explicit description of the set of generated subterms of σ via
subterm occurrences in σ.

Theorem 3.9.14. (Representation of the generated subterms of a recur-
sive type via its subterms). Let σ be a recursive type that fulfills the variable

condition VC. Then every generated subterm of σ is a variant of the recursive type
denoted by the (according to Convention 3.3.6 admissible) substitution expression

ρ [µβn. σn/βn] . . . [µβ1. σ1/β1] , (3.51)

where it holds that

n ∈ ω & ρ, σ1, . . . , σn ∈ µTp & β1, . . . , βn ∈ TVar &

(∃ p, p1, . . . , pn ∈ Pos(σ))
[
ρ = σ|p & p1 < . . . < pn < p &

& (Pref(p)\{p}) ∩ µPos(σ) = {p1, . . . , pn} &

& (∀i ∈ {1, . . . , n}) [σ|pi = µβi. σi]
]
,

(3.52)

i.e. where ρ is a subterm of σ (ρ E σ holds) that occurs at some position p in σ, and
where the recursive types µβ1. σ1, . . . , µβn. σn are the occurrences in σ of µ-terms
at positions p1, . . . , pn above position p, listed from the topmost such occurrence
down to the bottommost one (see Figure 3.7 for an illustration). It follows that the
roud∗-closure of σ can be written as

G∗(σ) =

{[

ρ [µβn. σn/βn] . . . [µβ1. σ1/β1]
]

≡ren

∣
∣ (3.52) holds

}

. (3.53)

Before turning to the proof of this theorem, we consider an example for its
application.

Example 3.9.15. We consider the recursive type

σ ≡ µα. (β → µγ. (α→ γ)) ,

which is the recursive type σ′2 that we encountered in Example 3.9.5, (iv). Quite
obviously, σ fulfills the variable condition VC. From the picture of the term tree
of σ in Figure 3.8, we can read the set of positions of σ and the set of positions of
µ-expressions of σ, namely,

Pos(σ) = {ε, 1, 11, 12, 121, 1211, 1212} , and µPos(σ) = {ε, 12} .

3.9 Generated Subterms 65

Figure 3.7: Illustration of condition (3.52) in Theorem 3.9.14: For each subterm
occurrence ρ = σ|p in σ, the subterms µβ1. σ1, . . . , µβn. σn denote all occurrences
in σ, at positions of increasing length p1 < . . . < pn above p, of subterms starting
with a µ-binding.

ρ

σ

p1

p

p2

µβ1. σ1

µβ2. σ2

µβn. σn

pn

This entails that the set of subterms of σ is of the form:

Subt(σ) = {σ, β → µγ. (α→ γ), β, µγ. (α→ γ), α→ γ, α, γ} .

With this, Theorem 3.9.14 now implies that every generated subterm of σ is a
variant of a recursive type that is one of the forms

σ|ε ≡ σ ,

σ|1[σ|ε/α] ≡ β → µγ. (α→ γ)[σ/α] ≡ β → µγ. (σ → γ) ,

σ|11[σ|ε/α] ≡ β[σ/α] ≡ β ,

σ|12[σ|ε/α] ≡ µγ. (α→ γ)[σ/α] ≡ µγ. (σ → γ) ,

σ|121[σ|12/γ][σ|ε/α] ≡ (α→ γ)[µγ. (α→ γ)/γ][σ/α] ≡ σ → µγ. (σ → γ) ,

σ|1211[σ|12/γ][σ|ε/α] ≡ α[µγ. (α→ γ)/γ][σ/α] ≡ σ ,

σ|1212[σ|12/γ][σ|ε/α] ≡ γ[µγ. (α→ γ)/γ][σ/α] ≡ µγ. (α→ γ) .

In this list we have encountered two recursive types twice, which entails that the

66 Recursive Types

Figure 3.8: The positions in the recursive type σ ≡ µα. (β → µγ. (α→ γ)).

ε

γα

→

β

→

µα

µγ
12

1211

11

1212

121

1

roud∗-closure of σ consists of the following five-element set:

G∗(σ) = {[σ]≡ren , [β → µγ. (σ → γ)]≡ren , [β]≡ren ,

[µγ. (σ → γ)]≡ren , [σ → µγ. (σ → γ)]≡ren} .

This implies that the roud-closure of σ is

G(σ) =
{
σ′, β → µγ′. (σ′ → γ′), β,

µγ′. (σ′ → γ′), σ′ → µγ′. (σ′ → γ′)
∣
∣ γ′ ∈ TVar, σ′ ≡ren σ

}
.

We note that what we have found here by an application of Theorem 3.9.14 con-
forms with the representation (3.44) of G(σ′2) for the variant σ2 of σ: in view of
Proposition 3.9.4, G(σ) here and G(σ2) in (3.44) should agree, as they in fact do
because of σ2 ≡ren σ and σ ≡ σ′2 .

Our proof of Theorem 3.9.14 consists of two lemmas that are stated below. These
lemmas use a reduction relation →oud, the →ren-free part of the reduction relation
→roud, as an auxiliary concept, as well as the notions “→oud-generated subterms”,
“oud-closure”, and “oud∗-closure” of a recursive type that are induced by →oud.

Hereby, the reduction relation →oud⊆ µTp× µTp is defined as

→oud =def →out-unf ∪ →out-dec ,

i.e. as the union of the reduction relations →out-unf and →out-dec. Analogously as
the reduction relation →roud induced the notions of →roud-generated subterm, the

3.9 Generated Subterms 67

roud-closure, and the roud∗-closure of a recursive type, the reduction relation→oud

induces the notions “→oud-generated subterm”, “oud-closure”, and “oud∗-closure”
of a recursive type.

For their definition, let σ be a recursive type. We say that τ ∈ µTp is a
→oud-generated subterm of σ if and only if σ ³oud τ holds. And furthermore,
we define the oud-closure G̃(σ) of σ and the oud∗-closure G̃∗(σ) of σ by

G̃(σ) =def {τ | σ ³oud τ } , and by G̃∗(σ) =def

{
[τ]≡ren | σ ³oud τ

}
.

Relying on these definitions, we now give two lemmas that will together consti-
tute a proof of Theorem 3.9.14.

Lemma 3.9.16. Let σ be a recursive type that fulfills the variable condition VC.
Then every →oud-generated subterm of σ is of the form

ρ [µβn. σn/βn] . . . [µβ1. σ1/β1] (3.54)

where n ∈ ω, ρ, σ1, . . . , σn and β1, . . . , βn ∈ TVar such that assertion (3.52) in
Theorem 3.9.14 holds. It follows that the oud-closure G̃(σ) and the oud∗-closure
G̃∗(σ) of σ can be written as

G̃(σ) =
{
ρ [µβn. σn/βn] . . . [µβ1. σ1/β1] | (3.52) holds

}
, and (3.55)

G̃∗(σ) =
{[
ρ [µβn. σn/βn] . . . [µβ1. σ1/β1]

]

≡ren
| (3.52) holds

}
. (3.56)

A proof of this lemma can be found in Appendix A, Section A.5, on page 350.

Lemma 3.9.17. Let σ be a recursive type that fulfills the variable condition VC0,
i.e. let σ ∈ µTp be such that VC0(σ) is the case. Then G∗(σ) = G̃∗(σ) holds.

A proof for this lemma can again be found in Appendix A, Section A.5, on
page 355. – We can now give the proof for Theorem 3.9.14.

Proof of Theorem 3.9.14. Let σ be an arbitrary recursive type that fulfills the vari-
able condition VC. Then σ clearly also fulfills the variable condition VC0. Hence
both Lemma 3.9.16 and Lemma 3.9.17 are applicable. The first lemma implies the
representation (3.56) for the oud∗-closure G̃∗(σ) of σ, and the second lemma entails
that the oud∗-closure G̃∗(σ) of σ is equal to the roud∗-closure G∗(σ) of σ. Hence

G∗(σ) =
{[
ρ [µβn. σn/βn] . . . [µβ1. σ1/β1]

]

≡ren
| (3.52) holds

}
(3.57)

follows. In this way we have shown assertion (3.53) of the theorem. This entail
also the first assertion of the theorem, namely, that every generated subterm of σ
is of the form (3.51), which is also an admissible substitution expression, due to
Lemma 3.9.16.

As an immediate corollary to Theorem 3.9.14, we can now prove the special case
of the assertion of Theorem 3.9.12 that states that the roud∗-closure is finite for all
recursive types that fulfill the variable condition VC.

68 Recursive Types

Corollary 3.9.18. Let σ be a recursive type that fulfills the variable condition VC.
Then

|G∗(σ)| ≤ s(σ)

holds, i.e. the cardinality of G∗(σ) is bounded by the size of σ.

Proof. Let σ be an arbitrary recursive type that fulfills the variable condition VC.
Then by Theorem 3.9.14 the representation (3.53) holds for the roud∗-closure G∗(σ)
of σ. Thus an element of G∗(σ) is always a ≡ren-equivalence class of the form

[
ρ [µβn. σn/βn] . . . [µβ1. σ1/β1]

]

≡ren
, (3.58)

where ρ is a subterm of σ, and where for ρ, n, and µβ1. σ1, . . . , µβn. σn the asser-
tion (3.52) holds (and hence where µβ1. σ1, . . . , µβn. σn depend on what particular
subterm-occurrence of ρ in σ is considered). From this

|G∗(σ)| ≤ |Pos(σ)| = s(σ)

follows, by using Proposition 3.2.4.

And by using this corollary, we are also able to give the following alternative
proof for Theorem 3.9.12.

Alternative Proof for Theorem 3.9.12. Let σ be an arbitrary recursive type. We
choose a variant σ′ of σ that fulfills the variable condition VC. By Proposition 3.9.4
we find G∗(σ) = G∗(σ

′) . Using this, by Corollary 3.9.18 it follows that

|G∗(σ)| = |G∗(σ
′)| ≤ s(σ′) = s(σ) ,

where we have also used the easy observation that the size of a recursive type is
invariant under going over to a variant.

With the aim of easing the formulation of some assertions later on, it is useful to
extend the generated-subterm relation v to a more general generated-subterm rela-
tion v′ that allows to view the bottom-type ⊥ as a more general form of generated
subterm of recursive types like µα. α and µα1 . . . αn. α1 (that have the same tree
unfolding as ⊥), and like β → µγδ. γ (which has µγδ. γ as generated subterm that
has the same tree unfolding as ⊥). For defining v′, we need to define an extension
→roud⊥ of the reduction relation→roud from Definition 3.9.1 by a reduction relation
→out-(µ−⊥)′ that reduces recursive types µα1 . . . αn. α1 (where α1, . . . , αn ∈ TVar),
which have the same tree unfolding as ⊥, to ⊥.

Definition 3.9.19 (The reduction relations →out-(µ−⊥)′ , →roud⊥). The re-
duction relations →out-(µ−⊥)′ and →roud⊥ on µTp are defined as the following sets
contained in µTp× µTp :

→out-(µ−⊥)′ =def { 〈µα1 . . . αn. α1, ⊥〉 | n ∈ ω\{0}, α1 . . . αn ∈ TVar } ,

→roud⊥ =def →roud ∪ →out-(µ−⊥)′

(for defining →roud⊥ we have used here the reduction relation →roud from Defini-
tion 3.9.1). £

3.9 Generated Subterms 69

Relying on the reduction relation →roud⊥, we proceed to define “→roud⊥-gen-
erated subterms” of a recursive type σ as reducts of σ with respect to →roud⊥.
We also introduce notation for the set of generated subterms, and for the set of
≡ren-equivalence classes of a generated subterm, of a recursive type.

Definition 3.9.20 (→roud⊥-generated subterms, ≡ren-equivalence classes
of →roud⊥-generated subterms). Let σ be a recursive type.

(i) For all τ ∈ µTp , we say that τ is a→roud⊥-generated subterm of σ if and only
if τ is a more-step reduct of σ with respect to the reduction relation →roud⊥,
i.e. iff σ ³roud⊥ τ holds. We call the relation v′ ⊆ µTp× µTp , defined as
the inverse relation´roud⊥ of ³roud⊥ , the→roud⊥-generated-subterm relation
on µTp. And we denote by G ′(σ) the set of generated subterms of σ, i.e. we
let

G′(σ) =def {τ ∈ µTp | τ v
′ σ} ;

we also call G′(σ) the roud⊥-closure of σ.

(ii) Let σ ∈ µTp . The set G ′∗(σ) of equivalence classes with respect to ≡ren of
→roud⊥-generated subterms of σ, also called the roud⊥∗-closure of σ, is defined
by

G′∗(σ) =def

{
[τ]≡ren | τ v

′ σ
}
.

£

With the aim of enabling a similar logical formalization of the relation v′ as
the axiomatization gST that we introduced for the generated-subterm relation v,
we extend gST to the following formal system gST′.

Definition 3.9.21 (The proof system gST′). The proof system gST′ is the ex-
tension of the formal system gST, given in Definition 3.9.6, by adding the inference
rule (µ−⊥)⊥derr with applications of the form

τ v ⊥
(µ−⊥)⊥derr

τ v µα1 . . . αn. α1

(for all τ ∈ µTp , n ∈ ω\{0} , and α1, . . . , αn ∈ µTp). £

The following characterization of the→roud⊥-generated-subterm relationv′ can
be proved similarly as explained in the hint given for the proof of Proposition 3.9.7.

Proposition 3.9.22 (Characterization of →roud⊥-generated subterms via
derivability in gST′). For all τ, σ ∈ µTp it holds

τ is a →roud⊥-generated subterm of σ ⇐⇒ `gST′ τ v σ .

The next lemma asserts that, for all recursive types σ, a →roud⊥-generated
subterm of σ is either ⊥ or a generated subterm of σ.

70 Recursive Types

Lemma 3.9.23. For all σ ∈ µTp, the two following statements hold:

G′(σ) ⊆ G(σ) ∪ {⊥} ,

G′∗(σ) ⊆ G∗(σ) ∪ {{⊥}} .

Proof. We observe that in a derivation in gST′ only trivial applications of REN
with premise and conclusion ⊥ v ⊥ can occur above an application of (µ−⊥)⊥derr .
Hence every gST′-derivation D with conclusion τ v σ contains either zero or one
application(s) of (µ−⊥)⊥derr ; in the first case, D is also a gST-derivation and
hence τ is a generated subterm of σ, and in the second case, τ ≡ ⊥ . From this
the assertions of the lemma follow as a consequence of the characterization of the
→roud⊥-generated-subterm relation v′ in Proposition 3.9.22.

Using this lemma, we get the following corollary as an immediate consequence
of Theorem 3.9.12.

Corollary 3.9.24. Every recursive type has only a finite number of →roud⊥-gener-
ated subterms if variants of each other are not counted separately. That is, the set
G′∗(σ) is finite for all σ ∈ µTp. And what is more, the bound

|G′∗(σ)| ≤ s(σ) + 1 (for all σ ∈ µTp) (3.59)

holds, i.e. for all σ ∈ µTp the cardinality of G ′∗(σ) is bounded by the size of σ plus
one.

As an aside, we mention that the bound (3.59) is not optimal: it is not difficult
to prove that also

|G′∗(σ)| ≤ s(σ) (for all σ ∈ µTp)

holds. This bound, however, is precise in the sense that equality holds in some
cases: for example, let σ ≡ µα. α ; then G ′∗(σ) =

{
{⊥}, [µα. α]≡ren

}
and hence

|G′∗(σ)| = 2 = s(σ) holds.
We conclude this section about generated subterms with a lemma that asserts

a bound on the number of leading µ-bindings of →roud⊥-generated subterms of a
recursive type. We will need this lemma later in Appendix C (for the proof there
of Theorem C.11).

Lemma 3.9.25 (A bound on nlµb(·) for →roud⊥-generated subterms). The
number of leading µ-bindings in a →roud⊥-generated subterm of a recursive type
σ is bounded by the double of the syntactical depth of σ. More formally, for all
τ, σ ∈ µTp the following implication holds:

τ v′ σ =⇒ nlµb(τ) ≤ 2 |σ| . (3.60)

A proof for this lemma is given in Appendix A, Section A.5, on page 356.

Chapter 4

Derivability
and Admissibility
of Inference Rules

In this chapter we are concerned with the notions of derivability and admissibility
of inference rules in formal systems. We give definitions and gather basic results
for these notions with respect to abstract formulations of those sorts of formal
systems under which the proof systems for recursive types that will be encountered
in the next chapter can be subsumed: pure Hilbert systems and natural-deduction
systems. The properties of rules to be derivable or admissible with respect to a
formal system is introduced and studied for pure Hilbert systems and for natural-
deduction systems separately in Section 4.2 and in Section 4.3. We start, however,
by giving an informal explanation of the relevance of rule derivability and rule
admissibility for the aim of finding proof-theoretic transformations in general; this
is the topic of Section 4.1.

4.1 Relevance for the Construction of Proof-
Transformations

As explained in the Chapter 1, our main aim consists in finding proof-theoretic
transformations between proof systems for recursive type equality (which will be
introduced in Chapter 5). In particular, we are interested in finding transforma-
tions between proof systems with the same set of formulas and the same set of
theorems; however, our argumentation below applies also to the problem of finding
transformations from a system S1 into a system S2 that is an extension of S1, i.e.
where S2 has possibly a richer formula language and more theorems than S1. Still
more precisely, we are interested in transformations of such kind that, in the case
of considered proof systems S1 and S2, produce, for an arbitrary given derivation

72 Derivability and Admissibility of Inference Rules

D1 in S1, a derivation D2 in S2 such that D2 has the same conclusion as D1; and
such that D2 demonstrates that its conclusion is a theorem of S2 whenever D1 wit-
nesses that its conclusion is a theorem of S1 (this clearly presupposes that S2 is an
extension of S1).

Undoubtedly, there are many different ways conceivable of how transformations
of this kind may proceed and can be constructed. Nevertheless, it seems reasonable
to distinguish two kinds of approaches for finding transformations that are helpful
in many cases: the “rule translation method” and the “rule elimination method”.
In the two items below we give rough descriptions of each of these methods.

The Rule Translation Method. The approach prescribed by this method consists of
three steps (RT1), (RT2), and (RT3), which are outlined subsequently. In
step (RT1) show that, for every axiom A of S1, a derivation D(A) in S2 can
be found such that D(A) demonstrates A to be a theorem of S2. Then, in
step (RT2), show that all instances of rules in S1 can be ‘translated’ into ‘sim-
ulating derivations’ in S2 (we will later use the term “mimicking derivation”
instead according to a definition in this chapter). Eventually, in step (RT3), a
transformation of the desired kind can, under some assumptions on the ‘well-
behavedness’ of the set of derivations in S2, be constructed as follows: for a
given derivation D1 in S1, exchange all occurrences of axioms A in D1 by oc-
currences of the derivations D(A) in S2, and replace all rule applications in D1

by respective ‘simulating derivations’ in S2; under the mentioned assumptions
on S2, the result will be a derivation D2 in S2 with the same conclusion as D1.
And finally, show that a derivation D2 found in this way witnesses that its
conclusion is a theorem of S2 whenever the conclusion of D1 is demonstrated
by D1 to be a theorem of S1.

The Rule Elimination Method. This method suggests the following approach to find-
ing a proof-theoretic transformation from the derivations in a proof system
S1 into derivations in a proof system S2. Try to proceed in the steps (RE1),
(RE2), and (RE3) as detailed below. In step (RE1) show, as in the translation
method, that the axioms of S1 can be derived as theorems in S2 by describing
how to construct respective derivations D(A) in S2 for all axioms A of S1.
In step (RE2), demonstrate for each rule R in S1 that all of its applications
can effectively be removed from an arbitrary derivation D in the extension
S2+R of S2 by adding the rule R with the result of a ‘simulating derivation’
D′ in S2 that, in particular, has the same conclusion as D (for some pur-
poses it will be sufficient to show this only for such derivations in S2+R that
witness that their conclusions are theorems). If this happens to be possible,
then proceed, in step (RE3), to build a transformation from derivations in
S1 into derivations in S2 that proceeds like this: in a given derivation D1 in
S1 that demonstrates its conclusion to be a theorem of S1, first replace all
occurrences of axioms A by simulating derivations D(A) in S2; and then elim-
inate stepwisely, in a top-down manner, all applications of rules from S1 from
the resulting derivation according to the eliminations found in step (RE2) (if
such eliminations turn out to be not applicable, or lead to unwanted results,

4.1 Relevance for the Construction of Proof-Transformations 73

possibly step (RE2) has to be refined); show that in this way always a desired
derivation D2 in S2 is found that has the same conclusion as D1 and that
demonstrates this conclusion to be a theorem of S2.

In general, the rule translation method can be subsumed under the rule elimination
method as a special case: finding translations of applications of a rule R from a
system S1 into simulating derivations in a system S2 will most likely also define a
way how such rule applications can be eliminated from derivations in the extension
S2+R of S2 by adding R (and in particular from such derivations that demonstrate
their conclusions to be theorems). However, transformations that are based on the
rule translation method are generally of a substantially easier kind: here a rule
application can always be translated directly without taking the particular context
into consideration in which it appears within a derivation (for transformations based
on rule elimination procedures this is typically not the case). But there are cases in
which the rule translation method cannot be applied, and where the rule elimination
method still leads to the construction of a transformation. By this we mean the
possibility of one of the following situations. Either the provable fact that not
for all rules of a system S1 there exist translations into appropriate derivations of
S2. Or the perhaps only temporary situation, encountered while trying to build
a transformation between proof systems S1 and S2, that one does not succeed in
giving translations of a particular rule R of S1 into derivations of S2, though such
translations might yet exist, while one is already able to show by a more detailed
proof-theoretic argument that applications of R can always be eliminated from
theorem-demonstrating derivations in the extension S2+R of S2 by adding R.

In many ‘real’ cases, however, a combination between the translation method
and the elimination methods is called for. It is a quite frequent experience dur-
ing attempts to find a transformation that some rules of a proof system S1 enable
straightforward translations into S2, whereas for others only elimination procedures
can be given for derivations in extensions of S2 (either because for their applications
translations into S2 do actually not exist, or because such translations have simply
not yet been found). Under these circumstances a proof-theoretic transformation
has to be constructed in a more complicated way. For example, by initially ‘sim-
ulating’, in a given derivation in S1, applications of rules of the first kind by their
translations into S2, and by subsequently eliminating those rules for which (at the
moment or for inherent reasons) only elimination procedures exist.

Let us turn now to the question of how the two methods described above are
related to the main topic of this chapter. Basically, an answer can be put as follows:
there are respective close relationships between, on the one hand, the rule transla-
tion method and the notion of rule derivability, and on the other hand, between the
rule elimination method and the notion of rule admissibility.

In the first case the connection can be explained as follows. A new rule R is
generally called “derivable” (or “derived”) with respect to a formal system S if its
‘operational behaviour’, i.e. the possibility R offers to produce certain conclusions
when certain premises are given, can always be, in some sense, ‘modeled’, ‘simu-
lated’, or ‘mimicked’ by appropriate derivations in S; hence if applications of R can

74 Derivability and Admissibility of Inference Rules

be ‘translated’ into derivations in S. Therefore step (RT2) in the rule translation
method can be restated, for given proof systems S1 and S2, as the step (RT2)′:
show that all rules of S1 are derivable in S2 (with respect to a ‘sensible’ formulation
of rule derivability in S2).

And in the second case, the connection is established in the following manner.
A rule R is usually called “admissible” in a proof system S if and only if the
admission of R as an additional rule to the rules of the system S does not lead to
more theorems in the extended system S+R. Therefore generally the following can
be concluded: if a rule R is admissible in a system S then, for every derivation
D in S+R that demonstrates its conclusion to be a theorem of S+R, there exists
a derivation D′ in S that has the same conclusion as D and that witnesses this
conclusion to be a theorem of S. (By the word “generally” we refer to the ‘natural’
assumption on S and S+R that all theorems of these systems are demonstrated by
respective derivations, and that derivations can only be used to demonstrate their
conclusions as theorems.) Consequently, step (RE2) in the rule elimination method
can be restated, for given proof systems S1 and S2, as the step (RE2)′: prove, for
every rule R of S1, that R is admissible in S2.

Motivated by these connections with methods for finding proof-transformations,
we will investigate, in (the following sections of) this chapter and in Appendix B,
the notions of rule derivability and admissibility in abstract formulations of such
sorts of proof systems that we will encounter later among proof systems for recursive
type equality: pure Hilbert systems and natural-deduction systems. Our aim is to
gather general results about this notions, and in particular, we are interested in
what precise consequences the property of a rule R to be admissible or derivable in
a system S has for the possibility to eliminate applications of R from derivations in
the extension of S by adding R.

Rather than defining and studying rule derivability and admissibility only for
the particular proof systems that will be introduced in Chapter 5, we have thereby
decided to consider these notions in more abstract settings first. The reason why
we prefer to proceed in this way is connected to the following fact. Definitions for
when a rule R is to be called “admissible” or “derivable” with respect to a system
S are usually given only with respect to specific classes of proof systems with a
given concrete formula language and for a particular way how rules can be defined
(rules are mostly defined schematically, using substitution on a meta-language of the
formula language of a system). But a consequence of this is that some very general
properties of these notions are, we feel, not normally made as clear as this is possible
rather easily. This holds in particular for the relationship between rule derivability
and admissibility and specific forms of how rule elimination is possible. These
considerations have lead us to set out first for an investigation of rule derivability
and admissibility in abstract formalizations of proof systems.

Another part of our treatment of rule derivability and admissibility in this chap-
ter, namely Section 4.3, is motivated by the fact that these notions are usually
not studied for natural-deduction-style systems. A possible reason for this is that
formal definitions of rules and derivations are inherently more complex for natural-
deduction-style systems than for Hilbert-style systems. However, in the course

4.2 Definitions and Results in Pure Hilbert Systems 75

of our investigation concerning proof systems for recursive type equality, natural-
deduction-style systems arise naturally in the shape of “Brandt-Henglein systems”,
which contain coinductively motivated rules for ‘circular’ reasoning. Therefore the
aim of finding proof-transformations involving proof systems of this kind has lead us,
via attempts to apply the rule translation and rule elimination methods, to questions
concerning derivability and admissibility of inference rule in natural-deduction-style
proof systems. The results in Section 4.3 and in Section B.2 of Appendix B have
been motivated in this way.

In later chapters, the definitions and formal statements developed in this chapter
(as well as in Appendix B) will serve mainly as background knowledge for the actual
construction of proof-transformations. Nevertheless, they will be of some definite,
albeit indirect, use. To sketch an example: we will come across situations where we
succeed in giving a rather involved elimination procedure for applications of a rule
R, belonging to a system S1, from derivations in the extension S2+R of a system
S2 by adding R; in other words, a situation in which we have shown admissibility
of a rule R in a system S2 in some complicated, but nevertheless effective, way.
In such circumstances we will frequently convince ourselves, by showing that R is
not derivable in S2, that we have not overlooked some easy possibility to translate
applications of R into derivations in S2. (But we will obviously not gain any more
certainty by such an argument that a particular elimination procedure, we will have
found, for R-applications in derivations of S2+R cannot be simplified substantially.)

4.2 Definitions and Results in Pure Hilbert
Systems

In this section we define rule derivability and admissibility in a subclass of Hilbert-
style proof calculi, namely in the class of “pure Hilbert systems”. The definitions
here are of a certain informal character due to the fact that we do not base ourselves
on a completely formalized concept of “proof system” belonging to this class (and
of “inference rule” for such a system). We rather use rough descriptions of these
systems. However, we will refer to the definitions and results in Section B.1 of Ap-
pendix B, where we introduce the concept “Abstract Pure Hilbert System” (APHS)
and give precise definitions of rule derivability and admissibility in such systems.
Also, we do not give proofs for the results gathered in this section, but we will
again confer to Section B.1 of Appendix B, where for each proposition and theorem
given here a corresponding “exact version” with respect to APHS’s is formulated
and where some proofs are given.

4.2.1 Formal Systems

The simplest and traditionally the most widely used proof systems in the literature
on formal logic occur under a variety of names, with the terms “formal systems”,
“axiom(atic) systems” and “Hilbert(-style) systems for theoremhood” among them.
For instance, in [Shoe67] Shoenfield uses the term “formal system” in the sense of

76 Derivability and Admissibility of Inference Rules

formal axiom systems which he loosely describes as follows: “Every formal system
contains as its parts a language, axioms, and rules of inference; its theorems are de-
fined inductively from axioms and rules”. In a slightly more explicit way, in [Avr91]
Avron describes a “formal system” in traditional understanding as containing the
following components:

1. A formal language L with several syntactic categories, one of which is the
category of ‘well-formed formulae’ (wff).

2. An effective set of wff called ‘axioms’.

3. An effective set of rules (called ‘inference rules’) for deriving theorems from
the axioms.

And then, “the set of ‘theorems’ is usually taken to be the minimal set of wff which
includes all the axioms and is closed under the rules of inference” ([Avr91]).

Rule applications in such systems are typically inferences of the form

A1 . . . An
B

(4.1)

where n ∈ ω , A1, . . . , An are formulas called the premises and B is a formula called
the conclusion of this application. Hereby the case n = 0 of a rule application
with no premises is included in contrast to applications with an infinite number of
premises. Although rules usually allow only applications with a fixed number of
premises, we will not use this restriction here. We will call rules with applications
of the form (4.1) pure Hilbert-system rules (because rules of this form will be used
below in the description of “pure Hilbert systems”, see Subsection 4.2.3 below).

Let FS be a formal system. By a ‘proof’ of a formula A in FS usually a finite
sequence σ = (A1, . . . , An) of formulas of FS is meant, where An ≡ A and each
formula in σ is either the occurrence of an axiom or that of a formula which is
the conclusion of an application of a rule of FS whose premises occur earlier in σ.
However, proofs can also be represented as prooftrees whose leaves all carry axioms
and where lower nodes carry formulas that result by rule applications from formulas
occurring immediately above. In this way the derivations in FS can inductively be
defined as follows: every axiom of FS is a derivation in FS. And if D1, . . . ,Dn
are derivations in FS with respective conclusions A1, . . . , An , and if (4.1) is an
application of a rule R of FS, then the prooftree

D1

A1 . . .

Dn
An

R
B

is a derivation in FS with conclusion B. We write `FS E and say that E is a
theorem of FS if and only if there is a derivation D of FS with conclusion E.

For some purposes, like for investigating the question what kind of rules can be
‘modelled’ by using the axioms and rules of a formal system, one can be interested
in what formulas are derivable in a formal system FS from some given assumptions,

4.2 Definitions and Results in Pure Hilbert Systems 77

i.e. from given formulas of FS. For this usually a consequence relation `FS between
sets of formulas of FS (the assumptions) and formulas of FS (the respective logical
consequences) is defined: for every formal system FS and formulas A1, . . . , An, B
of FS, it is stipulated:

{A1, . . . , An} `FS B ⇐⇒def `FS+{A1, . . . , An} B . (4.2)

The possibility of representing a consequence relation by using a formal system is
called the extension method by Avron in [Avr91, p.24,25]: in (4.2) the consequence
relation `FS is defined in terms of the provability relations `FS+Σ of the usually
infinitely many extensions FS+Σ of FS that result by adding the formulas of Σ as
new axioms to the axioms of FS.

However, the use of infinitely many axiomatic systems for the sake of the defi-
nition of a consequence relation may be looked upon as conceptually unelegant and
therefore be undesirable. It can be avoided by the use of the concept of “Hilbert
system” in which derivations may start from unproven assumptions. The particular
class of “pure Hilbert systems” is considered in the Subsection 4.2.3.

4.2.2 Local (and Not Local) Rules

Pure Hilbert-system rules are “local rules”, in the sense of rules for “LR-systems”
introduced by Troelstra and Schwichtenberg in [TS00], with the specific property
that they have formulas as their “deduction elements”. An n-premise local rule R
is, following a definition in [TS00, p.77–78], a set of sequences 〈S1, . . . ,Sn+1〉 of
length n + 1, where Si, S are deduction elements (like formulas or sequents) such
that

S1 . . . Sn
R

S
(4.3)

is an application1 of R whenever 〈S1, . . . ,Sn,S〉 ∈ R , with premises S1, . . . , Sn and
with conclusion S. [TS00] go on to define “LR-systems” as systems with a finite
set of local rules, and with obvious definitions of “deduction tree”, or “prooftree”.

As an explanation for the term “local rules” [TS00] write that such rules

“. . . are local in the sense that the correctness of a rule-application
at a node ν can be decided locally, namely by looking at the name of the
rule assigned to ν, and the proof-objects assigned to ν and its immediate
successors (i.e. the nodes immediately above it)” ([TS00, p.76]).

Quite obviously, rules in natural-deduction systems that enable applications at
which assumptions can be discharged do not conform to this format of rules; there,
for the correctness of a rule application also the open assumptions present in re-
spective subderivations have to be looked up, and if assumptions are discharged, it
has to be made sure that this is indicated at the rule application in the right way.
However, as [TS00] point out, natural-deduction systems can be brought under

1The rule name label for R is not drawn in a similar inference in [TS00, p.75], but it is supposed
to be present in rule applications that appear in derivations (see the “Remarks” on p. 76 in [TS00]).

78 Derivability and Admissibility of Inference Rules

the definition of “LR-systems” by formulating them as corresponding sequent-style
calculi (for example, see Section 2.1.8 in [TS00, p.41,42]).

Another form of non-local rules is able to appear in Hilbert systems in which
derivations may contain assumptions: rules that do not discharge assumptions (as
some rules in natural-deduction systems do), but that take the presence, or the
absence, of assumptions in subderivations into account. A typical example of an
impure Hilbert-system rule is the rule UG (for “universal generalization”) with
applications of the form

D1

A UG (if D does not contain assumptions) .
2A

(4.4)

This rule is used in standard Hilbert-system representations of the truth consequence
relation in a normal modal logic (the letter A in (4.4) stands for an arbitrary formula
in the respective modal logic). In systems for this purpose, an inference of a formula
A from a formula 2A is clearly undesirable if A is not true in the respective normal
modal logic; respective applications have therefore been excluded in the definition
of UG in (4.4). Another example of an impure Hilbert-system rule will be given
below in Example 4.2.3.

It is not difficult to formally describe impure Hilbert-system rules and (impure)
Hilbert systems in a similar way as we treated pure Hilbert systems in Subsec-
tion 4.2.1: in contrast with pure Hilbert-system rules, for every application ι of an
impure Hilbert-system rule next to the sequence of premises of ι and the conclusion
of ι also the multiset of assumptions that are present for ι has to be specified. Fur-
thermore, it is easy to adapt the definition of derivations in pure Hilbert systems
(given in the next section) to impure Hilbert systems. However, formalizations of
impure Hilbert systems can also be viewed as a subclass of natural-deduction-style
systems, which we will consider in the Section 4.3.

4.2.3 Pure Hilbert Systems

By a pure Hilbert system we will mean a formal system that is endowed with a
notion of derivation that may start from unproven assumptions. More precisely,
we consider a pure Hilbert system H to be a 6-tuple 〈Fo,Ax,R, Der, assm, concl〉
where

• Fo, Ax, and R are sets consisting of the formulas, the axioms, and the rules
of H,

• Ax ⊆ Fo holds, i.e. every axiom of H is a formula of H,

• every rule R ∈ R is a pure Hilbert-system rule with premises and conclusions
in Fo,

• Der is a set, called the set of derivations of H, that is inductively defined from
Fo, Ax and R as follows, together with the functions assm : Der →Mf(Fo)

4.2 Definitions and Results in Pure Hilbert Systems 79

and concl : Der → Fo , which respectively assign the multiset assm(D) of
assumptions of D, and the conclusion concl(D) of D to every derivation
D ∈ Der :

Every axiom A ∈ Ax is a derivation D of H with conclusion concl(D) = A
and without assumptions, i.e. with assm(D) = ∅ . Every formula A ∈ Fo is
a derivation of H with concl(D) = A and assm(D) = mset({A}) . And fur-
thermore, given formulas A1, . . . , An, B ∈ Fo and derivations D1, . . . ,Dn of
H with conclusions concl(Di) = Ai for all 1 ≤ i ≤ n , and given that (4.1) is
an application of a rule R of H, then

D1

A1 . . .

Dn
An

R
B

(4.5)

is a derivation D in H with concl(D) = B and assm(D) =
⊎n
i=1 assm(Di) .

For every pure Hilbert system H, we will allow to refer to the sets of formulas,
axioms, rules and derivations of H by FoH, AxH, RH and Der(H) , respectively.

For defining the notions of “theorem”, “theory”, and (usual) “consequence re-
lation” in a pure Hilbert system, let H be an arbitrary such system with set Fo of
formulas. A formula of H is a theorem of H (notation `H A) if and only if there
is a derivation of H without assumptions and with conclusion A; more formally we
set, for all formulas A of H,

`H A ⇐⇒def (∃D ∈ Der(H))
[
assm(D) = ∅ & concl(D) = A

]
.

The theory Th(H) of H is the set of theorems of H. The ‘usual’ consequence relation
`H onH is defined via the existence of derivations inH as follows: `H⊆ P(Fo)× Fo
is a relation between sets of formulas and formulas of H that is defined, for all sets
Σ ⊆ Fo and all formulas A ∈ Fo , by

Σ `H A ⇐⇒def (∃D ∈ Der(H))
[
set(assm(D)) ⊆ Σ &

& concl(D) = A
]
. (4.6)

Other consequence relations could be considered as well: for instance, one might
for some special purpose be interested in the following ‘linear logic variant’ of the
usual consequence relation in which a formula a is considered to be derivable from
a multiset Γ of assumptions only if there is a derivation with conclusion A that uses
arbitrary formulas precisely as often as they occur in S. More precisely, for every

pure Hilbert system H, the relation `
(m)
H ⊆Mf(Fo)× Fo between finite multisets

of formulas and formulas of H is defined, for all finite sets Σ ⊆ Fo and all formulas
A ∈ Fo , by

Γ `
(m)
H A ⇐⇒def (∃D ∈ Der(H))

[
assm(D) = Γ & concl(D) = A

]
.

We will not consider this ‘non-standard’ consequence relation here (but we refer to
[Gra03a], where also a variant notion of rule derivability is studied that is based on

`(m)).

80 Derivability and Admissibility of Inference Rules

In connection with the consequence relation `H on a pure Hilbert system H,
we define also a notion of “mimicking derivation” between derivations in (possibly
different) pure Hilbert systems. Hereby a derivation D1 is understood to “mimic” a
derivation D2 if D1 has a more general ‘input/output-behaviour’ than D2 (here, for
once, we consider the multiset of assumptions as the ‘input’ of a derivation and the
conclusion as its ‘output’). More formally, we denote, for all pure Hilbert systems
H1 and H2 and derivations D1 ∈ Der(H1) and D2 ∈ Der(H2) , by D1 - D2 the
assertion “D1 mimics D2” that is defined by

D1 - D2 ⇐⇒def set(assm(D1)) ⊆ set(assm(D2)) &

& concl(D1) = concl(D2) . (4.7)

The relationship between the consequence relation `H of a pure Hilbert system
H and the mimicking relation - between derivations in pure Hilbert systems is as
follows: for every pure Hilbert system H and all formulas A1, . . . , An, B ∈ FoH it
holds that

{A1, . . . , An} `H B ⇐⇒ (∃D ∈ Der(H))
[

D -
A1 . . . An

B

]

. (4.8)

It is easy to define a different “mimicking relation” '(m) that allows to characterize

the consequence relation `
(m)
H on a pure Hilbert system H in an analogous way.

For the definition of rule derivability and admissibility below, we will use the
following notations for extensions of pure Hilbert systems: For all pure Hilbert
systems H with set Fo of formulas, for all sets Σ ⊆ Fo , and for all rules R on Fo
we let

H+R =def extension of H by adding the rule R

H+Σ =def extension of H by adding the formulas of Σ as axioms .

And furthermore, for all pure Hilbert systems H1 and H2, we denote by H1 ∼th H2

the assertion “H1 and H2 are equivalent” and let

H1 ∼th H2 ⇐⇒def H1 and H2 have the same theorems .

4.2.4 Definitions of Rule Correctness, Admissibility and
Derivability

We can now give the definition of rule admissibility and derivability in pure Hilbert
systems. And we also give the definition for a notion of “rule correctness”.

Definition 4.2.1. (Correctness, admissibility and derivability of rules in
pure Hilbert systems). Let H be a pure Hilbert system and let R be a pure

rule on the formulas of H.

4.2 Definitions and Results in Pure Hilbert Systems 81

(i) The rule R is correct for H (R is a correct rule for H) if and only if the
collection of theorems of S is closed under applications of R, i.e. iff

A1 . . . An
B

is an application of R =⇒

=⇒
[
(`H A1) & . . . & (`H An) =⇒ (`H B)

]
(4.9)

holds for all n ∈ ω and for all formulas A1, . . . , An, B of H.

(ii) The rule R is admissible in H (R is an admissible rule of H) if and only

H+R ∼th H (4.10)

holds, i.e. iff extending H with the additional rule R does not lead to more
theorems in the extended system H+R .

(iii) The rule R is derivable in H (R is a derivable rule of H) if and only if every
application of R can be mimicked by a derivation in H, i.e. iff

A1 . . . An
B

is an application of R =⇒

=⇒ (∃D ∈ Der(H))
[
D -

A1 . . . An
B

]
. (4.11)

holds for all n ∈ ω and for all all formulas A1, . . . , An, B of H.
£

Remark 4.2.2. In the items (a)–(c) below we give, for each of the three notions
defined in Definition 4.2.1, references to corresponding notions in the literature. In
(a) and (b) we also remark on the reasons for distinguishing between “rule cor-
rectness” and “rule admissibility”. And in (d) we explain that rule correctness is
implied by rule admissibility.

(a) The stipulation in the above definition for “the rule R is correct for H”, where
H is a pure Hilbert system, as “the theory of H is closed under applications
of R” follows the use of the term “correct rule” by Scott in [Sco74, p.151] and
corresponds to the definition of “dependent rule” (“abhängige Schlußregel”)
by Schmidt in [Schm60, p.149] as well as to the definition of “admissible rule”
by Hindley/Seldin in [HS86, p.70] and Troelstra/Schwichtenberg in [TS00,
p.76].

Although there is, as we will see in Lemma 4.2.4 below, a convincing reason for
why conditions like (4.9) in Definition 4.2.1 are frequently taken as defining
clauses for “rule admissibility” in pure Hilbert systems (or similar kinds of
systems), we have decided not to follow this practice here, for three reasons.
Firstly, the condition (4.9) on a rule R in a pure Hilbert system H is not in
itself adequately reflected by calling R “admissible in H” in case that (4.9)
holds; fulfilledness of (4.9) is better described by saying that R “is correct

82 Derivability and Admissibility of Inference Rules

for H” (thus by following the terminology of Scott in [Sco74]). Secondly,
the condition (4.9) is linked to the defining clause (4.10) of the more literal
stipulation for rule admissibility only by an additional argument (a proof of
Lemma 4.2.4, (i), below), however easy it is to provide such an argument. And
thirdly, the clause (4.9) cannot be transferred in a straightforward manner to
other kind of formal systems, such as natural-deduction style proof systems
(this is different for the condition (4.10)).

It can easily be verified that rule correctness could alternatively be defined in
the following way by using the notion of “mimicking derivation”: R is correct
for H if and only if every application of R that has only theorems of H as
premises can be mimicked in H, i.e. iff for all n ∈ ω and for all formulas
A1, . . . , An, B of H it holds that

A1 . . . An
B

is an application of R =⇒

=⇒
[

(`H A1) & . . . & (`H An) ⇒

⇒ (∃D∈Der(H)) [D -
A1 . . . An

B
]
]

.

(b) The stipulation in Definition 4.2.1, (ii), for an assertion “the rule R is ad-
missible in H”, where H is a pure Hilbert system, as “the admission of R as
an additional rule to the axioms and rules of the system H does not make
it possible to prove more theorems” follows the definition of this notion by
Lorenzen in [Lor69, p.19] [which, to my knowledge is an original definition,
C.G.] and by Schütte in [Schu60, p.40] (who refers to Lorenzen); both Loren-
zen and Schütte use the German expression “zulässige (Schluß-)Regel”. It is
also used by Curry in [Cur63, p.97], as well as in many more recent publica-
tions including, for example, by Iemhoff in [Iem01]. Admissible rules in this
sense are called “derived” by Kleene in [Klee52, p.86].

In Definition 4.2.1, (ii), we have adopted the original definition of rule admis-
sibility due to Lorenzen, for mainly two reasons: firstly, the condition imposed
by (4.10) on a rule R in an APHS H is succinctly described by the expression
“R is admissible in H”, and secondly, this definition lends itself immediately
to being transferred from pure Hilbert systems to other kinds of proof sys-
tems such as natural-deduction systems (contrary to the clause (4.9) for rule
correctness).

(c) The definition of rule derivability in pure Hilbert systems follows common
definitions of this notion by, for instance, Kleene [Klee52, p.94] (“derived
rule of direct type”) Lorenzen [Lor69, p.26] (“Deduktionsprinzip”), Schütte
[Schu60, p.42] (“ ‘direkte Ableitbarkeit’ von Schlüssen und Schlußregeln”),
Curry [Cur63, p.97] (sentences that are “formally deducible” from other sen-
tences), Scott [Sco74, p.153] (derivability of a rule from other rules), Hindley
and Seldin [HS86, p.70], and Troelstra and Schwichtenberg [TS00, p.97].

4.2 Definitions and Results in Pure Hilbert Systems 83

We have drawn, in particular, from the definition of rule derivability by Hind-
ley and Seldin in [HS86, p.70]. There, this notion is introduced in terms of
the ‘usual’ consequence relation that, for the respective system, is defined as
in (4.6). Indeed, it follows from the definition of the mimicking relation -
that Definition 4.2.1, (iii), can be restated as follows: in every pure Hilbert
systems H and for all pure Hilbert-style rules R on the formulas of Fo, R is
derivable in H if and only if

A1 . . . An
B

is an application of R =⇒ A1, . . . , An `H B

holds for all n ∈ ω and all formulas A1, . . . , An, B of H. We have chosen,
however, to define rule derivability in terms of the notion of “mimicking deriva-
tion”, which explains rule derivability in a somewhat more explicit way.

(d) Rule correctness is a formally weaker notion than rule admissibility, and fur-
thermore it is easier to show in general; in fact it can be looked upon as a
criterion for proving rule admissibility (cf. Remark 4.2.4, (a), below).

To see that correctness is implied by admissibility, let H be a pure Hilbert
system and let R be a pure Hilbert-system rule on a set Fo of formulas. “R
is correct for H” means that, for all derivations D in H+R of the particu-
lar form (4.5) (with only a single application of R, the one at the bottom),
where D1, . . . ,Dn are derivations in H without assumptions, there exists a
derivation D′ in H without assumptions and with the same assumptions as
D. Contrasting with this, “R is admissible in H” expresses the more general
statement that for all derivations D in H+R without assumptions there ex-
ists a derivation D′ in H without assumptions and with the same conclusion
as D. Hence, if R is admissible in H, then R is also correct for H. This
argument shows the first sentence in Lemma 4.2.4, (ii), below.

Put more informally, correctness of a rule R with respect to a pure Hilbert
systemHmeans that the application of R can be eliminated from every deriva-
tion in H+R without assumptions and with only a single application of R,
whereas admissibility of R with respect to H means the formally stronger as-
sertion that all applications of R can be eliminated from every derivation in
H+R without assumptions (and with an arbitrary number of R-applications).

Example 4.2.3. LetH be an arbitrary pure Hilbert system that completely axiom-
atizes the theory C of classical logic; the argument we give here can be transferred
directly to pure Hilbert systems that completely axiomatize either of the theories I
or M of intuitionistic or minimal predicate logic (see [TS00, p.35–38] for definitions
of M, I, and C using respective natural-deduction systems Nm, Ni, and Nc).

The unrestricted generalization rule G− with applications of the form

A[y/x]
G− (if y ≡ x or y /∈ fv(A))

∀xA
(4.12)

is a pure Hilbert-system rule that is correct for H. Indeed, whenever, for a formula
A and variables x and y with y ≡ x or y /∈ fv(A), the formula A[y/x] is a theorem of

84 Derivability and Admissibility of Inference Rules

H, and hence of C, then ∀xA is a theorem of C, and hence of H. As a consequence
of Proposition 4.2.4 below it follows that G− is also admissible in H.

From the rule G− we have to distinguish the generalization rule G with appli-
cations of the form

D1

A[x/y]
G

∀xA
(if y ≡ x or y /∈ fv(A) , and y /∈ fv(B)
for any assumption B in D1),

(4.13)

which is not a rule for a pure Hilbert system because its applications are ‘sensitive’ to
the presence of assumptions in subdervations (it is an impure Hilbert-system rule).
G often appears in (impure) Hilbert-system axiomatizations of the consequence
relation `C on formulas of C for which the deduction theorem

A `C B ⇐⇒ `C A→ B

holds, or in similar Hilbert-system axiomatizations for consequence relations on I
and M with an analogous property. Examples of such (impure) Hilbert systems
are the systems Hc, Hi, and Hm in [TS00, p.52] (in these systems the rule G is
designated by ∀I, short for “for-all introduction”, under which name it is familiar
from natural-deduction systems for C, I, and M).

4.2.5 Basic Results

The following proposition, which is just an easy a reformulation of Lemma 6.14 in
[HS86, p.70], gathers the most basic interconnections between the notions or rule
correctness, admissibility and derivability in pure Hilbert systems. In its formulation
we use the term “extension by enlargement” 2 : for all pure Hilbert systems H1, an
extension by enlargement of H1 is a pure Hilbert system H2 that results from H1

by adding additional formulas, new axioms and/or new rules.

Lemma 4.2.4. Let H be a pure Hilbert-system and let R be a pure Hilbert-system
rule on the set of formulas of H. Then the following statements holds:

(i) R is correct for H ⇐⇒ R is admissible in H .

(ii) If R is derivable in H, then R is also admissible in H. The implication in the
opposite direction does not hold in general.

(iii) If R is derivable in H, then R is derivable in every extension by enlargement
of H.

A version of this lemma with respect to the precise notion of “abstract pure
Hilbert system” (APHS), Lemma 4.2.4, is given in Appendix B.

2For a motivation of this term, see the paragraph before Definition B.1.6, starting on p. 365,
in Appendix B.

4.2 Definitions and Results in Pure Hilbert Systems 85

Remark 4.2.5. The implication “⇐” in assertion (i) of Proposition 4.2.4 is obvious
to see (cf. Remark 4.2.2 (d)), whereas proving the implication “⇒” involves an
(easy) argument of successively eliminating all applications of R from derivations
in H+R that do not contain assumptions. Hence rule correctness is indeed, as
mentioned in Remark 4.2.2, a valid criterion for rule admissibility. A proof of “⇒”
is sketched in [Schm60, p.150], and in [Cur63, p.97], while in many other expositions
it is considered as a trivial matter. For instance, Schütte “hides” a proof for an
assertion corresponding to Proposition 4.2.4, (i), between two sentences3 in [Schu60,
p.40]. As mentioned in Remark 4.2.2, (a), Hindley/Seldin in [HS86], and Troelstra /
/ Schwichtenberg in [TS00] use the term “admissible rule” for rules that are here
called “correct rules” (respectively in relation to some APHS). Proposition 4.2.4,
(i), can be viewed as a justification for this use of the term “admissible rule” since
it entails

R is “admissible” in H (in the sense of [HS86], [TS00]) ⇐⇒ H+R ∼th H

(which now is just a reformulation of Lemma 6.16, (i), in [HS86, p.70] in terms
of our notation for equivalent systems and of adding new rules to pure Hilbert
systems) and hence it states that the definitions of rule admissibility in [HS86]
and in [TS00] coincide with the definition of rule admissibility in the more literal
sense stipulated here (following [Lor69] and [Schu60]) in pure Hilbert systems. The
fact that the statement “rule admissibility = rule correctness” (using these terms
again according to Definition 4.2.1 again) does not generalize to natural-deduction
systems without complications (as we will see in the next section) is the main reason
why we have decided not to follow the definitions of “admissible rule” by Hindley
and Seldin, and by Troelstra and Schwichtenberg.

The next theorem establishes a link between the assertions of items (ii) and (iii)
in Proposition 4.2.4. It gives, for all pure Hilbert systems H, two closely related
characterizations of rule derivability in H in terms of rule admissibility in extensions
of H.

Theorem 4.2.6. Let H be a pure Hilbert system with set Fo as its set of formulas,
and let R be a pure Hilbert-system rule on Fo. Then the following three statements
are equivalent:

(i) R is derivable in H.

(ii) R is admissible in every pure Hilbert system H+Σ with Σ ∈ P(Fo) arbitrary.

(iii) R is admissible in every extension by enlargement of H.

3These two sentences in [Schu60, p.40] read as follows: “Eine syntaktische Schlußregel

A1, . . . ,An → B , in der A1, . . . ,An,B Formelschemata eines formalen Systems Σ sind, heißt
zulässig im System Σ, wenn die Hinzunahme dieser Schlußregel zu den Grundschlußregeln von
Σ den Herleitbarkeitsbegriff des Systems Σ nicht ändert [emphasis as in the original, C.G.].
Die Schlußregel ist also genau dann zulässig, wenn sich in jedem Einzelfall der Formelschemata
A1, . . . ,An,B aus der Herleitbarkeit der Prämissen auf die Herleitbarkeit der Konklusion schließen
läßt.”

86 Derivability and Admissibility of Inference Rules

This theorem is an informal version of Theorem 4.2.6, which is proved in Ap-
pendix B and which states an analogous relationship between rule derivability and
admissibility in “abstract pure Hilbert systems”.

The following proposition contains two easy observations about the relationship
between the notions of derivability and admissibility of an inference rule in an
arbitrary pure Hilbert system H. The first one is: if a rule R is admissible, but
not derivable in H, then there exists an application of R that contains at least one
non-theorem as premise and that cannot be mimicked by a derivation in H. And
the related second observation is: for every admissible rule R in H, the restriction
of R to all those of its applications that only have theorems of H as premises is a
derivable rule in H.

Proposition 4.2.7. Let H be a pure Hilbert system with set Fo of formulas, and
let R be a pure Hilbert-system rule on Fo. Then the following two statements hold:

(i) Suppose that R is admissible in H. Then it holds that:

R is not derivable in H ⇐⇒

⇐⇒ (∃n ∈ ω) (∃A1, . . . , An ∈ Fo)
[
(4.1) is an application of R &

&
(
(6 `H A1) ∨ . . . ∨ (6 `H An)

)
& A1, . . . , An 6 `H B

]
.

(ii) Let R0 be the rule that arises by restricting the applications of R to all those
that exclusively have theorems of H as premises. Then it holds that

R is admissible in H ⇐⇒ R0 is derivable in H .

This proposition is an easy consequence of the definition of rule correctness in
Definition 4.2.1, (i), and of Lemma 4.2.4, (i), the equivalence of the notions of rule
correctness and rule admissibility in pure Hilbert systems.

4.2.6 Rule Elimination

In the following theorem the notions of rule admissibility and derivability with
respect to a pure Hilbert system H are characterized in terms of from which deriva-
tions in H+R the applications of R can be eliminated. For the formulation of this
theorem we stipulate the following: for all pure Hilbert systems H, for all pure
Hilbert-system rules R on the formulas of H, and for all derivations D of H+R, we
say that the applications of R in D can be eliminated if and only if there exists a
derivation D′ of H that mimics D.

Theorem 4.2.8. (Elimination of derivable and admissible rules). Let H be
a pure Hilbert system with set Fo of formulas, and let R be a pure Hilbert-system
rule on Fo.

4.3 Definitions and Results in Natural-Deduction Systems 87

(i) R is admissible in H if and only if R can be eliminated from all derivations
D of H that do not contain assumptions. This means the following holds:

R is admissible in H ⇐⇒ (∀D ∈ Der(H+R))
[
assm(D) = ∅ =⇒

=⇒ (∃D′ ∈ Der(H))
[
D′ - D

]]
.

(ii) R is derivable in H if and only if R can be eliminated from every derivation
D of H. More formally, the following holds:

R is derivable in H ⇐⇒ (∀D ∈ Der(H+R)) (∃D′ ∈ Der(H))
[
D′ - D

]
.

A version of this theorem with respect to the precise concept of “abstract pure
Hilbert system” is Theorem B.1.15 in Appendix B.

4.3 Definitions and Results in Natural-Deduction
Systems

Natural-deduction systems are due to Gentzen in [Gen35], who introduced the cal-
culi NJ and NK for formalized ‘natural reasoning’ in intuitionistic and classical
predicate logic. (However, in [TS00] it is pointed out that shortly prior to Gentzen
a similar formalism—in linear, not in tree format—has already been introduced
by Jaśkowski in 1934.) Later, thoroughly important work on natural-deduction
systems concerning the concept of ‘normalization’ of derivations in such systems
has been done by Prawitz in [Pra65], based on rigorous definitions of systems for
intuitionistic predicate logic.

In Subsection 4.3.1 of this section we give a general description of natural-
deduction systems in their ‘usual’, and that is, not sequent-style, formulations.
Again, we do not base ourselves on completely formalized concepts of natural-
deduction systems and of rules for such systems, but we only use rough descriptions
of these systems instead; however, we frequently refer to precise formulations with
respect to the concept of “abstract natural-deduction system” that is introduced in
Section B.2 of Appendix B. The notation we use for natural-deduction systems is
drawn mainly from the way how these systems are treated formally in [TS00].

In Subsection 4.3.2 we argue that the definitions of rule derivability, and in
particular, of rule correctness cannot merely be taken over from the stipulations in
pure Hilbert systems. Subsequently in Subsection 4.3.3, we introduce the notions of
rule admissibility, “rule cr-correctness”, “rule cr-admissibility”, and rule derivability
in natural-deduction systems. Eventually in Subsection 4.3.4, we give basic results
concerning the relationships of the for introduced notions; lastly in Subsection 4.3.5
we give a result that relates the notions of admissibility and cr-admissibility with
respective notions of rule elimination in natural-deduction systems.

88 Derivability and Admissibility of Inference Rules

4.3.1 Natural-Deduction Systems

Natural-deduction-style proof systems, here only called natural-deduction systems,
are distinguished by the special feature that derivations may start from unproven
assumptions which can be discharged only later at occurrences of appropriate rule
applications. A derivation D in a natural-deduction system typically contains as-
sumptions of which the conclusion of D has already been made independent, the
“discharged” or “closed” assumptions of D, and it may also contain assumptions on
which the conclusion of D still depends, the “undischarged” or “open” assumptions
of D.

Let S be a natural-deduction system. We will denote by FoS the set of formulas
of S, by MkS the set of assumption markers of S, and by

mFoS =def {A
u | u ∈MkS }

the set ofmarked formulas of S. Furthermore we let Der(S) be the set of derivations
of S. For every derivation D ∈ Der(S) we will denote by concl(D) the conclusion
of D, and by omassm(D) the set of open marked assumptions of D, i.e. the set of
those assumptions of D that are not discharged in D.

Let S again be a natural-deduction system. An application ι of a rule R of S
is an inference that at the bottom of a derivation D ∈ Der(S) has the following
general form

{[Ci]
ui}i=1,...,m

D1

A1 . . .

{[Ci]
ui}i=1,...,m

Dn
Anι R, u1, . . . , um

B

(4.14)

where, for some n ∈ ω , D1, . . . ,Dn ∈ Der(S) are the immediate subderivations of
ι, A1, . . . , An are the premises of ι, B is the conclusion of ι, and for some m ∈ ω ,
the family {[Ci]

ui}i=1,...,m shown at the top of D1, . . . ,Dn gathers all those classes
[C1]

u1 , . . . , [Cm]um of open marked assumptions with occurrences in one or more of
D1, . . . ,Dn that are discharged at ι (the respective markers u1, . . . , um of the open
marked assumptions Cu1

1 , . . . , Cum
m that are discharged at ι are also attached to

the inference ι). An occurrence of a marked assumption Dv ∈ mFoS in D is called
open or undischarged if and only if it corresponds to an open occurrence of Dv in
one of the subderivations D1, . . . ,Dn of ι and if Dv is different from all marked
assumptions Cu1

1 , . . . , Cum
m ; otherwise an occurrence of Dv is called discharged or

closed . In particular this means that the following two statements hold about the
relationship between the open marked assumptions omassm(D) of the derivation
D in (4.14) ending with the application of ι and the open marked assumptions

4.3 Definitions and Results in Natural-Deduction Systems 89

omassm(Di) of the immediate subderivations D1, . . . ,Dn of ι :

{Cu1
1 , . . . , Cum

m } ⊆
n⋃

i=1

omassm(Di) , (4.15)

omassm(D) =
(
n⋃

i=1

omassm(Di)
)
\ {Cu1

1 , . . . , Cum
m } . (4.16)

Let S1 and S2 be natural-deduction systems. For all derivations D1 ∈ Der(S1)
and D2 ∈ Der(S2), we denote by D1 ' D2 the statement “D1 mimics D2” that we
stipulate to be true if and only if D1 and D2 have the same conclusion and the same
open marked assumptions; more formally, we define

D1 ' D2 ⇐⇒def omassm(D1) = omassm(D2) & concl(D1) = concl(D2) (4.17)

for all D1 ∈ Der(S1) and D2 ∈ Der(S2) .
For all natural-deduction systems S, we furthermore introduce the consequence

relation `S ⊆ P(mFoS)× FoS that is defined, for all Σ̃ ∈ P(mFoS) and A ∈ FoS ,
by

Σ̃ `S A ⇐⇒def (∃D ∈ Der(S))
[
omassm(D) = Σ̃ & concl(D) = A

]
. (4.18)

The consequence relation `S is a stricter variant of a perhaps more frequently
used consequence relation `′S ⊆ P(FoS)× FoS that, for all Σ ∈ P(FoS) and for
all A ∈ FoS is defined as follows: Σ `′S A holds if and only if there is a derivation
D in S with conclusion A and such that the formulas occurring in the marked
assumptions omassm(D) of D are contained in Σ. As a reason for why we use
`S here instead of `′S , we want to hint that a notion of “cr-admissibility” (see
Definition 4.3.2, (iii), below) would not be as ‘well-behaved’ if it were to be defined
in terms of `′S instead of in terms of `S (except in so called “pure natural-deduction
systems”, see [Avr91, p.28,29]).

Similarly as for pure Hilbert systems, we introduce the notion “extension by
enlargement”: for all natural-deduction systems S1 and S2, we call S2 an extension
by enlargement of S1 if and only if S2 results from S1 by adding new formulas,
markers, and/or rules.

4.3.2 Problems with Naive Definitions of Rule Correctness
and Rule Derivability

As a consequence of the more complex structure of inference rules in natural-
deduction systems, the definitions of the notion of rule correctness and rule deriv-
ability cannot just be taken over from the stipulations for pure Hilbert systems
in Definition 4.2.1. The stipulation for rule admissibility in Definition 4.2.1 (ii),
however, will also be adopted for natural-deduction systems since it does not make
explicit mention of the formal structure of rules and derivations in these systems.

90 Derivability and Admissibility of Inference Rules

Apart from that it is not immediately clear how the clauses (i) and (iii) of Defini-
tion 4.2.1 can be transferred to reach stipulations for rule correctness and derivabil-
ity which apply to all possible rules in a natural-deduction system (and in particular
to rules that allow assumptions to be discharged), there is yet another reason why
some care has to be taken for adapting these notions in natural-deduction sys-
tems. Namely, incautious definitions would violate the desirable aim of preserving
the most basic relationships between rule correctness, admissibility and derivabil-
ity towards each other as known from pure Hilbert systems. This is because the
stipulations in Definition 4.2.1 could very well provide meaningful definitions for
rule correctness, admissibility and derivability for such rules in natural-deduction
systems at which no assumptions are discharged. But the following example shows
that, if these stipulations were adapted naively , then rule correctness would be a
strictly weaker notion than rule admissibility, contrasting with the situation in pure
Hilbert systems (see Proposition 4.2.4 (i)).

Example 4.3.1. We saw in Example 4.2.3 that the (pure Hilbert-system) rule G−

of unrestricted generalization (cf. (4.12)) is correct and admissible in every pure
Hilbert system H for classical predicate calculus C, and hence that adding G− to
such a system H does not lead to more theorems in the extended system. The
situation changes, however, if the rule G− is added, in the form of the unrestricted
forall-introduction rule (∀I)− with applications of the form

D1

A[y/x]
(∀I)− (if y ≡ x or y /∈ fv(A)) ,

∀xA

(4.19)

to a natural-deduction system for C like the system Nc given in [TS00, p.30]. Let
us remark that the system Nc does actually contain the (restricted form of the)
forall-introduction rule ∀I with applications of the form

D1

A[x/y]
∀I

∀xA
(if y ≡ x or y /∈ fv(A) , and if y /∈ fv(B)
for all assumptions B that are open in D1).

(4.20)

However, if (∀I)− is added to Nc, then formulas become derivable in Nc+(∀I)−

that are not theorems of C:

∃xA u

Av (∀I)−
∀xA ∃I, v

∀xA → I, u
∃xA → ∀xA

(4.21)

But on the other hand, the set of theorems of Nc (and hence of C) is clearly still
closed under applications of (∀I)−. Hence, if we were to base ourselves solely on the
stipulations (i) and (ii) of Definition 4.2.1 (which indeed make sense for (∀I)− !), we
would be tempted to call the rule (∀I)− is correct for Nc, while it is certaily not
“admissible” in Nc (in the literal meaning of this term).

4.3 Definitions and Results in Natural-Deduction Systems 91

We conclude from this example that in natural-deduction systems rule correct-
ness, if it were defined according to Definition 4.2.1, would no longer be a useful
criterion for showing rule admissibility. A closer analysis of this phenomenon shows
that correctness in the sense of Definition 4.2.1, (i), of an ‘assumption-insensitive’
rule R (like G−) with respect to a natural-deduction system S only guarantees that
no non-theorems of S are derivable by such derivations without open assumptions
in S+R that do not contain applications of R having immediate subderivations in
which open assumptions are present; other derivations in S+R without open as-
sumptions may very well possess non-theorems of S as conclusions (as the derivation
(4.21) in Example 4.3.1 demonstrates).

4.3.3 Definitions of Rule Cr-Correctness, Admissibility and
Derivability

In the following definition, we propose some more careful definitions for rule correct-
ness, admissibility and derivability in natural-deduction systems. More precisely,
we introduce, for rules in a natural-deduction system, a notion of admissibility, no-
tions of “cr-correctness” and “cr-admissibility” (i.e. correctness, and respectively
admissibility, with respect to the consequence relation in a system), and a notion
of derivability.

For the definition of rule derivability, we need the notion of “derivation con-
text” in a natural-deduction system, which we introduce now. Let k ∈ ω . By a
k-ary derivation context DC in a natural-deduction system S we understand the
result of replacing within a derivation D ∈ Der(S ′) , where S ′ is an extension by
enlargement of S, some subderivations by any of the holes []1, . . . , []k such that
DC contains only rule applications of S (but not any more applications of rules
of S ′ that are not also rules of S); the set of all k-ary derivation contexts in S is
denoted by DerCtxtk(S). For a more precise definition of the notion of “derivation
context” within the concept of “abstract natural-deduction system” by means of the
notions “pseudo-derivation” and “pseudo-derivation context” in ANDS’s, we refer
to Definition B.2.13 in Section B.2 of Appendix B.

Definition 4.3.2. ((Cr-)Admissibility, correctness and derivability of rules
in natural-deduction-style systems). Let S be a natural-deduction system

with set FoS of formulas, and let R be a rule for a natural-deduction system with
formulas FoS and assumption markers Mk.

(i) The rule R is admissible in S if and only if

S+R ∼th S (4.22)

holds, i.e. iff extending S with the additional rule R does not lead to more
theorems in the extended system S+R .

(ii) The rule R is cr-correct for S (R is correct for S with respect to the consequence
relation `S) if and only if an application of R can always be eliminated from

92 Derivability and Admissibility of Inference Rules

such derivations in S+R that contain an application of R at the bottom, but
no other applications of R. More precisely, R is cr-correct for S iff, for every
derivation D ∈ Der(S+R) of the form (4.14) such that

• n,m ∈ ω ,

• Cu1
1 , . . . , Cum

m ∈ mFoS are distinct marked formulas, and
A1, . . . , An, B ∈ FoS ,

• the conditions (4.15) and (4.16) are fulfilled for the relation-
ship between the open marked assumptions of D and those
of its immediate subderivations D1, . . . ,Dn ,

(4.23)

• and D1, . . . ,Dn ∈ Der(S) ,

}

(4.24)

holds, there exists a derivation D′ ∈ Der(S) such that D′ ' D is the case
(i.e. such that D′ mimics D).

(iii) The rule R is cr-admissible in S (R is admissible in S with respect to the
consequence relation `S) if and only if

`S+R = `S (4.25)

holds, i.e. iff the consequence relations `S+R on S+R and `S on S (both
defined according to (4.18)) coincide.

(iv) The rule R is derivable in S if and only if applications of R can always be
eliminated from such derivations of the form (4.14) in extensions by enlarge-
ment of S in the following special way: for every derivation D in an extension
by enlargement Sext of S containing R such that D is of the form (4.14), with
(4.23) and D1, . . . ,Dn ∈ Der(Sext) fulfilled, there exists a derivation-context
DC′ ∈ DerCtxtn(S) such that the prooftree

{[Ci]
ui}i=1,...,m

D1

[A1]1 . . .

{[Ci]
ui}i=1,...,m

Dn
[An]n

DC′

B

(4.26)

(which is the result DC′[D1, . . . ,Dn] of hole filling in the derivation-context
DC with with D1, . . . ,Dn) is a derivation D′ ∈ Der(Sext) that mimics D (in
particular this means that D′ does not contain applications of R if R is not a
rule of S, and that all open marked assumptions Cu1

1 , . . . , Cum
m in D1, . . . ,Dn

get discharged at rule applications in D′ within the derivation-context DC ′).
£

A version of this definition with respect to the precise concept of “abstract
natural-deduction system”(ANDS) is given in Definition B.2.21, Appendix B. There,

4.3 Definitions and Results in Natural-Deduction Systems 93

cr-correctness of a rule R with respect to an ANDS S is defined equivalently in terms
of the consequence relation `S as defined in (4.18); furthermore, derivability of a
rule R in an ANDS S is defined in a different, but equivalent, way by relying on a
concept of “pseudo-derivations” in an ANDS.

In Example 4.3.3 and Example 4.3.4 below, we illustrate the notion of rule
derivability, for which the defining clause in Definition 4.3.2 is the most complicated
one. We will later encounter examples of rules that are cr-admissible (and cr-correct
as well as admissible) with respect to a natural-deduction system; in particular we
refer to Proposition 6.2.7 for the case of three quite naturally appearing rules (in
a proof system for recursive type equality) that are admissible, but not derivable
with respect to a natural-deduction system and that have only applications at which
assumptions get discharged.

Example 4.3.3 (Rule derivability in natural-deduction systems). For an
example of rule derivability in a natural-deduction system let us consider the rule
∨→∨I that allows applications of the form

[A]u

D1

C

[B]v

D2

D ∨→∨I , u, v
A ∨B → C ∨D

(4.27)

with respect to an arbitrary one of the natural-deduction systems N[mic] for min-
imal, intuitionistic or classical (predicate) logic that are given in [TS00, p.30].
Among rules for other connectives, the systems N[mic] contain the rules ∨IR, ∨IL,
∨E, and →I with applications of the form

D1

E ∨IR
E ∨ F

D1

F ∨IL
E ∨ F

D1

E ∨ F

[E]u

D2

G

[F]v

D3

G ∨E , u, v
G

[E]u

D1

F →I, u
E → F

Let now S be an arbitrary one of the systems N[mic]. Then we find that the rule
(∨→∨I) is derivable in S. To recognize this, we observe that every derivation D of
the form (4.27) in an extension by enlargement Sext of S containing (∨→∨I) (where
hence also D1 and D2 are derivations in Sext), can be mimicked by a derivation
D′ ∈ Der(S) of the following form:

(A ∨B)w

[A]u

D1

C ∨IR
C ∨D

[B]v

D2

D ∨IL
C ∨D

∨E , u, v
C ∨D →I , w

A ∨B → C ∨D

94 Derivability and Admissibility of Inference Rules

Hereby D′ is clearly of the form DC′[D1,D2] for the following binary derivation-
context DC′ ∈ DerCtxt2(S) :

(A ∨B)w
[]1

∨IR
C ∨D

[]2
∨IL

C ∨D
∨E , u, v

C ∨D →I , w
A ∨B → C ∨D

Example 4.3.4 (Rule derivability in natural-deduction systems).

(i) We want to consider the rule TND (“tertium non datur”) that has only
zero-premise applications of the form

TND
A ∨ ¬A (4.28)

with respect to the natural-deduction systemNc for classical (predicate) logic
that is defined in [TS00, p.30].

We find that TND is derivable in Nc by observing that every application of
TND, and hence every derivation D of the form (4.28) can be mimicked by a
derivation D′ ∈ Der(Nc) of the following form:

(¬(A ∨ ¬A))u

(¬(A ∨ ¬A))u
Av ∨IR

A ∨ ¬A
→E

⊥ →I, v
¬A ∨IL

A ∨ ¬A
→E

⊥ ⊥c, u
A ∨ ¬A

Obviously, D′ is also a 0-ary derivation-context in DC ∈ DerCtxt0(Nc) .

(ii) On the other hand, we want to consider the classical absurdity rule ⊥c with
applications of the form

[¬A]u

D1

⊥ ⊥c, u
A

(4.29)

with respect to the system Ni+TND . The system Ni contains the intuition-
istic absurdity rule ⊥i that enables applications of the form

D1

⊥ ⊥i
A

but it does not contain ⊥c.

4.3 Definitions and Results in Natural-Deduction Systems 95

⊥c is derivable in Ni+TND as a consequence of the fact that for every deriva-
tion D of the form (4.29) in an extension by enlargement Sext of Ni+⊥c there
exists a derivation D′ of the form

TND
A ∨ ¬A Av

[¬A]u

D1

⊥ ⊥i
A ∨E, v, u

A

in Sext, which is of the form DC′[D1] for the derivation-context DC ′ of the
form

TND
A ∨ ¬A Av

[]1
⊥i

A ∨E, v, u
A

in Ni+TND, i.e. for which DC ∈ DerCtxt1(Ni+TND) holds.

4.3.4 Basic Results

It turns out that the basic interconnections stated by Lemma 4.2.4 between the no-
tions of rule correctness, admissibility, and derivability in pure Hilbert systems are
preserved in natural-deduction systems for the notions of rule cr-correctness, cr-ad-
missibility, and derivability defined in Definition 4.3.2 (and here rule admissibility
is a weaker notion that any of these). This is stated by the following counterpart
to Lemma 4.2.4 regarding natural-deduction systems.

Lemma 4.3.5. Let S be a natural-deduction system and let R be a natural-deduction
system rule on the set of formulas of S. Then the following statements holds:

(i) R is cr-correct for S if and only if R is cr-admissible in S .

(ii) If R is derivable in S, then R is also cr-admissible in S. If R is cr-correct
for S, then R is also admissible in S. Neither of the two implications in the
opposite direction holds in general.

(iii) If R is derivable in S, then R is derivable in every extension by enlargement
of S.

An analogous version of this lemma with respect to the concept of ANDS is
Lemma B.2.24 in Appendix B.

4.3.5 Rule Elimination

It turns out that cr-admissibility and admissibility of a rule R in a natural-deduction
system S can be characterized, in a similar way as in pure Hilbert systems, in terms
of from which derivations in S+R, and in what manner, applications of R can
be eliminated (here we understand “can be eliminated” in an analogous sense as

96 Derivability and Admissibility of Inference Rules

explained above just before Theorem 4.2.8). The following theorem can be looked
upon as a counterpart to Theorem 4.2.8 in natural-deduction systems; however, it
does not cover a statement concerning rule derivability (the reason being that the
situation is more complex in this case, cf. further comments below).

Theorem 4.3.6. (Elimination of (cr-)admissible rules). Let S be a natural-
deduction system with sets Fo and Mk as formulas and assumption markers. And
let furthermore R be a rule for S.

(i) R is admissible in S if and only if

(∀D ∈ Der(S+R))
[
omassm(D) = ∅ =⇒ (∃D′ ∈ Der(S)) [D′ ' D]

]
.

holds, i.e. iff the applications of R can be eliminated from every derivation D
in S that does not contain open assumptions.

(ii) R is cr-admissible in S if and only

(∀D ∈ Der(S+R)) (∃D′ ∈ Der(S))
[
D′ ' D

]
.

holds, i.e iff applications of R can be eliminated from every derivation D of
S.

The statements (i) and (ii) in Theorem 4.3.6 correspond to the assertions in
items (i) and (ii) of Theorem B.2.26 in Appendix B. In Theorem B.2.26, (iii),
furthermore a characterization of rule derivability in ANDS’s is given which can
informally be phrased as follows: a rule R is derivable in a natural-deduction system
S if and only if the applications of R can be eliminated from all derivation contexts
in S+R (see Definition B.2.25 in Appendix B for a precise formulation of a notion
of rule elimination in ANDS’s which corresponds to rule derivability in ANDS’s via
Theorem B.2.26, (iii)).

Chapter 5

Three Kinds of
Proof Systems for
Recursive Type Equality

The main aim we have in this chapter is to give precise definitions of three kinds
of known proof systems for recursive type equality =µ. Systems of the first two
kinds, to be treated in Section 5.1, are axiom systems that are sound and complete
with respect to =µ . In contrast to this, the systems of the third kind, considered
in Section 5.2, are not axiomatizations of =µ, but are tailor-made for the special
purpose of allowing “consistency-checks” to be carried out with respect to =µ for
arbitrary given equations between recursive types. Apart from defining the main
systems of these three kinds, we additionally introduce certain variant systems that
will turn out to be very useful for our proof-theoretic investigations in later chapters.
In Section 5.3 we are concerned with basic observations about the differences in
proof-theoretic properties between the axiom systems in Section 5.1 and the proof
systems for consistency-checking in Section 5.2.

5.1 Axiom Systems for Recursive Type Equality

The first formal axiomatization of =µ was presented by Amadio and Cardelli in
[AmCa93]. Their system is essentially the system AC= given in the following
definition; the only difference between AC= and the system given in [AmCa93,
Section 5.1, p.30] consists in the fact that the axiom scheme (REN) of AC= for
taking variants of recursive types is not a formal part of the system given by Ama-
dio and Cardelli. This is because renaming of bound variables in recursive types
(“α-conversion” on recursive types) is not dealt with there explicitly; instead, re-
cursive types τ and σ such that τ ≡ren σ are identified implicitly on a syntactical

98 Proof Systems for Recursive Type Equality

Figure 5.1: The Hilbert-style proof system AC= for recursive type equality =µ

given by Amadio and Cardelli.

The axioms of AC= :

(REFL) τ = τ (REN) τ = τ ′ (if τ ≡ren τ
′)

(µ−⊥) µα. α = ⊥ (FOLD/UNFOLD) µα. τ = τ [µα. τ/α]

The inference rules of AC= :

σ = τ
SYMM

τ = σ

τ = ρ ρ = σ
TRANS

τ = σ

τ = σ µ-COMPAT
µα. τ = µα. σ

τ1 = σ1 τ2 = σ2
ARROW

τ1 → τ2 = σ1 → σ2

τ1 = τ [τ1/α] τ2 = τ [τ2/α]
UFP (if α ↓ τ)

τ1 = τ2

level1.

Definition 5.1.1 (The proof system AC=). The proof system AC= is defined
as a (pure) Hilbert-style proof system in the following way. The formulas of AC=

are the equations between recursive types, i.e. all elements of the set µTp–Eq.
The axioms of AC= are all those equations between recursive types that belong

to one of the four schemes (REFL), (REN), (µ−⊥) and (FOLD/UNFOLD) shown
in Figure 5.1.

And the inference rules of AC= are the rules SYMM, TRANS, ARROW,
µ-COMPAT and UFP whose respective applications are schematically defined in
Figure 5.1. The notation2 α ↓ τ used to denote the necessary side-condition on
the applicability of the rule UFP is meant to abbreviate the verbal expression “the
recursive type τ is contractive in the variable α” that is defined as the condition
“α /∈ fv(τ) or τ ≡ µα1 . . . αn. (ρ1 → ρ2) (for n ∈ ω and some ρ1, ρ2 ∈ µTp and
α1 . . . αn ∈ TVar)” on α and τ . £

Remark 5.1.2. In the following three items we gather a few basic observations
about the proof system AC=.

(a) Amadio and Cardelli have introduced the last rule in Figure 5.1 under the
name label “(contract)” (see [AmCa93, p.30]). We have, however, chosen

1In [AmCa93, p.11] Amadio and Cardelli write “Types are identified up to renaming of bound
variables” and, in a footnote, that they use the symbol ≡ except for defining abbreviations also
for syntactic identification of recursive types; that is, they use a formal expression τ ≡ σ, if this is
not intended as introducing τ as an abbreviation for σ, in the meaning of τ ≡ren σ according to
our notation.

2This notation is taken from [AmCa93, p.30].

5.1 Axiom Systems 99

to call it UFP instead, which is intended to stand short for “unique fixed-
point rule”, thereby being able to reserve the name “CONTRACT” for a
close variant of this rule that is introduced below in (5.1). We think that
the formal behaviours of these two rules are better reflected in their names as
stipulated here.

A couple of alternative formulations of the “guardedness (side-)condition”
α ↓ τ in the schematic definition of the applications of the rule UFP in Fig-
ure 5.1 will later be given in Chapter 7 (cf. Lemma 7.1.1 and Lemma 7.1.2).

(b) Due to the presence of the axiom scheme (REN) in AC=, the axioms of the
scheme (REFL) are actually redundant; but they have been kept here in the
intention of taking over the system defined in [AmCa93] as literally as possible
for the formulation of a slightly refined system, the system AC= defined here,
in which α-conversion of recursive types is cared for (more3) explicitly.

And due to the presence of the transitivity rule TRANS in AC=, the axiom
scheme (REN) could have been replaced by one of the rules

τ ′ = σ RENl (if τ ′ ≡ren τ)τ = σ
or τ = σ′ RENr (if σ′ ≡ren σ) .τ = σ

A two-sided version REN of these rules, which allows to take respective vari-
ants of recursive types on either side of an equation in its premise and for which
its applications can be modeled as juxtapositions of RENl- and RENr-applica-
tions, will play a part in the proof systems AK=

0 and HB=
0 defined later. The

rules RENl and RENr will also sometimes be used for the purpose of abbre-
viating AC=-derivations, since it is obvious, how applications of these rules
can be eliminated from an AC=-derivation by replacing them by applications
of TRANS-rules with axioms (REN).

(c) Also, in the formulation of AC= the axiom scheme (FOLD/UNFOLD) could
have been replaced by either of the rules

τ ′[µα. τ/α] = σ
FOLDl (whenever τ ′ ≡ren τ)µα. τ = σ

or

τ = σ′[µα. σ/α]
FOLDr (whenever τ ′ ≡ren τ) ,τ = µα. σ

and it is also easy to see that applications of the rules FOLDl or FOLDr can be
eliminated from an AC=-derivation using axioms (FOLD/UNFOLD), (REN)
and the rules TRANS and SYMM. But it should be noted here, that the rules
FOLDl and FOLDr allow the “folding” of recursive types in full generality
contrary to axioms of the scheme (FOLD/UNFOLD). This is because there
exist recursive types τ and type variables α such that µα.τ is not substitutible

3α-conversion of recursive types must be cared for only somewhat more explicitly here because
the axioms (REN) allow to do an arbitrary number of renamings of bound variables in a recursive
type in one gathered step.

100 Proof Systems for Recursive Type Equality

for α in τ (for example take τ ≡ β → µβ.(α→ β)) and hence recursive types
τ and α with the property that µα. τ = τ [µα. τ/α] is not an axiom of type
(FOLD/UNFOLD) (because then τ [µα. τ/α] is not an admissible substitution
expression as explained in Convention 3.3.6).

To allow folding and unfolding in full generality the axiom scheme (FOLD/UN-
FOLD) could also have been replaced in the formulation ofAC= by the axiom
scheme

(FOLD/UNFOLD)′ µα. τ = τ ′[µα. τ/α] (if τ ′ ≡ren τ) .

However, it is clear, that due to the presence of axioms (REN) and the rules
TRANS in AC= all axioms of (FOLD/UNFOLD)′ are actually derivable in
AC=.

Example 5.1.3 (A derivation in AC=). In Example 3.6.2 we have considered
the two recursive types

τ1 ≡ µα. (α→ ⊥) and σ1 ≡ µβ. ((β → ⊥)→ ⊥)

and we have seen that these two recursive types have the same tree unfolding and
hence are strongly equivalent. In the system AC= it is possible to give the following
easy derivation of the equation between recursive types τ1 = σ1 :

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = (τ1 → ⊥)→ ⊥
TRANS

τ1 = (τ1 → ⊥)→ ⊥
︸ ︷︷ ︸

≡ ((γ→⊥)→⊥) [τ1/γ]

(FOLD/UNFOLD)

σ1 = (σ1 → ⊥)→ ⊥
︸ ︷︷ ︸

≡ ((γ→⊥)→⊥) [σ1/γ]
UFP

τ1 = σ1

The following theorem, which is also due to Amadio and Cardelli, about the sys-
tem AC= states that not only does τ =µ σ hold for all equations between recursive
types τ = σ that are theorems of AC= (“AC= is sound with respect to =µ”), but
also the opposite is the case, i.e. that an equation between recursive types τ = σ is
derivable in AC= if τ and σ are strongly equivalent (“AC= is complete with respect
to =µ”).

Theorem 5.1.4 (Amadio and Cardelli, ’93: Soundness and completeness
of the axiom system AC= with respect to =µ). The system AC= is sound

and complete with respect to recursive type equality =µ, i.e. for all recursive types
τ, σ ∈ µTp the following assertion holds:

`AC= τ = σ ⇐⇒ τ =µ σ .

5.1 Axiom Systems 101

Reference to a Proof. See Proposition 5.1.1 in [AmCa93, p.30] for the soundness-
part and Theorem 5.2.6 in [AmCa93, pp.32,33] for the completeness-part.

There is a widely known alternative for the rule UFP in AC=, namely the rule
we have decided to call CONTRACT (cf. Remark 5.1.2, (a)) that is defined by the
scheme

τ1 = τ [τ1/α]
CONTRACT (if α ↓ τ)

τ1 = µα. τ
(5.1)

of its applications (where α ↓ τ is defined, for all α ∈ TVar and τ ∈ µTp , as in
Definition 5.1.1). The fixed-point rule CONTRACT is actually just a counterpart
to a corresponding rule “Folding”, which appears in (the report version of) [ArKl95,
p. 39] as part of a complete proof system ELµ for µ-terms over a first-order signature
([ArKl95] refer in their turn to [Mil84], where a corresponding rule of the same form
appears in the context of a “complete inference system for regular behaviours” as
R4 on p. 454).

In the context of the axioms and of the rules of AC= except UFP, the rules
UFP and CONTRACT turn out to be equivalent. Since the use of the rule CON-
TRACT often allows to write down derivations in a more compact form, we will
frequently make use of it instead of the rule UFP. Hence there arises the need for
a designation of a variant system of AC= that contains CONTRACT in place of
UFP, and for a statement that asserts the existence of easy effective translations
between derivations in AC= and derivations in the variant system that will now be
defined.

Definition 5.1.5 (The variant system AC=
∗ of AC=). The (pure) Hilbert-style

proof system AC=
∗ has the same formulas and axioms as AC= and it possesses as

inference rules precisely the rule CONTRACT with applications of the form (5.1)
as well as all rules of AC= except the rule UFP. £

Proposition 5.1.6 (Equivalence of the systems AC=
∗ and AC=). The rule

UFP is a derivable rule of AC=
∗ and the rule CONTRACT is a derivable rule of

AC=, respective applications of which can be eliminated effectively from derivations
in AC=

∗ +UFP, or respectively, from derivations in AC=+CONTRACT. Hence
there are effective transformations from derivations in AC=

∗ into mimicking deriva-
tions in AC= and vice versa.

It follows that the systems AC= and AC=
∗ are equivalent, i.e. that they have

the same theorems.

Proof. It is sufficient to show that the rule CONTRACT is a derivable rule of
AC=, that the rule UFP is a derivable rule of AC=

∗ and that furthermore ap-
plications of each of these rules can respectively be mimicked with the help of
effectively found derivations containing applications of the respective other rule
in a very easy way. We will only show that CONTRACT is a derivable rule in
AC=, applications of which can be eliminated effectively from arbitrary derivations
in AC= +CONTRACT ; the respective statements about UFP are still easier to
demonstrate.

102 Proof Systems for Recursive Type Equality

For showing that CONTRACT is derivable inAC=, let ι be an arbitrary applica-
tion of this rule. We have to show that the derivation D(ι) in AC

=
∗ that corresponds

to this application and that is of the form (5.1), for some α ∈ TVar and τ, τ1 ∈ µTp

such that α ↓ τ holds, can be mimicked by a derivation D
(ι)
mim in AC=. Let τ ′ be

a variant of τ such that both µα. τ and τ1 are substitutible for α in τ ′. Then also
µα. τ ≡ren µα. τ

′ and µα. τ ′ is substitutible for α in τ ′. From a lemma in Chap-
ter 7, Lemma 7.1.2, (i), we conclude that also α ↓ τ ′ holds. Hence the application

of UFP in the following derivation D
(ι)
mim with the assumption τ1 = τ [τ1/α]

(Assumption)

τ1 = τ [τ1/α]

(REN)

τ [τ1/α] = τ ′[τ1/α]

τ1 = τ ′[τ1/α]

(FOLD/UNFOLD)

µα. τ ′ = τ ′[µα. τ ′/α]
UFP

τ1 = µα. τ ′
(REN)

µα. τ ′ = µα. τ

τ1 = µα. τ

(where the two applications without name labels of two-premise rules are applica-

tions of TRANS) is justified. Now clearly D
(ι)
mim - D(ι) holds, i.e. D(ι) is mimicked

by the AC=-derivation D
(ι)
mim.

Let us now consider an arbitrary derivation D̃ in AC= +CONTRACT, and
an arbitrary occurrence of an application ι of CONTRACT corresponding to a
derivation D(ι) of the form (5.1), for some τ, τ1 ∈ µTp and α ∈ TVar , within D̃.

Then a derivation D
(ι)
mim found for the derivation D(ι) as above contains in a leaf

at its top the premise τ1 = τ [τ1/α] of ι and has the same conclusion as ι (and

D(ι)). Therefore D
(ι)
mim can be used for eliminating the considered occurrence of the

application ι of CONTRACT in D̃ with the result of a derivation with the same
conclusion and the same assumptions as D̃. Similarly, also all other applications of
CONTRACT can be eliminated from D̃ in an effective way such that the result is
a derivation in AC= with the same conclusion and the same assumptions as D̃.

We continue by giving two examples of derivations in the variant system AC=
∗

of AC=.

Example 5.1.7 (A derivation in AC=
∗). We consider again the strongly equiv-

alent recursive types τ1 and σ1 from Example 3.6.2. A derivation in AC=
∗ with

conclusion τ1 = σ1 is given in Figure 5.2 (the recursive types τ1 and σ2 are dis-
played explicitly at the bottom of the derivation). This derivation is actually (by
one occurrence of an axiom) smaller than the AC=-derivation with the same con-
clusion that was given in Example 5.1.3.

Example 5.1.8 (Another derivation in AC=
∗). As an example of a derivation

in AC=
∗ , we want to give a derivation for the axioms (µµ−µ) in Lemma 3.8.4, i.e.

we want to show

`AC=

∗

µα. µβ. τ = µγ. τ [γ/α, γ/β]

5.1 Axiom Systems 103

Figure 5.2: Example of a derivation in AC=
∗ .

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = (τ1 → ⊥)→ ⊥
TRANS

τ1 = (τ1 → ⊥)→ ⊥
︸ ︷︷ ︸

≡ ((β→⊥)→⊥) [τ1/β]
CONTRACT

τ1
︸︷︷︸

≡µα. (α→⊥)

= σ1
︸︷︷︸

≡µβ. ((β→⊥)→⊥)

for all α, β, γ ∈ TVar and τ ∈ µTp such that α 6≡ β , α, β ∈ fv(τ) and γ /∈ fv(τ) ∨
∨ γ ≡ α∨ γ ≡ β .

Let therefore α, β, γ ∈ TVar be such that α, β ∈ fv(τ) , α 6≡ β , γ /∈ fv(τ) ∨
∨ γ ≡ α∨ γ ≡ β and γ substitutible for α and β in τ . From the assumptions
about α, β and τ we conclude that τ must be of the form µα1 . . . αn. (ρ1 → ρ2) for
some n ∈ ω, α1, . . . , αn ∈ TVar and ρ1, ρ2 ∈ µTp such that α, β ∈ fv(ρ1 → ρ2) and
α, β 6≡ α1, . . . , αn ; we also let n ∈ ω and α1, . . . , αn, ρ1, ρ2 be chosen in this way.

We furthermore let σ ≡ µγ. τ [γ/α, γ/β] and choose a variant τ ′ of τ such that
σ is substitutible for α and β in τ ′; we furthermore choose γ̃ ∈ TVar such that
γ̃ /∈ fv(τ ′) ∨ γ̃ ≡ α∨ γ̃ ≡ β such that γ̃ is substitutible for α and β in τ ′ and in τ .
Then also σ′ ≡ µγ̃. τ ′[γ̃/α, γ̃/β] is a variant of σ because of

σ′ ≡ µγ̃. τ ′[γ̃/α, γ̃/β] ≡ren µγ̃. τ [γ̃/α, γ̃/β] ≡ren

≡ren µγ. τ [γ̃/α, γ̃/β][γ/γ̃] ≡ren µγ. τ [γ/α, γ/β] ≡ σ

and furthermore σ′ is substitutible for α and β in τ ′ (because of fv(σ′) = fv(σ)).
Since τ ′ ≡ren τ , we can conclude (from what we have found about the form of τ
above) that τ ′ ≡ren µα̃1 . . . α̃n. (ρ̃1 → ρ̃2) for some α̃1, . . . , α̃n ∈ TVar and ρ̃1, ρ̃2 ∈
∈ µTp such that α, β ∈ fv(ρ̃1 → ρ̃2) and α, β 6≡ α̃1, . . . , α̃n .

In this situation, the derivation shown in Figure 5.3 is a derivation in AC=
∗ ,

where the following justifications for syntactic transformations on substitution ex-
pressions and for the applicability of the two occurring applications of CONTRACT
have been used:

(I): is due to β /∈ fv(σ′) (since σ′ ≡ µγ̃. τ ′[γ̃/α, γ̃/β]) ;

(II): β ↓ τ ′[σ′/α] holds, since τ ′[σ′/α] ≡ µα̃1 . . . α̃n. (ρ̃1[σ
′/α]→ ρ̃2[σ

′/α]) ;

(III): follows from α 6≡ β and β /∈ fv(σ′) with Lemma 3.3.10, (iii);

(IV): α ↓ µβ. τ ′ holds, since µβ. τ ′ ≡ µβα̃1 . . . α̃n. (ρ̃1 → ρ̃2) and α ∈ fv(ρ̃1 → ρ̃2)
as well as α 6≡ β, α̃1, . . . α̃n .

104 Proof Systems for Recursive Type Equality

Figure 5.3: A derivation in AC=
∗ of an axiom (µµ−µ).

(FOLD/UNFOLD)

≡σ′

︷ ︸︸ ︷

µγ̃. τ ′[γ̃/α, γ̃/β] = τ ′ [σ′/α, σ′/β]
︸ ︷︷ ︸

WV
(I)

τ ′[σ′/α] [σ′/β]

CONTRACT (cf. (II))
σ′ = µβ. τ ′[σ′/α]

︸ ︷︷ ︸

WV
(III)

(µβ. τ ′)[σ′/α]

CONTRACT (cf. (IV))
σ′ = µα. µβ. τ ′

RENl/r

σ = µα. µβ. τ
SYMM

µα. µβ. τ = µγ. τ [γ/α, γ/β]

Thus we have recognized that the axioms (µµ−µ) in Lemma 3.8.4 are derivable in
AC=

∗ .
A proof for the derivability of the axioms (µµ−µ) in the system AC= is sketched

in [AmCa93, Section 5.1.2, pp.30,31]; there the derivability inAC= of a substitution
rule introduced in Section 7.1, Chapter 7, is used (which rule is not introduced
explicitly in [AmCa93], see also Remark 7.1.10).

As a direct consequence of Theorem 5.1.4, the soundness and completeness the-
orem of AC=, and of Proposition 5.1.6 we find the following soundness and com-
pleteness theorem for AC=

∗ .

Theorem 5.1.9. The system AC=
∗ is sound and complete with respect to recursive

type equality =µ .

By using the soundness part of this theorem, we are now eventually able to give
the (remaining parts of the) proof of Theorem 3.8.3 from Chapter 3.8.

Proof of Theorem 3.8.3. We know from Lemma 3.8.2 that the transformation c is
a well-defined function from the set µTp of recursive types to the set can-µTp of
recursive types in canonical form. Hence for proving (3.38) it suffices to establish:

(∀ τ ∈ µTp) [τ =µ τ
c] .

For showing this assertion it furthermore suffices, due to the soundness part of the
Theorem 5.1.9, to show:

(∀ τ ∈ µTp) [`AC=

∗

τ = τ c] . (5.2)

But this statement is now a consequence of Lemma 3.8.4 according to which, for
all τ ∈ µTp , `WEQ+(µµ−µ) τ = τ c holds: this is because the system AC=

∗ is an

5.1 Axiom Systems 105

extension by enlargement of WEQ in which all axioms (µµ−µ) are derivable (as
we have seen in Example 5.1.8).

The second kind of proof systems for recursive type equality =µ that we will
consider are variant systems of a particular axiomatization of the relation =µ on the
set can-µTp of all recursive types in canonical form that was given by M. Brandt and
F. Henglein in [BrHe98]. All of these Brandt-Henglein systems contain restricted
versions of a circular rule FIX. In a formulation for a natural-deduction system,
applications of this rule have, at the bottom of derivations D, the form

[τ = σ]u

D1

τ = σ
FIX, u

τ = σ

(5.3)

with τ, σ ∈ µTp and a subderivation D1. The rule FIX can be motivated in a
coinductive manner and is, at least at first sight, of a very peculiar form: it allows
to infer the conclusion τ = σ from itself as (the only) premise, given that τ = σ
has already been derived by a derivation D1 in which τ = σ is also allowed to figure
as an assumption an arbitrary number of times. But the conclusion τ = σ in the
resulting derivation D does not depend any more on the use of the same formula in
marked assumptions (τ = σ)u occurring in D1, since all open marked assumptions
of the form (τ = σ)u have been discharged by then at the application of FIX at the
bottom of D.

This rule would obviously allow to derive all formulas in µTp–Eq as theorems of a
system containing FIX if no side-condition were attached to its applications. Hence
such an unrestricted FIX-rule is actually useless for building a sound axiomatization
of =µ. But it turns out that suitably restricted forms of the rule FIX (that is,
rules with applications (5.3) where an appropriate side-condition is imposed on the
subderivation D1) lead to a sound and complete axiomatization of =µ in the context
of the axioms and other basic rules from the system of Amadio and Cardelli. For
a clear-cut general definition of a rule FIX that only enables sound inferences with
respect to =µ, within a certain variant Brandt-Henglein system defined later in this
chapter, we refer to Definition 6.2.1 in Section 6.2 of Chapter 6. And we also refer
to Subsection 9.2.1 of Section 9.2 in Chapter 9, where we report on results about a
sound version of the rule FIX in the context of the axiom system for recursive type
equality given by Brandt and Henglein.

In the axiomatization given by Brandt and Henglein the use of the rule FIX is
restricted to the case in which, with respect to the denotations for an application of
FIX as in (5.3), the ultimate rule application in D1 is an application of the composi-
tion rule ARROW; in this case no further side-condition on D1 is needed. However,
the rule FIX does not figure itself as an explicit rule in the system given in [BrHe98]
and is replaced instead by the rule ARROW/FIX. Hereby an application of AR-
ROW/FIX is an amalgamation of an application of ARROW with an immediately

106 Proof Systems for Recursive Type Equality

following application of FIX that is not subjected to any further 4 side-condition.

The system HB= that is defined below is a natural-deduction formulation of a
very straightforward extension of the axiomatization given by Brandt and Henglein
for recursive type equality =µ on the set can-µTp of all recursive types in canonical
form. Instead of axiomatizing the relation =µ on can-µTp (the original system can
be found in Figure 4 in [BrHe98, on p.7]), the system HB= is able to axiomatize
the relation =µ on the set µTp of all recursive types. For this purpose the additional
axiom (µ−⊥)′, an extended version of the axiom (µ−⊥) of AC=, is used which
equates recursive types of the form µα1 . . . αn. α1 with the recursive type ⊥ that
possesses the same tree unfolding. Furthermore, like in the definition of AC=, we
again have taken up axioms (REN) for equating variants of recursive types into the
system HB=. Such axioms do not occur in the system given in [BrHe98], where
recursive types that differ only by the names of bound variables are considered to
be identified implicitly on a syntactical level5. As mentioned above, a distinctive
role in both the original system of Brandt and Henglein as well as in the system
HB= defined below is played by the rule ARROW/FIX, at applications of which
assumptions of the form of its conclusion can get discharged.

Definition 5.1.10 (The proof system HB=). The natural-deduction-style proof
system HB= is defined as follows.

The formulas of the formal system HB= are precisely the equations between
recursive types in µTp–Eq. The axioms of HB= are all those that belong to one
of the axiom schemes (REFL), (REN), (µ−⊥)′ and (FOLD/UNFOLD) gathered
in Figure 5.4. Derivations in HB= are allowed to start from marked assumptions
(Assm) of the kind shown in Figure 5.4; such marked assumptions may later be
discharged at applications of a particular inference rule of HB=, see below. An
occurrence o of a marked assumption (τ = σ)u at the top of derivation D in HB=

is called an open (or undischarged) (marked) assumption in D if and only if on the
thread from the occurrence o downwards to the conclusion of D no rule application
is passed at which the occurrence o of (τ = σ)u is discharged.

As its inference rules the system HB= possesses precisely the rules SYMM,
TRANS and ARROW/FIX whose respective applications are schematically exhib-
ited in Figure 5.4. In contrast to applications of SYMM and TRANS, applica-
tions of the rule ARROW/FIX allow to discharge open assumptions: in the deriva-
tion D displayed in Figure 5.4 with an application of ARROW/FIX at its bot-
tom and with immediate subderivations D1 and D2, the equations in angle brack-
ets [τ1 → τ2 = σ1 → σ2]

u denote the class of all open assumptions of the form
(τ1 → τ2 = σ1 → σ2)

u in D1 or in D2, respectively; these two open assumption
classes in D1 and D2 correspond together and in an obvious way (suggested by the
schematic prooftree forD) to a class of assumptions of the form (τ1 → τ2 = σ1 → σ2)

u

in D that commonly are discharged at the application of ARROW/FIX at the bot-

4Except the stated one that such an application of FIX has to be immediately preceded by an
application of ARROW.

5“. . . , recursive types that differ only in their bound variables are identified, . . . ” [BrHe98,
p. 3].

5.1 Axiom Systems 107

Figure 5.4: The natural-deduction-style proof system HB= following the axiom-
atization of recursive type equality =µ by Brandt and Henglein.

The axioms and possible marked assumptions in HB= :

(REFL) τ = τ (REN) τ = τ ′ (if τ ≡ren τ
′)

(µ−⊥)′ µαα1 . . . αn. α = ⊥ (FOLD/UNFOLD) µα. τ = τ [µα. τ/α]

(Assm) (τ = σ)u (with u ∈Mk)

The inference rules of HB= :

D1

σ = τ
SYMM

τ = σ

D1

τ = ρ
D2

ρ = σ
TRANS

τ = σ

[τ1 → τ2 = σ1 → σ2]
u

D1

τ1 = σ1

[τ1 → τ2 = σ1 → σ2]
u

D2

τ2 = σ2 ARROW/FIX, u
τ1 → τ2 = σ1 → σ2

tom of D; thereby the marker u of the discharged assumptions [τ1 → τ2 = σ1 → σ2]
u

is also attached to the particular application of ARROW/FIX at which these as-
sumptions are discharged. Here and in general the markers act as bookkeeping
devices that allow to identify which open assumptions get actually discharged at a
considered application of ARROW/FIX in a HB=-derivation.

A formula τ = σ is a theorem of HB= (in symbolic notation: `HB= τ = σ) iff
there exists a derivation D in HB= with conclusion τ = σ and with the property
that all marked assumptions have been discharged at respective applications of
ARROW/FIX in D.

£

Remark 5.1.11. (i) If the set of formulas of the system HB= is restricted to
the set can-µTp–Eq of equations between recursive types in canonical form,
then the axioms (µ−⊥)′ of HB= do not occur any more in the restricted
system and in this manner essentially a natural-deduction formulation6 of the
system given by Brandt and Henglein is obtained.7

(ii) As Brandt and Henglein point out in [BrHe98], it is a particular feature of
their system that known efficient algorithms for deciding strong recursive type

6[BrHe98] present their system in a Gentzen-style sequent-calculus.
7By “essentially [. . .] is obtained” we mean that a system is reached which differs from the one

given in [BrHe98] only by the additional presence of the axioms (REN).

108 Proof Systems for Recursive Type Equality

equality =µ can be modified in such a way as to be able to construct deriva-
tions in their system efficiently. But the main advantage of the formal systems
introduced by Brandt and Henglein only becomes fully apparent in the case of
their related axiomatization for the subtyping relation ≤µ on recursive types,
which is also given in [BrHe98]. This is because that axiomatization does lend
itself to become rebuilt in a straightforward way into an annotated system, in
which the annotations c in formulas c : τ ≤ σ denote abstract coercions (i.e.
type-adaptation functions) between recursive types τ and σ. In the case of a
formula c : τ ≤ σ that is derivable in such an appropriate annotated version of
the Brandt-Henglein system for ≤µ without open assumptions, the coercion c
does also witness that τ and σ are in fact in the subtype relation or—in other
words—that τ is a subtype of σ. (This contrasts with the fact that from the
outset it is not clear at all how a calculus for subtyping inequations annotated
with coercions could be built from an axiomatization of ≤µ given by Amadio
and Cardelli in [AmCa93]).

For mainly typographical reasons, we do not give an example of a derivation
in the system HB= here. In Example 5.1.14 below, however, we will present a
derivation in a close variant system HB=

0 of HB= (HB=
0 will be introduced in

Definition 5.1.13) that can be transformed in a straightforward way into a derivation
in the system HB=.8

The next theorem, due to Brandt and Henglein, states that HB= is a complete
proof system for recursive type equality =µ.

Theorem 5.1.12 (Brandt, Henglein, ’98: Soundness and completeness of
the axiom system HB= with respect to =µ). The system HB= is sound

and complete with respect to recursive type equality =µ ; this means that for all
recursive types τ, σ ∈ µTp the following statement holds:

`HB= τ = σ ⇐⇒ τ =µ σ . (5.4)

Sketch of Proof. A very direct and straightforward way of proving the soundness
of the system HB= with respect to =µ (i.e. for showing “⇒” in (5.4)) consists in
showing the statement

(
∀ p ∈ {1, 2}∗

) (
∀ τ, σ, τ0, σ0 ∈ µTp

)

(

∀D HB=-derivation without open
assumption-classes and of the form

D0

(τ0 = σ0)

DC
τ = σ

)

[

Tree(τ0)(p) = Tree(σ0)(p)
]

.

(5.5)

8For the easy examples treated here, the variant system HB=

0
of HB=, which will be defined

below, enables “more compact” derivations of smaller size than the system HB=. However, this is
not true in general for larger examples, for which due to substantial reasons the reversed situation
is possible to occur.

5.1 Axiom Systems 109

by induction on the length |p| of the path p ∈ {1, 2}∗ with a sub-induction on the
depth |D0| of the subderivation D0 of D. The statement (5.5) obviously implies that
Tree(τ) = Tree(σ) and hence that τ =µ σ holds for every derivation D in HB=

without open assumption classes and with conclusion τ = σ for some τ, σ ∈ µTp .
For the proof of the completeness of HB= with respect to =µ (i.e. for a proof of

“⇐” in (5.4)) we refer to [BrHe98]. Although there an axiom system for recursive
types in canonical form is considered, the method of proof used by Brandt and
Henglein can easily be adapted for our (slightly extended9) systemHB= to cover the
case of recursive type equality =µ for general recursive types in µTp (the additional
axioms (µ−⊥)′ in HB= are essential for this). – We shall not repeat this proof
here, since we will have to use its basic idea (and we will in a way repeat the
entire proof) in similar circumstances in Chapter 7 in Lemma 7.2.9 (there also the
necessary adaptation of the proof in [BrHe98] for the case of our system HB= with
respect to general recursive types plays a role and will be treated explicitly).

For our proof-theoretic investigations in coming chapters it will be important to
have also a variant system HB=

0 of HB= with stronger proof-theoretical properties
at our disposal that does not contain symmetry and transitivity rules. Below we
define such a variant system HB=

0 of HB= and subsequently give an example of a
derivation in this system. In the absence of the rules SYMM and TRANS from this
variant system HB=

0 of HB=, the axioms (REN), (µ−⊥)′ and (FOLD/UNFOLD)
of HB= have to be reformulated as respective rules REN, (µ−⊥)⊥derl , (µ−⊥)⊥derr ,
FOLDl and FOLDr in HB=

0 .
A further, but minor, difference between HB= and its variant system HB=

0

to be defined below consists in the fact that in HB=
0 applications of the rule AR-

ROW/FIX are subjected to the side-condition that the class of assumptions that
get discharged at applications of this rule is actually non-empty or, as we shall
sometimes say, inhabited . This has the consequence that in HB=

0 additionally the
rule ARROW of AC= is needed to mimic those applications of ARROW/FIX in
HB= at which no open assumptions are discharged. Our aim with introducing
in HB=

0 a clear distinction between applications of ARROW and applications of
ARROW/FIX consists in making our notation match with certain case-distinctions
in proof-theoretic arguments used later.

Definition 5.1.13. (The variant system HB=
0 of HB=). The proof system

HB=
0 is a natural-deduction-style system; it contains as its formulas precisely the

equations between recursive types in µTp–Eq, it allows axioms (REFL), marked
assumptions (Assm) and possesses as inference rules precisely the rules REN,
(µ−⊥)⊥derl , (µ−⊥)⊥derr , FOLDl, FOLDr, ARROW and ARROW/FIX exhibited in
Figure 5.5. The notions of open or discharged occurrences of marked assumptions
in a derivation in HB=

0 are defined analogously as for the system HB= in Defi-
nition 5.1.10. The precise meaning of the side-condition I for applications of the

9Our slight extension HB= of the system considered by Brandt and Henglein was chosen in
such a way as to be able to constitute an axiomatization for =µ with respect to recursive types
in µTp ([BrHe98] do only consider an axiom system with respect to canonical recursive types, i.e.
elements of can-µTp).

110 Proof Systems for Recursive Type Equality

Figure 5.5: The natural-deduction-style proof system HB=
0 for recursive type

equality =µ, a ‘normalized’ version without symmetry and transitivity rules of the
Brandt-Henglein system HB=.

The axioms and possible marked assumptions in HB=
0 :

(REFL) τ = τ (Assm) (τ = σ)u (with u ∈Mk)

The inference rules of HB=
0 :

D1

⊥ = σ
(µ−⊥)⊥derlµαα1 . . . αn. α = σ

D1

τ = ⊥
(µ−⊥)⊥derr

τ = µββ1 . . . βn. β

D1

τ [µα. τ/α] = σ
FOLDlµα. τ = σ

D1

τ = σ[µβ. σ/β]
FOLDr

τ = µβ. σ

D1

τ = σ
REN (if τ ′ ≡ren τ

and σ′ ≡ren σ)τ ′ = σ′

D1

τ1 = σ1
D2

τ2 = σ2
ARROW

τ1 → τ2 = σ1 → σ2

[τ1 → τ2 = σ1 → σ2]
u

D1

τ1 = σ1

[τ1 → τ2 = σ1 → σ2]
u

D2

τ2 = σ2 ARROW/FIX, u
(if side-cond. I)τ1 → τ2 = σ1 → σ2

rule ARROW/FIX in HB=
0 consists—with respect to the denotations used in the

displayed form of this rule in Figure 5.5—in the statement:

“The class of open assumptions of the form (τ1 → τ2 = σ1 → σ2)
u is

inhabitated (non-empty) in at least one of the derivations D1 or D2.”

For informal references in arguments, proofs, etc., we will allow ‘bundling’ respective
left- and right-sided rules: by speaking about rules FOLDl/r, we will refer to both

of the rules FOLDl and FOLDr; and by rules (µ−⊥)⊥derl/r we will mean the rules

(µ−⊥)⊥derl and (µ−⊥)⊥derr .
Furthermore a formula τ = σ is a theorem of HB=

0 (which is symbolically de-
noted by `HB=

0
τ = σ) if and only if there exists a derivation D in HB=

0 with
conclusion τ = σ and with the property that all marked assumptions have been
discharged at respective applications of ARROW/FIX in D.

£

We continue with an example in which we develop a derivation in HB=
0 .

5.1 Axiom Systems 111

Example 5.1.14 (A derivation in HB=
0). We look again at the two strongly

equivalent recursive types τ1 and σ1 from Example 3.6.2 (which can be found explic-
itly here at the bottom of the derivation below). If one tries to build a derivation in
the system HB=

0 from the desired conclusion τ1 = σ1 upwards, and if one thereby
avoids unnecessary applications of REN and discharges arising assumptions always
as soon as possible, then one arrives at the following shortest possible derivation D
of τ1 = σ1 in HB=

0 :

(
τ1 → ⊥ = (σ1 → ⊥)→ ⊥

)u

FOLDl/r

τ1 = σ1

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = σ1 → ⊥
FOLDl

τ1 = σ1 → ⊥

(REFL)

⊥ = ⊥
ARROW/FIX, u

τ1 → ⊥ = (σ1 → ⊥)→ ⊥
FOLDl/r

µα. (α→ ⊥)
︸ ︷︷ ︸

≡ τ1

= µβ. ((β → ⊥)→ ⊥)
︸ ︷︷ ︸

≡σ1

The derivation D contains only five applications of rules that are not also part of the
system HB=. These are the two pairs of applications of rules FOLDl/r that are lo-

cated in D respectively below the marked assumption
(
τ1 → ⊥ = (σ1 → ⊥)→ ⊥

)u

at the top and at the bottom, and the application of FOLDr just above the left
premise of the single application of ARROW/FIX in D. By eliminating these
five rule applications in the easy way that is described below in the proof of
Lemma 5.1.19, the derivation D can easily be transformed into a corresponding
derivation D′ in the system HB= (which instead of the five applications of rules
FOLDl/r contains additionally five occurrences of axioms (FOLD/UNFOLD) as
well as five applications of TRANS and two applications of SYMM).

Apart from its usefulness in proof-theoretic transformations developed in later
chapters, the principal motivation for considering the variant system HB=

0 of HB=

consists, as hinted earlier, in the desire to have a system available that is equivalent
to HB=, but that has stronger proof-theoretical properties. This is because a
considerable degree of complexity in the search for derivations in HB= is due to
the presence of the rule TRANS and, to a much lesser extent, the presence of the
rule SYMM in HB=. These two rules, however, are not part of the variant system
HB=

0 .
In fact, the system HB=

0 can be considered as a ‘normalized’ version10 of the
systemHB=. Some obvious effects of applications of the symmetry and transitivity
rules in HB= are formalized through the rules REN, (µ−⊥)⊥derl/r and FOLDl/r in

10Brandt and Henglein use the expression ‘normalized inference rules’ for related systems con-
cerned with the subtyping relation on recursive types in Figures 7 and 8 on pp. 20 and 21 in
[BrHe98], which they use for explaining the coinductive background for their axiomatization of
=µ .

112 Proof Systems for Recursive Type Equality

HB=
0 . The resulting SYMM- and TRANS-free system is still sound and complete

with respect to =µ , as we will see shortly. And furthermore, we will demonstrate
later in Chapter 8, Section 8.2, that every derivation in HB= without open as-
sumption classes can effectively be transformed into a derivation of HB=

0 with
the same conclusion and without open assumptions. The process underlying this
transformation (cf. Section 8.2 in Chapter 8) proceeds by ‘working away’ if not
eliminating applications of SYMM and TRANS and can be thought of as a process
of normalization for HB=-derivations.

Still further justification for calling the system HB=
0 a ‘normalized’ version of

HB= consists in the fact that derivations in HB=
0 satisfy a version of the sub-

formula property , which is a very desirable feature for proof-theoretical investiga-
tions of a proof system. Such a property is obeyed by many sequent-style calculi,
“Gentzen systems” in the formulation of [TS00], that do not contain the cut rule,
but that admit cut-elimination. Usually, it is said of a Gentzen-system G that it
fulfills the subformula property if and only if in every derivation of a sequent Γ⇒ ∆
only subformulas of Γ and ∆ occur (depending on the Gentzen system G, Γ and
∆ are finite sets, finite multisets or finite sequences of formulas). A related, but
formally different, kind of subformula property is encountered for derivations in
some natural-deduction systems, like for example the natural-deduction system Ni
for intuitionistic predicate logic formulated in [TS00]. There it is fulfilled only by
‘normal’ derivations (cf. Definition 6.1.2 in [TS00, p.179]) and has the following
form: every formula that occurs in a normal derivation D of Ni is either a subfor-
mula of the conclusion of D or a subformula of one of the open assumptions in D
(Theorem 6.2.7 in [TS00, p.188]).

For the formulation of a subformula property that is appropriate for systems
with equations between recursive types as formulas, we need a suitable notion of
‘subformula’ of a formula inHB=

0 that abstracts away slightly from the usual notion
of subformula of a formula in predicate logic (as defined, for instance, by the notion
of a “Gentzen subformula” in [TS00, Section 1.1.3, p.4]). The reason being that
the formulas of HB=

0 , the equations from the set µTp–Eq, are atomic formulas of
predicate logic with equality, which do not have proper subformulas.

Definition 5.1.15 (‘Subformulas’ of equations between recursive types).
Let τ, σ, χ1 and χ2 be recursive types. The equation χ1 = χ2 is a ‘subformula’ of
the equation τ = σ if and only if χ1 v

′ τ and χ2 v
′ σ hold, i.e. iff χ1 and χ2 are

→roud⊥-generated subterms (cf. Definition 3.9.20) of, respectively, τ1 and τ2. £

With this definition we can now define the subformula property SP1, which is
satisfied for HB=

0 , as stated by the subsequent proposition.

Definition 5.1.16 (The subformula property SP1). Let S be a Hilbert-style
or natural-deduction-style proof system with µTp–Eq as its set of formulas.

We say that a derivation D in S with possibly open assumptions satisfies, or
fulfills, the subformula property SP1 if and only if each formula that occurs in D
is a ‘subformula’ of the conclusion of D. And we say that S has, or obeys, the
subformula property SP1, or that SP1 holds in S if and only if every derivation in
S satisfies SP1. £

5.1 Axiom Systems 113

Proposition 5.1.17. The system HB=
0 obeys the subformula property SP1.

Proof. This follows by a straightforward proof by induction on the depth of deriva-
tions in HB=

0 . For the induction step it is used, on the one hand, that the
→roud⊥-generated-subterm relation v′ is transitive, and on the other hand, that

for every application
τ̃1 = σ̃1 (τ̃2 = σ̃2)

R
τ̃ = σ̃

of an arbitrary one- (or two-)

premise rule R in HB=
0 τ̃1 v

′ τ̃ and σ̃1 v
′ σ̃ (as well as τ̃2 v

′ τ̃ and σ̃2 v
′ σ̃)

holds.

Remark 5.1.18 (The subformula property SP1 does neither hold in HB=,
AC=, AC=

∗ , nor in WEQ). Due to the presence of the rule TRANS in HB=,
these systems do not obey the subformula property SP1. To see this, we consider
the example of an application of TRANS forming the derivation D in HB= of the
form

(τ2 = ρ2)
u (ρ2 = σ2)

v

TRANS
τ2 = σ2

(5.6)

with assumption markers u and v and with the strongly equivalent recursive types

τ2 ≡ µα. ((α→ α)→ α) , ρ2 ≡ µα. (α→ α) , σ2 ≡ µα. (α→ (α→ α)) (5.7)

from Example 3.6.3. It is easy to check that ρ2 6v
′ σ2 and ρ2 6v

′ τ2 hold. Hence
neither of the assumptions τ2 = ρ2 and ρ2 = σ2 of D is a ‘subformula’ of the
conclusion τ2 = σ2 of the HB=-derivation D. Consequently, HB= does not obey
the subformula property SP1.

We notice furthermore that the subformula property SP1 is not just violated
only by HB=-derivations with open assumptions as the one in (5.6). Actually,
there exist derivations in HB= without open assumptions and with (5.6), for τ2, ρ2,
and σ2 as in (5.7), as their bottommost rule application: in view of Theorem 5.1.12,
the completeness theorem of HB= with respect to =µ, this is a consequence of the
fact that τ2, ρ2, and σ2 as in (5.7) are strongly equivalent.

It can be shown in an analogous way that the subformula property SP1 does not
hold for proof systems that contain the transitivity rule and that possess µTp–Eq
as their set of formulas: for example SP1 does not hold in WEQ, AC=, and AC=

∗ .

The following lemma formalizes an easy observation about the proof-theoretic
relationship between the systems HB=

0 and HB=, namely, that every derivation in
the variant system HB=

0 can effectively be transformed into a derivation in HB=

with the same conclusion.

Lemma 5.1.19. All rules of the system HB=
0 are derivable rules of the system

HB=. Furthermore, every derivation D in HB=
0 with possibly open assumption

classes can be transformed effectively into a derivation D′ in HB= with the same
conclusion and the same (if any) open assumption classes. In particular, for all
τ, σ ∈ µTp

`HB=

0
τ = σ =⇒ `HB= τ = σ (5.8)

holds, i.e. HB= is an extension of HB=
0 .

114 Proof Systems for Recursive Type Equality

Proof. We are going to prove separately in the two items below that all rules of
HB=

0 are derivable in HB=, and that there exists an easy effective transformation
of HB=

0 -derivations into HB=-derivations.

(a) It is obvious that the rule ARROW is a derivable rule of HB= because all
of its applications correspond to such applications of the rule ARROW/FIX
in HB= at which no assumptions are discharged. The rule ARROW/FIX
of HB=

0 is a restricted form of the rule ARROW/FIX of HB= and hence is
derivable in HB=, too.

That the rules REN, (µ−⊥)⊥derl/r , and FOLDl/r of HB=
0 are derivable rules

of HB= can respectively be demonstrated in very similar ways. For instance
in the case of a rule (µ−⊥)der⊥r , an arbitrary application ι of this rule at the
bottom of a derivation D of the form

D1

τ = ⊥
(µ−⊥)⊥derr

τ = µββ1 . . . βn. β

in Der(HB=+(µ−⊥)⊥derr) , with some recursive type τ , and type variables
β1, . . . , βn as well as with a derivation D1 ∈ Der(HB

=) , can be replaced,

using a mimicking derivation context DC
(ι)
mim ∈ DerCtxt1(HB

=) that involves
the axiom (µ−⊥)′ and the rules SYMM and TRANS of HB=, by a derivation
D̃ with the same open assumptions as D that is of the form

D1

[τ = ⊥]1

DC
(ι)
mim

τ = µββ1 . . . βn. β

where DC
(ι)
mim is:

[]1

(µ−⊥)′

µββ1 . . . βn. β = ⊥
SYMM

⊥ = µββ1 . . . βn. β
TRANS

τ = µββ1 . . . βn. β

Similar transformations of a mostly even easier kind can be effected for rules
REN, (µ−⊥)⊥derl and FOLDl/r to obtain derivations in HB= that mimic
applications of these other rules in HB=.

(b) Let D be an arbitrary derivation in HB=
0 with conclusion τ = σ for some

τ, σ ∈ µTp and possibly with open assumption classes. The derivation D
can be transformed into a derivation D′ in HB= with the same conclusion
and the same open assumption classes by performing to D, and then to the
intermediary results, all respective single elimination steps of the two items
below.

(i) Replace each application of the rule ARROW in D by a corresponding
application of the rule ARROW/FIX, more precisely, simply rename the
rule name label attached to applications of ARROW from “ARROW” to
“ARROW/FIX”.

5.1 Axiom Systems 115

(ii) Replace each application ιR of a rule R ∈ {REN, (µ−⊥)⊥derl/r ,FOLDl/r}

by a respective derivation context DC
(ιR)
mim ∈ DerCtxt1(HB

=) as described,
for one case, in (a), i.e. replace each subderivation D0 ending with an
application ιR of such a rule and of the form

D01

τ01 = σ01
R

τ0 = σ0

by a subderivation D̃0 of the form

D01

[τ01 = σ01]1

DC
(ιR)
mim

τ0 = σ0

accordingly (for all rules R ∈ {REN, (µ−⊥)⊥derl/r ,FOLDl/r} and for all

τ0, τ01, σ0, σ01 ∈ µTp); we notice hereby that D0 and D̃0 always con-
tain the same open assumptions (if any) because the derivation contexts

DC
(ιR)
mim that are chosen here (to be of forms as detailed in (a)) do not

contain applications of ARROW/FIX, the only rule ofHB= that enables
applications at which open assumptions are discharged.

It is however not equally easy to give a proof-theoretic transformation from
derivations in the system HB= into derivations in the system HB=

0 . This is due to
the presence of the rules SYMM and TRANS in HB=, for which it turns out that
they are admissible, but not derivable rules of HB=

0 .

Still, the equivalence of the systems HB= and HB=
0 can also be established in

a not proof-theoretic way by showing the soundness and completeness of HB=
0 with

respect to recursive type equality =µ directly, i.e. without showing that derivations
inHB= (without open assumptions) can be transformed into mimicking derivations
(without open assumptions) inHB=

0 (a transformation in the opposite direction has
been stated by Lemma 5.1.19 above). Actually, the soundness of HB=

0 with respect
to =µ follows from Lemma 5.1.19 and from the soundness of HB= with respect to
=µ. And for the equivalence of the systems HB= and HB=

0 it would suffice to
show, in view of the soundness of HB= with respect to =µ , the completeness of
HB=

0 with respect to =µ.

A completeness theorem for the system HB=
0 can be proven analogously as for

HB= in the way that is done in [BrHe98]. Interestingly, it turns out that, for all
τ, σ ∈ µTp with τ =µ σ , the derivations D(τ,σ) in HB

= which are found effectively
by the procedure underlying the completeness-proof in [BrHe98] correspond in a
straightforward way11 to derivations in the system HB=

0 . Therefore it can be
argued that Brandt and Henglein have not only shown soundness and completeness
of their system, which we have formalized as the system HB= here, but they
have implicitly also shown the somewhat stronger statement of the soundness and
completeness with respect to =µ of the TRANS- and SYMM-free ‘kernel’ of HB=,
the system HB=

0 in our formalization.

11Cf. the more specific remark in the proof sketch for Theorem 5.1.20 below.

116 Proof Systems for Recursive Type Equality

Theorem 5.1.20 (Soundness and completeness of HB=
0 w.r.t. =µ). The

variant system HB=
0 of the system HB= is sound and complete with respect to

strong recursive type equivalence =µ, i.e. for all τ, σ ∈ µTp it holds:

`HB=

0
τ = σ ⇐⇒ τ =µ σ . (5.9)

Sketch of Proof. Both the ‘soundness-direction’ and the ‘completeness-direction’ in
the equivalence (5.9) can be proven in an entirely analogous way as was outlined
for HB= in the proof sketch for Theorem 5.1.12.

In particular it is the case, that the derivation D(τ,σ) , which the completeness-
proof in [BrHe98] produces effectively for arbitrary τ, σ ∈ µTp with τ =µ σ , can
easily be rewritten as a proof D′(τ,σ) in HB

=
0 ; this is because the rules TRANS and

SYMM do occur in the derivation D(τ,σ) for arbitrary τ, σ ∈ µTp only immediately
after axioms and can therefore be ‘absorbed into’ respective applications of the rules
REN, FOLDl/r or (µ−⊥)⊥derl/r in HB=

0 .

5.2 Proof Systems for Consistency-Checking with
Respect to Recursive Type Equality

Now we turn our attention to a different kind of proof systems for recursive type
equality =µ. These so called syntactic-matching systems are not axiomatizations of
=µ, but are intended to provide a basis for consistency-checking with respect to =µ

for arbitrary given equations between recursive types. By this we mean: checking
with respect to such a proof system whether a given equation between recursive
types, or a considered set of equations between recursive types, can be added to
this system consistently .

The idea for proof systems fit for consistency-checking by syntactic-matching
originates, to our knowledge, from the paper [ArKl95] by Ariola and Klop and a
proof system given there concerned with the notion of bisimilarity of cyclic term
graphs. The system introduced in [ArKl95, see Table 1 on p. 223] is based on
equational logic and enables checks for the consistency with respect to bisimulation
equivalence of arbitrary equations between equational specifications of cyclic term
graphs. The basic syntactic-matching system AK= defined below is essentially a
reformulation of the system studied by Ariola and Klop for a system with equations
between recursive types as its formulas that bears upon the recursive type equality
relation.

The usefulness of the systems defined in this section depends on a notion of
“consistency”, and dually on a notion of “inconsistency”, of an equation between
recursive types relative to a proof system. For defining these notions we have to
stipulate when a proof system is actually inconsistent with respect to the recur-
sive type equality relation =µ . And for this purpose we need to define first what
“contradictions with respect to =µ” are.

5.2 Systems for Consistency-Checking 117

Definition 5.2.1 (Contradictions with respect to =µ). An equation between
recursive types τ = σ is called a contradiction with respect to =µ if and only if τ
and σ have different leading symbols, i.e. iff L′(τ) 6= L′(σ). We denote by Ctrd=µ

the set of all equations between recursive types that are contradictions with respect
to =µ . £

Thus a contradiction τ = σ with respect to =µ is the special case of an equation
between recursive types for which it is very obvious that the recursive types τ and
σ on its left- and on its right-hand side are not strongly equivalent: due to the
definition of L′(τ) and L′(σ), in this situation the tree unfoldings Tree(τ) and
Tree(σ) of τ and of σ differ already by the symbols that respectively label the root
of Tree(τ) and the root of Tree(σ).

Example 5.2.2 (Contradictions with respect to =µ). The following equations
between recursive types are contradictions with respect to =µ :

⊥ = > , > = α , α = β (if α 6≡ β) , µα1 . . . αn. α1 = > ,

α = µβ. (τ1 → τ2) , τ1 → τ2 = µα1α2. α2 , µα1α2.> = µα. (τ1 → τ2)

(with arbitrary n ∈ ω\{0} , α, β, α1, α2, . . . , αn ∈ TVar and τ1, τ2, ρ1, ρ2 ∈ µTp).
But the following equations between recursive types are not contradictions with
respect to =µ :

µα. α = ⊥ , τ1 → τ2 = µα1 . . . αn. (ρ1 → ρ2) ,

µα1 . . . αn. α = α (if α 6≡ α1, . . . , αn)

(for all n ∈ ω\{0} , α, α1, α2, . . . , αn ∈ TVar and τ1, τ2, ρ1, ρ2 ∈ µTp).

When using a notation like τ = σ,Γ `S χ1 = χ2 in the following, for some re-
cursive types τ, σ, χ1, χ2, a set of formulas Γ ⊆ µTp–Eq and a formal proof system
S with µTp–Eq as its formulas, then we will mean that the formula χ1 = χ2 is
derivable in the system S by a formal proof (a formal derivation) D, in which each
of the formulas in Γ and the formula τ = σ may be used an arbitrary number of
times as an assumption (as a hypotheses); but all assumptions in D must be among
the formulas τ = σ and those in the set Γ. We will also use the verbal equivalent “
χ1 = χ2 is derivable in S from the assumption τ = σ and from assumptions in Γ ”
for the expression τ = σ, Γ `S χ1 = χ2 .

Relying on the notion “contradiction with respect to =µ ”, we are now able to
define the notions of consistency and inconsistency with respect to =µ of a proof
system, and of consistency and inconsistency relative to a proof system of equations
and of sets of equations between recursive types.

Definition 5.2.3 (Consistency and inconsistency with respect to =µ of
proof systems, of equations, and of sets of equations betw. rec. types).

Let S be a proof system whose formulas are precisely the equations between recur-
sive types, i.e. the elements of µTp–Eq.

118 Proof Systems for Recursive Type Equality

(i) The system S is inconsistent with respect to =µ if and only if S possesses a
contradiction with respect to =µ as a theorem. Dually, S is consistent with
respect to =µ if and only if no contradiction with respect to =µ is derivable
in S.

In the following we will always drop the phrase “with respect to =µ” from an
assertion “S is (in-)consistent with respect to =µ” and will always use “S is
(in-)consistent” instead. No confusion will arise from this because no other
notions of consistency or inconsistency for proof systems involving recursive
types will be considered.

(ii) Let τ, σ ∈ µTp be recursive types. We say that the equation τ = σ is incon-
sistent relative to S, or inconsistent with S, or, still shorter, S-inconsistent
if and only if the extension by enlargement S+{τ = σ} of S is inconsistent;
otherwise τ = σ is called consistent relative to S, consistent with S, or S-con-
sistent .

(iii) Let Γ ⊆ µTp–Eq be a set of equations between recursive types. Γ is called
S-inconsistent relative to =µ, S-inconsistent with =µ, or S-inconsistent if and
only if the extension by enlargement S+Γ of S is inconsistent; otherwise Γ is
called consistent relative to S, consistent with S, or S-consistent .

£

Expanding, for example, the definition of S-consistent equation between recur-
sive types for a given proof system S with µTp–Eq as its set of formulas, we find
that it holds for all τ, σ ∈ µTp :

τ = σ is S-consistent ⇐⇒ For all χ1, χ2 ∈ µTp :
τ = σ `S χ1 = χ2 =⇒ L′(χ1) = L

′(χ2) .

Now we give the definition of the ‘syntactic-matching’ proof system AK= that
differs from the axiom systems AC=, AC=

∗ , HB
=, and HB=

0 by the following
noteworthy aspect: whereas AC=, AC=

∗ , HB
=, and HB=

0 contain either or both
of the composition rules ARROW and ARROW/FIX, the system AK= possesses
a decomposition rule DECOMP.

Definition 5.2.4 (The ‘syntactic-matching’ proof system AK= for =µ).
The (pure) Hilbert-style proof system AK= has as its formulas precisely the equa-
tions between recursive types in µTp–Eq. It has the same axioms as the sys-
tem HB=, namely the formulas of the schemes (REFL), (REN), (µ−⊥)′ and
(FOLD/UNFOLD). And as its inference rules it contains precisely the rules SYMM
and TRANS as well as the decomposition rule DECOMP that are, together with
the axioms, listed and schematically defined in Figure 5.6. £

In the following example, we show for a particular example of an equation be-
tween recursive types that it is not consistent with AK=. We demonstrate this by
giving a derivation in AK=

0 that exhibits the particular behaviour of applications
of the decomposition rule DECOMP in AK=.

5.2 Systems for Consistency-Checking 119

Figure 5.6: The ‘syntactic-matching’ proof system AK= fit for checking the
consistency w.r.t. recursive type equality =µ relative to this system of arbitrary
equations between recursive types. This system is similar to one that was intro-
duced by Ariola and Klop with respect to bisimulation equivalence on equational
specifications of cyclic term graphs.

The axioms of AK= :

(REFL) τ = τ (REN) τ = τ ′ (if τ ≡ren τ
′)

(µ−⊥)′ µαα1 . . . αn. α = ⊥ (FOLD/UNFOLD) µα. τ = τ [µα. τ/α]

The inference rules of AK= :

σ = τ
SYMM

τ = σ

τ = ρ ρ = σ
TRANS

τ = σ

τ1 → τ2 = σ1 → σ2 DECOMP (i = 1, 2)
τi = σi

Example 5.2.5 (An AK=-inconsistent equation between recursive types).
We consider the recursive types

τ1 ≡ µα. (α→ ⊥) and σ̃1 ≡ µβ. ((β → γ)→ ⊥) (where γ 6≡ β)

from Example 3.6.2, where we have also convinced ourselves that τ and σ̃1 are not
strongly equivalent. We are now going to demonstrate that the equation between
recursive types τ1 = σ̃1 is not consistent relative to the system AK= . For this, we
consider the derivation D in AK= of the form

(FOLD/UNFOLD)

τ1 = τ1 → ⊥
SYMM

τ1 → ⊥ = τ1

(FOLD/UNFOLD)

τ1 = τ1 → ⊥
SYMM

τ1 → ⊥ = τ1

(Assm)

τ1 = σ̃1
TRANS

τ1 → ⊥ = σ̃1

(FOLD/UNFOLD)

σ̃1 = (σ̃1 → γ)→ ⊥
TRANS

τ1 → ⊥ = (σ̃1 → γ)→ ⊥
DECOMP

τ1 = σ̃1 → γ
TRANS

τ1 → ⊥ = σ̃1 → γ
DECOMP

⊥ = γ

Contradiction!

that contains τ1 = σ̃1 as its (single) assumption and that has ⊥ = γ , a contradic-
tion with respect to =µ, as its conclusion. Hence, according to the stipulations in
Definition 5.2.3, the equation τ1 = σ̃1 is not consistent relative to the system AK=;
or AK=-inconsistent.

120 Proof Systems for Recursive Type Equality

By using the notions defined above, we are eventually able to formulate the
question how the notion of consistency relative to the system AK= of an equation
between recursive types corresponds to strong recursive type equivalence =µ. More
formally, we can put the question whether at all, and if so then how, the binary
relation ConsAK=(·, ·) on µTp that is defined by stipulating, for all τ, σ ∈ µTp ,

ConsAK=(τ, σ) ⇐⇒def τ = σ is AK=-consistent (5.10)

does in fact relate to =µ. The following theorem states that these two relations
on µTp are actually equal, and in this way formulates a different kind of soundness
and completeness result than the ones we have encountered for the systems AC=,
HB=, and HB=

0 . It is for reasons that will be discussed in Remark 5.2.7, (b),
below, that we do not call this statement a “soundness and completeness theorem”.

Theorem 5.2.6 (Ariola, Klop, ’95: Correspondence between consistency
with AK= and recursive type equality). The relation ConsAK=(·, ·) on

µTp coincides with recursive type equality =µ, i.e. for all τ, σ ∈ µTp it holds:

τ = σ is AK=-consistent ⇐⇒ τ =µ σ . (5.11)

Sketch of Proof. It suffices to prove (5.11) for all τ, σ ∈ µTp . We shall only give a
sketch for the proof of both directions of this equivalence.

“⇒”: The essential tool in our proof of this direction in (5.11) is the following
general statement about the existence for all τ, σ ∈ µTp of such derivations
D in AK= from the assumption τ = σ that correspond to given access paths
p in the common part of the tree unfoldings Tree(τ) and Tree(σ) of τ and σ:

(∀ τ, σ ∈ µTp) (∀ p ∈ Acc(τ) ∩Acc(σ))

(∃χ1, χ2 ∈ µTp)
(
∃D in AK= with the single assumption

τ = σ and with conclusion χ1 = χ2
)

[
Tree(τ)|p = Tree(χ1) & Tree(σ)|p = Tree(χ2)

]
.

(5.12)

(We recall that Acc(ρ) =def dom(Tree(ρ)) for all ρ ∈ µTp). This can be
shown in a very straightforward way by induction on access paths p.

We now let τ, σ ∈ µTp be arbitrary such that τ = σ is AK=-consistent. We
want to show that τ and σ have the same tree unfolding, i.e. that τ =µ σ .

We assume that Tree(τ) 6= Tree(σ) (and will derive from this a contradiction
to the AK=-consistency of τ = σ). It follows that p ∈ Acc(τ) ∩ Acc(σ) ⊆
⊆ {1, 2}∗ exists such that Tree(τ)(p) 6= Tree(σ)(p) ; we choose one such
path p. From (5.12) we conclude the existence of a derivation D in AK=

with one single assumption τ = σ and with conclusion χ1 = χ2 such that
Tree(τ)|p = Tree(χ1) and Tree(σ)|p = Tree(χ2) . But this implies

L′(χ1) = Tree(χ1)(ε) = Tree(τ)|p(ε) = Tree(τ)(p) 6=

6= Tree(σ)(p) = Tree(σ)|p(ε) = Tree(χ2)(ε) = L
′(χ2)

5.2 Systems for Consistency-Checking 121

and hence L′(χ1) 6= L
′(χ2) . It follows that τ = σ `AK= χ1 = χ2 holds for

some χ1, χ2 ∈ µTp with the property L′(χ1) 6= L
′(χ2). But this would mean

that τ = σ were in fact not AK=-consistent, in contradiction with our choice
of τ and σ.

We conclude that our assumption was false. Therefore Tree(τ) = Tree(σ)
and τ =µ σ must hold.

“⇐”: For the proof of this direction in (5.11) we use an auxiliary statement of the
following form:

Suppose that

{
[τi = σi]

}

i=1,...,n

D

χ1 = χ2

is a derivation in AK=

with conclusion χ1 = χ2 , for some χ1, χ2 ∈ µTp , where the as-
sumptions in leaves at the top of D are precisely those that be-
long to one of the n marked assumption classes [τi = σi] , with
some τi, σi ∈ µTp, i ∈ {1, . . . , n} and with n ∈ ω . Suppose fur-
ther that also Tree(τi) = Tree(σi) holds for all 1 ≤ i ≤ n .

Then it follows that also Tree(χ1) = Tree(χ2) holds.

(5.13)

This can be shown in a straightforward way by induction on the depth |D| of
the AK=-derivation D.

For the proof of “⇐” in (5.11) we now let τ, σ ∈ µTp with τ =µ σ and
hence with Tree(τ) = Tree(σ) be arbitrary. We have to show that τ = σ is
AK=-consistent.

For this let D be an arbitrary derivation in AK= with conclusion χ1 = χ2
and with only one class [τ = σ] of assumptions. We have to demonstrate
that L′(χ1) = L

′(χ2) . From (5.13) we can conclude for our situation that
Tree(χ1) = Tree(χ2) . This clearly implies L′(χ1) = L

′(χ2) .

Hence we have shown that τ = σ is consistent with AK=.

Remark 5.2.7. (a) Theorem 5.2.6 is similar to, and in fact was motivated by,
the result formulated in Proposition 3.24 on page 224 in [ArKl95] (and in
Proposition 3.37 on page 26 in the report version of [ArKl95]), where the
authors consider the notion of bisimulation equivalence ↔ on cyclic term
graphs and give a syntactic-matching system based on equational logic that
we shall denote here by AK↔ . The formulas of the system AK↔ are equa-
tions between equational representations of cyclic term graphs as finite re-
cursion systems (finite sets of equations of a particular form). AK↔ has
been designed for considering the question: which formulas can be added to
this system consistently, i.e. such that no “contradictions” become derivable;
hereby an equation R1 = R2 between recursion systemsR1 and R2 is called a

122 Proof Systems for Recursive Type Equality

“contradiction” if and only if R1 and R2 represent cyclic term graphs having
different root-symbols.

The correspondence result for AK↔ -consistency presented in [ArKl95] (for-
mulated in the propositions mentioned above) asserts the following: two cyclic
term graphs g1 and g2 denoted by respective recursion systems Rg1 and Rg2
are bisimilar (i.e. g1↔ g2 holds) if and only if no contradiction is derivable
in AK↔ from the set Rg1 ∪Rg2 ∪ {α = β} , where α and β are the left-hand
sides of the head-equations in Rg1 and Rg2 (i.e. those equations in Rg1 and
Rg2 that specify g1 and g2 just below their roots and that contain the root-
symbols of g1 and g2), respectively.

12

(b) It is quite tempting to view Theorem 5.2.6 as a “soundness and completeness state-
ment” for AK

=: that is to say, more precisely, a soundness and completeness theo-
rem for AK

=-consistency with respect to recursive type equality. In particular, the
implications “⇒” and “⇐” in (5.11) could be considered to justify, respectively, the
“soundness” and the “completeness” with respect to =µ of the notion “AK

=-con-
sistency”. However, for reasons to be explained below, we have avoided to use the
terms “soundness” and “completeness” in connection with Theorem 5.2.6.

Soundness and completeness theorems in formal logic tend to have the following
form: for the formulas of a given language L, a syntactically defined, and typically
“positively calculable”,13 notion `S of formal deducibility , or provability involving
formulas of L in a formal system S is stated to coincide with a semantically defined
notion ² of truth of formulas of L in a certain formal semantics. The soundness
part of such a theorem consists in the inclusion `S ⊆ ² , i.e. it asserts that derivable
formulas or statements of derivable consequence between formulas in S are true
in the considered semantics; and the completeness part is the statement ² ⊆ `S ,
i.e. the assertion that true formulas or consequence-statements are in fact formally
derivable in S. Usually the soundness part of such a theorem can be shown by
induction on derivations in S; contrasting with this, a proof of the completeness
part is typically much more difficult and frequently requires rather sophisticated
methods.

The term “positively calculable notion” used above refers to the following definition
of formal notions that can be viewed as predicates (this informal definition is oriented
at [Shoe67, p.121], but slightly rephrased): a predicate P for a set O of objects is
said to be positively calculable if and only if O consists of ‘concrete’ objects and if
there exists an effective positive test for checking, for all o ∈ O , whether P (o) holds.
Hereby such an effective positive test is an effective method M with the property
that, for all o ∈ O , if P (o) holds, then this can be verified in a finite number of
steps by applying M to o; if P (o) does not hold, then M either says so or gives no
answer. [Shoe67] points out the connection that holds between positively calculable
and ‘recursively enumerable’ predicates: if Church’s thesis is assumed, a predicate
is positively calculable if and only if it is ‘recursively enumerable’.

Opposite to the typical situation for a notion of provability in a formal system,
AK

=-consistency of an equation between recursive types cannot be recognized im-

12For this statement to be correct, it must be assumed that the recursion (or ‘bound’) variables
in the recursion systems Rg1 and Rg2 are mutually distinct; this caveat is missing in [ArKl95].

13See the informal definition of “positively calculable” in the following paragraph.

5.2 Systems for Consistency-Checking 123

mediately as a positively calculable notion on the basis of its definition. This is
because the definition of an equation τ = σ between recursive types to be consis-
tent with respect to AK

= amounts, when expanded, to the stipulation

τ = σ is AK
=-consistent ⇐⇒

⇐⇒ ¬ (∃D ∈ Der(AK
=))

[
set(assm(D)) = {τ = σ} &

& concl(D) ∈ Ctrd=µ

]

(for all τ, σ ∈ µTp). Viewed purely on itself, this stipulation does not suggest any
effective positive test for determining for an equation τ = σ between recursive types
whether it is consistent with respect to AK

=. There might simply not exist an
effective method to ascertain of an equation τ = σ that there does not exist a
derivation with τ = σ which leads to a contradiction. But the situation is different
for the notion of AK

=-inconsistency of an equation τ = σ , the definition of which,
when expanded, has the form

τ = σ is AK
=-inconsistent ⇐⇒

⇐⇒ (∃D ∈ Der(AK
=))

[
set(assm(D)) = {τ = σ} & concl(D) ∈ Ctrd=µ

]

(for all τ, σ ∈ µTp). This implies that AK
=-inconsistency is a positively calcula-

ble notion because there exists an effective positive test for making sure that an
equation τ = σ between recursive types is inconsistent with respect to AK

=: suc-
cessively generate all possible derivations in AK

= in which precisely the assumption
τ = σ occurs, and check whether any of these derivations has a contradiction as its
conclusion; if such a derivation is found, then clearly τ = σ is inconsistent with
respect to AK

=. (Quite obviously, this procedure can also serve as an “effective
negative test” for AK

=-consistency.)

Due to these considerations, the statement

(∀τ, σ ∈ µTp)
[
τ = σ is AK

=-inconsistent ⇐⇒ τ 6=µ σ
]
, (5.14)

where 6=µ is the complement of recursive type equality =µ on the set µTp× µTp ,
would be more in line with most soundness and completeness theorems in logic. It
could justly be called a soundness and completeness theorem of AK

=-inconsistency
with respect to 6=µ (with “soundness” being asserted by the implication “⇒” in
(5.14), and “completeness” by “⇐”). It is clear that (5.14) follows from, and in
fact is equivalent with, Theorem 5.2.6, because, for all τ, σ ∈ µTp , each of the
implications within (5.14) is equivalent, via contraposition, with a respective one of
the two implications in (5.11).

Taking this view seriously, and appreciating the link via contraposition between the
implications in (5.14) and in (5.11), one is led to say that in (5.11) the implication
“⇐” has the ‘flavour’ of a soundness, and “⇒” that of a completeness statement; this
would also correspond with the fact that in proof of Theorem 5.2.6 the implication
“⇐” is proved by using an assertion that is shown by induction onAK

=-derivations,
whereas the proof of “⇒” requires a little more insight into the ‘unwinding semantics’
for recursive types.

However, we have decided to avoid the terms “soundness” and “completeness” in

connection with Theorem 5.2.6 altogether, primarily because using these terms for

124 Proof Systems for Recursive Type Equality

the implications in (5.11) in the way as just suggested would clash with the ‘naive’

manner, explained at the start of this remark, of assigning these terms to the two

implications in (5.11). A further reason is that our first interest is obviously not

in a ‘negative’ statement like (5.14), but in a result that describes the connection

between the notion of consistency relative to AK
= and recursive type equality in a

more direct way. Therefore we have decided to call Theorem 5.2.6 a “correspondence

theorem” between AK
=-consistency and the relation =µ .

By Theorem 5.2.6, those formulas of AK= that can be added consistently as
single formulas to the system AK= are precisely the equations between recursive
types τ = σ with strongly equivalent τ, σ ∈ µTp . The following easy generalization
of this theorem provides the answer to the question which sets of formulas from
µTp–Eq can be added consistently to the system AK=.

Theorem 5.2.8 (Generalized version of Theorem 5.2.6). Let Γ ⊆ µTp–Eq
be an arbitrary set of equations between recursive types. Then the following holds:

Γ is consistent with AK= ⇐⇒ (∀ τ = σ ∈ Γ)
[
τ =µ σ

]
. (5.15)

Proof. The proof of the direction “⇐” in (5.15) is, as was the case for the proof for
the direction “⇐” of (5.11) in Theorem 5.2.6, an application of the statement (5.13)
in the proof sketch for Theorem 5.2.6.

The direction “⇒” in (5.15) follows from (the direction “⇒” of the equivalence
(5.11) in) Theorem 5.2.6 by using the obvious fact that every formula that belongs
to an AK=-consistent set of formulas in µTp–Eq is itself AK=-consistent.

For the investigation in later chapters of proof-theoretic interconnections be-
tween systems that are described in this chapter, it will be important to have also
a variant system AK=

0 of AK= available that is defined below. The situation is
similar to the case of the system HB= for which we have introduced the variant
system HB=

0 without symmetry and transitivity rules. Indeed, also the system
AK=

0 is motivated by the wish to build a system equivalent to AK= without sym-
metry and transitivity rules that has stronger proof-theoretical properties. Again,
the desire to isolate a SYMM- and TRANS-free ‘kernel’ of the syntactic-matching
system AK= is due to the fact that the possibility to use rules for symmetry and
transitivity accounts for a considerable amount of complexity in the structure of
possible derivations in AK=. In the absence of SYMM and TRANS, the opera-
tions “renaming of bound variables”, “unfolding of a recursive type”, and “equating
a recursive type µα1 . . . αn. α1 with ⊥ ” that are expressed by the axioms of AK=

have to be formalized by respective rules in AK=
0 . These rules allow to perform

such operations on either or on both sides of the equation in their premises.

Definition 5.2.9 (The variant system AK=
0 of the the “syntactic-matching”

system AK=). The Hilbert-style proof system AK=
0 is defined as follows. The

formulas of the formal system AK=
0 are the equations between recursive types in

µTp–Eq. AK=
0 does not have any axioms and its inference rules are precisely

5.2 Systems for Consistency-Checking 125

Figure 5.7: A ‘normalized’ version AK=
0 without symmetry and transitivity

rules of the “syntactic-matching” system AK= fit for checking the consistency with
respect to rec. type equality =µ of arbitrary given equations between recursive types.

The inference rules of AK=
0 :

µαα1 . . . αn. α = σ
(µ−⊥)der⊥l

⊥ = σ

µα. τ = σ
UNFOLDl

τ [µα. τ/α] = σ

τ = µββ1 . . . βn. β
(µ−⊥)der⊥l

τ = ⊥

τ = µβ. σ
UNFOLDr

τ = σ[µβ. σ/β]

τ1 → τ2 = σ1 → σ2 DECOMP (i = 1, 2)
τi = σi

τ = σ
REN (if τ ′ ≡ren τ

and σ′ ≡ren σ)τ ′ = σ′

the rules REN, (µ−⊥)der⊥l/r , UNFOLDl/r and DECOMP that are schematically de-

fined in Figure 5.7. (In this sentence we have again ‘bundled’ respective “left”-
and “right”-sided rules Rl and Rr to rules Rl/r for R ∈ {UNFOLD, (µ−⊥)der⊥} .)

£

Similarly as the system HB=
0 can be viewed as a ‘normalized’ version of the

basic Brandt-Henglein system HB=, also the system AK=
0 can be considered to

be a ‘normalized’ version of AK= that does not possess symmetry and transitiv-
ity rules. However, there is a difference: in general, derivations in AK= cannot be
‘normalized’ with the outcome of a derivation in AK=

0 that has the same conclusion
and the same assumptions because, unlike this is the case for derivations in AK=

0 ,
more than one unproven assumption is able to occur in derivations in AK=. Nev-
ertheless, we will see below that an analogous correspondence result with =µ holds
for AK=

0 -consistency as the one stated by Theorem 5.2.6 for AK=-consistency.
The reason why we have spoken of AK=

0 as of a ‘normalized’ version of the sys-
tem AK= consists in the fact that, in contrast with AK=, the system AK=

0 fulfills
a subformula property similar to the subformula property SP1 of Definition 5.1.16,
for which we have seen that it holds for HB=

0 .

Definition 5.2.10 (The subformula property SP2). Let S be a Hilbert-style
or natural-deduction-style proof system with µTp–Eq as its set of formulas.

We say that a derivation D in S with possibly (open) assumptions satisfies, or
fulfills, the subformula property SP2 if and only if the conclusion of D is a ‘sub-
formula’ of all formulas that occur in D. And we say that S has, or obeys, the
subformula property SP2, or that SP2 holds in S if and only if every derivation in
S satisfies SP2. £

Quite obviously, the subformula property SP2 is the inverse form of the subfor-
mula property SP1 defined in Definition 5.1.16: for derivations D of a proof system,

126 Proof Systems for Recursive Type Equality

Figure 5.8: Illustration of the difference between what the subformula properties
SP1 and SP2 demand respectively, for arbitrary derivations D in proof systems with
set µTp–Eq of formulas, about the relationship of formulas occurring in D with the
conclusion of D.

derivation D with

occurring formula χ1 = χ2
and conclusion τ = σ

D1

(χ1 = χ2)

DC

τ = σ

D fulfills the subformula property SP1

⇐⇒ χ1 v
′ τ & χ2 v

′ σ

(χ1 = χ2 is a ‘subformula’ of τ = σ)

derivation D with

occurring formula χ1 = χ2
and conclusion τ = σ

D1

(χ1 = χ2)

DC

τ = σ

D fulfills the subformula property SP2

⇐⇒ τ v′ χ1 & σ v′ χ2

(τ = σ is a ‘subformula’ of χ1 = χ2)

fulfilledness of SP2 requires the conclusion of D to be a ‘subformula’ of each formula
occurring in D, whereas fulfilledness of SP1 demands, vice versa, that each formula
occurring in D is a ‘subformula’ of the conclusion of D; see also Figure 5.8 for an
illustration of this difference.

It is straightforward to verify that SP2 does not hold in HB=
0 (and neither in

any of the other axiom systems for =µ that we have encountered earlier), and that
SP1 does not hold in AK=

0 . However, AK=
0 obeys the subformula property SP2.

Proposition 5.2.11. The system AK=
0 obeys the subformula property SP2. And

furthermore, for all τ, σ ∈ µTp and derivations D in AK=
0 with conclusion τ = σ

the following holds: each formula χ1 = χ2 that occurs in D is a ‘subformula’ of the
single assumption τ = σ of D.

Proof. The fact that the subformula property SP2 holds in AK=
0 can be demon-

strated by a straightforward proof by induction on the depth |D| of a derivation D
in AK=

0 . In the induction step the transitivity of the →roud⊥-generated-subterm

relationv′ is used as well as the observation that if
τ̃0 = σ̃0

R
τ̃ = σ̃

is an application

of a rule R in AK=
0 , then τ̃ v′ τ̃0 and σ̃ v′ σ̃0 hold.

The second assertion of the proposition is an immediate consequence. To demon-
strate this, let D be an arbitrary derivation in AK=

0 and let us consider an arbi-
trary occurrence in D of the form χ1 = χ2 , for some χ1, χ2 ∈ µTp . Furthermore,
let τ = σ be the single assumption of D and let D0 be the immediate subderivation
of the considered occurrence of χ1 = χ2 in D0 (i.e. the subderivation of D that

5.2 Systems for Consistency-Checking 127

Figure 5.9: Illustration of the difference between what the subformula properties
SP1 and SP2 imply for derivations in HB=

0 and derivations in AK=
0 , respectively:

in a HB=
0 -derivation D each formula is a ‘subformula’ of the conclusion of D; in an

AK=
0 -derivation D each formula is a ‘subformula’ of the single assumption of D.

HB=
0 -derivation D

with the conclusion τ = σ

D0

(χ1 = χ2)

DC

τ = σ

χ1 v
′ τ & χ2 v

′ σ

(χ1 = χ2 is a ‘subformula’ of τ = σ)

AK=
0 -derivation D

from the assumption τ = σ

(τ = σ)

D1

(χ1 = χ2)

D2

χ1 v
′ τ & χ2 v

′ σ

(χ1 = χ2 is a ‘subformula’ of τ = σ)

ends in the considered occurrence of χ1 = χ2). Clearly D0 is an AK=
0 -derivation;

it has conclusion χ1 = χ2 and the single assumption τ = σ . Since the subformula
property SP2 is fulfilled for AK=

0 , for which we have hinted the proof above, it
follows that χ1 = χ2 is a ‘subformula’ of τ = χ .

For an illustration of the difference between what the subformula property SP1

that holds in HB=
0 and the subformula property SP2 that holds in AK=

0 entail for
derivations in HB=

0 and for derivations in AK=
0 , respectively, see Figure 5.9. Anal-

ogously as in Remark 5.1.18, where we have argued that the subformula property
SP1 does not hold in the system HB= due to the presence there of the transitivity
rule TRANS, it can be demonstrated that the subformula property SP2 does not
hold in the system AK= which also contains TRANS.

We continue with an example in which we establish AK=
0 -inconsistency of the

particular equation between recursive types for which we have demonstrated its
inconsistency relative to AK= in Example 5.2.5.

Example 5.2.12 (AK=
0 -inconsistency of the equation between recursive

types used in Example 5.2.5). As in Example 5.2.5, we again consider
the two recursive types τ1 ≡ µα. (α→ ⊥) and σ̃1 ≡ µβ. ((β → γ)→ ⊥) (where
γ 6≡ β) from Example 3.6.2, which are not strongly equivalent. It is now even
easier to demonstrate that the equation τ1 = σ̃1 is not AK=

0 -consistent than it
was in Example 5.2.5 to show AK=-inconsistency of τ1 = σ̃1 . This is because the

128 Proof Systems for Recursive Type Equality

derivation D̃ in AK=
0 of the simple form

(Assm)

≡ τ1
︷ ︸︸ ︷

µα. (α→ ⊥) =

≡ σ̃1
︷ ︸︸ ︷

µβ. ((β → γ)→ ⊥)
UNFOLDl/r

τ1 → ⊥ = (σ̃1 → γ)→ ⊥
DECOMP

τ1 = σ̃1 → γ
UNFOLDl

τ1 → ⊥ = σ̃1 → γ
DECOMP

⊥ = γ

Contradiction!

(5.16)

has the assumption τ1 = σ̃1 and the conclusion ⊥ = γ , which is a contradiction
with respect to =µ. Hence it follows again from Definition 5.2.3 that the equation
τ1 = σ̃1 is not consistent with the system AK=

0 . As an aside, we observe that the
derivation D in Example 5.2.5 can be considered to be the ‘translation’ to AK=

of the derivation14 D̃ in AK=
0 . The transformation effected hereby is analogous to

the transformation between HB=
0 - and HB=-derivations that was explained in the

proof of Lemma 5.1.19.

The next theorem asserts an analogous correspondence between AK=
0 -consis-

tency and recursive type equality as the one stated by Theorem 5.2.6 between
AK=-consistency and =µ. For its formulation, we need to define the binary rela-
tion ConsAK=

0
(·, ·) on µTp : we do so by stipulating, for all τ, σ ∈ µTp ,

ConsAK=

0
(τ, σ) ⇐⇒def τ = σ is AK=

0 -consistent . (5.17)

Theorem 5.2.13 (Correspondence between AK=
0 -consistency and =µ). The

relation ConsAK=

0
(·, ·) on µTp coincides with recursive type equality =µ, i.e. for all

τ, σ ∈ µTp it holds:

τ = σ is AK=
0 -consistent ⇐⇒ τ =µ σ . (5.18)

Sketch of Proof. It suffices to show (5.18) for all τ, σ ∈ µTp . Both directions in this
equation can be shown similarly as sketched above for a proof of Theorem 5.2.6,
i.e. both the statements (5.12) and (5.13) from this proof hold with respect to the
system AK=

0 as well.

However, for the direction “⇐” the following stronger and more specific state-
ment can be used which expresses the noteworthy fact that every derivation D in
AK=

0 from assumption τ = σ corresponds to an access path p in both Tree(τ)
and Tree(σ) with the property that Tree(τ) and Tree(σ) do not differ along any

14Since in the graphical representation of D̃ as typeset in (5.16) it has actually not been specified
in which order the first two applications of FOLDl and FOLDr do actually take place, the deriva-
tion D is in fact the translation to AK= of that one of the two derivations in AK=

0
denoted by

the symbolic prooftree (5.16) in which the rule used in the topmost rule application is UNFOLDl.

5.2 Systems for Consistency-Checking 129

shorter access path p0 < p :

(
∀ τ, σ, χ1, χ2 ∈ µTp

)

(

∀D
AK=

0 -derivation with (single) assumption
τ = σ , with conclusion χ1 = χ2 and of the form

(τ = σ)

D
χ1 = χ2

)

(
∃ p ∈ Acc(τ) ∩Acc(σ)

)

[

(∀ p0 ∈ {1, 2}
∗)
[
p0 < p ⇒ Tree(τ)(p0) = Tree(σ)(p0)

]

&
[
Tree(τ)|p = Tree(χ1) & Tree(σ)|p = Tree(χ2)

]]

.

(5.19)

Remark 5.2.14. In Chapter 6, Section 6.3, we will encounter a similar correspon-
dence result between a notion related toAK=

0 -consistency and recursive type equal-
ity: there, Corollary 6.3.19 asserts that the existence of a “consistency-unfolding
in AK=

0 ” (a notion defined in Section 6.3 of Chapter 6) for an equation τ = σ is
equivalent to the recursive types τ and σ being strongly equivalent. In contrast
with Theorem 5.2.13, for which the comments in item (b) of Remark 5.2.7 apply,
Corollary 6.3.19 will be very much in line with most soundness and completeness
theorems in logic. This is due to the fact that the notion “existence of a consistency-
unfolding in AK=

0 ” will be defined very similarly to the notion of provability in a
natural-deduction-style proof system; and in particular, it is positively calculable
because it allows for effective positive tests to take place.

As mentioned earlier, it is not possible to ‘normalize’ arbitrary derivations in
AK= into mimicking derivations in AK=

0 because of the fact that, contrasting with
AK=

0 -derivations, AK=-derivations may contain more assumptions than just one.
But a transformation in the opposite direction is in fact possible, analogously as
there is an easy transformation from HB=-derivations into mimicking HB=

0 -deri-
vations as stated by Lemma 5.1.19 and demonstrated in its proof.

Lemma 5.2.15. All rules of AK=
0 are derivable in AK=. Every derivation D in

AK=
0 with (single) assumption χ1 = χ2 , for some χ1, χ2 ∈ µTp, can be transformed

effectively into a derivation D′ in AK= that has the same conclusion and that
contains, equally as D, a single occurrence of χ1 = χ2 as an assumption.

Sketch of Proof. Analogously to item (a) in the proof of Lemma 5.1.19, it is easy
to show that all rules of AK=

0 are derivable in AK= (for instance, an arbitrary
application ι of the rule FOLDr can be mimicked by a derivation that consists of an
application of TRANS below an axiom (FOLD/UNFOLD) in the left premise and
the formula prem(ι) in the left premise). And as a consequence, all applications of
the rules (µ−⊥)der⊥l/r , UNFOLDl/r, and REN can be eliminated successively from
an arbitrary derivation in AK=

0 with the result of a mimicking derivation in AK=.

130 Proof Systems for Recursive Type Equality

The following proposition formulates the obvious consequence of Lemma 5.2.15
that the consistency with respect to AK= of an equation between recursive types
implies the consistency of this equation with respect to AK=

0 .

Proposition 5.2.16. Let τ, σ ∈ µTp. If the formula τ = σ is consistent with
respect to AK=, then it is also consistent with respect to AK=

0 .

Concluding this section, we give the following easy corollary that formulates, for
the system AK=

0 , a statement analogous to the generalized version Theorem 5.2.8
of Theorem 5.2.6.

Corollary 5.2.17. Let Γ ⊆ µTp–Eq be an arbitrary set of equations between re-
cursive types. Then the following holds:

Γ is consistent with AK=
0 ⇐⇒ (∀ τ = σ ∈ Γ)

[
τ =µ σ

]
. (5.20)

Proof. As an immediate consequence of the fact that AK=
0 -derivations can only

contain one assumption (since rules in AK=
0 do not allow more-premise applica-

tions), a set Γ of formulas of µTp is AK=
0 -consistent if and only if every member

of Γ is AK=
0 -consistent. With this the assertion of the lemma follows from the

equivalences (5.18), for all τ, σ ∈ µTp , in Theorem 5.2.13.

5.3 Basic Differences between the Axiom Systems
and the Systems for Consistency-Checking

In this section we want to provide some facts that underline the substantial differ-
ence between the axiom systems for =µ introduced in Section 5.1 and the systems
for consistency-checking with respect to =µ described in Section 5.2. We will give
some basic observations about the different behaviour of these two kinds of systems
with respect to the notions of consistency relative to them and of formula derivabil-
ity in them. We will also investigate what the relationships are, on the one hand, of
the distinctive decomposition rule DECOMP from the syntactic-matching systems
to the axiom systems, and on the other hand, of the composition rule ARROW
from the axiom systems to the syntactic-matching systems.

Our first goal is to clear up what notions of consistency are defined by the axiom
systems from Section 5.1. In Definition 5.2.3, we have defined the notions of con-
sistency and inconsistency of single formulas and of sets of formulas in µTp relative
to a given proof system with formulas µTp–Eq. In Theorem 5.2.6 we saw that the
recursive types τ, σ ∈ µTp , for which the equation τ = σ is consistent with the
syntactic-matching system AK=, are precisely those that are strongly equivalent.
By Theorem 5.2.13 the same is true for the system AK=

0 . And Theorem 5.2.8
stated, that the sets of formulas Γ ⊆ µTp–Eq , which are consistent with either of
AK= orAK=

0 , are just the sets consisting exclusively of equations between strongly
equivalent recursive types. In connection with this we want to raise the question
what kind of formulas and of sets of formulas in µTp–Eq are actually consistent
with each of the axiom systems AC=, AC=

∗ , HB
=, and HB=

0 .

5.3 Basic Differences between the Systems in 5.1 and 5.2 131

For settling this question, the following lemma will turn out to be helpful.

Lemma 5.3.1. Let S be one of the systems AC=, AC=
∗ , HB

=, or HB=
0 .

(i) Let τ = σ be an arbitrary axiom in S. Then L′(τ) = L′(σ) holds, i.e. τ and
σ have the same leading symbol.

(ii) Let

D1

τ1 = σ1

D2

(τ2 = σ2)
R

τ = σ

be a derivation in S, where D1,D2 ∈

∈ Der(S) and τ, σ, τ1, τ2, σ1, σ2 ∈ µTp, that ends with a one-(or two-)premise
application ι of a rule R of S. Then the leading symbols of the recursive types
in the conclusion of ι are equal, given that the leading symbols of the recursive
types in the equation(s) of the premise(s) of ι are equal, i.e. it holds:

L′(τ1) = L
′(σ1) (& L′(τ2) = L

′(σ2)) =⇒ L′(τ) = L′(σ) .

(iii) Let τ, σ ∈ µTp, n ∈ ω , and τi, σi ∈ µTp for i ∈ {1, . . . , n} . Let furthermore
D

τ = σ
be a derivation in S with conclusion τ = σ and with assumptions

according to:

• If S is AC= of AC=
∗ then set(assm(D)) = {τ1 = σ1, . . . , τn = σn} , and

• if S is HB= of HB=
0 then omassm(D) = {(τ1 = σ1)

u1 , . . . , (τn = σn)
un}

for some u1, . . . , un ∈Mk .

Then the leading symbols in the conclusion of D are equal under the assump-
tion that, for all assumptions τi = σi of D, the leading symbols of τi and σi
are equal, i.e. it holds:

(∀ i ∈ {1, . . . , n}) [L′(τi) = L
′(σi)] =⇒ L′(τ) = L′(σ) .

Sketch of Proof. Verifying items (i) and (ii) of the lemma is mostly trivial and al-
ways easy with respect to all axioms and rules in one of the systems AC=, AC=

∗ ,
HB=, and HB=

0 except for the treatment of the rules µ-COMPAT and CON-
TRACT. For these two rules the proof of item (ii) can be settled by case-distinction
arguments on the leading symbol of the recursive types in the premise of an appli-
cation.

The assertion in item (iii) follows from the items (i) and (ii) by straightforward
induction on the depth |D| of S-derivations.

In the following theorem a characterization will be given of the notions of con-
sistency relative to each of the systems AC=, AC=

∗ , HB
=, and HB=

0 . It turns out
that all of these notions of consistency do actually coincide and that they differ from
the, also coinciding, notions of consistency with respect to the syntactic-matching
systems AK= and AK=

0 .

132 Proof Systems for Recursive Type Equality

Theorem 5.3.2 (Characterization of the consistent formulas relative to
AC=, AC=

∗ , HB
=, and HB=

0). Let S be either of the systems AC=, AC=
∗ ,

HB=, or HB=
0 . Then, for all τ, σ ∈ µTp and for all sets Γ ⊆ µTp–Eq , the follow-

ing assertions hold:

τ = σ is S-consistent ⇐⇒ L′(τ) = L′(σ) ; (5.21)

Γ is S-consistent ⇐⇒ (∀ τ̃ = σ̃ ∈ Γ) [L′(τ̃) = L′(σ̃)] . (5.22)

Proof. The directions “⇒” in (5.21) and in (5.22) are trivial; the directions “⇐”
follow directly from Lemma 5.3.1, (iii).

Thus we have found that the formulas from µTp–Eq that are consistent with
an arbitrary one of the axiom systems in Section 5.1 are precisely those equations
between recursive types that are not themselves contradictions w.r.t. =µ. Hence, for
each of the axiom systems S described here, the notions of “consistency relative to
S” for single formulas and for sets of formulas are essentially trivial andmuch weaker
than the notion of consistency relative to the syntactic-matching systems AK= or
AK=

0 (to which systems, as we have seen before, only equations between recursive
types τ = σ for τ and σ that have the same tree unfolding Tree(τ) = Tree(σ) can
be added consistently).

We continue by studying properties of the decomposition rule DECOMP from
the syntactic-matching systems in relation to the axiom systems AC= and AC=

∗ .

Theorem 5.3.3 (Relationship of DECOMP to the systems AC= and AC=
∗).

The rule DECOMP of AK= and AK=
0 is admissible, but not derivable in the sys-

tems AC= and AC=
∗ .

Proof. Let H be one of the systems AC= or AC=
∗ . We will show that DECOMP

is admissible in H and that it is not derivable in H in the below items (a) and (b),
respectively.

(a) We are going to prove that DECOMP is an admissible rule in H by showing
that DECOMP is correct for H (this is sufficient because of Proposition 4.2.4,
(i)). For this, we will use the soundness and completeness theorems of H with
respect to =µ, Theorem 5.1.4 and Theorem 5.1.9.

Let
τ1 → τ2 = σ1 → σ2

DECOMP
τi = σi

, where τ1, τ2, σ1, σ2 ∈ µTp , be an arbi-

trary application of DECOMP such that `H τ1 → τ2 = σ1 → σ2 holds. We
have to show that also `H τi = σi holds. Since H is sound with respect to
=µ, we find that τ1 → τ2 =µ σ1 → σ2 and hence also that Tree(τ1 → τ2) =
= Tree(σ1 → σ2) holds. By the definition of the tree unfolding it follows that
Tree(τi) = Tree(σi) and therefore also that τi =µ σi holds. And from this
we obtain `H τi = σi by completeness of H with respect to =µ.

(b) We are going to prove that DECOMP is not a derivable rule in H .

5.3 Basic Differences between the Systems in 5.1 and 5.2 133

For this, we assume that DECOMP is a derivable rule of H and will infer a
contradiction with Lemma 5.3.1. We choose α, β ∈ TVar arbitrarily, and con-

sider an application ι of DECOMP of the form
α→ ⊥ = α→ β

DECOMP
⊥ = β

.

By our assumption there exists a derivation of H that mimics ι. We choose

one such derivation D
(ι)
mim ∈ Der(H) . Since D

(ι)
mim mimics ι, it must be of the

form

[α→ ⊥ = α→ β]

D
(ι)
mim

⊥ = β

with assumptions set(assm(D
(ι)
mim)) = {α→ ⊥ = α→ β} because it cannot be

the case that set(assm(D
(ι)
mim)) = ∅ holds: otherwise `H ⊥ = β would follow in

contradiction with the fact that actually 6 `H ⊥ = β holds due to ⊥ 6=µ β and
the soundness of H with respect to =µ. But the existence of such a derivation

D
(ι)
mim contradicts item (iii) of Lemma 5.3.1 due to the facts L′(α→ ⊥)= →

= L′(α→ β) and L′(⊥) = ⊥ 6= β = L′(β) . Hence our assumption, that
DECOMP is a derivable rule of H, cannot be upheld.

The question about the relationship of the rule DECOMP inAK= to each of the
Brandt-Henglein systems HB= and HB=

0 cannot be answered analogously, due to
the fact that DECOMP is a pure-Hilbert-system rule whereas HB= and HB=

0 are
natural-deduction systems. However, DECOMP can be adapted, albeit in different
ways, for use in natural-deduction systems. Among its reformulations as natural-
deduction-system rules there are the following two obvious possibilities: the rule
DECOMP−(nd) with applications of the form

D1

τ1 → τ2 = σ1 → σ2 DECOMP−(nd) (no side-condition on D1) ,
τi = σi

(5.23)

in which the presence, or absence, of assumptions in immediate subderivations is
‘ignored’; and the rule DECOMP(nd) with applications of the form

D1

τ1 → τ2 = σ1 → σ2 DECOMP(nd) (if omassm(D1) = ∅) ,
τi = σi

(5.24)

which rule can only be applied to a derivation D1 in the absence of open assump-
tions in D1. Clearly, every application of the rule DECOMP(nd) can be mimicked

by a corresponding application of the rule DECOMP−(nd), but the opposite is not

always the case. This has the consequence that admissibility, cr-admissibility, or

134 Proof Systems for Recursive Type Equality

derivability of DECOMP−(nd) in a natural-deduction system S respectively implies

admissibility, cr-admissibility, or derivability of DECOMP(nd) in S, but also that
the converse implications do not need to be true for all such systems. The the-
orem below is the outcome of an examination of the relationships of these two
natural-deduction system variants to the systems HB= and HB=

0 with respect to
the rule derivability and (cr-)admissibility. Incidentally, the theorem also states
that DECOMP−(nd) and DECOMP(nd) do in fact differ with respect to admissibility

and cr-admissibility in the systems HB= and HB=
0 .

Theorem 5.3.4 (Relationship of DECOMP to the systems HB= and
HB=

0). For the natural-deduction system variants DECOMP−(nd) and DECOMP(nd)

of the rule DECOMP in AK= the following statements hold:

(i) The rule DECOMP−(nd) is not admissible, let alone cr-admissible or derivable,

in HB= and in HB=
0 .

(ii) The rule DECOMP(nd) is cr-admissible, and hence admissible, but not deriv-
able in HB= and in HB=

0 .

Proof. We will prove assertions (i) and (ii) of the theorem in items (a) and (b)
below. For doing this, we let S be an arbitrary one of the systems HB= or HB=

0 .

(a) Since due to Lemma 4.3.5, (ii), rule derivability and rule cr-admissibility are
stronger than rule admissibility, we only have to show that DECOMP−(nd) is

not admissible in S. For this we will show

S +DECOMP−(nd) 6∼th S , (5.25)

i.e. that there exist theorems of S+DECOMP−(nd) which are not theorems

of S. As a first observation, we notice that, for all τ1, τ2, σ1, σ2 ∈ µTp , the
derivation

(τ1 → τ2 = σ1 → σ2)
u

DECOMP−
(nd)

τ1 = σ1

(τ1 → τ2 = σ1 → σ2)
u

DECOMP−
(nd)

τ2 = σ2
ARROW/FIX, u

τ1 → τ2 = σ1 → σ2

in S+DECOMP−(nd) does not contain open assumption classes. Hence all

formulas consisting of equations between composite types are theorems of
S+DECOMP−(nd). And in particular, we find that

`S+DECOMP−
(nd)

α→ ⊥ = α→ β

holds for all type variables α and β. However, we also find 6 `S α→ ⊥ = α→ β
for all α, β ∈ TVar as a consequence of α→ ⊥ 6=µ α→ β and the soundness15

15The use of the soundness theorem for S could be circumvented here by showing directly that the
formula α→ ⊥ = α→ β is not a theorem of S. In the case S =HB=

0
, this can be shown in a par-

ticularly easy way, as follows. From every derivation D in HB=

0
with concl(D) = α→ ⊥ = α→ β

and omassm(D) = ∅ a derivation Da in HB=

0
with concl(Da) = ⊥ → β and omassm(Da) = ∅ can

be extracted in a straightforward way. But such a derivation Da cannot exist in HB=

0
due to

Lemma 5.3.1.

5.3 Basic Differences between the Systems in 5.1 and 5.2 135

of =µ with respect to S. Thus we have demonstrated (5.25), and hence
DECOMP−(nd) is not admissible in S.

(b) In view of Lemma 4.3.5 it suffices to show that DECOMP(nd) is cr-correct
for S (because this implies cr-admissibility and admissibility of DECOMP(nd)

in these systems) and that R is not derivable in S. We demonstrate these
statements subsequently below.

For showing cr-correctness of DECOMP(nd) for S, we will argue, similar
as in item (a) of the proof of Theorem 5.3.3, by using the soundness and
completeness theorems of S with respect to =µ. Let D be a derivation in
S+DECOMP(nd) of the form (5.24), where τ1, τ2, σ1, σ2 ∈ µTp , i ∈ {1, 2} ,
and D1 is a derivation in S without open assumptions. We have to show the
existence of a derivation D′ in S without assumptions and with conclusion
τi = σi , i.e. we have to show `S τi = σi . Since omassm(D1) = ∅ holds, we
find `S τ1 → τ2 = σ1 → σ2 . Due to the soundness of S with respect to =µ ,
we find τ1 → τ2 =µ σ1 → σ2 , which implies (due to the definition of =µ via
the tree unfolding) τi =µ σi . By completeness of S, `S τi = σi follows.

Now we show that DECOMP(nd) is not derivable in S. For this, we assume
that DECOMP(nd) is a derivable rule in S and show that this leads to a
contradiction.

We designate by Sext be the extension by enlargement of S by adding the rule
DECOMP(nd) as well as the zero-premise rule with the single application

EQ(α→β, α→γ)

α→ β = α→ γ

where α, β and γ are specific type variables in TVar; this rule is obviously
unsound with respect to =µ . However, since DECOMP(nd) is, according to
our assumption, derivable in S, it follows that for the derivation D in Sext
that is of the form

EQ(α→β, α→γ)[
α→ β = α→ γ

]

1 DECOMP(nd)

β = γ

there must exist a unary derivation context DC ′ in S such that the derivation
D′ of the form

EQ(α→β, α→γ)[
α→ β = α→ γ

]

1

DC′

β = γ

is a derivation in Sext without open assumptions. We choose DC ′ and D′ in
this way.

136 Proof Systems for Recursive Type Equality

We observe that DC′ must contain occurrences of the hole []1 : otherwise
DC′ would itself be a derivation in S without open assumptions, and hence
the conclusion of DC′, the formula β = γ , would be a theorem of S, which
would contradict the soundness of S (any of the systems HB= and HB=

0)
with respect to =µ .

Now we let u be an arbitrary assumption marker that does not occur in DC ′.
And we note that, as a consequence of the observation in the last paragraph,
the prooftree of the form

[
(α→ β = α→ γ)u

]

1

DC′

β = γ

denotes a derivation D′′ in S with conclusion β = γ and with the assumption
class [α→ β = α→ γ]u as its single class of open assumptions, i.e. with

concl(D′′) = (β = γ) & omassm(D′′) = {(α→ β = α→ γ)u} . (5.26)

But due to L′(α→ β) =→ = L′(α→ γ) and L′(β) = β 6= γ = L′(γ) the ex-
istence of a derivation D′′ in S with (5.26) is a contradiction to Lemma 5.3.1,
(iii). Therefore the assumption we made, that DECOMP(nd) is derivable in
S, cannot be sustained.

As a foretaste of proof-theoretical transformations to be described in later chap-
ters, we want to give also the following alternative proof for cr-admissibility of the
rule DECOMP(nd) in the variant-Brandt-Henglein system HB=

0 . In this proof we
make use of the, compared to derivations in HB=, easier structure of derivations in
HB=

0 , and we sketch how applications of DECOMP(nd) can be effectively eliminated
from derivations in HB=

0 +DECOMP(nd).

Alternative proof for cr-admissibility of DECOMP(nd) in HB
=
0 . In order to show

that DECOMP(nd) is admissible in HB=
0 , it suffices, due to Lemma 4.3.5, (i), to

show cr-correctness of DECOMP(nd) for HB
=
0 .

For showing cr-correctness of DECOMP(nd) for HB=
0 , let D be an arbitrary

derivation in HB=
0 +DECOMP(nd) of the form (5.24), where τ1, τ2, σ1, σ2 ∈ µTp ,

i ∈ {1, 2} , and D1 is a derivation in HB=
0 without open assumptions and with

conclusion τi = σi . We have to demonstrate the existence of a derivation D′ in
HB=

0 without open assumptions and with conclusion τi = σi . We will do so by
case-distinction on the form of D in the remaining part of this proof.

If D1 does not contain any applications of ARROW or ARROW/FIX, then it
is easy to see that D1 can only consist of an axiom (REFL) of the form ρ1 → ρ2 =
= ρ1 → ρ2 for some ρ1, ρ2 ∈ µTp , that is followed by zero, one or more REN-ap-
plications. Hence D1 is of the form

(REFL)

ρ1 → ρ2 = ρ1 → ρ2
REN

τ1 → τ2 = σ1 → σ2

and then D can
be replaced by

(REFL)

ρi = ρi
REN

τi = σi

5.3 Basic Differences between the Systems in 5.1 and 5.2 137

which is a derivation in HB=
0 without open assumptions and with the same con-

clusion as D, and which can therefore be taken as the desired derivation D′.
If D1 contains at least one application of ARROW or ARROW/FIX, then it

must be of either of the forms

D1a1

τ ′1 = σ′1

D1a2

τ ′2 = σ′2
ARROW

τ ′1 → τ ′2 = σ′1 → σ′2
REN

τ1 → τ2 = σ1 → σ2

[τ1 → τ2 = σ1 → σ2]
u

D1a1

τ ′1 = σ′1

[τ1 → τ2 = σ1 → σ2]
u

D1a2

τ ′2 = σ′2
ARR./FIX, u

τ ′1 → τ ′2 = σ′1 → σ′2
REN

τ1 → τ2 = σ1 → σ2

where in each case we denote by D1a the subderivation of D1 that ends in the
application of the ARROW or ARROW/FIX displayed in the respective symbolic
prooftree. In the left case, i.e. if the bottommost application of a two-premise rule
in D1 is an application of ARROW, then we can take

D1ai

τ ′i = σ′i
REN

τi = σi

as the desired derivation D′ in HB=
0 without open assumptions and with the

same conclusion as D. In the right case, i.e. if the bottommost application of a
two-premise rule in D is an application of ARROW/FIX, we can take the deriva-
tion

D1a

[τ1 → τ2 = σ1 → σ2]

D′1ai
τ ′i = σ′i

REN
τi = σi

(5.27)

in HB=
0 as the desired derivation D′ in HB=

0 without assumptions and with the
same conclusion as D (hereby D′1ai arises from D1ai by appropriately renaming the
markers for certain discharged assumption classes in order to make the ‘substitution’
of D1a for the marked open assumptions (τ1 → τ2 = σ1 → σ2)

u in D′1ai possible
without giving rise to unwanted bindings, or confusion about bindings, of open
assumptions in D1a by applications of ARROW/FIX in D′1ai). Note that, although
the assumption class [τ1 → τ2 = σ1 → σ2]

u is inhabited in at least one of D1a1 and
D1a2, it can happen here that it is uninhabited in D1ai. In this case the symbolic
prooftree (5.27) denotes just the derivation D1ai that is extended at the bottom by
the application of REN displayed in (5.27).

Next we are going to investigate the question what the theorems of the syntactic-
matching systems defined in the previous section look like. For the system AK=

0

the answer is actually trivial: this system contains neither contain axioms nor rules

138 Proof Systems for Recursive Type Equality

with zero-premise applications and hence it does not possess any theorems. But
the situation is different for the system AK=. Here the answer that we will give
consists of a characterization of the derivable formulas τ = σ in AK= in terms of
a conversion between τ and σ with respect to a certain reduction relation on µTp.
For this we need to define first a couple of ‘natural’ reduction relations on recursive
types.

Definition 5.3.5 (The four reduction relations →out-unf , →out-(µ−⊥)′ ,
→ren/out-unf , and →r/o-u(µ⊥)′ on the set µTp). The reduction relations

→out-unf , →out-(µ−⊥)′ , →ren/out-unf , and →r/o-u(µ⊥)′ on µTp are formally defined
as the following relations on µTp× µTp :

→out-unf =def { 〈µα. τ, τ [µα. τ/α]〉 | α ∈ TVar, τ ∈ µTp }

→out-(µ−⊥)′ =def { 〈µα1 . . . αn. α1, ⊥)〉 | n ∈ ω\{0}, α1 . . . αn ∈ TVar }

→ren/out-unf =def →out-unf ∪ →ren

→r/o-u(µ⊥)′ =def →ren ∪ →out-unf ∪ →out-(µ−⊥)′

(Clearly →out-unf is the restriction of the unfolding-reduction →unfold from Defini-
tion 3.7.7 to such unfoldings that take place at the outermost position in recursive
types. The relation →out-(µ−⊥)′ corresponds directly to the axioms (µ−⊥)′ ofAK=

and HB=; but it only allows the “use” of an axiom (µ−⊥)′ at the outermost po-
sition16 in a given recursive type τ ≡ µα1 . . . , αn. α1 , when the whole term τ is
reduced to ⊥ in a reduction τ →out-unf ⊥).

According to the stipulations in Subsection 2.1.5, Chapter 2, we will denote
more-step reduction relations and convertibility relations belonging to one of the
reduction relations defined above with the use of double-headed arrows ³ and of
the symbol ³́ : for instance ³́r/o-u(µ⊥)′ will denote the conversion belonging to
→r/o-u(µ⊥)′ , i.e. the reflexive, transitive and symmetrical closure of the relation
→r/o-u(µ⊥)′ . £

The following lemma concerns properties of the conversion ³́r/o-u(µ⊥)′ that
will be of use not only in this section, but also at some later occasions.

Lemma 5.3.6. For all τ, σ, τ1, τ2, σ1, σ2 ∈ µTp the assertions in the following three
items are true:

(i) τ ³́r/o-u(µ⊥)′ σ =⇒ τ ³́ren/out-unf σ ∨

∨ τ, σ ∈

{

µα1 . . . αn.
{αi
⊥

} ∣
∣
∣
n ∈ ω\{0}, 1 ≤ i ≤ n,
α1, . . . , αn ∈ TVar

}

.

(Hereby
{αi
⊥

}

in the set-expression of the right-hand side of the implication

is intended to stand either for the term αi or for the term ⊥).

(ii) τ ³́ren/out-unf σ & nlµb(τ) = nlµb(σ) = 0 =⇒ τ ≡ren σ .

16This restriction is not in place for the similarly defined reduction →(µ−⊥) from Definition 3.7.7.

5.3 Basic Differences between the Systems in 5.1 and 5.2 139

(iii) τ ³́r/o-u(µ⊥)′ σ & nlµb(τ) = nlµb(σ) = 0 =⇒ τ ≡ren σ .

(iv) τ1 → τ2 ³́r/o-u(µ⊥)′ σ1 → σ2 =⇒ τ1 ≡ren σ1 & τ2 ≡ren σ2 .

Proof. (a) The assertion in item (i) of the lemma is a consequence of the following
and a second related statement: for all τ ∈ µTp, n ∈ ω and β1, . . . , βn ∈ TVar

τ →out-unf µβ1 . . . βn. βi =⇒

=⇒ (∃m ∈ ω\{0}) (∃ γ1, . . . , γm ∈ TVar)

(∃ j ∈ {1, . . . ,m})
[
τ ≡ µγ1 . . . γm. γj

]

(5.28)

holds; it is easy to prove this by a simple case-distinction. A second, related
and even more obvious statement refers to reductions from a recursive type τ of
the form τ →out-unf µβ1 . . . βn.⊥ , where β1, . . . , βn ∈ TVar , and claims, that
τ must then actually be of the form τ ≡ µββ1 . . . βn.⊥ for some β ∈ TVar .
– From these two assertions it follows by an easy induction: whenever there
is a conversion ³́r/o-u(µ⊥)′ between recursive types τ and σ that contains a
reduction →out-(µ−⊥)′ , then τ and σ must be contained in the set occurring
in the disjunction on the right-hand side of the implication in item (i) of the
lemma.

(b) For the proof of the assertion in item (ii), let τ, σ ∈ µTp be arbitrary such
that nlµb(τ) = nlµb(σ) = 0 and τ ³́ren/out-unf σ ; we also choose one such
conversion ξ between τ and σ.

If it were the case that there existed in ξ, for some α ∈ TVar and ρ0 ∈ µTp
such that α 6 ↓ ρ0 , a reduction µα. ρ0 →out-unf ρ0[µα. ρ0/α0] , then it followed
with the help of (5.28) that every recursive type in ξ would be of the form
µβ1 . . . βn. βi for some n ∈ ω\{0} , i ∈ {1, . . . , n} and variables β1, . . . , βn ;
but this would contradict nlµb(τ) = nlµb(σ) = 0 . Hence for all unfolding-
reductions ρi →out-unf ρi+1 that take place in ξ it holds (this follows from
Lemma 3.5.7) that nlµb(ρi) = nlµb(ρi+1) + 1 , and because of this the ‘mea-
sure’ nlµb(·) decreases strictly during each unfolding reduction-step in ξ.

It follows that each “local maximum” m ∈ ω with m > 0 of nlµb(·) within
ξ occurs in a part of the form

ρ0[µα. ρ0/α]←out-unf µα. ρ0 ³́ren µα̃. ρ̃0 →out-unf ρ̃0[µα̃. ρ̃0/α] (5.29)

(for some α, α̃ ∈ TVar and ρ0, ρ̃0 ∈ µTp), where

m = nlµb(µα. ρ0) = nlµb(µα̃. ρ̃0) =

= nlµb(ρ0[µα. ρ0/α]) + 1 = nlµb(ρ̃0[µα̃. ρ̃0/α̃]) + 1 .

It is now possible to eliminate successively each such local maximum from an
already reached conversion between τ and σ by always replacing a part (5.29)
by a part

ρ0[µα. ρ0/α]³ren ρ̃0[µα̃. ρ̃0/α] ,

140 Proof Systems for Recursive Type Equality

which replacements are justified by statement (3.19) of Lemma 3.4.2, in view
of the fact that ≡ren and ³ren coincide because →ren is symmetric. In every
elimination step of this kind the number of occurrences of→out-unf-reductions
in a conversion between τ and σ decreases by 2. Since nlµb(τ) = nlµb(σ) = 0,
after finitely many elimination steps eventually a conversion ³́ren/out-unf

between τ and σ is reached, in which no occurring recursive type has a leading
µ-binding. This conversion must then consist only of renaming-reductions
→ren and therefore we find τ ≡ren σ .

17

(c) The proof of (iii) is a direct consequence of the assertions in items (i) and (ii).
And the assertion in (iv) follows from (iii) very obviously.

We are now finally in a position to offer an answer for the above posed question
about the theorems of the syntactic-matching system AK=. Our answer has the
form of the following characterization.

Theorem 5.3.7 (A characterization of the theorems of AK=). The theorems
of AK= can be characterized as follows: For all τ, σ ∈ µTp it holds that

`AK= τ = σ ⇐⇒ τ ³́r/o-u(µ⊥)′ σ . (5.30)

Proof. The implication “⇐” for all τ, σ ∈ µTp follows by a straightforward induc-
tion, in which the assertion

(∀ τ, σ ∈ µTp)
[
τ →r/o-u(µ⊥)′ σ =⇒ `AK= τ = σ

]
(5.31)

and the presence of the rules SYMM and TRANS in AK= is used. (5.31) follows
immediately from the presence of the axioms (REN), (µ−⊥)′ and (FOLD/UNFOLD)
in AK=.

The implication “⇒” for all τ, σ ∈ µTp can be shown by induction on the depth
|D| of an arbitrary given derivation D with conclusion τ = σ in AK=. Thereby the
only non-trivial case to consider occurs in the induction step with |D| > 0, when
the last rule application in D is an application of DECOMP: in this case D is of the
form

D0

τ1 → τ2 = σ1 → σ2
DECOMP

τi = σi

17It is perhaps interesting to note, that “local minima” with respect to nlµb(·) that occur
in a situation analogously to (5.29) with →out-unf -reductions directed to the ³́ren -conversion
in the middle cannot the eliminated from ³́ren/out-unf-conversions in a similar way. If this
were the case, then a slight refinement of the above argument could be extended to a proof
of a stronger statement than item (iii) with the weaker assumption nlµb(τ) = nlµb(σ) in its
hypothesis instead of nlµb(τ) = nlµb(σ) = 0. But such a stronger statement is actually false:
for example with τ1 ≡ µα. (α→ ⊥) and χ ≡ µβ. (τ1 → ⊥) for every β ∈ TVar it holds that
τ1 →out-unf (τ1 → ⊥)←out-unf χ , (since β /∈ fv(τ1 → ⊥) = ∅) and nlµb(τ1) = nlµb(χ) = 1, but
at the same time τ1 and χ are no variants of each other.

5.3 Basic Differences between the Systems in 5.1 and 5.2 141

with some τ1, τ2, σ1, σ2 ∈ µTp , i ∈ {1, 2} and D0 an AK=-derivation. Here it fol-
lows from the induction hypothesis that τ1 → τ2 ³́r/o-u(µ⊥)′ σ1 → σ2 . But due
to Lemma 5.3.6 (iv), we can conclude τi ≡ren σi from this, which (since ≡ren =
= ³́ren ⊆ ³́r/o-u(µ⊥)′) shows the desired conclusion τi ³́r/o-u(µ⊥)′ σi of the in-
duction step in this case.

Theorem 5.3.7 implies that the theorems of AK= are only a very small and
proper subset of all those equations τ = σ in µTp–Eq such that τ and σ are weakly
equivalent. This is because ³́r/o-u(µ⊥)′ ⊆ ³́(unf/ren/µ⊥) = =wµ is the case (the
set-inclusion “⊆” is justified by the fact, that µα1 . . . , αn. α1 ³(unf/ren/µ⊥) ⊥ holds
for all n ∈ ω\{0} and α1, . . . , αn ∈ TVar , and “=” is the assertion of Lemma 3.7.8),
but ³́(unf/ren/µ⊥) 6==wµ is the case: =wµ is compatible with µTp-contexts, whereas
³́r/o-u(µ⊥)′ is clearly not. Therefore it follows that ³́r/o-u(µ⊥)′ $ =wµ . Hence
(formula) derivability in the syntactic-matching system AK= is a very much weaker
notion than even weak recursive type equality =wµ.

We conclude this section with a statement about the proof-theoretic relation-
ship of the rule ARROW, contained in the systems AC=, AC=

∗ and HB=
0 from

Section 5.1, with respect to the syntactic-matching system AK=.

Corollary 5.3.8 (Relationship of the rule ARROW to the system AK=).
The rule ARROW is not admissible, let alone derivable, in AK=.

Proof. Since due to Proposition 4.2.4, rule correctness as well as rule admissibility
coincide and rule derivability is stronger than rule admissibility in pure Hilbert
systems, we only have to demonstrate that ARROW is not correct for the pure
Hilbert system AK=.

For this we assume that ARROW is correct for AK= and will infer a contradic-
tion with the characterization (5.30) of the theorems of AK=. As a consequence of
our assumption, for the derivation D

(µ−⊥)

µα. α = ⊥

(REFL)

γ = γ
ARROW

(µα. α)→ γ = ⊥ → γ

in AK= +ARROW there exists a derivation D′ in AK= with the same conclusion
as D and without assumptions. Hence

`AK= (µα. α)→ γ = ⊥ → γ (5.32)

follows. On the other hand we find that

(µα. α)→ γ 6́³r/o-u(µ⊥)′ ⊥ → γ (5.33)

is the case: this follows from the observation that the only recursive types ρ that
are convertible to ⊥ → γ with respect to ³́r/o-u(µ⊥)′ are of the form

µα1 . . . αn. (⊥ → γ)

142 Proof Systems for Recursive Type Equality

for some n ∈ ω and α1, . . . , αn ∈ TVar such that α1, . . . , αn 6≡ γ . But (5.32) and
(5.33) obviously contradict Theorem 5.3.7. Hence we must conclude that our as-
sumption, ARROW being correct for AK=, cannot be sustained.

Chapter 6

A Duality
between AK=

0 and HB=
0

In this chapter a very near correspondence is established between derivations in the
variant Brandt-Henglein system HB=

0 and certain specially defined assemblages of
derivations, which will be called “consistency-unfoldings”, in the variant-syntactic-
matching system AK=

0 . Because of its immediate, indeed geometric character, we
will speak of a duality . The idea for this correspondence is due to J.W. Klop who
observed a striking similarity between the activities (a) of trying to demonstrate
the consistency of an equation with respect to a syntactic-matching system com-
parable to those in Section 5.2, and (b) of trying to find a derivation for the same
equation in a coinductive proof system similar to that of Brandt and Henglein. It
turned out, however, that the interconnection suggested by this observation lends
itself much better to being formulated as a link between ‘normalized’ versions of
respective syntactic-matching and coinductive proof systems, rather than as a link
between respective kinds of proof systems of equational logic containing symmetry
and transitivity rules.

This chapter is basically an extended and refined version of both the the paper
[Gra02b] and the report [Gra02c]. There, the existence of a “duality” is demon-
strated for proof systems concerned with the restriction of recursive type equality
=µ to the set can-µTp of recursive types in canonical form, whereas here we prove
this result for analogous, and more general, proof systems for recursive type equality
=µ on the set µTp of all recursive types according to Definition 3.1.1. Apart from
this also a number of proofs are given in greater detail here. There is, however,
one topic treated in the mentioned papers that is not covered here: in Section 8 of
[Gra02b] and [Gra02c], respectively, a sketch is given of how the obtained duality
result linking proof systems for recursive type equality can be transferred to a sim-
ilar pair of proof systems for bisimulation equivalence on equational specifications
of cyclic term graphs.

We continue by giving an overview of this chapter. In Section 6.1, we set out

144 A Duality between AK=
0 and HB=

0

to explain the mentioned basic observation, underlying the results in this chapter,
for the here relevant case of the ‘normalized’ versions AK=

0 and HB=
0 of the proof

systems AK= and HB= for recursive type equality. We demonstrate in an ex-
ample that a derivation in HB=

0 without open assumptions and with conclusion
τ = σ is indeed closely related to the “reflection” of a certain downwards-growing
derivation-tree in AK=

0 which formalizes a “successful consistency-check” for the
equation between recursive types τ = σ with respect to AK=

0 ; and that also a
similar connection holds via a “reflection” into the opposite direction.

For the purpose of formulating the basic idea illustrated by this example into
a precise statement, we introduce three kinds of auxiliary concepts. Firstly, in
Section 6.2 we define an extension of the system HB=

0 by adding three more coin-
ductive inference rules that facilitate additional derivations, but that do not lead
to more theorems. Secondly, in Section 6.3 we develop a number of notions re-
garding downwards-growing derivation-trees in AK=

0 : finite trees of consequences
(f.t.o.c.’s), f.t.o.c.’s with marked formulas and with back-bound leaf-occurrences
of marked formulas, partial consistency-unfoldings and consistency unfoldings in
AK=

0 . And thirdly, in Section 6.4 we define two reflection functions between deriva-
tions in the extension of HB=

0 and f.t.o.c.’s with back-bound leaf-occurrences of
marked formulas in AK=

0 .
Relying on these concepts, our main theorem is then stated and proved in Sec-

tion 6.5: it asserts that there exists a duality between derivations without open
assumption classes in the considered extension of HB=

0 and consistency-unfoldings
in AK=

0 via the reflection functions defined in Section 6.4. And we demonstrate by
an example that this relationship can geometrically be visualized. In Section 6.6 we
investigate the special case of the duality concerning derivations in the basic, not
extended, system HB=

0 . We show the existence of an analogous duality between
derivations without open assumptions in the system HB=

0 (not in its extension)
and consistency-unfoldings of a certain formally characterized kind in AK=

0 .
In Section 6.7 we gather remarks on our proofs and on the relevance of the duality

results. And in particular, we use our main duality theorem to give an alternative
soundness proof for the ‘normalized’ version HB=

0 of the Brandt-Henglein system
HB= that proceeds by ‘reducing’ the soundness of HB=

0 to the soundness of AK=
0

by applying the duality result.

6.1 The Basic Observation

The results in this chapter have been stimulated by an observation mentioned above
of J.W. Klop that indicated a link between the activities of proving the consistency
of an equation with respect to a syntactic-matching proof system and of proving an
equation in a coinductive proof system like that of Brandt and Henglein.1 This ob-
servation was originally aimed at trying to give an easy argument for the soundness

1J.W. Klop made this observation with respect to a pair of proof systems for the binary relation
on µ-terms over an arbitrary signature that relates two such terms whenever they have the same
tree unfolding.

6.1 The Basic Observation 145

of a rule similar to the somewhat strange rule ARROW/FIX in the axiomatiza-
tion of strong recursive type equivalence by Brandt and Henglein, which rule allows
applications that formalize a certain form of circular reasoning.

This rule may indeed seem quite paradoxical, at least at first sight: By every
application ι of ARROW/FIX in a derivation D in HB= or in HB=

0 a formula
A of the form τ1 → τ2 = σ1 → σ2 is deduced that is also allowed to appear as an
assumption in one or in both of the subderivations D1 and D2 leading up to the
right premise τ1 = σ1 , and respectively, to the left premise τ2 = σ2 of ι . But
furthermore, the conclusion A of ι does not depend any more on such assumptions
of A in D1 and D2 that are discharged by ι. One might initially be left wondering
why unsound circular reasoning is avoided by applications of this rule—as this is
in fact the case because of the soundness of HB= and HB=

0 with respect to =µ

(cf. Theorem 5.1.12 and Theorem 5.1.20). And on the other hand, one might also
want to gain a somewhat clearer understanding of how circular reasoning either
of HB= or HB=

0 is actually employed by applications of ARROW/FIX to derive
equations between recursive types that lie beyond the power of weak recursive type
equivalence =wµ—as this follows from the completeness of HB= and HB=

0 with
respect to =µ (cf. again Theorem 5.1.12 and Theorem 5.1.20).

The mentioned observation made it possible to obtain some additional insight
into this phenomenon. It pointed to a similarity between the activities of performing
a consistency-check by loop checking with respect to a syntactic-matching system,
like AK=, for a given equation, and of trying to construct in bottom-up direction a
formal proof for the same equation in a coinductive proof system. Formulated with
respect to the systems AK= and HB=, the original idea consisted of roughly the
following elements:

(i) The essential part of a proof for the consistency of an equation τ = σ with
respect to the syntactic-matching system AK= consists in showing that no
such derivation D inAK= leads to a contradiction with respect to =µ that has
only the single assumption τ = σ and in which applications of rules SYMM,
TRANS and REN are exclusively used for the purpose of unfolding a recursive
type on either side of an equation.

(ii) A systematic overview over all such derivations in AK= from an equation
τ = σ can be obtained by developing them simultaneously via stepwise, ‘fair’
extensions of a downwards-growing derivation-tree. Branches are extended as
long as no mismatch in leading symbols nor ‘looping’ has been encountered.
In this way a consistency-check with two possible outcomes can be carried
out:

• If τ = σ is not AK=-consistent, then an equation τ̃ = σ̃ is encoun-
tered in one of the leaves at the bottom of the derivation-tree such that
L′(τ̃) 6= L′(σ̃) holds, i.e. the leading symbols of τ̃ and σ̃ differ, and such
that the derivation-tree cannot be extended further from this leaf on-
wards. In this case the consistency-check fails. Furthermore, from the
reached derivation-tree a derivation in AK= can be extracted that shows

146 A Duality between AK=
0 and HB=

0

that the contradiction τ̃ = σ̃ with respect to =µ can be derived in AK=

from the single assumption τ = σ .

• If τ = σ is AK=-consistent, then no mismatch in leading symbols can
be detected during extensions of this derivation-tree. However, also in
this case the consistency-check can be completed after finitely many
extension-steps since then ‘looping’ must be encountered in all branches
at some stage of the stepwise extension process. Here the consistency-
check succeeds with the result of a derivation-tree that can be viewed
as a ‘witness’ for the AK=-consistency of τ = σ (in the sense that it
enables an easy proof to this effect).

(iii) And finally there is the at first somewhat surprising observation: derivation-
trees that are the outcome of a successful consistency-check with respect to
AK=

0 can be “reflected”, almost simply geometrically, into derivations without
open assumptions in the Brandt-Henglein system HB=.

The aim of trying to simplify this observation as well as of formulating it into a
precise statement has provided us with the first and foremost reason for introducing
the ‘normalized’ versionsAK=

0 ofAK= andHB=
0 ofHB=. The use of these variant

systems has certainly three advantages for describing the ideas explained above:
Firstly, in the absence of transitivity and symmetry rules in AK=

0 the somewhat
technical justification of part (i) turns out to be unnecessary, or rather irrelevant, for
showing consistency of formulas with respect to AK=

0 . Secondly, due to the special
way how the inference rules of AK=

0 have been chosen, steps in the extensions of
derivation-trees for consistency-checks as in (ii) above are of the form of applications
of rules of AK=

0 . And thirdly, due to the particular way in which the inference rules
of HB=

0 have been defined in relation to those of AK=
0 , it is the case that most

rule applications in AK=
0 can be reflected directly into rule applications of HB=

0

(see Section 6.4 for details); this contributes importantly, as we will see later, to
making the formal description of part (iii) a much easier matter.

We are now going to explain the observation outlined above, and in particular,
its relevant parts (ii) and (iii), in more detail with respect to the proof systems
AK=

0 and HB=
0 . In Example 6.1.1 below, we demonstrate, for two particular

strongly equivalent recursive types τ and σ, that a consistency-check for the equa-
tion τ = σ with respect to AK=

0 can be organized as a search until ‘looping’ occurs
for possible mismatches in leading symbols through a downwards-growing “tree of
consequences” of τ = σ . This consistency-check eventually succeeds by detecting
loops in all branches of a finite downwards-growing derivation-tree C, which enables
to give an easy inductive proof for the consistency of τ = σ with respect to AK=

0 .
Later we will see that C can be “reflected upwards” in an almost simply geometrical
way into a prooftree that is very near to a HB=

0 -derivation D of τ = σ without
open assumptions that is described in Example 6.1.2 below. And furthermore, we
will show that the derivation D can be “reflected downwards”, in an even more
immediate way, into a derivation-tree that can also be viewed as the outcome of a
successful consistency-check with respect to AK=

0 and that is closely related to C.

6.1 The Basic Observation 147

We start by giving the mentioned example of a “derivation-tree” in AK=
0 that

can be viewed as the outcome of a successful consistency-check and that allows us
to give an inductive proof for the consistency with respect to AK=

0 of the equation
at its root.

Example 6.1.1 (A successful consistency-check with respect to AK=
0). We

consider the two recursive types

τ ≡ µα. ((α→ α)→ α) and σ ≡ µα. (α→ (α→ α)) , (6.1)

which we have encountered before as the recursive types τ2 and σ2 in
2 Example 3.6.3.

There we have informally convinced ourselves that these recursive types are strongly
equivalent.

Now we want to establish τ =µ σ in a different manner, namely, by showing that
the equation τ = σ is AK=

0 -consistent (which is sufficient due to Theorem 5.2.13).
For this aim, we consider the assemblage of essentially six different derivations
in AK=

0 from the equation τ = σ to the result of the finite downwards-growing
derivation-tree C in Figure 6.1. Let this derivation-tree, which we will later call a
“finite tree of consequences from τ = σ inAK=

0 with marked formulas”, be denoted
by C here. All rule applications indicated by a single or a double ordinary line in
C are applications of rules UNFOLDl or UNFOLDr (clearly the single occurrence
of a double line in C indicates the application of both a rule UNFOLDl and a rule
UNFOLDr). The branchings in C indicated by dashed lines are due to the two
possible outcomes of applications of the decomposition-rule DECOMP: a formula
τ̃1 → τ̃2 = σ̃1 → σ̃2 gives rise to a branching indicated by a dashed line below this
formula and with the formulas τ̃1 = σ̃1 and τ̃2 = σ̃2 as the left, and respectively, as
the right successor of τ̃1 → τ̃2 = σ̃1 → σ̃2 in the C. The meaning of the superscript-
markers u, v and w for some formulas in C will be explained below.

This derivation-tree C has a particular property, which can be used for proving
the consistency of τ = σ with respect to AK=

0 . For explaining this feature of C we
neglect, for the moment, the fact that the rule REN is part of the system AK=

0

(in the presence of this rule it has to be argued in a somewhat more complicated
way3). In doing so and by furthermore neglecting the two possibilities for the order
in which the applications of UNFOLDl and of UNFOLDr can be performed in the
first two applications of a REN-free derivation from τ = σ in AK=

0 , we can state
the mentioned distinctive property of C as follows: C assembles and displays in a
graphic way all six possibilities for derivations from the equation τ = σ in AK=

0

up to that particular point in each derivation, when for the first time a formula
is derived that has been encountered before. The markers u, v and w have been
used to indicate at which earlier occurrences the formulas at the bottom of C have
respectively appeared in C for the first time.

Each of the six mentioned derivations gathered in C correspond to threads in C
from the root to a leaf at its bottom. We denote these derivations respectively by

2With the intention of avoiding potentially distracting subscripts as much as possible, we use
different names for these recursive types here.

3Cf. the proof of the implication of “⇐” of Theorem 6.3.18 below.

148 A Duality between AK=
0 and HB=

0

Figure 6.1: Assemblage to a finite downwards-growing “tree of consequences” C
of the six different possible derivations in AK=

0 without REN-applications from the
assumption µα. ((α→ α)→ α) = µα. (α→ (α→ α)) with the additional property
that the derivation ends as soon as looping is encountered for the first time.

(τ = σ)u

(τ = σ → σ)w(τ = σ)u
τ → τ = σ → (σ → σ)

τ → τ = σ

(τ → τ)→ τ = σ → σ

(τ = σ → σ)w

(τ = σ)u(τ → τ = σ)v
(τ → τ)→ τ = σ → σ

τ = σ → σ(τ = σ)u
τ → τ = σ → (σ → σ)

(τ → τ = σ)v
DECOMP

(τ → τ)→ τ = σ → (σ → σ)
UNFOLDl/r

(
≡ τ

︷ ︸︸ ︷

µα. ((α→ α)→ α) =

≡σ
︷ ︸︸ ︷

µα. (α→ (α→ α))
)u

D1, . . . ,D6 according to the order in which the corresponding threads are encoun-
tered in C while passing from left to right (we recall the imprecision of this statement
resulting from the fact that every thread from the root to a leaf in C stands actu-
ally for two derivations in AK=

0 because no order has been fixed in the symbolic
prooftree C for the two topmost applications of UNFOLDl and UNFOLDr). Hence,
for instance, D5 is a derivation in AK=

0 from assumption τ = σ and with con-
clusion τ = σ → σ ; furthermore, D5 has depth 7 and consists of applications of
UNFOLDl/r, DECOMP, UNFOLDl, DECOMP, UNFOLDr and DECOMP in this
order from its single assumption to the conclusion. We say that D1, . . . ,D6 span
the derivation-tree C shown in in Figure 6.1.

Now we are going to use the distinctive feature of C explained above for showing
that no contradiction with respect to =µ can be derived from τ = σ in AK=

0 by
an AK=

0 -derivation without REN-applications. More precisely, we will show that

For all derivations D in AK=
0 from the assumption τ = σ without

REN-applications and with conclusion τ̃ = σ̃ (for some τ̃ , σ̃ ∈ µTp)
it holds that L′(τ̃) = L′(σ̃) , i.e. that the conclusion of D is no
contradiction with respect to =µ .

(6.2)

holds. We will do so by induction on the depth n = |D| of derivations D in AK=
0

from τ = σ . Thereby we will rely on the important observation

(∀ τ̃ = σ̃ equation in the deriv.-tree C in Fig. 6.1)
[
L′(τ̃) =→= L′(σ̃)

]
, (6.3)

which asserts in particular that the derivation-tree C in Figure 6.1 does not contain
contradictions with respect to =µ . Assertion (6.3) can easily be checked.

For settling the base case of the induction for (6.2), we notice that τ and σ have
the same leading symbol, namely → (we have already observed this before as part
of (6.3)).

For the treatment of the induction step for (6.2), we assume the induction hy-
pothesis and let D be an arbitrary derivation in AK=

0 from the assumption τ = σ

6.1 The Basic Observation 149

with depth |D| = n+ 1 ≥ 1; we will show that the conclusion of D is no contradic-
tion with respect to =µ .

We distinguish the cases |D| = n+ 1 ≤ 7 and |D| = n+ 1 > 7. In the first
case we will demonstrate the assertion needed for the induction step directly, that
is, without using the induction hypothesis, whereas we will rely on the induction
hypothesis for settling the second case.

For the case |D| = n+ 1 ≤ 7, we treat the two subcases 1 ≤ |D| = n+ 1 ≤ 5
and 5 < |D| = n+ 1 ≤ 7 separately.

In the first subcase 1 ≤ |D| = n+ 1 ≤ 5, the derivation D must be an initial seg-
ment of one of the derivations D1, . . . ,D6 that span the derivation-tree C because
these six derivations comprise all possible initial-segments of REN-freeAK=

0 -deriva-
tions from τ = σ until looping occurs and all of these derivations contain at least
5 rule applications. This implies that the conclusion of D is contained in C. Hence
observation (6.3) implies now that the conclusion of D is not a contradiction with
respect to =µ .

In the second subcase 5 < |D| = n+ 1 ≤ 7 , it follows similarly due to the con-
struction of C that either D is an initial segment of one of the four derivations
D2,D3,D4 or D5 of depth 7 contained in C, or that D has one of the derivations
D1 or D6 in C of depth 5 as initial-segment. In the first situation it is obvious that
the conclusion of D is contained in C, and hence (6.3) implies that the conclusion
of D is not a contradiction with respect to =µ . In the second situation, however, D
must contain a loop consisting of 5 rule applications, more precisely, the assumption
τ = σ is reached again in D after 5 rule applications below the assumption τ = σ .
By removing this loop from D, a derivation D0 in AK=

0 from the assumption τ = σ
results that has depth 1 ≤ |D0| ≤ 2 and the same conclusion as D. From what we
have shown in the first subcase above, we can now conclude that the conclusion
of D0, and hence the conclusion of D, is not a contradiction with respect to =µ .
Hereby we have shown the induction step for the second subcase.

In this way we have successfully performed the induction step for the first case,
in which |D| = n+ 1 ≤ 7 holds (as noted earlier, we did not use the induction
hypothesis in this case).

In the second case, where |D| = n+ 1 > 7 holds, it follows that precisely one
of the derivations D1, . . . ,D6 spanning the derivation-tree C is an initial-segment
of D. Since each of D1, . . . ,D6 contains a loop of at least four rule applications,
it is possible to remove at least four rule applications from D with the result of a
derivation D0 in AK=

0 from the assumption τ = σ that has the same conclusion
as D and that has depth |D0| ≤ |D| − 4. By applying the induction hypothesis
for D0 it follows that D0 does not have a contradiction with respect to =µ as its
conclusion. And this entails that D cannot have a contradiction with respect to =µ

as its conclusion, neither.
Hereby we have performed the induction step also for the case |D| = n+ 1 > 7.

Consequently, we have succeeded in showing (6.2).
Thus we have given an argument, the refinement of which (with respect to the

presence of REN-rules in AK=
0) can indeed show that τ = σ is consistent with

AK=
0 . Our proof, as well as its possible refinement, is based on the derivation-tree

150 A Duality between AK=
0 and HB=

0

C in AK=
0 , the outcome of a successful consistency-check for the equation τ = σ by

loop-checking for all (REN-free) derivations from τ = σ in AK=
0 and by arranging

these derivations to a downwards-growing derivation-tree. The derivation-tree C can
be viewed as a ‘witness’ for the AK=

0 -consistency of the equation τ = σ at its root,
in the sense that it enables an easy proof by induction, of the kind described above,
for the impossibility to derive a contradiction with respect to =µ from τ = σ in
AK=

0 . Such derivation-trees will later be called “consistency-unfoldings in AK=
0 ”

with respect to a notion that will formally be introduced in Section 6.3.

We continue by giving a formal derivation in the system HB=
0 for the equation

τ = σ with the recursive types τ and σ as in the above example.

Example 6.1.2 (A formal proof in HB=
0). Let τ and σ be the recursive types

considered in Example 6.1.1 that are specified in (6.1). In Example 3.6.3 we saw that
τ =µ σ holds. Due to completeness of the system HB=

0 with respect to =µ, there
must then exist a proof of τ = σ inHB=

0 . If one goes about to build such a proof in
bottom-up direction and thereby avoids unnecessary applications of the rules REN
of taking variants, and always uses the rule ARROW/FIX as soon as possible to
discharge arising assumptions, then there is essentially only one possibility for such
a proof. Namely, in this way the derivation D shown in Figure 6.2 in the system
HB=

0 is found. Each of the three applications of two-premise rules in D that are
respectively labeled by u, v and w are applications of the rule ARROW/FIX at
which the assumptions in D marked by u, v or w are discharged respectively.

Now it is very striking to notice, for τ and σ as in Example 6.1.1 and in Exam-
ple 6.1.2, a direct relationship between the outcome of the successful consistency-
check for τ = σ in AK=

0 , the derivation-tree C in Figure 6.1, and the derivation D
in HB=

0 of τ = σ in Figure 6.2. Namely, each of C and D is, if some details are
overlooked for the moment, very close to the ‘mirror image’ of the other.

Let us explain this for the derivation D first. By reflecting the downwards-
growing derivation-tree C from Figure 6.1 at a horizontal line, the upwards-growing
derivation-tree Refl(C) in Figure 6.3 is reached. During this reflection all applica-
tions of UNFOLDl and UNFOLDr in C are changed into respective applications of
FOLDl and FOLDr, and all branchings DECOMP are replaced by applications of
ARROW. This prooftree Refl(C) is essentially a derivation in HB=

0 that has oc-
currences of undischarged marked assumptions at its top, but that contains, unlike
HB=

0 -derivations, still some marked formulas in its ‘interior’. However, Refl(C) is
very near to D although it possesses open assumptions, while D does not. Closer
inspection shows the following: if Refl(C) is transformed further

(1) by extending Refl(C) above all of its leaves appropriately by one or by two
applications of FOLDl and/or FOLDr,

(2) by transferring the respective assumption markers in Refl(C) up to the formu-
las in the new leaves, and

(3) by discharging these newly arising assumptions at respective applications of
ARROW deeper down in Refl(C), thereby removing the respective assumption

6.1 The Basic Observation 151

Figure 6.2: The derivation D of µα. ((α→ α)→ α) = µα. (α→ (α→ α)) in
HB=

0 without open assumption classes.

(. . .)u

τ = σ

(. . .)v

τ → τ = σ

(. . .)u

τ = σ

(τ → τ)→ τ = σ → σ

τ = σ → σ
v

τ → τ = σ → (σ → σ)

τ → τ = σ

(. . .)u

τ = σ

(. . .)w

τ = σ → σ

τ → τ = σ → (σ → σ)

τ → τ = σ

(. . .)u

τ = σ
w

(τ → τ)→ τ = σ → σ

τ = σ → σ
ARR./FIX, u

(τ → τ)→ τ = σ → (σ → σ)
FOLDl/r

µα. ((α→ α)→ α)
︸ ︷︷ ︸

≡ τ

= µα. (α→ (α→ α))
︸ ︷︷ ︸

≡σ

For typographical reasons the marked assumptions at the top of the derivation D
have been abbreviated as follows:

(. . .)u stands for ((τ → τ)→ τ) = σ → (σ → σ))u ,

(. . .)v for (τ → τ = σ → (σ → σ))v and

(. . .)w for ((τ → τ)→ τ = σ → σ)w .

Figure 6.3: Derivation Refl(C) in HB=
0 that is the result of a reflection of

the derivation-tree C in AK=
0 from Figure 6.1 at a horizontal line, during which

DECOMP-branchings are mirrored into ARROW-applications and UNFOLDl/r-
into FOLDl/r-applications.

(τ = σ)u

(τ → τ = σ)v (τ = σ)u

(τ → τ)→ τ = σ → σ

τ = σ → σ

τ → τ = σ → (σ → σ)

(τ → τ = σ)v

(τ = σ)u (τ = σ → σ)w

τ → τ = σ → (σ → σ)

τ → τ = σ (τ = σ)u

(τ → τ)→ τ = σ → σ

(τ = σ → σ)w
ARROW

(τ → τ)→ τ = σ → (σ → σ)
FOLDl/r

(

µα. ((α→ α)→ α)
︸ ︷︷ ︸

≡ τ

= µα. (α→ (α→ α))
︸ ︷︷ ︸

≡σ

)
u

152 A Duality between AK=
0 and HB=

0

Figure 6.4: Derivation-tree Refl(D) in AK=
0 that is the result of a reflection of

the derivation D in HB=
0 from Figure 6.2: ARROW/FIX-applications are mirrored

into DECOMP-branchings and FOLDl/r- into UNFOLDl/r-applications, and fur-
thermore, the reflections of conclusion-formulas of ARROW/FIX-applications in D
are marked according to the respectively discharged assumptions.

(. . .)u

τ = σ

(. . .)v
τ → τ = σ

(. . .)u

τ = σ

(τ → τ)→ τ = σ → σ

τ = σ → σ

(
τ → τ = σ → (σ → σ)

)v

τ → τ = σ

(. . .)u

τ = σ

(. . .)w
τ = σ → σ

τ → τ = σ → (σ → σ)

τ → τ = σ

(. . .)u

τ = σ

(
(τ → τ)→ τ = σ → σ

)w

τ = σ → σ
DECOMP

(
(τ → τ)→ τ = σ → (σ → σ)

)u UNFOLDl/r

≡ τ
︷ ︸︸ ︷

µα. ((α→ α)→ α) =

≡σ
︷ ︸︸ ︷

µα. (α→ (α→ α))

(For the leaves of Refl(D) we have used, again for typographical reasons, the ab-
breviations explained in Figure 6.2).

marker u in the conclusions of these ARROW-applications and changing the
application itself to an application of ARROW/FIX at which u is discharged,

then a derivation Refl(C)∗ in HB=
0 is built that is identical to D. In this way, we

have recognized that D is indeed closely related to a ‘mirror image’ of C.

And analogously, it can easily be seen that the reflection Refl(D) shown in Fig-
ure 6.4 of the derivation D in Figure 6.2 can be viewed as formalizing the outcome
of a successful consistency-check for the equation τ = σ in AK=

0 . For carrying out
this reflection, we first ‘pre-process’ D by transferring markers from assumptions
that are discharged at ARROW/FIX-applications to the conclusions of the respec-
tive ARROW/FIX-application; let us denote the resulting prooftree by D(m). Only
then is D(m) mirrored downwards at a horizontal line with the result Refl(D) of a
downwards-growing derivation-tree in AK=

0 from the assumption τ = σ . During
this reflection ARROW/FIX-applications are mirrored into DECOMP-branchings,
and FOLDl/r- into UNFOLDl/r-applications.

Then it is easy to see that a very similar proof as given in Example 6.1.1 for the
consistency with respect to AK=

0 of the formula τ = σ at the root of C can also
be given using the derivation-tree Refl(D) instead of using C. Thus also Refl(C)
can be viewed as a derivation-tree in AK=

0 that formalizes a successful consistency-
check for τ = σ . And furthermore, Refl(D) is very close to the derivation-tree C,
more precisely, it contains respectively only one or two applications of UNFOLDl

and/or UNFOLDr below each leaf of C, and as a further difference with C, and
the backbinding markers are organized slightly in a slightly different manner (for

6.2 The Extension e-HB=
0 of HB=

0 153

example, no backbinding occurs in Refl(D) to the formula at the root). But we
find nevertheless, that the derivation-tree C in AK=

0 is closely related to a ‘mirror
image’ of the HB=

0 -derivation D.
These observations do indeed suggest a very close relationship between derivation-

trees in AK=
0 that formalize successful consistency-checks in AK=

0 and derivations
in HB=

0 without open assumptions. We will formalize this relationship as a precise
proof-theoretic interconnection between an extension ofHB=

0 and the systemAK=
0

in the course of this chapter.

There is one further hint to be taken from our examples above for the devel-
opment of notions needed for the formalization of this observation in the coming
sections. Seemingly, derivation-trees in AK=

0 that can be used to show the consis-
tency with respect to AK=

0 of the equation at their root are slightly more general
formal objects, when compared via reflection operations, than prooftrees of deriva-
tions in HB=

0 without open assumptions. As an indication for this we have noticed
that the reflection Refl(D) of the derivation D in Figure 6.2 can directly be con-
sidered to be the outcome of a successful consistency-check in AK=

0 , whereas vice
versa, the reflection Refl(C) of the derivation-tree C in Figure 6.1 had to be ‘post-
processed’ to reach a derivation in HB=

0 without open assumptions (by adding one
or two additional rule applications above each marked assumption at the top of
Refl(C), and by arranging new bindings to ARROW/FIX-applications for the pur-
pose of discharging the newly created open assumptions there). Hence a general
concept of backbinding for leaf-occurrences of marked formulas in AK=

0 -derivation
trees might be stronger, when compared via appropriate reflection operations, than
the concept of discharging assumptions in HB=

0 -derivations.

From this the question arises whether, and if so then how, the system HB=
0

can be extended in such a way that the mechanism for discharging assumptions
in the extended system is equally strong as a general concept of backbinding for
marked assumptions in AK=

0 -derivation-trees as used above. Our duality results
will ultimately show that the answer is yes for the particular extension of HB=

0

that is introduced in the next section as well as for formalizations of successful
consistency-checks with respect to AK=

0 by “consistency-unfoldings” in Section 6.3.

6.2 The Extension e-HB=
0 of HB=

0

For the purpose of formulating the observation described in Section 6.1 into a
‘smooth’ formal relationship between the systems AK=

0 and HB=
0 , it will turn

out to be useful to extend the system HB=
0 . As indicated at the end of the pre-

vious section, in particular the introduction of such additional rules will be of sig-
nificance that allow assumptions to be discharged in situations in which the rule
ARROW/FIX of HB=

0 is not applicable. We are therefore going to enrich HB=
0 by

a number of such rules of this kind that facilitate additional derivations, but that
do not cause new theorems to become derivable in the extended system (in view of
the completeness of HB=

0 with respect to =µ, an extension of HB=
0 that increased

the set of theorems would clearly be undesirable).

154 A Duality between AK=
0 and HB=

0

Before introducing these new rules, we define and study a generalization of the
rule ARROW/FIX, the rule FIX, that will subsequently help us to show that the
introduced additional rules are (cr-)admissible inHB=

0 . The rule FIX is an inference
rule with identical premise and conclusion that allows to discharge a formula of the
same form as its premise and conclusion; but applications of FIX are only allowed,
if a condition on the “contractiveness” of the derivation leading to its premise is
satisfied.

Definition 6.2.1 (Contractiveness of derivations, the rule FIX). Let S be a
natural-deduction system whose set of formulas is the set µTp–Eq of equations be-
tween recursive types and whose rules include the rules ARROW and ARROW/FIX
of HB=

0 .

(i) Let D be a derivation in S, and let τ, σ ∈ µTp and u be an assumption marker.
We say thatD is contractive with respect to open marked assumptions (τ = σ)u

if and only if the following holds:

For every undischarged marked assumption of the form (τ = σ)u

in D, the thread down to the conclusion of D crosses an application
of ARROW or ARROW/FIX at least once.

(6.4)

(ii) The rule FIX is an inference rule whose applications at the bottom of deriva-
tions D in S+FIX are of the form

[τ = σ]u

D1

τ = σ
FIX, u

τ = σ

(6.5)

(with some τ, σ ∈ µTp and an assumption marker u), where the immediate
subderivationD1 ofD is a derivation in S+FIX that is contractive with respect
to open marked assumptions (τ = σ)u .

£

Remark 6.2.2. (a) If the system S in Definition 6.2.1 is taken to be the sys-
tem HB=

0 , then due to the fact that the only two-premise rules in HB=
0

are the rules ARROW and ARROW/FIX, condition (6.4), which defines
when a derivation D is contractive with respect to open marked assumptions
(τ = σ)u , can easily be seen to be equivalent to the following easier, and more
concrete formulation:

There are either no undischarged marked assumptions in D of
the form (τ = σ)u or there is at least one occurrence of an
application of ARROW or ARROW/FIX in D.

(6.6)

Our preference for (6.4) over (6.6) as the defining clause for the notion of
“contractiveness” of a derivation D with respect to marked open assumptions

6.2 The Extension e-HB=
0 of HB=

0 155

(τ = σ)u is motivated by the following fact. The definition of the rule FIX in
Definition 6.2.1, (b), with the side-condition that the immediate subderivation
of a FIX-application is “contractive” with respect to the discharged assump-
tions in the sense of Definition 6.2.1, (i), turns out to be the ‘right’ one also for
the situation when FIX is considered in the context of the basic, not-analytic,
Brandt-Henglein system HB= (see the results reported in Chapter 9, Sec-
tion 9.2, Subsection 9.2.1); this would not be the case if in Definition 6.2.1,
(i), the clause (6.6) were chosen instead of (6.4).

(b) The rule FIX does not conform fully to the format of “ANDS-rule” as intro-
duced in Definition B.2.1 in Appendix B. This is because for checking whether
an inference labeled by FIX in a given derivation is a (formally) correct ap-
plication of FIX not only the conclusion, the premise, the rule name label,
and the open assumptions belonging to this application have to be looked
at; it also has to be verified that the application’s immediate subderivation
is indeed contractive with respect to the open marked assumptions (of the
form of the premise and the conclusion that get discharged). This is not the
case for derivations in the concept of ANDS as developed in Section B.2 of
Appendix B.

A possibility to formulate a version of the rule FIX that is formalizable as an
ANDS-rule exists in an annotated version ann-HB=

0 of HB=
0 , which is de-

fined in Definition 8.1.1, Chapter 8. This system has the property that some
information about the structure of a derivation D in ann-HB=

0 is contained
in the annotation χ within the conclusion χ : τ = σ of D. This feature of the
system ann-HB=

0 makes it possible to express the condition that a deriva-
tion D in ann-HB=

0 is contractive with respect to certain open assumptions
as a condition about the annotation in the conclusion of D. As a conse-
quence, a version of the rule FIX can be defined in an extension of the system
ann-HB=

0 such that this version of FIX can be formalized as an ANDS-rule
(see Remark 8.1.2, (b), in Chapter 8).

It turns out that the addition of the rule FIX to the system HB=
0 does not

lead to the consequence that additional theorems would become derivable. In fact,
as this can be seen from the proof of the following lemma, the ‘deductive power’
of a particular application of FIX in a derivation D in HB=

0 +FIX can always be
emulated by the ‘deductive power’ of a certain application4 of ARROW/FIX in a
derivation D′ that is closely related to D.

Lemma 6.2.3. The rule FIX is a cr-admissible rule in HB=
0 , which can be elim-

inated effectively from arbitrary derivations in HB=
0 +FIX : every derivation D in

HB=
0 +FIX can effectively be transformed into a derivation D′ in HB=

0 with the
same conclusion and the same (if any) open assumption classes.

4This application of ARROW/FIX is either already present in D or it arises from an application
of ARROW present in D (cf. the proof of Lemma 6.2.3).

156 A Duality between AK=
0 and HB=

0

Proof. It suffices to show that applications of the rule FIX can effectively be elim-
inated from arbitrary derivations D of the form (6.5), where D1 is a derivation
in HB=

0 that is contractive with respect to open marked assumptions of the form
(τ = σ)u , with the result of a derivation D′ in HB=

0 that has the same conclu-
sion, the same (if any) open assumption classes, and that furthermore satisfies the
condition:

For every ρ, χ ∈ µTp and assumption markers v it holds that:

D is contractive w.r.t. open marked assumptions (ρ = χ)v =⇒

=⇒ D′ is contractive w.r.t. open marked assumptions (ρ = χ)v .

(6.7)

(We therefore have to show slightly more than cr-correctness of FIX in HB=
0 : we

have to demonstrate the fulfilledness of the defining clause of cr-admissibility for
FIX in HB=

0 , and to make sure additionally that the transformation can be carried
out effectively and that for its result (6.7) holds.) If this has been proven, it follows
(a) that appropriate eliminations of topmost occurrences of FIX in an arbitrary
derivation D in HB=

0 +FIX can be carried out effectively without affecting the side-
conditions of other applications of FIX in D, and hence (b) that all applications
of FIX in an arbitrary derivation D in HB=

0 +FIX can be removed effectively by
successive eliminations of always topmost occurrences first with the desired result of
a derivation D′ inHB=

0 that has the same conclusion and the same open assumption
classes as D. (The argument sketched here is analogous to how the implication
“cr-correctness ⇒ cr-admissibility” in Lemma 4.3.5 can be shown.)

We therefore let an arbitrary derivation D of the form (6.5) be given (with some
τ, σ ∈ µTp), for which we assume that D1 is a derivation inHB=

0 that is contractive
with respect to open marked assumptions (τ = σ)u . We want to show that D can
effectively be transformed into a derivation D′ in HB=

0 with the same conclusion,
the same (if any) open assumption classes, and for which furthermore (6.7) is true.

In case that the open assumption class [τ = σ]u in D1 is empty, the application
of FIX at the bottom of D amounts to a trivial step, in which no assumption is
discharged and no change of the equation between recursive types in the premise
occurs. Hence this application of FIX can be removed from D and we can take D′

to be simply D1.

Now we assume that there is at least one open marked assumption (τ = σ)u in
D1. From the fact that D1 is contractive with respect to such open assumptions we
know that the thread from each such assumption downwards in D1 to the conclusion
τ = σ crosses an application of ARROW or ARROW/FIX at least once. Hence
there is at least one application of ARROW or ARROW/FIX in D1.

5 We will now
consider the bottommost such application in D1, with respect to which then all

5We could also have concluded this by using (6.6).

6.2 The Extension e-HB=
0 of HB=

0 157

marked assumptions of D1 must be located above it. Thus D1 can be written as

[τ = σ]u

D1a ARROW or ARROW/FIX, v
(τ1a = σ1a)

D1

τ = σ

for some τ1a, σ1a ∈ µTp , a derivation D1a in HB=
0 (with open assumptions) and

a derivation D1 in HB=
0 with a single marked assumption (τ1a = σ1a)

w (for some
assumption marker w) that does only contain applications of one-premise rules.
Thereby the bottommost application of ARROW or ARROW/FIX, v in D1 is in-
dicated by the dotted line that represents the last rule application in D1a, which
derivation still stretches across this application and has conclusion τ1a = σ1a .

The open assumption class [τ = σ]u in D1 (and in D1a) can now be “closed” by
inserting the derivation D1a in D1 above all open marked assumptions (τ = σ)u of
this class and by then discharging the newly arising assumption class (τ1a = σ1a)

w

at the location of the bottommost application of ARROW or ARROW/FIX in
D1: in case that this displayed last rule application in D1a is an application of
ARROW, it is changed to an application of (ARROW/FIX, v) and the marker
w for the assumption class [τ1a = σ1a]

w in the derivation D1 is at the same time
changed from w to v for a new marker v, which does not occur in D1; in case this
displayed application in D1a is an application (ARROW/FIX, v) only the marker
w for the assumption class [τ1a = σ1a]

w in D1 is changed to v. – This means that
in both cases D1 is transformed to the HB=

0 -derivation D′

(τ1a = σ1a)
v

D1

[τ = σ]

D1a ARROW/FIX, v
(τ1a = σ1a)

D1

τ = σ

which possesses the same open assumption classes as D1 except for [τ = σ]u and
thus has the same conclusion and the same open assumption classes as D. Further-
more also (6.7) holds, since in this case clearly both D and D′ are contractive with
respect to arbitrary open marked assumptions. Hence the result D′ of effectively
eliminating the application FIX from the given derivation D of the form (6.5) is in
fact of the required form.

Now we proceed to give the extension mentioned above of the system HB=
0 by

adding new rules. We extend HB=
0 by three rules, each of which is closely related

158 A Duality between AK=
0 and HB=

0

to a respective one-premise rule of HB=
0 , but differs from that by the property that

all of its applications discharge one or more present marked assumptions.

Definition 6.2.4 (The extension e-HB=
0 of the system HB=

0). The extension
e-HB=

0 of the system HB=
0 has the same formulas and axioms as HB=

0 , allows
to make the same marked assumptions and contains all inference rules of HB=

0 .
Additionally, e-HB=

0 contains the rules REN/FIX, FOLDl/FIX and FOLDr/FIX
defined below.

Applications of these rules arise from applications of, respectively, the rules
REN, FOLDl or FOLDr by the stipulation that at least one marked assumptions of
the form of the respective conclusion is discharged. More precisely, applications in
e-HB=

0 of REN/FIX and of FOLDl/FIX together with their immediate subderiva-
tions D1 in e-HB=

0 are of the respective forms

[τ ′ = σ′]u

D1

τ = σ
REN/FIX, u (where τ ′ ≡ren τ and σ′ ≡ren σ

and if side-conditions C and I)τ ′ = σ′

(6.8)

(with some τ, σ, τ ′, σ′ ∈ µTp and an assumption marker u) and
[
µα. τ = σ

]u

D1

τ [µα. τ/α] = σ
FOLDl/FIX, u (if side-conditions C and I)

µα. τ = σ

(6.9)

(with some τ, σ ∈ µTp and α ∈ TVar and an assumption marker u), where the side-
conditions C and I on the derivations D1 are defined as follows. The side-condition
C asserts in each case that the derivation D1 is contractive (cf. Definition 6.2.1 (i))
with respect to open marked assumptions with assumption marker u (which assump-
tions are discharged at the respective application of REN/FIX or of FOLDl/FIX).
And side-condition I asserts that at least one open marked assumption is discharged
by the respective application of REN/FIX or of FOLDl/FIX. Thus in (6.8) the side-
condition I demands that the open assumption class [τ ′ = σ′]u is inhabited, whereas
in (6.9) it requires that the open assumption class [µα. τ = σ]u is inhabited).

The rule FOLDr/FIX that has an analogous relationship with the rule FOLDr

of HB=
0 as FOLDl/FIX has with FOLDl is defined similarly; in particular, appli-

cations of FOLDr/FIX are subject to analogous side-conditions C and I.
As an abbreviation used in informal arguments, we will again allow to speak

about one or about both of the rules FOLDl/FIX and FOLDr/FIX by using the
expression FOLDl/r/FIX.

£

Remark 6.2.5. (a) The side-condition I on the new rules in e-HB=
0 has been

taken up for the same reason why it has been required also earlier in the

6.2 The Extension e-HB=
0 of HB=

0 159

definition of the system HB=
0 (contrasting with the rule ARROW/FIX in

the ‘original’ Brandt-Henglein system HB= for which it is not demanded):
to create a clear notational distinction between rules, applications of which
cause some present assumptions to be discharged, and rules, applications of
which do not discharge any assumptions. As a consequence, no application of
one of the rules FOLDl/r, REN or ARROW in an e-HB=

0 -derivation can be
viewed as just a special case of an application of FOLDl/r/FIX, REN/FIX or
ARROW/FIX. The aim here is to make it possible to discriminate between,
on the one hand, applications of FOLDl/r, REN and ARROW, and on the
other hand, applications of FOLDl/r/FIX, REN/FIX and ARROW/FIX for
the purpose of easing the formal reasoning about later defined transformations
of derivations.

(b) That the side-condition C on subderivations leading up to applications of
one of the new rules in e-HB=

0 is essential can easily be seen. If it were
not demanded, then equations τ = σ that equate recursive types that are
not strongly equivalent would become derivable. This is obvious for the rule
REN/FIX: for any τ, σ ∈ µTp such that τ 6=µ σ , consider the derivation with
conclusion τ = σ that consists just of one (trivial) application of REN/FIX
at which a marked assumption (τ = σ)u (for some marker u) in the premise
is discharged. And in the case of the rule FOLDl/FIX, consider, for arbitrary
α, β, α1, α2 ∈ TVar such that α1 6≡ α2 , the derivation

(µα1α2. α1 = α→ β)u
FOLDl

µα2α1α2. α1 = α→ β
FOLDl/FIX, u

µα1α2. α1 = α→ β

without open assumptions; obviously an analogous derivation can be given us-
ing the rules FOLDr and FOLDr/FIX. Therefore a system with rules FOLDl/r/
FIX and REN/FIX for applications of which the side-condition C were not
demanded would be unsound with respect to strong recursive type equiva-
lence.

(c) Similarly as the system HB=
0 possesses a FIX-pendant to the rule ARROW

in the rule ARROW/FIX, the system e-HB=
0 contains FIX-pendants to the

rules FOLDl/r and REN of HB=
0 . In connection with this it could be asked

why in e-HB=
0 no FIX-pendants have been defined for the rules (µ−⊥)⊥derl/r

of HB=
0 .

A first observation related to the reason for this is the following. No deriva-
tion D1 in HB=

0 or in e-HB=
0 with the conclusion in, for example, the

premise ⊥ = σ of a rule (µ−⊥)⊥derl contains an application of ARROW
or ARROW/FIX (because otherwise, as one can easily verify, both recursive
types in the conclusion of D1 would contain the symbol →). Therefore no
such derivation D1 can be contractive. And furthermore, a hypothetical rule

160 A Duality between AK=
0 and HB=

0

(µ−⊥)⊥derl /FIX with applications of the form

[µαα1 . . . αn. α = σ]u

D1

⊥ = σ
(µ−⊥)⊥derl /FIX, u (if side-conditions C and I)

µαα1 . . . αn. α = σ

could never be applied, even if the side-condition C were dropped. This
is because there does not exist a derivation in HB=

0 , nor in e-HB=
0 , that

contains (as required by the side-condition I) an occurrence of (⊥ = σ)u as
an open marked assumption (for some marker u) and that has the conclusion
µαα1 . . . αn. α = σ .

On the other hand, a hypothetical rule R̃ with applications of the form

[⊥ = σ]u

D1

⊥ = σ
R̃, u (if side-condition I)

µαα1 . . . αn. α = σ

in which the side-condition C on R̃ were not demanded, would obviously make
it possible to derive contradictions with respect to =µ as theorems (such as,
for example, the contradiction µα. α = µα. (α→ α) with respect to =µ).

We will now see that, as a consequence of the fact that FIX is cr-admissible in
HB=

0 , also the additional rules in e-HB=
0 are cr-admissible in HB=

0 , and that the
systems e-HB=

0 and HB=
0 are equivalent.

Theorem 6.2.6 (Equivalence of the systems HB=
0 and e-HB=

0). The fol-
lowing three statements hold about the relationship between the systems HB=

0 and
e-HB=

0 :

(i) Every derivation D in e-HB=
0 can effectively be transformed into a derivation

D′ in HB=
0 with the same conclusion and the same (if any) open assumption

classes.

(ii) The rules REN/FIX, FOLDl/FIX and FOLDr/FIX are cr-admissible rules
in HB=

0 .

(iii) The system e-HB=
0 is a conservative extension of HB=

0 , and hence6 the sys-
tems HB=

0 and e-HB=
0 are equivalent (i.e. they possess the same theorems).

Proof. Since both statements (ii) and (iii) of the theorem are obvious consequences
of statement (i), we only have to show item (i) of the theorem.

For this notice first that an arbitrary application of one of the rules REN/FIX
and FOLDl/r/FIX in a derivation in e-HB=

0 +FIX can be eliminated effectively by

6Since HB=

0
and e-HB=

0
have the same formulas.

6.2 The Extension e-HB=
0 of HB=

0 161

making use of a respective application of the rule FIX. Let D be an arbitrary deriva-
tion in e-HB=

0 +FIX. Then it holds that each application of the rule FOLDl/FIX in
D can be replaced by a succession of an application of FOLDl with an application
of FIX. More precisely, every subderivation D1 of D of the form

[
µα. τ = σ

]u

D1

τ [µα. τ/α] = σ
FOLDl/FIX, u

µα. τ = σ

can be replaced by

[
µα. τ = σ

]u

D1

τ [µα. τ/α] = σ
FOLDl

µα. τ = σ
FIX, u

µα. τ = σ

(which derivation we call D1) in D with the result of a derivation D(1). The side-
condition C on the application of FOLDl/FIX at the bottom of D1 in D implies
thereby the side-condition on the new application of FIX in D1 and in D(1). It
is obvious that this replacement of an application of FOLDl/FIX does not affect
the validity of the side-conditions of any other application of FIX or of R/FIX for
R ∈ {FOLDl/r,REN} in (the transformation-step from D to) D(1). Furthermore—
because clearly D1 and D1 have the same open assumption classes—also the deriva-
tions D and D(1) possess the same open assumption classes; but D(1) has one appli-
cation of (a rule REN/FIX, FOLDr/FIX or) FOLDl/FIX less than D. Analogous
transformation-steps can be enacted for arbitrary applications of FOLDr/FIX and
of REN/FIX in D.

For showing (i), we let D be an arbitrary derivation in e-HB=
0 . We will show

that D can effectively be transformed into a derivation D′ in HB=
0 with the same

conclusion and the same open assumption classes. By successively eliminating appli-
cations of REN/FIX or FOLDl/r/FIX in a way as indicated above, D can effectively

be transformed into a derivation D(f) in HB=
0 +FIX with the same conclusion and

with the same open assumption classes as D. And furthermore, the derivation D(f)

can be transformed, due to Lemma 6.2.3, in an effective way into a derivation D′

in HB=
0 with the same conclusion and the same (if any) undischarged assumption

classes as D(f) by eliminating all FIX-applications from D(f). Hence a derivation
D′ in HB=

0 that mimics D can be effectively produced. In this way we have shown
statement (i) of the theorem.

As an aside, we will prove now that each of the additional rules REN/FIX and
FOLDl/r/FIX in e-HB=

0 can be used as a counterexample for the validity of the
implication “admissibility ⇒ derivability” for rules in natural-deduction systems:
due to item (ii) of the theorem above and the following proposition, these rules can
be used to justify the third sentence in Lemma 4.3.5, (ii).

Proposition 6.2.7. None of the rules REN/FIX or FOLDl/r/FIX of e-HB=
0 is

a derivable rule of HB=
0 .

Proof. We will only show that FOLDl/FIX is not derivable in HB=
0 . For the rules

FOLDr/FIX and REN/FIX it can be argued similarly.

162 A Duality between AK=
0 and HB=

0

For the sake of the argument, we assume that FOLDl/FIX is derivable in HB=
0 .

We let α and γ be distinct type variables, and we let the recursive type τ be defined
as τ ≡ µα. (α→ γ) . Furthermore, we consider an extension by enlargement Sext
of HB=

0 by adding the rule FOLDl/FIX as well as the rule DECOMPr that allows
applications of the form

D1

τ̃ = σ̃ → σ̃ DECOMPr
τ̃ = σ̃

(for all τ̃ , σ̃ ∈ µTp). Clearly, most of the inferences enabled by DECOMPr are
unsound with respect to recursive type equality =µ .

However, since, according to our assumption, FOLDl/FIX is derivable in HB=
0 ,

it follows: for the derivation D in Sext that is of the form

(τ = γ → γ)u
DECOMPr

τ = γ

(REFL)

γ = γ
ARROW

τ → γ = γ → γ
FOLDl/FIX, u

µα. (α→ γ)
︸ ︷︷ ︸

≡τ

= γ → γ

(6.10)

and that does not contain open assumptions there exists a unary derivation context
DC′ in HB=

0 such that the prooftree D′ of the form

(τ = γ → γ)u
DECOMPr

τ = γ

(REFL)

γ = γ
ARROW[

τ → γ = γ → γ
]

1

DC′

τ = γ → γ

(6.11)

is a derivation in Sext that mimics D. We choose DC ′ and D′ in this way. Since D′

mimics D, also D′ does not contain open assumptions.
We note that DC′ must indeed contain occurrences of the hole []1 : otherwise

DC′ would be equal to D′, implying that DC′ would be a derivation in HB=
0 (DC′

is a derivation context in HB=
0 !) that does not contain open assumptions, and

hence the conclusion of DC ′ would be a theorem of HB=
0 ; but this cannot be the

case since, due to τ 6=µ γ → γ , it would contradict Theorem 5.1.20, the soundness
of HB=

0 with respect to recursive type equality =µ.
Hence it follows that the open assumptions (τ = γ → γ)u indicated at the top

of the symbolic prooftree (6.11) for D′ correspond to actual occurrences of marked
assumptions in D′. Since D′ does not contain open assumptions, these occurrences
of marked assumptions must be discharged in D′ at rule applications within DC ′.
But this is not possible since DC ′ is a derivation context in HB=

0 : the single rule
of HB=

0 that allows assumptions to be discharged is ARROW/FIX, and this rule
only allows equations between composite recursive types to be discharged at its

6.3 Consistency-Unfoldings in AK=
0 163

applications; the recursive type τ on the left-hand side of the marked assumption
(τ = γ → γ)u is, however, not composite.

Therefore our initial assumption that FOLDl/FIX is a derivable rule in HB=
0

cannot be sustained.

This proof for the non-derivability of either of the three additional rules inHB=
0

can be summed up informally as follows: these rules are not derivable in e-HB=
0

because their ability to discharge also marked assumptions of the form (τ = σ)u ,
where at least one of τ or σ is not of the form χ1 → χ2 (for some χ1, χ2 ∈ µTp)
cannot be ‘simulated’ in HB=

0 -derivations, in which only marked assumptions of
the form (ρ1 → ρ2 = χ1 → χ2)

v (for some ρ1, ρ2, χ1, χ2 ∈ µTp and markers v) are
able to get discharged.

6.3 Consistency-Unfoldings in AK=
0

In this section we are concerned with formalizing downwards-growing derivation-
trees in AK=

0 of the kind that we have encountered in Section 6.1. Our aim is
to introduce a formal notion for such derivation-trees that can be viewed as ‘wit-
nesses’ of successful consistency-checks with respect to AK=

0 for the equation at
the respective root. We will realize this goal, towards the end of this section, by
the definition of “consistency-unfoldings in AK=

0 ”. For this purpose, we need a
number of auxiliary notions for derivation-trees in AK=

0 starting with “finite trees
of consequences in AK=

0 ”. This basic notion will then be enriched by allowing
marked formulas to occur in such trees, and subsequently by a concept of backbind-
ing for leaf-occurrences of marked formulas, leading to the notion of “finite trees of
consequences in AK=

0 with back-bound leaf-occurrences of marked formulas”. For
illustrating these upcoming definitions, both of the downwards-growing derivation-
trees in AK=

0 appearing in Section 6.1, C in Figure 6.1 and Refl(C) in Figure 6.4,
are going to serve us as running examples.

We start by defining a “finite tree of consequence in AK=
0 ” C in AK=

0 from a
given equation τ = σ between recursive types as the assemblage of finitely many
derivations of finite length from τ = σ in AK=

0 to the form of a derivation-tree; its
depth |C| will be defined as the maximal number of rule applications encountered
in one of the AK=

0 -derivations that make up the derivation-tree C.

Definition 6.3.1 (Finite trees of consequences in AK=
0). A finite tree of

consequences (a f.t.o.c.) C of, or from, an equation τ = σ in AK=
0 is an object

that together with the assertion “C is a f.t.o.c. of τ = σ in AK=
0 ” can be formed by

a finite number of applications of the following three generation rules. Thereby also
the depth |C| of C is defined in parallel with these rules, in which we use auxiliary
framed boxes to delimit symbolic denotations for f.t.o.c.’s from the surrounding
text:

164 A Duality between AK=
0 and HB=

0

(i) For all τ, σ ∈ µTp , the recursive type equation τ = σ is a f.t.o.c. C in AK=
0

from τ = σ in AK=
0 . The depth |C| of C is defined as |C| =def 0.

(ii) For all τ, σ, τ1, σ1 ∈ µTp ,

τ = σ
R

τ1 = σ1

C1

is a f.t.o.c. C from τ = σ in AK=
0

given that C1 is a f.t.o.c. of τ1 = σ1 in AK=
0 and

τ = σ
R

τ1 = σ1
is a rule

application of one of the rules UNFOLDl, UNFOLDr, (µ−⊥)
der⊥
l , (µ−⊥)der⊥r

or REN of AK=
0 . Here the depth |C| of C is defined as |C| =def |C1|+ 1.

(iii) For all τ1, τ2, σ1, σ2 ∈ µTp ,

C2

τ2 = σ2
C1

τ1 = σ1
DECOMP

τ1 → τ2 = σ1 → σ2

is a

f.t.o.c. C from τ1 → τ2 = σ1 → σ2 in AK=
0 given that C1 is a f.t.o.c. of

τ1 = σ1 in AK=
0 and that C2 is a f.t.o.c. of τ2 = σ2 in AK=

0 . Here we set
|C| =def 1 + max{|C1|, |C2|} for the depth of the f.t.o.c. C. For the part of the
derivation-tree C involving the dashed line, namely for

τ1 → τ2 = σ1 → σ2
DECOMP

τ1 = σ1 τ2 = σ2

we will use the term branching ; and for such a branching we say that it has the
formulas τ1 → τ2 = σ1 → σ2 , τ1 = σ1 and τ2 = σ2 as its respective premise,
left conclusion and right conclusion.

£

Example 6.3.2. It is quite obvious to see that both the derivation-trees C in
Figure 6.1 and Refl(D) in Figure 6.4 are, if the assumption markers u, v and w are
removed that are attached to some equations in C and in Refl(D), f.t.o.c.’s in AK=

0

from the equation

µα. ((α→ α)→ α) = µα. (α→ (α→ α)) ; (6.12)

they have respective depth |C| = 7 and |Refl(D)| = 9.

Notation 6.3.3 (Symbolic representation of trees of consequences). For
dealing with derivation-trees such as the above defined f.t.o.c.’s in AK=

0 in a prac-
tical way, for example in definitions and proofs, we will use a similar notation as for
prooftrees. There will actually be a symmetry between our notations for derivation-
trees and for prooftrees because the first are downwards-branching whereas the sec-
ond are upwards-branching trees. Instead of giving a rigorous definition for these
symbolic representations of derivation-trees, two examples should suffice to make
clear the analogy between our representation of derivation-trees and the notation
used for prooftrees explained in Section 2.2 and used everywhere else here.

6.3 Consistency-Unfoldings in AK=
0 165

• We will use a symbolic derivation-tree of the form

τ = σ
C

(ρ = χ)

as denotation for a f.t.o.c. C from τ = σ in AK=
0 in which we have fixed (by

some closer description or assumption in the context of a specific argument) a
single existing leaf, which carries the equation ρ = χ , from among the leaves
at the bottom of the derivation-tree C.

• A symbolic derivation-tree like

τ = σ
C1

(ρ1 = χ1)

C2
(ρ2 = χ2)

will be used for denoting a f.t.o.c. from τ = σ in AK=
0 that is the result of

substituting a f.t.o.c. C2 from ρ1 = χ1 in AK=
0 (in which one occurrence of

ρ2 = χ2 at a leaf of C2 is symbolically referred to and fixed) into (and this
means below) the single fixed and displayed leaf with the equation ρ1 = χ1
in a f.t.o.c. C1 from τ = σ in AK=

0 .

This notation for the symbolic treatment of derivation-trees is going to be developed
further and extended to “f.t.o.c.’s with marked formulas” and “f.t.o.c.’s with back-
bound leaf-occurrences of marked formulas” in the two definitions ahead. £

Definition 6.3.4 (Finite trees of consequences with marked formulas;
back-bound and unbound leaf-occurrences of marked formulas).

Let τ and σ be recursive types.

(i) A finite tree of consequences with marked formulas (a f.t.o.c. with m.f.) C
results from a f.t.o.c. C(u) of τ = σ in AK=

0 by attaching superscript-markers
to some occurrences of formulas in C(u) (but we do not require that markers
have to be attached: we stipulate C(u) to be a f.t.o.c. with m.f. itself); the
depth of C is defined to be the depth of C(u), i.e. |C| =def |C

(u)| .

(ii) Let a f.t.o.c. with m.f. C from τ = σ in AK=
0 of the form

τ = σ

C
(ρ = χ)u

in which one occurrence of the marked formula (ρ = χ)u at a leaf-position,
for some ρ, χ ∈ µTp and an assumption marker u, is fixed.

Then the considered leaf-occurrence of the marked formula (ρ = χ)u in C is
called bound back iff there exists another occurrence of (ρ = χ)u higher up

166 A Duality between AK=
0 and HB=

0

in C (or inside C) to which the leaf-occurrence of (ρ = χ)u is bound; more
precisely, iff there exists a f.t.o.c. with m.f. C1 from τ = σ in AK=

0 and a
f.t.o.c. with m.f. C2 from ρ = χ in AK=

0 with depth |C2| ≥ 1 such that the
derivation-tree C with the considered leaf-occurrence can also be construed as

τ = σ

C1
(ρ = χ)u

C2
(ρ = χ)u

(6.13)

If C with the considered leaf-occurrence of (ρ = χ)u is in fact of the form
(6.13), for some f.t.o.c. with m.f. C1 from τ = σ in AK=

0 and a f.t.o.c. with
m.f. C2 fromρ = χ in AK=

0 such that |C2| ≥ 1, and if it is furthermore the
case that in the thread in C2 from the root-occurrence of (ρ = χ)u down to
the displayed and considered leaf-occurrence of (ρ = χ)u no other occurrence
of (ρ = χ)u is encountered, then we say: the considered leaf-occurrence of
(ρ = χ)u in C is bound back to that occurrence of (ρ = χ)u inside C that
appears at the position in C corresponding to the displayed leaf of C1 in (6.13)
(into which the derivation-tree C2 from ρ = χ is substituted).

(iii) Let τ, σ, ρ, χ ∈ µTp , v an assumption marker, and let C be a f.t.o.c. with m.f.
from τ = σ in AK=

0 .

A leaf-occurrence of a marked formula (ρ = χ)v in C that is not bound back
is called an unbound leaf-occurrence of (ρ = χ)v) in C.

£

Definition 6.3.5 (Finite trees of consequences with back-bound leaf-occur-
rences of marked formulas).

Let τ and σ be recursive types. A finite tree of consequences with back-bound leaf-
occurrences of marked formulas (a f.t.o.c. with b.l.o.m.f.) C from the equation τ = σ
in AK=

0 is a f.t.o.c. with m.f. that satisfies the following two conditions:

(A) Each leaf at the bottom of C carries either an unmarked formula ρ = ρ for
some ρ ∈ µTp (which corresponds to a reflexivity axioms of equational logic
EQL) or a marked formula (ρ = χ)u for some ρ, χ ∈ µTp and some marker
u (which leaf-occurrence of (ρ = χ)u may or may not be bound back).

(B) For each occurrence of a marked formula (ρ = χ)u inside C (for some marker
u and some ρ, χ ∈ µTp), i.e. such that C with this occurrence displayed can
be written as

τ = σ

C1
(ρ = χ)u

C2

6.3 Consistency-Unfoldings in AK=
0 167

for some f.t.o.c. with m.f. C1 from τ = σ in AK=
0 and a f.t.o.c. C2 from ρ = χ

in AK=
0 with depth |C2| ≥ 1, the following is the case: there exists a leaf-

occurrence of (ρ = χ)u in C at a position corresponding to a leaf-occurrence of
(ρ = χ)u in C2) which is bound back to the considered occurrence of (ρ = χ)u

inside C (the derivation-tree C can then be written in the form (6.13) with re-
spect to C1, C2 and the two occurrences of (ρ = χ)u , which are linked through
the binding).

£

Example 6.3.6. It is easy to check that both of the derivation-trees C of Figure 6.1
and Refl(D) of Figure 6.4 are f.t.o.c.’s with b.l.o.m.f. of the equation (6.12) in AK=

0

that have the particular property that all leaf-occurrences of marked formulas in
them are bound back.

In analogy with notation used in [TS00] for natural-deduction prooftrees with
open assumption classes, we extend the symbolic treatment of f.t.o.c.’s described
in Notation 6.3.3 to cover also the case of f.t.o.c.’s with b.l.o.m.f. with classes of
unbound leaf-occurrences of marked formulas.

Notation 6.3.7 (Symbolic representation of f.t.o.c.’s with b.l.o.m.f.). We
will use the notational convention of the below item (i) and the symbolic denotations
for f.t.o.c.’s with b.l.o.m.f. in the manner as indicated in item (ii):

(i) By a marked equation (τ = σ)m between recursive types τ and σ and with
a boldface-marker m either the unmarked equation τ = σ is meant or a
marked equation of the form (τ = σ)m , in which casem is then also assumed
to stand for a concrete assumption marker as a syntactical variable varying
through assumption markers. But on the other hand, by a marked equation
(τ = σ)u for some non-boldface marker u only this particular marked formula
is be meant.

(ii) A symbolic derivation-tree
(τ = σ)m

C
[ρ = χ]u

will be used to denote a f.t.o.c. with b.l.o.m.f. from τ = σ in AK=
0 in which

the root carries either the unmarked formula τ = σ or the marked formula
(τ = σ)m , and where, for some ρ, χ ∈ µTp and some marker u, through the
symbolic representation of C the class of all such leaf-occurrences of marked
formulas (ρ = χ)u in C is considered fixed as the displayed class [ρ = χ]u

that are unbound in C (in particular this implies x 6≡m). However, it will be
allowed to consider derivation-trees C of the form

(τ = σ)u

(τ = σ)m

C1
[ρ = χ]u

168 A Duality between AK=
0 and HB=

0

where there are leaf-occurrences in C1 that are unbound in C1 (indicated by
the displayed open assumption class [τ = σ]u in C1), but that are bound in
C, and in particular, bound back to the root of C.

£

We continue with an useful lemma that implies that sub-derivation-trees7 of
f.t.o.c.’s with b.l.o.m.f. in AK=

0 are themselves f.t.o.c.’s with b.l.o.m.f. in AK=
0 .

Lemma 6.3.8. Let τ, σ, τ0, σ0, τ1, σ1, σ2, σ2 ∈ µTp, and let C be a f.t.o.c. with
b.l.o.m.f. in AK=

0 of the form

(τ = σ)m
R

(τ0 = σ0)
m1

C0

or

C2

(τ2 = σ2)
m2

C1

(τ1 = σ1)
m1

DECOMP
(τ1 → τ2 = σ1 → σ2)

m

(where R ∈ {UNFOLDl/r, REN, (µ−⊥)der⊥l/r }) from the equation τ = σ , or respec-
tively, from the equation τ1 → τ2 = σ1 → σ2 .

Then accordingly C0, or both C1 and C2 are f.t.o.c.’s with b.l.o.m.f. in AK=
0 from

τ0 = σ0 , or from τ1 = σ1 and respectively from τ2 = σ2 .

Proof. This lemma is an easy consequence of the definition of f.t.o.c.’s with b.l.o.m.f.
in Definition 6.3.5.

We proceed with a lemma whose assertion immediately implies that no leaf-
occurrence of a marked formula in a f.t.o.c. with b.l.o.m.f. in AK=

0 can be bound
back to the premise of a rule (µ−⊥)der⊥l/r . As will also become apparent from the
proof of this lemma, the reason for the non-existence of such f.t.o.c.’s with b.l.o.m.f.
in AK=

0 is similar, in fact ‘dual’, to the argument given in Remark 6.2.5 for the fact
why no rules (µ−⊥)⊥derl/r /FIX have been taken up into the system e-HB=

0 . There

we saw that immediate subderivations of applications of (µ−⊥)⊥derl/r in HB=
0 cannot

be contractive with respect to any class of open marked assumptions. Here we will
see that no leaf-occurrence of a marked formula in an f.t.o.c. C can be bound back
across a DECOMP-branching to the premise of a rule (µ−⊥)der⊥l/r .

7We have not defined the notion of a “sub-f.t.o.c. in AK=

0
”, which is referred to informally at

this point. However, it would be easy to give a formal definition of this notion along the inductive
clauses of Definition 6.3.1. For instance, with respect to the inductive clause (iii) in Definition 6.3.1
we would stipulate that a sub-f.t.o.c. of the f.t.o.c. C, which is defined there from the f.t.o.c.’s C1
and C2, to be either C itself or a sub-f.t.o.c. of C1 or C2.

6.3 Consistency-Unfoldings in AK=
0 169

Lemma 6.3.9. Let τ, σ, τ̃ , σ̃ ∈ µTp be arbitrary.

(i) There does not exist a f.t.o.c. with b.l.o.m.f. from τ = σ in AK=
0 of the form

(τ = σ)u
(µ−⊥)der⊥l/r

τ1 = σ1

C1

(6.14)

where τ1, σ1 ∈ µTp and u an assumption marker.

(ii) What is more, no f.t.o.c. with b.l.o.m.f. of τ̃ = σ̃ in AK=
0 contains an occur-

rence of a marked formula as the premise of an application of (µ−⊥)der⊥l/r .

Proof. Due to Lemma 6.3.8, part (ii) of the lemma is an easy consequence of part (i).
Thus it suffices to show item (i) and hence that there cannot be a f.t.o.c. with
b.l.o.m.f. in AK=

0 whose root at the top is a marked formula that is immediately
succeeded by an application of a rule (µ−⊥)der⊥l/r .

To show this, let τ, σ ∈ µTp be arbitrary, and we assume that there exists a
f.t.o.c. with b.l.o.m.f. C of τ = σ in AK=

0 of the form (6.14) in which the formula
at the root of is the upper premise of an application of (µ−⊥)der⊥l (for the case
with an application of (µ−⊥)der⊥r/l it can be argued analogously). We will show a
contradiction from this assumption with the fact that C is a f.t.o.c. with b.l.o.m.f.
in AK=

0 . By our assumption, C is of the form

(τ = σ)u
(µ−⊥)der⊥l

⊥ = σ

C1
[τ = σ]u

with τ ≡ µαα1 . . . αn. α , for some n ∈ ω and α, α1, . . . , αn ∈ TVar , and in partic-
ular with τ 6≡ ⊥ . Since C is a f.t.o.c. with b.l.o.m.f. in AK=

0 , there exists at least
one leaf-occurrence of (τ = σ)u in C1 that is bound back in C to the formula at the
top (the class [τ = σ]u displayed at the bottom of C1, and hence of C, is intended
to symbolize the inhabited class of all those leaf-occurrences of (τ = σ)u in C that
are bound back to the root of C). However, the immediate subtree C1 of C can only
be of the form

⊥ = σ
(REN, FOLDr, (µ−⊥)

der⊥
r)∗

⊥ = σ1

for some σ1 ∈ µTp , containing only applications of the rules REN, FOLDr and
(µ−⊥)der⊥r since there is no rule application in AK=

0 , let alone a branching that
is able change ⊥ as the recursive type on the left side of an arbitrary equation in
C1. Thus C cannot contain a single branching DECOMP and since τ 6≡ ⊥ , it is
furthermore the case that C1 and C do not contain any leaf occurrence of (τ = σ)u .
Therefore both conditions (I) and (II) in Definition 6.3.5 are violated, and hence, C
is not a f.t.o.c. with b.l.o.m.f., in contradiction with our assumption.

170 A Duality between AK=
0 and HB=

0

In this way we also have also item (i) of the lemma.

For the purpose of being able to define inductively a reflection function D for
f.t.o.c.’s with b.l.o.m.f. in AK=

0 , it will be useful to have also an alternative and
inductive direct definition of f.t.o.c.’s with b.l.o.m.f.’s at hand. We have chosen
not to give a second name to this notion, but use the term “f.t.o.c. with b.l.o.m.f.”
again in the following Definition and Lemma that also states the equivalence of the
two definitions.

Definition and Lemma 6.3.10 (Alternative inductive definition of f.t.o.c.’s
with b.l.o.m.f.). The notion defined in Definition 6.3.5 of “finite tree of con-

sequences with back-bound leaf-occurrences of marked formulas” can be defined
equivalently as follows.

A f.t.o.c. with b.l.o.m.f. C of τ = σ in AK=
0 , where τ, σ ∈ µTp , is an object

that together with the assertion “C is a . . . ” can be formed by a finite number of
applications of the six generation rules (i)–(vi) given below. Thereby simultaneously
the depth of C is defined as well as the notion of such leaf-occurrences of marked
formulas (l.o. of m.f.) in C that are not bound back , or unbound . For the purpose of
an illustrative exhibition of the generation rules, we have put the symbolic f.t.o.c.’s
with b.l.o.m.f. into framed boxes that are not part of the defined objects.

(i) For all τ, σ ∈ µTp and assumption markers u, (τ = σ)u is a f.t.o.c. with

b.l.o.m.f. C from τ = σ in AK=
0 . Here |C| =def 0 and the only unbound l.o.

of a m.f. in C is the single occurrence of (τ = σ)u in C itself.

(ii) For all τ ∈ µTp, τ = τ is a f.t.o.c. with b.l.o.m.f. C from τ = τ inAK=
0 . Here

|C| =def 0 and C does not contain any unbound leaf-occurrences of marked
formulas.

(iii) For all τ, σ, τ1, σ1 ∈ µTp ,

τ = σ
R

(τ1 = σ1)
m1

C1

is a f.t.o.c. with b.l.o.m.f. C

from τ = σ in AK=
0 given that C1 is a f.t.o.c. with b.l.o.m.f. from τ1 = σ1 in

AK=
0 and that R is an application of a rule UNFOLDl/r, REN or (µ−⊥)der⊥l/r

in AK=
0 .

Here we set |C| =def |C1|+ 1 and stipulate that the unbound l.o. of m.f. in C
correspond uniquely and in an obvious way to respective unbound l.o. of m.f.
in its part C1.

(iv) For all τ, σ, τ1, σ1 ∈ µTp and all assumption markers u,

(τ = σ)u
R

(τ1 = σ1)
m1

C1
[τ = σ]u

6.3 Consistency-Unfoldings in AK=
0 171

is a f.t.o.c. with b.l.o.m.f. C of τ = σ in AK=
0 given that C1 is a f.t.o.c.

with b.l.o.m.f. of τ1 = σ1 in AK=
0 that contains at least one unbound l.o. of

(τ = σ)u , and given that R is an application of a rule UNFOLDl/r or REN

in AK=
0 . Note that in this case rules (µ−⊥)der⊥l/r are not allowed as rule

applications at the top of C.

Here we have again |C| =def |C1|+ 1. All unbound l.o. of the marked formula
(τ = σ)u in C1 correspond uniquely to such l.o. of this m.f. in C that are bound
back to the occurrence of (τ = σ)u at the root of C; hence C does not contain
unbound l.o. of (τ = σ)u . For all marked formulas (ρ = χ)v different from
(τ = σ)u it holds that all unbound l.o. of (ρ = χ)v in C correspond uniquely
and in an obvious way to unbound l.o. of (ρ = χ)v in its part C1.

(v) For all τ1, τ2, σ1, σ2 ∈ µTp ,

C2

(τ2 = σ2)
m2

C1

(τ1 = σ1)
m1

DECOMP
τ1 → τ2 = σ1 → σ2

is a f.t.o.c. with b.l.o.m.f. C from τ1 → τ2 = σ1 → σ2 in AK=
0 given that, for

each i ∈ {1, 2}, Ci is a f.t.o.c. with b.l.o.m.f. from τi = σi in AK=
0 .

Here we set |C| =def 1 + max{|C1|, |C2|} , and we stipulate that the unbound
l.o. of m.f. in C correspond uniquely and in an obvious way to the the unbound
l.o. of m.f. in either of its parts C1 or C2 .

(vi) For all τ1, τ2, σ1, σ2 ∈ µTp ,

[τ = σ]u
C2

(τ2 = σ2)
m2

[τ = σ]u
C1

(τ1 = σ1)
m1

DECOMP
(τ1 → τ2 = σ1 → σ2)

u

is a f.t.o.c. with b.l.o.m.f. C from τ1 → τ2 = σ1 → σ2 in AK=
0 given that,

for each i ∈ {1, 2}, Ci is a f.t.o.c. with b.l.o.m.f. from τi = σi in AK=
0 , and

that there is at least one unbound leaf-occurrence of the marked formula
(τ1 → τ2 = σ1 → σ2)

u in either C1 or in C2.

Here we set again |C| =def 1 + max{|C1|, |C2|} . All unbound l.o. of the marked
formula (τ1 → τ2 = σ1 → σ2)

u in C1 or in C2 correspond uniquely to l.o. of
this m.f. in C that are bound back to the occurrence of this formula at the
root of C; hence there do not exist unbound leaf-occurrence of this marked
formula in C. For all m.f.’s (ρ = χ)v different from (τ1 → τ2 = σ1 → σ2)

u ,
it holds that unbound l.o. of (ρ = χ)v in C correspond uniquely and in an
obvious way to unbound l.o. of (ρ = χ)v in either of its parts C1 or in C2.

Proof. Both directions in the equivalence of the previous definition in Definition 6.3.5
with the alternative one here can be done by easy inductions on the depth |C| of
respectively defined f.t.o.c. with b.l.o.m.f. in AK=

0 . In the induction for showing
the slightly less immediate direction, that a f.t.o.c. with b.l.o.m.f. C in AK=

0 with

172 A Duality between AK=
0 and HB=

0

respect to Definition 6.3.5 is also a f.t.o.c. with b.l.o.m.f. according to the new
definition, both Lemma 6.3.8 and Lemma 6.3.9 are essential.

By relying on the notion of f.t.o.c. with b.l.o.m.f. in AK=
0 , we are now able to

define “consistency-unfoldings in AK=
0 ”, which are formalizations of derivation-

trees that correspond to successful consistency-checks in AK=
0 as considered in

Section 6.1. For this, we introduce the auxiliary notion of “partial consistency-
unfolding in AK=

0 ” first.

Definition 6.3.11 ((Partial) Consistency-Unfoldings). Let τ, σ ∈ µTp .

(i) A partial consistency-unfolding C of the equation τ = σ in AK=
0 is a f.t.o.c.

C with b.l.o.m.f. from τ = σ in AK=
0 that satisfies the following property: for

all leaf-occurrences of marked formulas in C that are bound back there exists
at least one occurrence of a branching DECOMP in the thread in C up to that
occurrence of a marked formula to which the leaf-occurrence is bound back.

(ii) A consistency-unfolding C of the equation τ = σ inAK=
0 is a partial consistency-

unfolding C of τ = σ in AK=
0 in which each leaf-occurrence of a marked

formula is bound back.

By a partial consistency-unfolding in AK=
0 (a consistency-unfolding in AK=

0) we
mean a partial consistency-unfolding (a consistency-unfolding) inAK=

0 of the equa-
tion τ̃ = σ̃ for some τ̃ , σ̃ ∈ µTp . And furthermore, we denote by pCU(AK=

0), and
by CU(AK=

0), the set of partial consistency-unfoldings in AK=
0 , and respectively,

the set of consistency-unfoldings in AK=
0 .

£

Example 6.3.12. Since we have already recognized both of our running examples,
the derivation-trees C of Figure 6.1 and Refl(D) of Figure 6.4, as f.t.o.c.’s with
b.l.o.m.f. from (6.12) in AK=

0 , it is easy to verify that both of them are in fact
consistency-unfoldings in AK=

0 of (6.12).

Having formally introduced consistency-unfoldings in AK=
0 and proposed them

to be adequate formalizations of successful consistency-checks with respect to AK=
0

in the way of Example 6.1.1, we still have to justify that consistency-unfoldings in
AK=

0 indeed ‘witness’ the consistency with respect to AK=
0 of the equation at their

root, in the sense that they enable straightforward inductive proofs for showing this.
That is, we have to prove the following theorem.

Theorem 6.3.13. For all recursive types τ, σ ∈ µTp it holds that:

(∃ C)

[
C is a consistency-unfol-
ding of τ = σ in AK=

0

]

=⇒ τ = σ is AK=
0 -consistent . (6.15)

We will prove this theorem below on page 176 after having stated and proved four
necessary lemmas. The first and the second one below assert that leading symbols
of recursive types are respectively invariant under the conversion ³́r/o-u(µ⊥)′ that

6.3 Consistency-Unfoldings in AK=
0 173

belongs to the reduction relation →r/o-u(µ⊥)′ introduced in Definition 5.3.5, and
under AK=

0 -consequences of equations between →r/o-u(µ⊥)′ -convertible recursive
types.

Lemma 6.3.14. For all τ, σ ∈ µTp it holds:

τ ³́r/o-u(µ⊥)′ σ =⇒ L′(τ) = L′(σ) . (6.16)

Proof. The reduction relations →ren, →out-unf and →r/o-u(µ⊥)′ have the property
that they do not change the tree unfolding, and hence neither the leading symbol, of
a recursive type to which they are applied. Therefore the assertion of the lemma fol-
lows, for all τ, σ ∈ µTp , by induction on the length of a conversion τ ³́r/o-u(µ⊥)′ σ
between τ and σ.

Lemma 6.3.15. For all τ, σ, χ1, χ2 ∈ µTp it holds:

(τ ³́r/o-u(µ⊥)′ σ) & (τ = σ `AK=

0
χ1 = χ2) =⇒ L′(χ1) = L

′(χ2) . (6.17)

Proof. The assertion of the lemma can be shown by proving (6.17), for all τ, σ ∈ µTp,
with induction on the depth |D| of derivations D in AK=

0 from assumption τ = σ
and with conclusion χ1 = χ2 (with some χ1, χ2 ∈ µTp). Hereby the base case of
the induction follows from Lemma 6.3.14. In the induction step a case-distinction
is made according to which rule R of AK=

0 is applied first in D, immediately below
the assumption τ = σ . If R is one of the rules UNFOLDl/r, (µ−⊥)

der⊥
l/r or REN,

then D is of the form

τ =σ
︷ ︸︸ ︷

τ1 → τ2 = σ1 → σ2
DECOMP

(τi = σi)

D1

χ1 = χ2

for some τ1, τ2, σ1, σ2 ∈ µTp and i ∈ {1, 2} such that τ ≡ τ1 → τ2 and σ ≡ σ1 → σ2 ,
and whereby assumption τ1 → τ2 ³́ren/out-unf σ1 → σ2 holds. Here Lemma 5.3.6,
(iv), implies τi ≡ren σi , and hence τi ³́r/o-u(µ⊥)′ σi , from which an application of
the induction hypothesis to the subderivation D1 of D gives L′(χ1) = L

′(χ2) .

The third lemma asserts that consistency-unfoldings in AK=
0 do not contain

contradictions with respect to =µ .

Lemma 6.3.16. Let C be a consistency-unfolding in AK=
0 , and let χ1 = χ2 be an

equation between recursive types that occurs in C. Then L′(χ1) = L
′(χ2) holds, i.e.

the recursive types χ1 and χ2 have the same leading symbol.

Proof. Let C be a consistency-unfolding in AK=
0 . For the argument below, let us

fix an arbitrary equation χ1 = χ2 in C.
For showing that the recursive types χ1 and χ2 in the equation of which we have

fixed an occurrence in C have the same leading symbol, we distinguish three cases
about the position of this considered occurrence within C.

174 A Duality between AK=
0 and HB=

0

Case 1. There is an occurrence of a DECOMP-branching in C below the consid-
ered occurrence of χ1 = χ2 .

Then by following an arbitrary thread in C from the considered occurrence of
χ1 = χ2 downwards to the upper premise ρ11 → ρ12 = ρ21 → ρ22 of the first
encountered DECOMP-branching, a derivation

χ1 = χ2
(UNFOLDl/r, REN)∗

ρ11 → ρ12 = ρ21 → ρ22

is found that consists only of applications of rules UNFOLDl/r and REN.
Hence

χ1 ³r/o-u(µ⊥)′ ρ11 → ρ12 and χ2 ³r/o-u(µ⊥)′ ρ21 → ρ22

follows, which because of L′(ρ11 → ρ12) = → = L′(ρ21 → ρ22) entails

L′(χ1) = L
′(χ2) (6.18)

by Lemma 6.3.14.

Case 2. There does not occur a DECOMP-branching in C below the considered
occurrence of χ1 = χ2 , and the single leaf of C below this considered occur-
rence is one that is carrying the formula ρ = ρ for some ρ ∈ µTp .

Then by following the unique thread in C from the considered occurrence of
χ1 = χ2 downwards to the leaf-occurrence of ρ = ρ , an AK=

0 -derivation of
the form

χ1 = χ2
(UNFOLDl/r, REN, (µ−⊥)der⊥l/r)∗

ρ = ρ

can be extracted that consists only of applications of the rules UNFOLDl/r,

REN, and (µ−⊥)der⊥l/r . Here we find

χ1 ³r/o-u(µ⊥)′ ρ and χ2 ³r/o-u(µ⊥)′ ρ

which, again due to Lemma 6.3.14, implies (6.18).

Case 3. There does not occur a DECOMP-branching in C below the considered
occurrence of χ1 = χ2 , and at the single leaf of C below this considered oc-
currence a marked formula (ρ1 = ρ2)

u occurs, for some ρ1, ρ2 ∈ µTp and an
assumption marker u, that is bound back in C.

Since C is a consistency-unfolding in AK=
0 , there must occur at least one

branching DECOMP below that occurrence of (ρ1 = ρ2)
u in C to which the

leaf-occurrence of (ρ1 = ρ2)
u below the considered occurrence of χ1 = χ2 is

bound back. Hence by first following the thread in C from the considered
occurrence of χ1 = χ2 down to the leaf-occurrence of (ρ1 = ρ2)

u , and by
then descending from that occurrence of (ρ1 = ρ2)

u to the nearest branch-
ing DECOMP, which we assume has the premise ρ11 → ρ12 = ρ21 → ρ22 , a

6.3 Consistency-Unfoldings in AK=
0 175

derivation in AK=
0 of the form

χ1 = χ2
(UNFOLDl/r, REN)∗

ρ1 = ρ2
(UNFOLDl/r, REN)∗

ρ11 → ρ12 = ρ21 → ρ22

can be extracted that contains only occurrences of rules UNFOLDl/r and
REN. With this derivation it can now be argued analogously as in Case 1 to
show that (6.18) holds here as well.

Due to the fact that consistency-unfoldings do not contain u.l.o.m.f.’s, the cases 1–3
exhaust all possibilities for the position of the considered occurrence of χ1 = χ2 in
C. Since we have proved (6.18) in all three cases, we have proved that the recursive
types on the left- and on the right-hand side of the considered equation χ1 = χ2 in
C have the same leading symbol.

The fourth lemma given below is going to be our main tool for showing Theo-
rem 6.3.13. It asserts a somewhat technical statement about how, for all τ, σ ∈ µTp,
an arbitrary derivation in AK=

0 from assumption τ = σ is related to an arbitrary
partial consistency-unfolding of τ = σ in AK=

0 .

Lemma 6.3.17. Let τ, σ, χ1, χ2 ∈ µTp and let C be a partial consistency-unfolding
in AK=

0 . Then for all derivations D in AK=
0 from the assumption τ = σ and with

conclusion χ1 = χ2 one of the following three assertions holds:

(i) For some χ̃1, χ̃2 ∈ µTp, there is an occurrence of the equation χ̃1 = χ̃2 in C
such that it holds:

χ1 ³́r/o-u(µ⊥)′ χ̃1 and χ2 ³́r/o-u(µ⊥)′ χ̃2 .

(ii) For some ρ1, ρ2 ∈ µTp and an assumption marker u, there is an unbound leaf-
occurrence of a marked formula (ρ1 = ρ2)

u in C such that for some ρ̃1, ρ̃2 ∈ µTp
it holds:

(ρ̃1 ³́r/o-u(µ⊥)′ ρ1) & (ρ̃2 ³́r/o-u(µ⊥)′ ρ2) & (ρ̃1 = ρ̃2 `AK=

0
χ1 = χ2) .

(iii) For some ρ ∈ µTp, there is a leaf-occurrence of a equation ρ = ρ in C such
for some ρ̃1, ρ̃2 ∈ µTp it holds:

(ρ̃1 ³́r/o-u(µ⊥)′ ρ) & (ρ̃2 ³́r/o-u(µ⊥)′ ρ) & (ρ̃1 = ρ̃2 `AK=

0
χ1 = χ2) .

Hint on the proof. This lemma can be shown by induction on the depth |D| of a
derivation D in AK=

0 from the assumption τ = σ with conclusion χ1 = χ2 . The
base case is trivial. In the induction step only the case of derivations with an
application of DECOMP at the bottom is non-trivial. In this case, however, the use
of the cyclic structure of partial consistency-unfoldings with respect to back-binding,
and the assertion of Lemma 5.3.6, (iv), are essential.

176 A Duality between AK=
0 and HB=

0

We are finally able to carry out a proof for Theorem 6.3.13.

Proof of Theorem 6.3.13. Let τ, σ ∈ µTp be arbitrary, and let C be an arbitrary
consistency-unfolding in AK=

0 . We will show that τ = σ is AK=
0 -consistent, i.e.

that no derivation in AK=
0 from the assumption τ = σ has a contradiction with

respect to =µ as its conclusion.
For this, we let D be an arbitrary derivation inAK=

0 from assumption τ = σ and
with conclusion χ1 = χ2 , for some χ1, χ2 ∈ µTp . By Lemma 6.3.17 it follows, since,
as a consistency-unfolding, C does not contain u.l.o.m.f.’s and hence assertion (ii)
of Lemma 6.3.17 cannot occur here, that one of the following two assertions

(∃ χ̃1, χ̃2 ∈ µTp) (∃ occurrence of χ̃1 = χ̃2 in C)
[
χ1 ³́r/o-u(µ⊥)′ χ̃1 & χ2 ³́r/o-u(µ⊥)′ χ̃2

]
, (6.19)

or

(∃ρ, ρ̃1, ρ̃2 ∈ µTp)
[
(ρ̃1 ³́r/o-u(µ⊥)′ ρ) &

& (ρ̃2 ³́r/o-u(µ⊥)′ ρ) & (ρ̃1 = ρ̃2 `AK=

0
χ1 = χ2)

]
. (6.20)

holds. If, on the one hand, (6.19) holds, then it follows by Lemma 6.3.14 that also

(∃ χ̃1, χ̃2 ∈ C) (∃ occurrence of χ̃1 = χ̃2 in C)
[
L′(χ1) = L

′(χ̃1) & L′(χ2) = L
′(χ̃2)

]
(6.21)

holds. We know from Lemma 6.3.16 that consistency-unfoldings do not contain
contradictions with respect to =µ. Hence, because C is a consistency-unfolding,
(6.21) entails

L′(χ1) = L
′(χ2) . (6.22)

If, on the other hand, (6.20) is the case,

(∃ρ̃1, ρ̃2 ∈ µTp)
[
(ρ̃1 ³́r/o-u(µ⊥)′ ρ̃2) & (ρ̃1 = ρ̃2 `AK=

0
χ1 = χ2)

]

follows, from which (6.22) is entailed by an application of Lemma 6.3.15. In both
cases we have shown (6.22) and hence that the conclusion of D is not a contradiction
with respect to =µ. Since we have considered an arbitrary AK=

0 -derivation D from
τ = σ , we have eventually proven that τ = σ is consistent with respect to AK=

0 .

Theorem 6.3.13 states that consistency-unfoldings inAK=
0 of an equation τ = σ

guarantee the consistency of τ = σ in AK=
0 with respect to =µ . Hence naturally

also the question arises whether the concept of “consistency-unfolding” is indeed
general enough to capture the notion of consistency of formulas with respect to
AK=

0 . As stated by the following theorem, the answer is positive. This theorem,
for which we are only going to sketch a proof, establishes a link between the notions
of “AK=

0 -consistency” and “consistency-unfolding in AK=
0 ”.

6.3 Consistency-Unfoldings in AK=
0 177

Theorem 6.3.18. For all recursive types τ, σ ∈ µTp it holds that:

(∃ C)

[
C is a consistency-unfol-
ding of τ = σ in AK=

0

]

⇐⇒ τ = σ is AK=
0 -consistent . (6.23)

Sketch of the Proof. Let τ, σ ∈ µTp . The implication “⇒” in (6.23) is an instance
of the implication (6.15) of Theorem 6.3.13.

The implication “⇐” in (6.23) can be shown by an analogous, in fact as good
as ‘dual’, argument to that one used in a proof (following [BrHe98]) for the com-
pleteness of HB=

0 with respect to =µ , namely as follows. For an arbitrary given
equation τ = σ between recursive types τ, σ ∈ µTp for which τ =µ σ holds, a
consistency-unfolding of τ = σ in AK=

0 can be reached by building up the “tree
of consequences” of this equation in AK=

0 in successive extension stages, cutting
off branches always as soon as “looping” occurs or as soon as a formula χ = χ has
been encountered. There cannot be infinite branches in the arising derivation-tree
due to the fact that the set of conclusions of derivations from τ = σ in AK=

0 is
always finite, if equations that arise from each other by applications of REN are
not counted separately.

In view of Theorem 5.2.13, the correspondence theorem between AK=-con-
sistency and recursive type equality, the above theorem immediately entails the
corollary below.

Corollary 6.3.19. For all recursive types τ, σ ∈ µTp it holds that:

(∃ C)
[
C is a consistency-unfolding of τ = σ in AK=

0

]
⇐⇒ τ =µ σ . (6.24)

Proof. The corollary is an immediate consequence of Theorem 6.3.18 and of The-
orem 5.2.13, the correspondence theorem between AK=

0 -consistency and recursive
type equality.

Referring to the explanations we have given in Remark 5.2.7, (b), in Chapter 5,
this corollary can now be viewed as a soundness and completeness theorem for the
notion “existence of a consistency-unfolding inAK=

0 ” with respect to recursive type
equality. The reason is that “existence of a consistency-unfolding in AK=

0 ” for an
equation between recursive types is, as is easy to see, a positively calculable notion:
there exists an effective positive test for it. Indeed, if for given τ, σ ∈ µTp there
exists a consistency-unfolding of τ = σ inAK=

0 , τ =µ σ follows by Theorem 6.3.13,
and then a consistency-unfolding C of τ = σ in AK=

0 can actually be found effec-
tively by proceeding as suggested in the argumentation for the implication “⇐” in
the proof sketch given above for Theorem 6.3.18.

178 A Duality between AK=
0 and HB=

0

6.4 Reflection Functions between Derivation-Trees
in AK=

0 and Derivations in e-HB=
0

Having established a formal basis for the treatment of derivation-trees in AK=
0

in the previous section, we are now able to formalize reflection operations of the
kind considered in Section 6.1 between derivation-trees in AK=

0 and derivations in
HB=

0 . More precisely, we define in this section a pair of reflection functions between
f.t.o.c.’s with b.l.o.m.f. in AK=

0 and “pseudo-derivations” in HB=
0 .

The possibility to define such reflection functions rests on the fact that there
exists a “duality” between rules of HB=

0 and of AK=
0 . In particular, for every one-

premise rule R of HB=
0 there exists a one-premise rule R′ of AK=

0 (and vice versa)
such that every instance of R corresponds to an instance of R′ via exchanging the
roles of premise and conclusion. For example, every instance of the rule FOLDl in
HB=

0 corresponds to an instance of the rule UNFOLDl in AK
=
0 , in the sense that,

for all τ, σ ∈ µTp , α ∈ TVar and D1 ∈ Der(HB
=
0) , the application

D1

τ [µα. τ/α] = σ
FOLDl

µα. τ = σ
corresponds to

µα. τ = σ
UNFOLDl

τ [µα. τ/α] = σ

And furthermore, there is also an obvious correspondence between instances of the
composition-rule ARROW in HB=

0 and decomposition-branchings DECOMP in
f.t.o.c.’s with b.l.o.m.f. in AK=

0 , that is, for all τ1, τ2, σ1, σ2 ∈ µTp , the application

τ1 = σ1 τ2 = σ2
ARROW

τ1 → τ2 = σ1 → σ2
corresponds to

τ1 = σ1τ2 = σ2
DECOMP

τ1 → τ2 = σ1 → σ2

For the purpose of using this duality in transformations of prooftrees and of
derivation-trees below, we introduce the following notation.

Notation 6.4.1 (Dual Rules in HB=
0 and AK=

0). We agree the following use of
the syntactical variables R(d) and R(cu) for rules in, respectively, HB=

0 and AK=
0

to denote a bijective relationship between one-premise rules in HB=
0 and rules in

AK=
0 different from DECOMP. This relationship is given by the below table

Rule R(d) in HB=
0 FOLDl FOLDr REN (µ−⊥)⊥derl (µ−⊥)⊥derr

Rule R(cu) in AK=
0 UNFOLDl UNFOLDr REN (µ−⊥)der⊥l (µ−⊥)der⊥r

and our intended use of R(d) and R(cu) is one that is explained by the following
example: if in a particular context (of a proof, an argument, etc.) the syntactical
variable R(d) is used for the rule FOLDr in HB

=
0 , then R(cu) will stand in the same

context for the rule UNFOLDr in AK=
0 .

For all pairs 〈R(d), R(cu)〉 of rules that appear in the same column of the above
table, we say that R(d) and R(cu) are dual rules, that R(d) is the dual rule of R(cu)

in HB=
0 and that R(cu) is the dual rule of R(d) in AK=

0 . £

6.4 Reflection Functions 179

With this notation, we are able formulate that part of the duality between rules
of AK=

0 and HB=
0 which concerns one-premise rules of HB=

0 in the following
remark.

Remark 6.4.2 (Duality between rules of HB=
0 and AK=

0). The following two
statements are true for the correspondence according to Notation 6.4.1 between dual
rules of AK=

0 and HB=
0 :

(i) For all one-premise rules R(d) in HB=
0 it is the case that:

For all τ, σ, τ1, σ1 ∈ µTp , and all derivations D1 in HB=
0 :

D1

τ1 = σ1
R(d)

τ = σ

is a rule application in HB=
0 ⇐⇒

⇐⇒
τ = σ

R(cu)

τ1 = σ1
is a rule application in AK=

0 .

(6.25)

(ii) Also, (6.25) holds for all rules R(cu) in AK=
0 except the rule DECOMP.

The reflection functions, which are to be defined below, are going to map f.t.o.c.’s
with b.l.o.m.f. to a generalization of derivations in e-HB=

0 , to be called “pseudo-
derivations in e-HB=

0 ”, and vice versa. We therefore need to define “pseudo-
derivations in e-HB=

0 ” first.
By a pseudo-derivation in e-HB=

0 we understand a prooftree that differs from
a derivation in e-HB=

0 insofar as that the side-conditions C do not have to be
satisfied for all applications of R/FIX-rules in D(C), where R ∈ {FOLDl/r,REN} .
Or equivalently, a pseudo-derivation in e-HB=

0 is a derivation in a variant system
(e-HB=

0)′ of e-HB=
0 that has the same formulas, axioms, and rules as e-HB=

0 , but
where the side-condition C on the contractiveness for immediate subderivations is
dropped as requirement for applications of rules REN/FIX and FOLDl/r/FIX.
We want to mention that pseudo-derivations in e-HB

=

0 as just defined are special

cases of “pseudo-derivations” in e-HB
=

0 according to Definition B.2.13 on page 381 in Ap-

pendix B (which, roughly speaking, are prooftrees with inferences labelled by e-HB
=

0 -rules

such that the inferences do not even have to be correct applications of the rules by which

they are labelled). With respect to this later defined notion of “pseudo-derivation”, pseudo-

derivations in HB
=

0 as defined here could be called “pseudo-derivations in e-HB
=

0 with

respect to the side-condition C on applications of ·/FIX-rules”. However, since the concept

of “pseudo-derivation in e-HB
=

0 ” as defined above is vital, but confined to this chapter,

and because we do not need here the concept “pseudo-derivation in e-HB
=

0 ” as derived

from Definition B.2.13, we have chosen to use this term in the more restricted sense in this

chapter.

Definition and Lemma 6.4.3. (Reflection functions between f.t.o.c.’s
with b.l.o.m.f. in AK=

0 and pseudo-derivations in e-HB=
0). In items (i)

and (ii) below we respectively define the reflection function D that maps f.t.o.c.’s
with b.l.o.m.f. in AK=

0 to pseudo-derivations in e-HB=
0 , and the reflection function

C that maps pseudo-derivations in e-HB=
0 to f.t.o.c.’s with b.l.o.m.f. in AK=

0 .

180 A Duality between AK=
0 and HB=

0

(i) For every f.t.o.c. with b.l.o.m.f. C from τ = σ in AK=
0 , where τ, σ ∈ µTp , the

reflection D(C) of C is defined by induction on the depth |C| of C according to
the five clauses detailed in Figure 6.5 that arise by case-distinction dependent
on the last step of the generation of C according to Definition 6.3.10.

The difference in the cases of f.t.o.c.’s with b.l.o.m.f., to which the second
and the third, and respectively, the fourth and the fifth inductive clause in
Figure 6.5 apply, consists in whether or not the formula at the root of the
considered derivation-tree is marked or not. This formula is assumed to carry
a marker in the third and in the fifth clause, whereas it is unmarked in the
second and in the fourth clause.

(ii) For every pseudo-derivation D in e-HB=
0 with conclusion τ = σ , where τ, σ ∈

∈ µTp , the reflection C(D) of D is a f.t.o.c. with b.l.o.m.f. from τ = σ inAK=
0

that is defined by induction on the depth |D| of D according to the five clauses
gathered in Figure 6.6.

£

Proof. We want to show the well-definedness of the reflection functions D and C

defined above, thereby proving the ‘lemma-part’ of Definition and Lemma 6.4.3.

(a) For the well-definedness of the reflection function D according to the formula-
tion in Definition 6.4.3 (i) there are two assertions that have to be confirmed:

(I) The reflection function D is in fact defined for all f.t.o.c.’s with b.l.o.m.f.
C in AK=

0 .

(II) For every f.t.o.c. with b.l.o.m.f. C of τ = σ inAK=
0 (with some τ, σ ∈ µTp)

its reflection D(C) is a “pseudo-derivation” of τ = σ in e-HB=
0 , i.e. a

derivation-tree of the shape of a derivation in e-HB=
0 , in which (only)

the side-conditions C on applications of FOLDl/r/FIX and REN/FIX
may be violated.

The validity of the statement in (I), i.e. that D is in fact defined for all
f.t.o.c.’s with b.l.o.m.f. in AK=

0 , can be recognized from the fact that the
5 inductive clauses in the definition of D in Figure 6.5 cover exactly all 6
clauses in Definition 6.3.10, the alternative inductive definition for f.t.o.c.’s
with b.l.o.m.f. in AK=

0 (hereby the first inductive clause in Figure 6.5 covers
f.t.o.c.’s with b.l.o.m.f.’s of the base cases (i) and (ii) in Definition 6.3.10).

To demonstrate the fulfilledness of assertion (II) it suffices to show for every
f.t.o.c. with b.l.o.m.f. C of τ = σ inAK=

0 (with some τ, σ ∈ µTp) that the side-
conditions I are satisfied for all applications of FOLDl/r/FIX and REN/FIX
as well as for all applications of ARROW/FIX occurring in D(C).

This can be shown by an easy induction on the depth |C| of an arbitrary
given f.t.o.c. C with b.l.o.m.f. in AK=

0 , in which induction also the statement
is shown, that D(C) always has the same inhabited classes of open marked
assumptions as C has classes of unbound leaf-occurrences of marked formulas.

6.4 Reflection Functions 181

Figure 6.5: Inductive definition of the reflection function D that maps f.t.o.c.
with b.l.o.m.f.’s C in AK=

0 to pseudo-derivations D(C) in e-HB=
0 :

(τ = σ)m
D
7−→ (τ = σ)m

τ = σ
R(cu)

(τ1 = σ1)
m1

C1

D
7−→

D(C1)

τ1 = σ1
R(d)

τ = σ

(for R(cu) ∈ {UNFOLDl/r, REN, (µ−⊥)der⊥l/r })

(τ = σ)u

R(cu)

(τ1 = σ1)
m1

C1
[τ = σ]u

D
7−→

[τ = σ]u

D(C1)

τ1 = σ1
R(d)/FIX, u

τ = σ

(for R(cu) ∈ {UNFOLDl/r, REN})

C2

(τ2 = σ2)
m2

C1

(τ1 = σ1)
m1

DECOMP
τ1 → τ2 = σ1 → σ2

D
7−→

D
7−→

D(C1)
τ1 = σ1

D(C2)
τ2 = σ2

ARROW
τ1 → τ2 = σ1 → σ2

[τ1 → τ2 = σ1 → σ2]
u

C2

(τ2 = σ2)
m2

[τ1 → τ2 = σ1 → σ2]
u

C1

(τ1 = σ1)
m1

DECOMP
(τ1 → τ2 = σ1 → σ2)

u

D
7−→

D
7−→

[τ1 → τ2 = σ1 → σ2]
u

D(C1)
τ1 = σ1

[τ1 → τ2 = σ1 → σ2]
u

D(C2)
τ2 = σ2 ARROW/FIX, u

τ1 → τ2 = σ1 → σ2

182 A Duality between AK=
0 and HB=

0

Figure 6.6: Inductive definition of the reflection function C that maps pseudo-
derivations D in e-HB=

0 to f.t.o.c. with b.l.o.m.f.’s C(D) in AK=
0 :

(τ = σ)m
C
7−→ (τ = σ)m

D1

τ1 = σ1
R(d)

τ = σ

C
7−→

τ = σ
R(cu)

(τ1 = σ1)
m1

C(D1)

(for R(d) ∈ {FOLDl/r, REN, (µ−⊥)⊥derl/r })

[τ = σ]u

D1

τ1 = σ1
R(d)/FIX, u

τ = σ

C
7−→

(τ = σ)u

R(cu)

(τ1 = σ1)
m1

C(D1)

[τ = σ]u

(for R(d) ∈ {FOLDl/r, REN})

D1

τ1 = σ1
D2

τ2 = σ2
ARROW

τ1 → τ2 = σ1 → σ2

C
7−→

C
7−→

C(D2)

(τ2 = σ2)
m2

C(D1)

(τ1 = σ1)
m1

DECOMP
τ1 → τ2 = σ1 → σ2

[τ1 → τ2 = σ1 → σ2]
u

D1

τ1 = σ1

[τ1 → τ2 = σ1 → σ2]
u

D2

τ2 = σ2 ARROW/FIX, u
τ1 → τ2 = σ1 → σ2

C
7−→

C
7−→

[τ1 → τ2 = σ1 → σ2]
u

C(D2)

(τ2 = σ2)
m2

[τ1 → τ2 = σ1 → σ2]
u

C(D1)

(τ1 = σ1)
m1

DECOMP
(τ1 → τ2 = σ1 → σ2)

u

6.4 . . . (The Main Duality Theorem linking AK=
0 and e-HB=

0) 183

This auxiliary statement can be visualized as the part concerning the appli-
cation of the function D in the following picture, i.e. the transition from left
to right in:

(τ = σ)m

C
{ [τi= σi]

ui }i=1,...,n

D
7−→
←−[
C

{ [τi= σi]
ui }i=1,...,n

D
τ = σ

(6.26)

Hereby the displayed family { [τi = σi]
ui }i=1,...,n (with n ∈ ω , τi, σi ∈ µTp

and ui a marker for i = 1, . . . , n) gathers in C precisely all inhabited classes
of unbound leaf-occurrences of marked formulas, and assembles in D precisely
all inhabited open assumption classes.

(b) Since the inductive clauses for the definition of the reflection function C in
Figure 6.6 cover all cases of axioms, assumptions and of last rule applica-
tions in e-HB=

0 -derivations D, C is in fact defined for all e-HB=
0 -derivations.

Hence for the well-definedness of the reflection function C it has to be shown,
for all e-HB=

0 -derivations D of τ = σ (where τ, σ ∈ µTp), that its reflec-
tion C = C(D) is in fact a f.t.o.c. with b.l.o.m.f. from τ = σ in AK=

0 . More
precisely, it has to be established that each occurrence of a marked formula
(ρ = χ)u (for some ρ, χ ∈ µTp and a marker u) inside C binds at least one
occurrence of (ρ = χ)u at a leaf-position in C.

This can again be shown in a straightforward manner by induction on the
depth |D| of D, when it is shown at the same time (i.e. as part of the statement
to prove by this induction) that C always possesses the same inhabited classes
of unbound leaf-occurrences of marked formulas as D has as inhabited classes
of open marked assumptions. This is illustrated by the part concerning the
function C in picture (6.26), i.e. the transition from right to left there.

6.5 A Duality between Consistency-Unfoldings in
AK=

0 and Derivations in e-HB=
0

Due to the preparatory work of the previous sections, we are finally in possession of
all formal concepts necessary to formulate our initial observation about a relation-
ship between the systems HB=

0 and AK=
0 into a precise statement. In the present

section we therefore state and prove the main theorem of this chapter, and give an
illustration of this theorem by an easy example.

This theorem states the existence of a very immediate correspondence between
derivations in e-HB=

0 without open assumptions and consistency-unfoldings in
AK=

0 . Hereby the correspondence takes place via the reflection functions defined in
the previous section and can geometrically be visualized in all of its instances (for

184 A Duality between AK=
0 and HB=

0

this we will see an example below). This is reason for us to speak of a duality be-
tween derivations in e-HB=

0 without open assumptions and consistency-unfoldings
in AK=

0 .

Theorem 6.5.1 (A duality between derivations in e-HB=
0 and consistency-

unfoldings in AK=
0). There is a bijective functional relationship between

derivations in e-HB=
0 without open assumption classes and consistency-unfoldings

in AK=
0 that takes place via the reflection functions D and C defined in Defini-

tion 6.4.3. More precisely, the following three assertions hold:

(i) For every derivation D in e-HB=
0 without open assumption classes and with

conclusion τ = σ (for some τ, σ ∈ µTp) its reflection C(D) is a consistency-
unfolding of τ = σ in AK=

0 .

(ii) For every consistency-unfolding C of τ = σ in AK=
0 (with some τ, σ ∈ µTp)

its reflection D(C) is a derivation in e-HB=
0 with conclusion τ = σ and with-

out open assumption classes.

(iii) The restrictions

D|Der∅(e-HB=

0
) : Der∅(e-HB

=
0) −→ CU(AK=

0), and

C|CU(AK=

0
) : CU(AK

=
0) −→ Der∅(e-HB

=
0)

of the reflection functions D and C to, respectively, the set Der∅(e-HB
=
0) of

derivations in AK=
0 without open assumptions, and to the set CUD(AK=

0) of
consistency-unfoldings in AK=

0 are inverses of each other.

Proof. (a) The statement in item (i) of the lemma is a consequence of the fol-
lowing more general statement, which asserts that the reflection function C

maps e-HB=
0 -derivations with (possibly) open assumption classes to partial

consistency-unfoldings in AK=
0 :

For every e-HB=
0 -derivation D with conclusion τ = σ , whose open marked

assumptions are precisely those that belong to one of the assumption classes
[τi = σi]

ui for i ∈ {1, . . . , n} (with some n ∈ ω), the reflection function C

maps D to a partial consistency-unfolding C(D) of τ = σ in AK=
0 in a way

which can be illustrated as:

{ [τi= σi]
ui }i=1,...,n

D
τ = σ

C
7−→

(τ = σ)m

C(D)

{ [τi= σi]
ui }i=1,...,n

(where according to the notation introduced in Definition 6.4.3 the occurrence
of (τ = σ)m at the root of C(D) stands either for the unmarked equation
τ = σ or for a marked formula (τ = σ)v with some assumption marker v that
is assumed to be the designation of the syntactical variable m in this case).
Hereby the notation used for C(D) is to be understood as follows. The partial

6.5 . . . (The Main Duality Theorem linking AK=
0 and e-HB=

0) 185

consistency-unfolding (and hence f.t.o.c. with b.l.o.m.f.) C(D) possesses in
its leaves at the bottom occurrences of marked formulas (τi = σi)

ui for all
i ∈ {1, . . . , n} that are not bound back in C(D) , which implies in particular
that no such marked formula (τi = σi)

ui is bound back in C(D) to the root-
occurrence of (τ = σ)m of C(D) . Furthermore it holds that each unbound
leaf-occurrence of a marked formula (τ̃ = σ̃)ũ in C(D) must be a member
of one of the displayed classes [τi = σi]

ui for i ∈ {1, . . . , n} of formulas not
bound back in C(D), i.e. it must hold that τ̃ ≡ τi , σ̃ ≡ σi and ũ ≡ u for some
i ∈ {1, . . . , n} . And moreover it holds, that whenever D contains at least one
application of a rule ARROW or ARROW/FIX, then C(D) contains at least
one occurrence of a branching DECOMP.

This statement, which is more general than item (i) of the lemma, can be
shown, for every derivation D in e-HB=

0 , by induction on |D|.

For the base case of the induction we notice that both every axiom (REFL)
τ = τ and every open marked assumption (τ = σ)u of e-HB=

0 are mapped
by C to themselves respectively. From this it is obvious to see that the above
statement holds in both of these cases.

For the induction step we will only consider the case in which the last rule
application in D is R(d)/FIX for some rule R(d) ∈ {FOLDl,FOLDr,REN} ,
i.e. that D is an e-HB=

0 -derivation of the form

[τ = σ]u {[τi = σi]
ui}i=1,...,n

D1

τ̃1 = σ̃1
R(d)/FIX, u

τ = σ

for an n ∈ ω and some τ, σ, τ̃1, σ̃1, τ1, σ1, . . . , τn, σn ∈ µTp as well as with
open assumption classes [τi = σi]

ui for i ∈ {1, . . . , n} . We notice that, due to
the side-condition I on the application of R(d)/FIX at the bottom of D, the
open assumption class [τ = σ]u in D1, which consists of the assumptions that
are discharged at the bottommost rule application in D, must be inhabited.
Performing the induction step for this case is not just as straightforward as
are all cases of e-HB=

0 -derivations with occurrences of other rules as last rule
application in D ; these cases can be treated in a similar and rather easier way.
In the situation here, we find as a consequence of the induction hypothesis
that C(D1) is a partial consistency-unfolding of τ̃1 = σ̃1 inAK=

0 that contains
precisely the classes [τ = σ]u and [τi = σi]

ui for i ∈ {1, . . . , n} of such marked
formulas in leaves at the bottom of C(D1) that are not bound back in C(D1).
It follows that the derivation-tree C(D)

(τ = σ)u

R(cu)

(τ̃1 = σ̃1)
m1

C(D1)

[τ = σ]u {[τi = σi]
ui}i=1,...,n

186 A Duality between AK=
0 and HB=

0

the result of applying the reflection function C, to the derivation D according
to the third clause in its inductive definition in Figure 6.6, to the derivation
D, is a f.t.o.c. with b.l.o.m.f. in AK=

0 that contains as classes unbound leaf-
occurrences of marked formulas exactly all classes [τi = σi]

ui for i ∈ {1, . . . , n}.
It remains to be shown that C(D) is in fact a partial consistency-unfolding
of τ = σ in AK=

0 , i.e. we have to make sure that there is actually always an
occurrence of a branching DECOMP in every thread in C(D) that connects
occurrences of marked formulas linked through backbindings.

For all leaf-occurrences of marked formulas in C(D) that are bound back in
C(D), but that are not part of the displayed class [τ = σ]u this condition
follows already from the fact that C(D1) is, due to the induction hypothesis, a
partial consistency-unfolding. Hence it suffices to demonstrate the existence
of an occurrence of a branching DECOMP in each thread in C(D) from the
root-occurrence of (τ = σ)u down to a leaf-occurrence of (τ = σ)u belonging
to the displayed class [τ = σ]u in C(D). Or equivalently, it suffices to show
the existence of just a single occurrence of a branching DECOMP in C(D1):
since due to the side-conditions I and C on the application of R(d)/FIX at
the bottom of D there must at least be one application of a rule ARROW
or ARROW/FIX in D1, it follows by the induction hypothesis (referring to
the sentence beginning with “And moreover . . . ” at the end of the statement
to show) that there must then also be at least one occurrence of a branching
DECOMP in C(D1) and hence also in C(D). Hence a branching DECOMP
is always crossed in each thread in C(D) that leads from the root of C(D)
down to a leaf-occurrence of (ρ = χ)u in C(D) that is bound back to the
root-occurrence of (ρ = χ)u . Since we know that D1 contains at least one
application of ARROW or ARROW/FIX and that C1 contains at least one
occurrence of a branching DECOMP, these facts are also true with respect to
C and respectively with respect to D. Hence also the part with respect to the
sentence “And moreover . . . ” of the statement to show for the induction step
is shown.

Thus C(D) is a partial consistency-unfolding of the particular form as required
by the statement to prove for the induction step. Hereby we have succeeded
in performing the induction step in the considered case.

(b) Quite analogously to the proof of item (i) above, the statement in item (ii) of
the lemma is a consequence of the following more general statement.

The effect of performing the reflection function D defined in Definition 6.4.3,
(ii), on an arbitrary given partial consistency-unfolding C is described by the
following picture:

(τ = σ)m

C
{ [τi= σi]

ui }i=1,...,n

D
7−→

{ [τi= σi]
ui }i=1,...,n

D(C)

τ = σ

6.5 . . . (The Main Duality Theorem linking AK=
0 and e-HB=

0) 187

This means: every partial consistency-unfolding C in AK=
0 of an equation

τ = σ (for some τ, σ ∈ µTp) that possesses precisely the classes [τ = σ]ui

for i = 1, . . . , n as classes of unbound leaf-occurrences of marked assumptions
is mapped by the reflection function D to an e-HB=

0 -derivation D(C) with
conclusion τ = σ that has precisely the classes [τ = σ]ui (for i ∈ 1, . . . , n) of
open marked assumptions. Thereby D(C) contains at least one application
of ARROW or ARROW/FIX if and only if C contains at least one branching
DECOMP.

This statement can be shown by induction on the depth |C| of C.

The base case of the induction is obvious (analogously to the base case of the
proof by induction in (a)).

For the induction step we consider only the case of a partial consistency-un-
folding C for which the inductive definition of D(C) in Definition 6.4.3 in the
outermost induction step needs an application of the fifth clause in Figure 6.5
(the argumentation in the other four cases to consider is either much easier or,
in the case of a needed application of the third clause in Figure 6.5, involves a
very similar argumentation as in the case spelled out for the inductive proof
in (a)). That is, we consider a partial consistency-unfolding C of the form

{
[τi = σi]

ui
}

i=1,...,n

[τ̃1 → τ̃2 = σ̃1 → σ̃2]
u

C2

(τ̃2 = σ̃2)
m2

{
[τi = σi]

ui
}

i=1,...,n

[τ̃1 → τ̃2 = σ̃1 → σ̃2]
u

C1

(τ̃1 = σ̃1)
m1

DECOMP
(τ̃1 → τ̃2 = σ̃1 → σ̃2)

u

for some τ̃1, τ̃2, σ̃1, σ̃2 ∈ µTp and an assumption-marker u, where the classes of
unbound leaf-occurrences of marked formulas are precisely those that belong
to the displayed family {[τi = σi]

ui]i=1,...,n for some n ∈ ω and τi, σi ∈ µTp ,
a marker ui for i = 1, . . . , n ; the respective parts in C1 and in C2 of leaf-
occurrences of marked formulas that belong to one of these classes [τi = σi]

ui

are gathered at the bottom of C1 and of C2 by respective families each de-
noted there by {[τi = σi]

ui}i=1,...,n . Furthermore [τ̃1 → τ̃2 = σ̃1 → σ̃2]
u at

the bottom of C1 and C2 denotes the class of all such leaf-occurrences of
(τ̃1 → τ̃2 = σ̃1 → σ̃2)

u in C1 and respectively in C2 that are not bound back in
C1 or in C2, but that are bound back in C to its root. Since C is, as a partial
consistency-unfolding, also a f.t.o.c. with b.l.o.m.f., we conclude that there is
at least one such leaf-occurrence of (τ̃1 → τ̃2 = σ̃1 → σ̃2)

u in either the part
C1 or in the part C2 of C that is bound back to the root of C. By the induction
hypothesis we now find that D(C1) and D(C2) are e-HB=

0 -derivations with
respective conclusions τ̃1 = σ̃1 and τ̃2 = σ̃2 , which together possess precisely
the classes [τ̃1 → τ̃2 = σ̃1 → σ̃2]

u and [τi = σi]
ui for i ∈ {1, . . . , n} as undis-

charged assumption classes that are inhabited in eitherD(C1) orD(C2). From
this it follows that the result D(C)

188 A Duality between AK=
0 and HB=

0

[τ̃1 → τ̃2 = σ̃1 → σ̃2]
u

{
[τi = σi]

ui
}

i=1,...,n

D(C1)

τ̃1 = σ̃1

[τ̃1 → τ̃2 = σ̃1 → σ̃2]
u

{
[τi = σi]

ui
}

i=1,...,n

D(C2)

τ̃2 = σ̃2 ARROW/FIX, u
τ̃1 → τ̃2 = σ̃1 → σ̃2

of applying the reflection function D to C is an e-HB=
0 -derivation with con-

clusion τ̃1 → τ̃2 = σ̃1 → σ̃2 and whose undischarged assumption classes are
precisely those of the family {[τi = σi]

ui]i=1,...,n (in particular we concluded
and used here that the side-condition C on the application of ARROW/FIX
at the bottom of D(C) is satisfied). In this case clearly C contains at least
one branching DECOMP as well as D(C) contains at least one application of
ARROW/FIX. Thus the statement to be shown for the induction step has
been proved here.

(c) Part (iii) of the lemma is a consequence of the two more general statements

“D ◦ C (D) = D holds for all derivations

{ [τi= σi]
ui }i=1,...,n

D
τ = σ

in e-HB=
0 with conclusion τ = σ (where n ∈ ω , and where

τ, σ, τ1, . . . , τn, σ1, . . . , σn ∈ µTp) that contain precisely the classes
[τi = σi]

ui for i = 1, . . . , n of marked open assumptions.”

and

“C ◦D (C) = C holds for all partial consistency-unfoldings

(τ = σ)m

C
{ [τi= σi]

ui }i=1,...,n

of τ = σ in AK=
0 (where n ∈ ω and

where τ, σ, τ1, . . . , τn, σ1, . . . , σn ∈ µTp) that contain pre-
cisely the classes [τi = σi]

ui for i = 1, . . . , n of unbound leaf-
occurrences of marked formulas.”

These two assertions can be shown in a straightforward way by respective
inductions on |D| and respectively on |C| by distinguishing the respective 5
cases of the inductive clauses in the definition of the reflection operations D
and C in Definition 6.4.3.

For all derivations D in e-HB=
0 without open assumptions and for all consis-

tency-unfoldings C inAK=
0 that the reflection of each other, i.e. for which D(C) = D

6.5 . . . (The Main Duality Theorem linking AK=
0 and e-HB=

0) 189

Figure 6.7: Example consisting of a consistency-unfolding C1 in AK=
0 and of

a derivation D1 in e-HB=
0 without open assumptions that are reflections of each

other, i.e. for which D(C1) = D1 and C(D1) = C1 holds:

D1

(
τ = σ

)
u ⊥ = ⊥

ARROW
τ → ⊥ = σ → ⊥

FOLDl

τ = σ → ⊥ ⊥ = ⊥
ARROW

τ → ⊥ = (σ → ⊥)→ ⊥
FOLDr

τ → ⊥ = σ
FOLDl/FIX, u

µα. (α→ ⊥)
︸ ︷︷ ︸

≡ τ

= µβ. ((β → ⊥)→ ⊥)
︸ ︷︷ ︸

≡σ

C1

⊥ = ⊥

⊥ = ⊥
(
τ = σ

)
u

DECOMP
τ → ⊥ = σ → ⊥

UNFOLDl
τ = σ → ⊥

DECOMP
τ → ⊥ = (σ → ⊥)→ ⊥

UNFOLDr

τ → ⊥ = σ
UNFOLDl

(
µα. (α→ ⊥) = µβ. ((β → ⊥)→ ⊥)

)
u

and C(D) = C holds, we say that D and C are dual (to each other), or more explic-
itly, that C is the dual consistency-unfolding in AK=

0 for D, and that D is the dual
derivation in e-HB=

0 for C.

Now we give an example consisting of a consistency-unfolding in AK=
0 and

of a derivation in e-HB=
0 that are dual to each other. For mainly typographical

reasons we consider a simpler consistency-unfolding than that in Example 6.1.1,
and accordingly, a simpler derivation than that of Example 6.1.2.

Example 6.5.2 (Dual e-HB=
0 -deriv. and consistency-unfolding in AK=

0).
We consider the two recursive types

τ ≡ µα. (α→ ⊥) , σ ≡ µβ. ((β → ⊥)→ ⊥) ,

which are respectively equal to the strongly equivalent recursive types τ1 and σ1 in8

Example 3.6.2. Therefore τ =µ σ is the case here.

A consistency-unfolding of τ = σ inAK=
0 can be found, as this is true in general

for all equations between strongly equivalent recursive types, in an algorithmic way:
by ‘growing’ a derivation-tree of consequences in AK=

0 from τ = σ in downwards

8We have avoided to use τ1 and σ1 from Example 3.6.2 directly in the desire to avoid distracting
subscripts here.

190 A Duality between AK=
0 and HB=

0

direction through (reasonable9) stepwise extensions with applicable applications
in AK=

0 until in all leaves of the derivation-tree either axioms (REFL) or such
formulas are found, which have been encountered before in the thread down from
the root τ = σ and which therefore can be bound back to these respective earlier
occurrences.

In this manner the f.t.o.c. with b.l.o.m.f. C1 from τ = σ in AK=
0 in Figure 6.7

is found, which is easily recognizable as a consistency-unfolding of τ = σ in AK=
0 .

Its reflection D(C1) can be seen to be the derivation D1 in e-HB=
0 also depicted

in Figure 6.7, i.e. D(C1) = D1 . Vice versa, also C(D1) = C1 can be checked easily.
Hence C1 and D1 are dual to each other.

It is certainly not difficult to find the dual e-HB=
0 -derivation D(C) for the

consistency-unfolding C in Figure 6.1 as well as the dual consistency-unfolding C(D)
for the derivation D in HB=

0 in Figure 6.4. And it is easy to convince oneself, as we
have informally recognized already in Section 6.1, that C and D are not reflections
of each other and hence are not dual to each other.

In the light of the example above it is easy to explain why, with the aim of
establishing a satisfying duality result, we have chosen to extend the system HB=

0

first by some additional inference rules to the system e-HB=
0 before only later

defining mutual transformations between partial consistency-unfoldings in AK=
0

and derivations in the extended system e-HB=
0 . If we had not done so, then we

would not have been able to discharge the open marked assumption (τ = σ)u in
a derivation Refl(C1) in HB=

0 that arises by plain reflection from the consistency-
unfolding C1 from Figure 6.7. Similarly as described for the example considered in
Section 6.1, we would have had to enlarge Refl(C1) above this marked assumption by
two additional applications (one of FOLDl and one of FOLDr) before being able to
discharge the newly occurring open marked assumption (τ → ⊥ = (σ → ⊥)→ ⊥)u

in a thereby created derivation Refl(C1)
∗ at an application of ARROW/FIX that

results by renaming from the bottommost application of ARROW in Refl(C1).
10 But

due to the presence of the rules FOLDl/r/FIX in e-HB=
0 it was possible here to

transform the plain reflection Refl(C1) of C1 into the derivation D1 in Figure 6.7 by
merely renaming the bottommost application of FOLDl in Refl(C1) into FOLDl/FIX
and by discharging the open marked assumption (τ = σ)u at this application.

This look at the example from Figure 6.7 can make it clear why it is actually
not possible to find a bijective and equally immediate correspondence as stated in
Theorem 6.5.1 between arbitrary consistency-unfoldings in AK=

0 and derivations in
HB=

0 .

9By “reasonable” extensions of a derivation-tree through rule applications we mean here more
precisely that applications of REN are only allowed as auxiliary steps for enabling applications of
UNFOLDl/r, and that extensions by applications of the rules (µ−⊥)der⊥

l/r
always take precedence

over extensions with any other rule of AK=

0
.

10The derivation Refl(C1)∗ described here is actually equal to the derivation D2 in HB=

0
de-

picted in Figure 6.8; strictly speaking, Refl(C1)∗ is equal to one of the four HB=

0
-derivations

that are denoted by the prooftree D2 shown in Figure 6.8 since for the two pairs of successive
FOLDl/r-applications the order in which these two applications appear after each other has not
been fixed there.

6.6 Specializing the Duality to Derivations in HB=
0 191

6.6 Specializing the Duality to Derivations in HB=
0

The duality theorem, Theorem 6.5.1, leaves open the question how the particu-
lar class of those consistency-unfoldings in AK=

0 that are the images under the
reflection function C of derivations in the basic system HB=

0 can formally be char-
acterized. Closer examination in this section is able to show that such consistency-
unfoldings have a particular property, which we call “property D” in the definition
below. With this notion we will then be able to formulate and prove a specialized
version of Theorem 6.5.1.

Definition 6.6.1 (The property D for f.t.o.c.’s with b.l.o.m.f.’s). Let τ
and σ be recursive types. A f.t.o.c. with b.l.o.m.f.’s C of τ = σ in AK=

0 satisfies
the property D iff all bound leaf-occurrences of marked formulas (ρ = χ)u in C
(with arbitrary ρ, χ ∈ µTp and markers u) are bound back to respective premises
of branchings DECOMP. £

Example 6.6.2. It is easy to see that the consistency-unfolding in AK=
0 in Fig-

ure 6.4 satisfies the property D, whereas both the consistency-unfoldings C in Fig-
ure 6.1 and C1 in Figure 6.7 do not.

We denote by pCUD(AK=
0) the set of partial consistency-unfoldings in AK=

0

with the property D; and by CUD(AK=
0) the set of consistency-unfoldings in AK=

0

with the property D.
Generally, the fulfilledness of the property D for f.t.o.c. with b.l.o.m.f.’s can

be illustrated as follows. Let C be a f.t.o.c. with b.l.o.m.f. from τ = σ in AK=
0

that satisfies the property D. Then, with respect to an arbitrary back-bound leaf-
occurrence of a marked formula (ρ = χ)u in C that is displayed as the single leaf in
the representation of C on the left below, C can, for example, be written as

τ = σ
C

(ρ = χ)u

C2a

ρ2 = χ2

(ρ1 → ρ2 = χ1 → χ2)
u

C1a

ρ1 = χ1
DECOMP

(ρ1 → ρ2 = χ1 → χ2)
u

C1

τ = σ

(6.27)

for some ρ1, ρ2, χ1, χ2 ∈ µTp such that ρ ≡ ρ1 → ρ2 and χ ≡ χ1 → χ2 and with
some f.t.o.c.’s with m.f. C1 from τ = σ , C1a from ρ1 = χ1 and C2a from ρ2 = χ2
in AK=

0 , where the displayed leaf-occurrence of (ρ = χ)u on the left side is the
leaf-occurrence of (ρ1 → ρ2 = χ1 → χ2)

u on the right side and where the two oc-
currences of the marked formula (ρ1 → ρ2 = χ1 → χ2)

u in the representation of C
on the right side are assumed to be linked by a backbinding. Hence the considered
leaf-occurrence of (ρ = χ)u displayed on the right in (6.27) is indeed bound back to
the upper premise of a branching DECOMP in C (as this is demanded by the condi-
tion D on C). And the words “for example” above are intended to convey that the
leaf-occurrence of (ρ = χ)u displayed in C on the left in (6.27), which corresponds

192 A Duality between AK=
0 and HB=

0

to the leaf-occurrence of (ρ1 → ρ2 = χ1 → χ2)
u displayed at the bottom of C1a on

the right, could also occur at the bottom of C2a in a similar representation of C as
on the right hand side of (6.27).

Now we are able to formulate the following specialized version of Theorem 6.5.1.
It stated that there does also exist a duality via the reflection functions C and D

between derivations without open assumptions in the basic, not extended, system
HB=

0 and consistency-unfoldings in AK=
0 with the property D.

Theorem 6.6.3. (Specializing the duality in Theorem 6.5.1: A duality
between between derivations in HB=

0 and consistency-unfoldings
in AK=

0 with the property D) The reflection functions D and C defined
in Definition 6.4.3 yield also a bijective functional relationship between derivations
in HB=

0 without open assumption classes and consistency-unfoldings in AK=
0 with

the property D in the sense as expressed by the following three statements:

(i) For every derivation D in HB=
0 without open assumption classes and with

conclusion τ = σ its reflection C(D) is a consistency-unfolding in AK=
0 of

τ = σ with the property D.

(ii) For every consistency-unfolding C of τ = σ in AK=
0 with the property D its

reflection D(C) is a derivation in HB=
0 with conclusion τ = σ and without

open assumption classes.

(iii) The restrictions

D|Der∅(HB=

0
) : Der∅(HB

=
0) −→ CUD(AK=

0), and

C|CUD(AK=

0
) : CU

D(AK=
0) −→ Der∅(HB

=
0)

of the reflection functions D and C to, respectively, the set Der∅(HB
=
0) of

derivations in AK=
0 without open assumptions, and to the set CUD(AK=

0)
of consistency-unfoldings in AK=

0 with the property D are inverses of each
other.

Proof. The proof of this theorem is a close-grained version of the proof of The-
orem 6.5.1. In particular, for the items (i) and (ii) in the theorem it has to be
shown more generally that (1) the reflection function C maps derivations D in
HB=

0 to partial consistency-unfoldings C = C(D) in AK=
0 with the property D,

and respectively, that reversely (2) the reflection function D reversely maps partial
consistency-unfoldings C in AK=

0 with the property D to derivations D = D(C) in
HB=

0 . These two assertions are illustrated with more detail by the following picture

6.6 Specializing the Duality to Derivations in HB=
0 193

(where τ, σ ∈ µTp , n ∈ ω and τi, σi ∈ µTp as well as ui a marker for 1 ≤ i ≤ n):

{ [τi= σi]
ui }i=1,...,n

D
τ = σ

derivation of τ = σ in the
system HB=

0 with the open
assumption classes [τi = σi]

ui

(1 ≤ i ≤ n)

C
7−→
←−[
D

(τ = σ)m

C
{ [τi= σi]

ui }i=1,...,n

partial consistency-unfolding of
τ = σ in AK=

0 satisfying the
property D and with the classes
[τi = σi]

ui of unbound leaf-
occurrences of marked formulas
(1 ≤ i ≤ n)

The assertion (1) can be shown for all HB=
0 -derivations D by induction on |D|. In

such a proof the following fact is exploited: for HB=
0 -derivations D, the third in-

ductive clause in Figure 6.6 regarding rules R(d)/FIX with R(d) ∈ {FOLDl/r,REN}
is never used in the inductive definition of C(D) since these rules are not part of
the system HB=

0 . Hence no upper premise of a rule application (different from a
DECOMP-branching) in C(D) can be a marked formula, and therefore C(D) ulti-
mately fulfills the property D for all HB=

0 -derivations D.
And statement (2) can be shown for all partial consistency-unfoldings C in AK=

0

with the property D by induction on |C|. For this proof the following observation is
essential: for arbitrary partial consistency-unfoldings C in AK=

0 with the property
D, in the inductive definition of D(C) the third clause in Figure 6.5 (regarding
f.t.o.c.’s with b.l.o.m.f. with a marked formula at their root-position that is followed
by an application of a rule R(cu) ∈ {UNFOLDl/r,REN}) is never used (since due
to the property D on C no leaf is bound back in C to the upper premise of such
a rule and hence the premise of a rule UNFOLDl/r or REN must always be an
unmarked formula). Therefore it follows that, for all consistency-unfoldings C in
AK=

0 with the property D, the reflection D(C) of D does not contain applications
of rules FOLDl/r/FIX and REN/FIX and hence must be a derivation in HB=

0 .
The item (iii) of the theorem, the fact, that the restriction of the reflection

function C to HB=
0 -derivations without open assumption classes and the restriction

of the reflection-operation D to consistency-unfoldings with the property D are
inverses of each other, is an immediate consequence of item (iii) of Theorem 6.5.1
and of the items (i) and (ii) of the theorem here.

We can illustrate this theorem with a consistency-unfolding in AK=
0 and its

dual derivation in HB=
0 , which are closely related to the consistency-unfolding and

the derivation given in Example 6.5.2.

Example 6.6.4 (Dual HB=
0 -derivation and consistency-unfolding in AK=

0

with the property D). Let τ and σ be the recursive types τ ≡ µα. (α→ ⊥)
and σ ≡ µβ. ((β → ⊥)→ ⊥) as in Example 6.5.2, which are strongly equivalent (as

194 A Duality between AK=
0 and HB=

0

Figure 6.8: Example consisting of a consistency-unfolding C2 in AK=
0 with the

property D and of a derivation D2 in HB=
0 without open assumptions that are

reflections of each other, i.e. for which D(C2) = D2 and C(D2) = C2 holds:

D2

(
τ → ⊥ = (σ → ⊥)→ ⊥

)
u

τ = σ ⊥ = ⊥
ARROW

τ → ⊥ = σ → ⊥
FOLDl

τ = σ → ⊥ ⊥ = ⊥ ARR./FIX, u
τ → ⊥ = (σ → ⊥)→ ⊥

FOLDl/r

µα. (α→ ⊥)
︸ ︷︷ ︸

≡ τ

= µβ. ((β → ⊥)→ ⊥)
︸ ︷︷ ︸

≡σ

C2

⊥ = ⊥

⊥ = ⊥
(
τ → ⊥ = (σ → ⊥)→ ⊥

)
u

τ = σ
DECOMP

τ → ⊥ = σ → ⊥
UNFOLDl

τ = σ → ⊥
DECOMP

(
τ → ⊥ = (σ → ⊥)→ ⊥

)
u

UNFOLDl/r

µα. (α→ ⊥) = µβ. ((β → ⊥)→ ⊥)

we already noticed in Example 3.6.2).

As this is possible in general with respect to two arbitrary strongly equivalent
recursive types, a formal proof for τ = σ in HB=

0 can be found in an algorithmic
way: by developing a prooftree in upwards-direction by (reasonable11) extensions
with applications of applicable rules of HB=

0 until either axioms (REFL) are met or
such formulas that have been encountered before in the thread from the root of the
prooftree upwards as the conclusions of applications of ARROW or ARROW/FIX
(in this case such formulas at the top of a found derivation are made into open
assumptions that are subsequently bound to the respective application that in its
turn is converted into an application of ARROW/FIX). In such a manner the short-
est possible12 derivation of τ = σ in HB=

0 is actually of the form D2 depicted in
Figure 6.8.

It can be seen that C(D2) = C2 holds, i.e. that the reflection C(D2) of D2 is the

11Hereby we mean that extensions by REN-applications are only introduced in situations where
they are needed to facilitate applications of FOLDl/r, and that extensions by rules (µ−⊥)⊥der

l/r

always take precedence over extensions with any other rule of HB=

0
.

12Since there appear two pairs of respectively interchangeable successive applications of FOLDl

and FOLDr in each such derivation, there are actually four derivations of τ = σ in HB=

0
of

smallest depth (namely of depth 7). Nevertheless it seems reasonable to speak of the shortest
derivation D2 of τ = σ in HB=

0
with a form as illustrated by the symbolic prooftree in Figure 6.8.

6.7 Concluding Remarks and a Consequence of the Duality 195

consistency-unfolding C2 of τ = σ in AK=
0 also shown in Figure 6.8. Vice versa also

D(C2) = D2 can quickly be verified for the reflection of the consistency-unfolding
C2. Since the only back-bound leaf-occurrence of a marked formula in C2 is bound
back to the upper premise of a branching DECOMP, C2 fulfills the property D.

Hence the HB=
0 -derivation D2 without open assumptions and the consistency-

unfolding C2 in AK=
0 with the property D, which are both shown in Figure 6.8, are

dual to each other.

6.7 Concluding Remarks and a Consequence of
the Duality

We want to close this chapter with a remark about a ‘hierarchy’ of dualities that can
be extracted from our theorems and proofs here, and by an application of our main
duality result to give an alternative soundness proof for the variant Brandt-Henglein
system HB=

0 .

Remark 6.7.1 (‘Hierarchy’ of dualities). Apart from the correspondences stated
by the duality theorems, Theorem 6.5.1 and Theorem 6.6.3, in the proofs we have
found also other, similar correspondence statements that deserve some attention
on their own merit and in relation to the other statements. For instance, we have
shown in the proof of Theorem 6.5.1 that the reflection functions D and C are also
bijective between the set pCU(AK=

0) of partial consistency-unfoldings in AK=
0 and

the set Der(e-HB=
0) of derivations in e-HB=

0 with (possibly) open assumptions.
And in the proof of Theorem 6.6.3 we found that D and C are bijective between
the set pCUD(AK=

0) of partial consistency-unfoldings in AK=
0 with the property

D and the set Der(HB=
0) of derivations in HB=

0 with (possibly) open assumptions.
For giving an overview of the different kinds of duality statements betweenAK=

0

and HB=
0 that have been reached, we have gathered five of them in the pictures

(6.28)–(6.32) shown in Figure 6.9. Hereby (6.29) and (6.30) illustrate the additional
duality statements mentioned first, and respectively second, above. (6.31) and
(6.32) stand for the assertions of Theorem 6.5.1 and Theorem 6.6.3, respectively.
And furthermore, a duality statement not mentioned previously is indicated in
(6.28): the reflection functions C and D are also bijective on the domains on which
they have been defined; this can be shown analogously to the proof of Theorem 6.5.1,
(iii). This means that there is also a duality between pseudo-derivations in e-HB=

0

and f.t.o.c.’s with b.l.o.m.f. in AK=
0 .

In the figure at the bottom of Figure 6.9 we have furthermore indicated how
the particular duality statements can be reached from the ‘basic duality’ (6.28) by
stepwise restriction of the domain of the reflection functions C and D.

Theorem 6.5.1, enables us to carry out the following alternative proof for the
soundness part in Theorem 5.1.20, in which the soundness of HB=

0 with respect
to =µ is ‘reduced’ to the fact that AK=

0 -consistency implies strong equivalence
(according to Theorem 5.2.13).

196 A Duality between AK=
0 and HB=

0

Figure 6.9: The following five kinds of duality statements are induced by the
reflection functions C and D. A figure below shows how these can be ordered
according to their ‘degree of specialization’.

pseudo-derivation D
of τ = σ in e-HB=

0

C
7−→
←−[
D

f.t.o.c. with b.l.o.m.f. C
from τ = σ in AK=

0
(6.28)

derivation D of τ = σ
in e-HB=

0

C
7−→
←−[
D

partial consistency-unfolding C
of τ = σ in AK=

0
(6.29)

derivation D of τ = σ
in HB=

0

C
7−→
←−[
D

partial consistency-unfolding C
of τ = σ in AK=

0 with the
property D

(6.30)

derivation D of τ = σ
in e-HB=

0 without
open assumptions

C
7−→
←−[
D

consistency-unfolding C of
τ = σ in AK=

0
(6.31)

derivation D of τ = σ
in HB=

0 without
open assumptions

C
7−→
←−[
D

consistency-unfolding C of
τ = σ in AK=

0 with the
property D

(6.32)

These five statements can be ordered, according to their ‘degree of specialization’,
as shown by the figure below. An arrow A −→ B between duality statements A
and B means that statement B results from statement A by restricting the domains
of the reflection functions C and D to the set of objects appearing on the left-hand
side, and respectively, to the set of objects on the right-hand side of statement B.

(6.28)

{{vv
vv
vv
vv
v

(6.29)

{{vv
vv
vv
vv
v

##
HH

HH
HH

HH
H

(6.30)

##
HH

HH
HH

HH
H

(6.31)

{{vv
vv
vv
vv
v

(6.32)

6.7 Concluding Remarks and a Consequence of the Duality 197

Alternative soundness proof for HB=
0 with respect to =µ . Suppose that τ = σ is a

theorem of HB=
0 , with some τ, σ ∈ µTp . This means that there exists a derivation

D in HB=
0 with conclusion τ = σ and without open assumption classes; let D be

chosen as such a derivation. Then due to Theorem 6.5.1 the reflection C(D) of D is
a consistency-unfolding of τ = σ in AK=

0 (which, as we remark by the way, fulfills
the property D due to Theorem 6.6.3). Hence by Theorem 6.3.18 the equation
τ = σ is consistent with respect to AK=

0 . And from this, Theorem 5.2.13, which
states that consistency with respect toAK=

0 entails strong equivalence, implies that
τ and σ are strongly equivalent.

198 A Duality between AK=
0 and HB=

0

Chapter 7

Transforming Derivations
from AC= to HB=

In this chapter we will develop an effective transformation from derivations in the
axiomatization AC= of recursive type equality by Amadio and Cardelli into deriva-
tions in the axiomatization HB= given by Brandt and Henglein. More precisely,
we will show that every derivation D in the system AC= that does not contain
assumptions can effectively be transformed into a derivation D′ in the system HB=

of Brandt and Henglein such that D′ has the same conclusion as D and D′ does not
contain open assumption classes. In Section 7.1 some later needed preparatory work
will be done: in particular, the admissibility of substitution rules in AC= will be
proved, and it will be demonstrated that the rule µ-COMPAT of the system AC=

can be dispensed with in a close variant system of AC=. The transformation from
derivations inAC= into derivations inHB= will then be constructed in Section 7.2,
in the form of a number of lemmas that formulate the existence of constituent parts
of this transformation.

7.1 Admissibility of µ-COMPAT in a Variant
System of AC=

In this section we are concerned with gathering and investigating a couple of basic
proof-theoretical properties of the proof system AC= for recursive type equality
due to Amadio and Cardelli. Some of these properties will be useful later, in Sec-
tion 7.2, for developing a proof-theoretic transformation from derivations in AC=

into derivations in HB=.

An important part of this section is dedicated to giving a proof-theoretical
demonstration of the fact that substitution is an admissible rule in the system
AC=. More precisely, we will define three different kinds of substitution rules that
act on equations between recursive types, and subsequently we will show that these

200 Transforming Derivations from AC= to HB=

rules are admissible in AC=. The admissibility of substitution rules of one form
is in fact tacitly assumed by Amadio and Cardelli in [AmCa93] and used without
proof in the completeness proof for the system AC= with respect to =µ .

As a preparation for the main lemma of this section concerning the admissibil-
ity in AC= of the mentioned three kinds of substitution rules, we need a couple of
auxiliary technical statements. We start with a lemma about some useful reformu-
lations of the contractiveness property α ↓ τ of a recursive type τ with respect to
a type variable α, which property was defined in Definition 5.1.1.

Lemma 7.1.1 (Reformulations of the contractiveness condition “α ↓ τ ”).
In the items (i) and (ii) below, the condition of a recursive type τ being contractive
in a type variable α is characterized, respectively, in a negative way, and then in
four ways that are different from the formulation in Definition 5.1.1.

(i) For all τ ∈ µTp and α ∈ TVar it holds that:

α 6 ↓ τ ⇐⇒ (∃n ∈ ω) (∃α1, . . . , αn ∈ TVar)
[
τ ≡ µα1 . . . αn. α & α 6≡ α1, . . . , αn

]
.

}

(7.1)

(ii) For all τ ∈ µTp, α ∈ TVar , and for all τ ′ ∈ µTp such that τ ′ ≡ren τ the
following four equivalences hold:

α ↓ τ ⇐⇒ α /∈ fv(τ) ∨ L′(τ) =→ , (7.2)

α ↓ τ ⇐⇒ α /∈ fv(τ) ∨ (∃ ρ1, ρ2 ∈ µTp) [τ ³ren/out-unf ρ1 → ρ2] , (7.3)

α ↓ τ ⇐⇒ nlµb(τ ′[µα. τ/α]) < nlµb(µα. τ) , (7.4)

α ↓ τ ⇐⇒ nlµb(τ ′[µα. τ/α]) = nlµb(µα. τ)− 1 . (7.5)

Proof. We will show the items (i) and (ii) of the lemma in the below items (1) and
(2). In both cases the definition of the expression α ↓ τ , i.e. the assertion that τ is
contractive with respect to α, from Definition 5.1.1 will be exploited, which, for all
α ∈ TVar and τ ∈ µTp , can be put as:

α ↓ τ ⇐⇒def α /∈ fv(τ) ∨

∨ (∃n ∈ ω) (∃α1, . . . , αn ∈ TVar)

(∃ ρ1, ρ2 ∈ µTp)
[
τ ≡ µα1 . . . αn. (ρ1 → ρ2)

]
. (7.6)

(1) Let α ∈ TVar and τ ∈ µTp be arbitrary, but in the following fixed. The
statement (7.1) is demonstrated by the following chain of equivalences:

α 6 ↓ τ ⇔ ¬
[
(α /∈ fv(τ)) ∨

∨ (∃ ρ1, ρ2)(∃n ∈ ω)(∃α1 . . . αn) [τ ≡ µα1 . . . αn. (ρ1→ρ2)]
]

⇔ α ∈ fv(τ) &

& (∀ ρ1, ρ2)(∀n ∈ ω)(∀α1 . . . αn) [τ 6≡ µα1 . . . αn. (ρ1→ρ2)]

⇔ (∃n ∈ ω)(∃α1, . . . , αn 6≡ α) [τ ≡ µα1 . . . αn. α]

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 201

where clearly α1 . . . αn range over type variables and ρ1 and ρ2 over recursive
types in µTp. The first equivalence follows from the definition of α ↓ τ , the
second by an easy transformation from predicate logic. In the last equivalence
the implication “⇐” is obvious; the implication “⇒” can be seen by an easy
case-distinction argument, or more formally, by induction on |τ |.

(2) Let α ∈ TVar and τ, τ ′ ∈ µTp be arbitrary such that τ ′ ≡ren τ holds.

The equivalences (7.4) and (7.5) are immediate consequences of item (i) of
the lemma and of Lemma 3.5.7.

Both of the equivalences (7.4) and (7.5) are obvious consequences of the def-
inition of α ↓ τ and of the fact that, for all τ ∈ µTp , the following chain of
equivalences

L′(τ) =→ =⇒
(I)

(∃ ρ1, ρ2 ∈ µTp) [τ ³ren/out-unf ρ1 → ρ2]

=⇒
(II)

(∃n ∈ ω) (∃α1, . . . , αn ∈ TVar)

(∃ ρ1, ρ2 ∈ µTp) [τ ≡ µα1 . . . αn. (ρ1 → ρ2)]

=⇒
(III)

L′(τ) =→

(7.7)

holds. Therefore it suffices to justify (7.7). We will only indicate here how
this can be done: The implication labeled by (I) can be shown by induc-
tion on the number nlµb(τ) of leading µ-bindings in τ using the definition
L′(τ) =def Tree(τ)(ε) of the leading-symbol function L′(τ) and the defini-
tion of the tree unfolding of a recursive type. In a similar way, the implication
labeled by (III) can be shown by an easy induction on n in which again the
definitions of the leading symbol and of the tree unfolding of a recursive type
are used. The implication labeled by (II) follows by induction on the length
of a ³ren/out-unf-reduction sequence from τ to ρ1 → ρ2 , where the induction
step relies on the following auxiliary assertion

τ →out-unf µα1 . . . αn. (ρ1 → ρ2) =⇒ (∃α ∈ TVar) (∃ ρ̃1, ρ̃2 ∈ µTp)
[
τ ≡ µαα1 . . . αn. (ρ̃1 → ρ̃2)

]

(for all τ, ρ1, ρ2 ∈ µTp and α1, . . . , αn ∈ TVar) which can be verified by a
quite straightforward analysis of all possible cases for τ0, where τ ≡ µα. τ0
for some type variable α.

We will also need the following lemma.

Lemma 7.1.2. (i) For all τ, τ ′ ∈ µTp and α ∈ TVar :

α ↓ τ & τ ′ ≡ren τ =⇒ α ↓ τ ′ . (7.8)

202 Transforming Derivations from AC= to HB=

(ii) For all τ, σ ∈ µTp and α, β ∈ TVar :

α ↓ τ &
(
α /∈ fv(τ) ⇒ β ≡ α ∨ α /∈ fv(σ)

)
=⇒ α ↓ τ [σ/β] . (7.9)

Proof. (1) For a proof of item (i) it suffices to show

(∀ τ1, τ2 ∈ µTp)(∀β ∈ TVar) [β ↓ τ1 & τ1 →ren τ2 =⇒ β ↓ τ2] . (7.10)

This is because from this (7.8) can be shown, for all α ∈ TVar and τ, τ ′ ∈ µTp
by induction on the length of a →ren-reduction sequence between τ and τ ′.

To show (7.10), let τ1, τ2 ∈ µTp and a variable β be given such that β ↓ τ1
and τ1 →ren τ2 hold.

Case 1: β /∈ fv(τ1): Then also β /∈ fv(τ2) and thus β ↓ τ2 follows.

Case 2: τ1 ≡ µβ1 . . . βn. (ρ1 → ρ2) for some n ∈ ω, β1, . . . , βn ∈ TVar and
ρ1, ρ2 ∈ µTp . Since τ1 →ren τ2, either

τ2 ≡ µβ1 . . . βi−1β̃βi+1 . . . βn. ((ρ1 → ρ2)[β̃/βi])

must hold, for some i ∈ {1, . . . , n} and some variable β̃ ∈ TVar , or

τ2 ≡ µβ1 . . . βn. (ρ
′
1 → ρ′2) ,

for some ρ′1, ρ
′
2 ∈ µTp with ρi →ren ρ

′
i and ρ

′
3−i ≡ ρ′3−i for i ∈ {1, 2} .

Then by the definition of (·↓ ·) in both situations β ↓ τ2 follows.

In both cases the conclusion of (7.8) for the considered β, τ1, τ2 holds. Hence
(7.8) has been shown, which concludes the proof of item (i).

(2) For proving (ii), let arbitrary α, β ∈ TVar and τ, σ ∈ µTp be given such that
α ↓ τ and

α /∈ fv(τ) ⇒ β ≡ α ∨ α /∈ fv(σ)

holds, and such that σ is substitutible for α in τ . Due to the definition of α ↓ τ
in Definition 5.1.1, it suffices to consider the following two cases separately.

Case 1: α /∈ fv(τ):

By assumption either β ≡ α holds, in which situation α ↓ τ [σ/β] follows
by the assumption α ↓ τ and by τ [σ/β]WV τ , or α /∈ fv(σ) holds, which
implies α /∈ fv(τ [σ/β]) and hence also α ↓ τ [σ/β] . Therefore we find here
that α ↓ τ [σ/β] holds.

Case 2: τ ≡ µα1 . . . αn. (ρ1 → ρ2) for some n ∈ ω, α1, . . . , αn ∈ TVar and
ρ1, ρ2 ∈ µTp :

If β /∈ fv(τ), it holds that τ [σ/β] WV τ , or, if β ∈ fv(τ), it holds
that τ [σ/β] WV µα1 . . . αn. (ρ1[σ/β]→ ρ2[σ/β]). In both situations α ↓
↓ τ [σ/β] is implied (in the first by the assumption α ↓ τ , in the second
by the definition of (· ↓ ·) in Definition 5.1.1).

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 203

In both cases we have concluded that α ↓ τ [σ/β] holds.

In the following definition we introduce a designation for the result of substi-
tuting a recursive type σ for a type variable α throughout an AC=-derivation D
without assumptions, given that a certain condition holds on σ, α and D. And
the subsequent lemma states that the result of such a substitution is again an
AC=-derivation without assumptions.

Definition 7.1.3 (Substitution in an AC=-derivation). Let τ1, τ2 ∈ µTp , and
let D be a derivation in AC= without assumptions and with conclusion τ1 = τ2 .
Let furthermore α ∈ TVar and σ ∈ µTp be such that (1) for each occurrence of an
equation between recursive types χ1 = χ2 in D, σ is substitutible for α in both
χ1 and χ2, and that (2) α is different from all type variables that are introduced as
bound variables in D by an application of µ-COMPAT.

Then we define D[σ/α] to be the result of replacing each occurrence of an equa-
tion between recursive types χ1 = χ2 in D by an occurrence of the equation between
recursive types χ1[σ/α] = χ2[σ/α] . £

Lemma 7.1.4 (Substitution in an AC=-derivation). Let τ1, τ2 ∈ µTp, and
let D be a derivation in AC= without assumptions and with conclusion τ1 = τ2 .
Let furthermore α ∈ TVar and σ ∈ µTp be such that the conditions (1) and (2) in
Definition 7.1.3 are fulfilled.

Then the formal object D[σ/α] defined in Definition 7.1.3 is a derivation in
AC= without assumptions and with conclusion τ1[σ/α] = τ2[σ/α] . The derivation
D[σ/α] has the same depth and size as D.

Proof. This can be shown by induction on |D|, the depth of the derivation D. The
arguments for the necessary details, which have to be checked for this, are largely
analogous to those in the proof below of Lemma 7.1.9, (1), but are much easier here.

Only one case shall be treated as an example here, a case for the induction step,
in which the derivation ends with an application of the rule µ-COMPAT. For this,
we let D be an AC=-derivation that does not contain assumptions and that is of
the form

D1

τ1 = τ2 µ-COMPAT
µβ. τ1 = µβ. τ2

Furthermore, we let σ ∈ µTp and α ∈ TVar be such that the assumptions (1) and
(2) in Definition 7.1.3 hold with respect to σ, α and D.

By assumption (2) on α and D (which prevents α from being introduced in D
by an application of µ-COMPAT) it follows that β 6≡ α. This implies that the two
statements α ∈ fv(τ1) ∪ fv(τ2) and α ∈ fv(µβ. τ1) ∪ fv(µβ. τ2) are equivalent here.
Therefore it suffices to prove the induction step only for the two separate cases
α ∈ fv(µβ. τ1) ∪ fv(µβ. τ2) and α /∈ fv(τ1) ∪ fv(τ2).

If α ∈ fv(µβ. τ1) ∪ fv(µβ. τ2), then because of α 6≡ β and σ is substitutible for
α in µβ. τi (for i = 1, 2) it holds that (µβ. τi)[σ/α] WV µβ. τi[σ/α] is the case for

204 Transforming Derivations from AC= to HB=

i ∈ {1, 2} . By the induction hypothesis, D1[σ/α] is an AC=-derivation without
assumptions, with conclusion τ1[σ/α] = τ2[σ/α], and with the same depth and the
same size as D1. Then

D1[σ/α]

τ1[σ/α] = τ2[σ/α]
µ-COMPAT

µβ. τ1[σ/α]
︸ ︷︷ ︸

WV (µβ. τ1)[σ/α]

= µβ. τ2[σ/α]
︸ ︷︷ ︸

WV (µβ. τ2)[σ/α]

is anAC=-derivation without assumptions that conforms to the definition of D[σ/α]
and that has the same depth and the same size as D.

If α /∈ fv(τ1)∪fv(τ2), then by the induction hypothesisD1[σ/α] is anAC
=-deriva-

tion with conclusion τ1 = τ2 , and with the same depth and the same size as D1. We
furthermore have α /∈ fv(µβ. τ1) ∪ fv(µβ. τ2) in this case, which implies µβ. τi WV
WV (µβ. τi)[σ/α] for each i ∈ {1, 2} . Hence the AC=-derivation

D1[σ/α]
τ1 = τ2 µ-COMPAT

µβ. τ1 = µβ. τ2

without assumptions coincides with the definition of D[σ/α]; furthermore, it has
the same depth and the same size as D.

Remark 7.1.5. The derivation D[σ/α] has the same structure1 and hence also the
same depth and size as D.

A generalization of Definition 7.1.3 and of the assertion of Lemma 7.1.4 is in-
troduced and stated in the following Definition and Lemma, which we formulate as
an aside; we will not use it subsequently.

Definition and Lemma 7.1.6. Let D be a derivation in AC= without assump-
tions and with the conclusion τ1 = τ2, where τ1, τ2 ∈ µTp, and let σ be a recursive
type and α a type variable. Furthermore, suppose that σ is substitutible for α in all
recursive types χ1 and χ2 for which there is an occurrence of an equality between
recursive types χ1 = χ2 in D with the following property:

The thread in D from the considered occurrence of χ1 = χ2 down-
wards to the conclusion of D does not cross any occurrence of such
an application of the rule µ-COMPAT, in which α is introduced as a
bound variable.

(7.11)

1That D and D[σ/α] possess the same structure is intended to refer to a statement that could
be made precise as follows. We consider the prooftrees D and D[σ/α] as labeled trees, where
with respect to the underlying unlabeled trees equations between recursive types are assigned to
the respective nodes and where names of rules are assigned to their respective edges (according
to the corresponding rule applications that relate (the “nodes” of) corresponding premises and
conclusions in the representations of D and D[σ/α] as graphical prooftrees—as these are always
used here and elsewhere in this paper). Then the underlying unlabeled trees of D and D[σ/α] are
identical and furthermore the labels for the edges (which are names of rules of AC=) coincide in
D and D[σ/α].

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 205

Then we denote by D([σ/α]) the result of replacing in the prooftree D each
occurrence of an equation between recursive types χ1 = χ2 with the property (7.11)
by an occurrence of χ1[σ/α] = χ2[σ/α]. It holds that D([σ/α]) is an derivation in
AC= without assumptions and with the conclusion τ1[σ/α] = τ2[σ/α] that has the
same depth and the same size as D. £

The proof of the ‘lemma-part’ of Definition and Lemma 7.1.6 is an easy refine-
ment of the proof of Lemma 7.1.4.

Now we define three kinds of substitution rules on the set of equations between
recursive types. In the subsequent remark we discuss a slight conceptual difference,
hinging on our use of Convention 3.3.6 in dealing with substitution expressions,
between substitution rules introduced, on the one hand, in the items (i) and (iii),
and on the other hand, in item (ii) of the definition below.

Definition 7.1.7 (Three kinds of substitution rules). We define the following
three kinds of substitution rules for pure Hilbert-systems that have the set µTp–Eq
as their set of formulas.

(i) For all σ ∈ µTp and α ∈ TVar , the rule SUBST(.)[σ/α] has precisely those
applications on the set µTp–Eq that are schematically defined by

τ1 = τ2 SUBST(.)′[σ/α] (if τ ′1 ≡ren τ1 and τ ′2 ≡ren τ2)
τ ′1[σ/α] = τ ′2[σ/α]

(7.12)

where τ1, τ2, τ
′
1, τ

′
2 ∈ µTp .

(ii) For all τ ∈ µTp and α ∈ TVar , the rule SUBSTτ [./α] has precisely the appli-
cations that are schematically defined by

σ1 = σ2 SUBSTτ [./α]
τ [σ1/α] = τ [σ2/α]

(7.13)

where σ1, σ2 ∈ µTp .

(iii) For all α ∈ TVar , the rule SUBST(.)′[./α] has precisely the applications of the
scheme

τ1 = τ2 σ1 = σ2 SUBST(.)′[./α] (if τ ′1 ≡ren τ1 and τ ′2 ≡ren τ2)
τ ′1[σ1/α] = τ ′2[σ2/α]

(7.14)

where τ1, τ2, τ
′
1, τ

′
2, σ1, σ2 ∈ µTp .

£

Remark 7.1.8. We want to stress here the obvious consequence that our use of
Convention 3.3.6 has for the above definition of three kinds of substitution rules:
the defining schemes (7.12), (7.13), and (7.14) for these rules are subject to the
implicit side-conditions on the substitution expressions in the conclusions of these

206 Transforming Derivations from AC= to HB=

schemes. For instance, item (ii) of Definition 7.1.7 has to be understood as follows:
For all τ, σ1, σ2 ∈ µTp and α ∈ TVar , the applications of the substitution rules
SUBSTτ [./α] are, together with their respective premises and conclusions, defined
by those corresponding inference figures of the form (7.13) for which the substitution
expressions τ [σ1/α] and τ [σ2/α] occurring in its conclusion are admissible, i.e. for
which σ1 and σ2 are substitutible for α in τ .

In relation with this, we furthermore notice that there is a slight conceptual
difference between substitution rules of the kinds (i) and (iii) of Definition 7.1.7
on the one hand and substitution rules of kind (ii) in Definition 7.1.7 on the other
hand. In the case of a rule SUBST(.)′[σ/α], with some σ ∈ µTp and α ∈ TVar ,
there exists, for every equation between recursive types τ1 = τ2 , an application
of SUBST(.)′[σ/α] with τ1 = τ2 as premise (in fact there typically exist infinitely
many such applications); and similarly, in the case of a rule SUBST(.)′[./α] there
exists, for every pair τ1 = τ2 and σ1 = σ2 of equations between recursive types,
an application of this rule with the premises τ1 = τ2 and σ1 = σ2 (again, there
will typically be infinitely many such applications). However, in the case of a rule
SUBSTτ [./α] not every equation between recursive types σ1 = σ2 is the premise of
an application of this rule because σ1 and σ2 do not need to be substitutible for
α in τ . We could alternatively have introduced generalizations SUBST(τ)′[./α] of
the substitution rules SUBSTτ [./α], where, for all τ ∈ µTp and α ∈ TVar , the rule
SUBST(τ)′[./α] is defined by the scheme of inferences

σ1 = σ2 SUBST(τ)′[./α] (if τ ′ ≡ren τ and τ ′′ ≡ren τ)
τ ′[σ1/α] = τ ′′[σ2/α]

(7.15)

in which σ1 and σ2 vary over recursive types in µTp. All of these variant rules have
again the property that they are applicable on every equation between recursive
types.

We have chosen not to introduce the variant rules SUBST(τ)′[./α] instead of
the rules SUBSTτ [./α] in Definition 7.1.7 for the following three reasons: (a) for
all τ ∈ µTp and every equation σ1 = σ2 ∈ µTp–Eq there exists a variant τ ′ ∈ µTp
such that the rule SUBSTτ ′[./α] is applicable on σ1 = σ2 , (b) the variant rules
SUBST(τ)′[./α] can be viewed as special cases of substitution rules of Definition 7.1.7,
(iii) (this holds clearly also for rules of the kinds (i) and (ii) in this definition),
and (c) Lemma 7.1.9 below can be shown slightly easier with respect to rules
SUBSTτ [./α] (although it holds also with respect to the rules SUBST(τ)′[./α], see
the statement of Proposition 7.1.11 given later).

The following lemma will later be used as the essential tool for the purpose
of recognizing that µ-COMPAT is an admissible rule of a variant system close to
AC=−{µ-COMPAT}.2 It asserts admissibility, and in one case even derivability,
in AC= of the substitution rules defined in Definition 7.1.7. Admissibility in AC=

of substitution rules from item (ii) in Definition 7.1.7 is used tacitly and without

2More precisely, µ-COMPAT will be seen to be an admissible rule of ((AC= \ {µ-COMPAT +
(µ−⊥)}) +(µ−⊥)′), where as axioms of the scheme (µ−⊥)′ similar, but slightly more general
formulas than the axioms (µ−⊥) from AC= will be allowed.

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 207

proof in [AmCa93] (cf. Remark 7.1.10 below); this statement, however, turns out
to be the easiest item of the following lemma to prove.

Lemma 7.1.9 (Admissibility of substitution rules in AC=). The following
assertions hold for the three kinds of substitution rules defined in Definition 7.1.7:

(i) For all σ ∈ µTp and α ∈ TVar , the rule SUBST(.)′[σ/α] is admissible in AC=.

(ii) For all τ ∈ µTpand α ∈ TVar , the rule SUBSTτ [./α] is derivable, and hence
also admissible, in AC=.

(iii) For all α ∈ TVar , the rule SUBST(.)′[./α] is admissible in AC=.

Moreover, every derivation D without assumptions in the extension of AC= with
the substitution rules from Definition 7.1.7 can effectively be transformed into an
AC=-derivation D′ without assumptions and with the same conclusion by a finite
sequence of successively applied, local manipulation-steps.

Proof. We will argue in item (2) below why the substitution rules of the kind (ii)
in Definition 7.1.7 are derivable rules of AC=. Apart from this, it will suffice
to show the assertion of the lemma that applications of substitution rules from
Definition 7.1.7, (i), (ii), and (ii), can effectively be eliminated because this obviously
implies that these rules are admissible rules in AC=.

The possibility to effectively eliminate applications of substitution rules from a
derivation D̃, without assumptions, in the extension of AC= by adding the sub-
stitution rules defined in Definition 7.1.7 follows by induction on the number of
applications of such rules in D̃, once it will be proven that:

Every derivation D that contains no assumptions, and that is of the

form
D1 (D1)

R
χ1 = χ2

, where D1 and (if it indeed also appears

in D) D1 are AC=-derivations without assumptions and where R is
an application of a substitution rule of the kind (i), (ii) or (iii) in
Definition 7.1.7 can effectively be transformed into an AC=-deriva-
tion D′ without assumptions and with conclusion χ1 = χ2.

(7.16)

Given a derivation D̃ without assumptions in the extension of AC= with the substi-
tution rules from Definition 7.1.7, we can then proceed, analogously to traditional
proofs for cut-elimination in sequent calculi, as follows. By using (7.16), every
subderivation D̃1 of D̃ that ends in a topmost occurrence of a substitution rule
can be replaced by an AC=-derivation D̃′1 without assumptions and with the same
respective conclusion. Any such replacement reduces the number of substitution
rules in the derivation by one. It is clear that by continuing to eliminate topmost
occurrences of substitution rules in D̃(1), the result of a first replacement of such
a respective subderivation, we are lead, after eliminating all substitution rules that
occur in D̃, to a derivation D̃′ in AC= without assumptions and with the same
conclusion as D̃.

208 Transforming Derivations from AC= to HB=

Hence it suffices to prove (7.16). For this we will prove separately, in the items
(1), (2) and (3) below, that parts of (7.16) which refer to the three kinds of substi-
tution rules from Definition 7.1.7, respectively.

(1) Here we will prove that part of (7.16) which refers to substitution rules R of
the form SUBST(.)′[σ/α] , where σ ∈ µTp and α ∈ TVar are arbitrary.

For this, we let σ ∈ µTp and α ∈ TVar be arbitrary, but in the following
fixed. We have to show that every derivation D of the form

D1

τ1 = τ2 SUBST(.)′[σ/α]

τ ′1[σ/α] = τ ′2[σ/α]

(7.17)

where τ1, τ2, τ
′
1, τ

′
2 ∈ µTp, τ ′1 ≡ren τ1 and τ ′2 ≡ren τ2, and where D1 is a

derivation in AC= without assumptions, can effectively be transformed into
a derivation D′ in AC= without assumptions and with the same conclusion.

We will proceed by induction on |D1|. The procedure for eliminating appli-
cations of SUBST(.)′[σ/α] implicit in the ensuing proof resembles many tra-
ditional cut-elimination procedures for derivations containing applications of
the cut-rule in sequent calculi for classical or intuitionistic logic: topmost
applications of substitution rules SUBST(.)′[σ/α] in a derivation D̄ without
assumptions can be eliminated directly whenever they immediately follow ax-
ioms in D̄; if topmost SUBST(.)′[σ/α]-applications succeed rule applications,
then they can be stepwisely permuted upwards over all preceding rule appli-
cations in D̄ until they immediately follow axioms (where they can then again
be always replaced either by other axioms or by short AC=-derivations).

To consider the base case of the induction, we assume an arbitrary deriva-
tion of the form (7.17) to be given, where D1 is an AC=-derivation without
assumptions and with |D1| = 0. This means that D1 consists just of an AC=-
axiom. We distinguish the cases of the different kinds of axioms of AC=.

If D is of the form

(REFL)

τ = τ
SUBST(.)′[σ/α]

τ ′[σ/α] = τ ′′[σ/α]

, and hence if D1 is an

axiom (REFL) of AC=, then by Lemma 3.4.2, the assertion associated with
(3.18), the conclusion of D is an axiom (REN) of AC=, which can be taken
as the desired transformed derivation D′ in AC= without assumptions.

Similarly in the case, where D1 is an axiom (REN), the conclusion of D is
again an axiom (REN), which can be taken to be the transformed derivation
D′. If D1 is an axiom (µ−⊥), then also the conclusion of D is such an axiom,
which can again be taken as D′.

If D1 is an axiom (FOLD/UNFOLD), then D is of the form

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 209

(FOLD/UNFOLD)

µβ. τ0 = τ0[µβ. τ0/β] SUBST(.)′[σ/α]

(µβ. τ0)
′ [σ/α] = (τ0[µβ. τ0/β])

′ [σ/α]

where the primed subexpressions designate two respective variants of the re-
cursive types denoted by the expressions in the brackets that allow the sub-
stitution of σ for α. If α /∈ fv(µβ. τ0) is the case, then the application of
SUBST(.)′[σ/α] corresponds just to taking variants on both sides of the equa-
tion in the premise; therefore, this application can be replaced by (at most)
two successive applications of RENr and RENl, which can be eliminated eas-
ily in their turn. Hence we can assume now that α ∈ fv(µβ. τ0) holds. As a
consequence, we find that α ∈ fv(τ0) and α 6≡ β hold.

Now let τ ′0 be such a variant of τ0 that, on the one hand, σ is substitutible for
both α and β in τ ′0 and that, on the other hand, µβ. τ0 is substitutible for β
in τ ′0. Let further β̃ be a variable such that (β̃ ≡ β or β̃ /∈ fv(τ ′0)), β̃ /∈ fv(σ)
and β̃ is substitutible for β in τ ′0.

Then β̃ 6≡ α holds (which follows by the choice of β̃ from α ∈ fv(τ0) = fv(τ ′0)
and β 6≡ α), and that µβ̃. τ ′0[β̃/β] is a variant of µβ. τ0 . Furthermore it follows
that each of the four substitution expressions τ ′0[β̃/β] [σ/α], µβ̃. τ

′
0[β̃/β] [σ/α],

τ ′0[β̃/β] [µβ̃. τ
′
0[β̃/β]/β̃] , and (τ ′0[β̃/β] [σ/α]) [µβ̃. τ

′
0[β̃/β] [σ/α]/β̃] are admis-

sible. Given this knowledge, the derivation D̃ of the form

(FOLD/UNFOLD)

µβ̃. τ ′0[β̃/β] [σ/α]
︸ ︷︷ ︸

WV
(I)

(µβ̃. τ ′0[β̃/β]
︸ ︷︷ ︸
≡ren µβ. τ0

) [σ/α]

= (τ ′0[β/β̃] [σ/α]) [µβ̃. τ
′
0[β̃/β] [σ/α]

︸ ︷︷ ︸

WV
(I)

(µβ̃. τ ′0[β̃/β]) [σ/α]

/β̃]

︸ ︷︷ ︸

WV
(II)

(τ ′0[β̃/β] [µβ̃. τ
′
0[β̃/β]/β̃])

︸ ︷︷ ︸

WV
(III)

τ ′0[µβ̃. τ
′
0[β/β̃]

︸ ︷︷ ︸
≡ren µβ. τ0

/β]

[σ/α]

RENl,RENr
(µβ. τ0)

′ [σ/α] = (τ0[µβ. τ0/β])
′ [σ/α]

can be built. Thereby the equality equivalence (III) is obvious, the equiva-
lences (I) follow from Lemma 3.3.10, (iii), due to α 6≡ β̃ and β̃ /∈ fv(σ) and
(II) is due to Lemma 3.3.11, (iii), since we know the admissibility of both sub-
stitution expressions in question. The justifications τ ′0 [(µβ̃. τ

′
0[β/β̃])/β] ≡ren

≡ren (τ0[µβ. τ0/β])
′ [σ/α] and (µβ. τ ′0[β̃/β]) [σ/α] ≡ren (µβ. τ0)

′ [σ/α] for the
applications RENl/r at the bottom of D̃ follow from Lemma 3.4.2, (3.18). Fi-

nally the derivation D̃ can easily be transformed into an AC=-derivation D′

without assumptions by eliminating the RENl/r-applications.

For carrying out the induction step, we let D be an arbitrary derivation of the
form (7.17), where D1 is an AC=-derivation without assumptions such that
|D1| > 0 holds. We will use case-distinction according to which rule of AC=

210 Transforming Derivations from AC= to HB=

is applied at the bottom of D1, and we will always proceed by permuting the
application of SUBST(.)′[σ/α] at the bottom of D upwards over the last rule
application in D1. In all cases we will be able to use the induction hypothesis
in order to build a transformed AC=-derivation D′ without assumptions and
with the same conclusion as D.

If the last rule application in the AC=-derivation D1 is a SYMM-rule, then
D is of the form

D11

τ2 = τ1
SYMM

τ1 = τ2 SUBST(.)′[σ/α]

τ ′1[σ/α] = τ ′2[σ/α]

where τ ′1 ≡ren τ1 and τ ′2 ≡ren τ2. This derivation can be transformed into a
derivation D̃ of the form

D11

τ2 = τ1 SUBST(.)′[σ/α]

τ ′2[σ/α] = τ ′1[σ/α]
SYMM

τ ′1[σ/α] = τ ′2[σ/α]

Since |D11| < |D1| holds, the induction hypothesis entails that the subderiva-
tion D̃1 of D̃ ending with the displayed SUBST(.)′[σ/α]-application can effec-
tively be transformed into an AC=-derivation D′1 with the same conclusion,
which then can replace D̃1 in D̃ to arrive at an AC=-derivation D′ without
assumptions and with the same conclusion as D.

The cases, in which the last rule application in D1 is an application of TRANS
or of ARROW can be settled quite analogously.

If the last rule application in D1 is a µ-COMPAT-rule, then D is of the form

D11

τ1 = τ2 µ-COMPAT
µβ.τ1 = µβ.τ2 SUBST(.)′[σ/α]

(µβ.τ1)
′ [σ/α] = (µβ.τ2)

′ [σ/α]

where (µβ.τ1)
′ ≡ren µβ.τ1 and (µβ.τ2)

′ ≡ren µβ.τ2. If α /∈ fv(µβ.τ1) and α /∈
/∈ fv(µβ.τ2) , the SUBST(.)′[σ/α]-application at the bottom of D only amounts
to taking variants on either side of the equation in its premise. Then this rule
application can be replaced by one or by two applications of rules RENl/r

that can be easily eliminated in their turn to arrive at a derivation D′ in AC=

without assumptions and with the same conclusion as D. Next we consider
the case that α occurs free in at least one of the recursive types µβ. τ1 and
µβ. τ2.

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 211

Suppose now, that either α ∈ fv(µβ. τ1) or α ∈ fv(µβ. τ2) holds. Then clearly
α 6≡ β and α ∈ fv(τ1) ∪ fv(τ2) . Let now τ ′1 and τ ′2 be respective variants of τ1
and τ2 such that σ is substitutible for α in τ ′1 and τ ′2. Furthermore let β̃ be a
variable neither occurring in (any recursive type of) D11 nor in τ ′1 or τ ′2, such
that also β̃ /∈ fv(σ) holds. Then β̃ 6≡ α and β̃ is substitutible for β in τ ′1 and τ

′
2

and σ is substitutible for α in τ ′1[β̃/β] and in τ ′2[β̃/β]. Moreover for i ∈ {1, 2}
it holds that µβ̃. τ ′i [β̃/β] is a variant of µβ. τi . Since β̃ does not occur in D11

at all, it follows by Lemma 7.1.4 that D11[β̃/β] is an AC
=-derivation without

assumptions, with conclusion τ ′1[β̃/β] = τ ′2[β̃/β], and with |D11[β̃/β]| = |D11|.
Hence D can be transformed into the derivation D̃ of the form

D11[β̃/β]

τ1[β̃/β] = τ2[β̃/β] SUBST(.)′[σ/α]

≡ren
(A)

τ1[β̃/β]

︷ ︸︸ ︷

τ ′1[β̃/β] [σ/α] =

≡ren
(B)

τ2[β̃/β]

︷ ︸︸ ︷

τ ′2[β̃/β] [σ/α]
µ-COMPAT

µβ̃. τ ′1[β̃/β] [σ/α]
︸ ︷︷ ︸

WV
(I)

(µβ̃. τ ′1[β̃/β]
︸ ︷︷ ︸
≡ren µβ. τ1

) [σ/α]

= µβ̃. τ ′2[β̃/β] [σ/α]
︸ ︷︷ ︸

WV
(II)

(µβ̃. τ ′2[β̃/β]
︸ ︷︷ ︸
≡ren µβ. τ2

) [σ/α]

RENl, RENr
(µβ. τ1)

′ [σ/α] = (µβ. τ2)
′ [σ/α]

that does not contain assumptions. The equality equivalences (I) and (II)
are justified by Lemma 3.3.10, (iii), which can be applied in each case due
to the facts α 6≡ β̃ and β̃ /∈ fv(σ) ; for (A) and (B) assertion associated with
(3.18) in Lemma 3.4.2 has been used. Now the induction hypothesis can be
applied to the subderivation of D̃ that ends in the displayed application of
SUBST(.)′[σ/α]. Hence this subderivation of D̃ can be replaced by an AC=-
derivation without assumptions that moreover is the result of an effective
transformation-process applied to D11. After eliminating the final applications
of RENl/r from the arising derivation (by replacing these by applications
of TRANS with axioms (REN) in an obvious way) an AC=-derivation D′

without assumptions and with the same conclusion as D has effectively been
produced.

If the last rule application in D1 is UFP, then D is of the form

D11

τ1 = τ [τ1/β]

D12

τ2 = τ [τ2/β]
UFP

τ1 = τ2
SUBST(.)′[σ/α]

τ ′1[σ/α] = τ ′2[σ/α]

We will subsequently restrict our attention to the case that the condition
β ∈ fv(τ) is fulfilled with respect to the application of UFP displayed in the

212 Transforming Derivations from AC= to HB=

above prooftree for D. If to the contrary β /∈ fv(τ) holds, we can argue as
follows: Then the application UFP at the bottom of D1 can be replaced by
an application of SYMM at the bottom of D12 followed by an application
of TRANS with D11 leading up to its left premise. Now the application of
SUBST(.)′[σ/α] at the bottom of D can be permuted upwards over these two
rule applications in the way discussed earlier here and then the induction
hypothesis can be applied for two respective subderivations.

Apart from β /∈ fv(τ), we will furthermore assume that β /∈ fv(σ) and β 6≡ α
are true: If namely β ∈ fv(σ) or β ≡ α were the case, then we would be able
to replace τ by τ [β̃/β] for some variable β̃ with the properties β̃ /∈ fv(σ) ,
β̃ 6≡ α , β̃ /∈ fv(τ) and β̃ substitutible for β in τ and find that the application
of UFP at the bottom of D1 is justified because it is also of the form

τ1 =

WV τ [τ1/β]
︷ ︸︸ ︷

(τ [β̃/β]) [τ1/β̃] τ2 =

WV τ [τ2/β]
︷ ︸︸ ︷

(τ [β̃/β]) [τ2/β̃]
UFP

τ1 = τ2

Now let (a) τ ′1 and τ ′2 be variants of τ1 and τ2, respectively, such that σ is
substitutible for α in τ ′1 and τ

′
2, and (b) τ ′ be a variant of τ such that τ ′1 and τ

′
2

are substitutible for β in τ ′ and σ is substitutible for α and β in τ ′. Due to this
and because of β /∈ fv(σ) we find that τ ′1[σ/α] is substitutible for β in τ ′[σ/α]
for i = 1, 2, i.e. the substitution expressions τ ′[σ/α] [τ ′i [σ/α]/β] are admissi-
ble for i = 1, 2. It furthermore follows that σ is also substitutible for α in
τ ′[τ ′i/β] for i = 1, 2, i.e. that the substitution expressions (τ ′[τ ′1/β]) [σ/α] are
admissible for i = 1, 2. And due to Lemma 3.4.2, (3.18), τ ′[τ ′i/β] ≡ren τ [τi/β]
follows.

Under these circumstances the derivation D can be transformed into a deriva-
tion D̃ of the form

D11

τ1 = τ [τ1/β] S.(.)′[σ/α]
τ ′1[σ/α] = (τ ′[τ ′1/β]) [σ/α]

︸ ︷︷ ︸

WV
(I)

τ ′[σ/α] [τ ′1[σ/α]/β]

D12

τ2 = τ [τ2/β] S.(.)′[σ/α]
τ ′2[σ/α] = (τ ′[τ ′2/β]) [σ/α]

︸ ︷︷ ︸

WV
(II)

τ ′[σ/α] [τ ′2[σ/α]/β]

UFP
τ ′1[σ/α] = τ ′2[σ/α]

(here SUBST(.)′[σ/α] has twice been abbreviated to S.(.)′[σ/α] for typographical
reasons) where for the purpose of establishing the equality equivalences (I) and
(II) Lemma 3.3.11, (iii), has been used. The justification β ↓ τ ′[σ/α] for the
final UFP-application in D̃ follows here from β ↓ τ (which is the side condition
on the application of UFP at the bottom of D) and either of the assumptions
β /∈ fv(σ) or α 6≡ β with the help of Lemma 7.1.2, (i) and (ii).

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 213

D̃ can now effectively be transformed into an AC=-derivation D′ without as-
sumptions and with the same conclusion by using the induction hypothesis
twice for the two subderivations of D̃ ending in the two displayed applica-
tions of SUBST(.)′[σ/α] and by replacing these by AC=-derivations without
assumptions and with the same respective conclusions.

This concludes the examination of all rules of AC= for the induction step.
Hence the proof by induction of the possibility to transform a derivation (7.17)
(with the assumptions on the recursive types τ1, τ2, τ

′
1, τ

′
2 and its subderivation

D1 as above) has thus been completed.

(2) Here we will show the part of assertion (7.16) that refers to substitution rules
of the family {SUBSTτ [./α]}τ,α introduced in Definition 7.1.7, (ii). We will
do so by proving the stronger assertion that these rules are in fact derivable
in AC= and can effectively be eliminated from all derivations in AC= +
+ {SUBSTτ [./α]}τ,α.

We have to show the following part of (7.16) here: every derivation D of the
form

D1

σ1 = σ2 SUBSTτ [./α]
τ [σ1/α] = τ [σ2/α]

(7.18)

where τ, σ1, σ2 ∈ µTp and α ∈ TVar and where D1 is a derivation in AC=

without assumptions, can effectively be transformed into a derivation D′ in
AC= without assumptions and with the same conclusion as D. However, if
rules SUBSTτ [./α] are actually derivable rules of AC=, and if, what is slightly

more, for every application ι of SUBSTτ [./α] a derivation D
(ι)
mim in AC= that

mimics the derivation D(ι) corresponding to ι can effectively be found, then
the assertion in the last sentence follows: this is because every derivation D
as in (7.18) can then be transformed into the derivation

D1

[σ1 = σ2]

D
(ι)
mim

τ [σ1/α] = τ [σ2/α]

(7.19)

in AC=, where D
(ι)
mim mimics the application of SUBSTτ [./α] at the bottom of

D.

Hence we are left with proving that substitution rules SUBSTτ [./α], where
τ ∈ µTp and α ∈ TVar , are derivable inAC= and that mimicking derivations

D
(ι)
mim for applications ι of such rules can always be found effectively. We will

prove this by induction on |τ |.

Let α ∈ TVar be arbitrary. We will show by induction on |τ | that, for all

214 Transforming Derivations from AC= to HB=

τ ∈ µTp and for all derivations D(ι) in AC
=+SUBSTτ [./α] of the form

σ1 = σ2 SUBSTτ [./α]
τ [σ1/α] = τ [σ2/α]

(7.20)

with assumption σ1 = σ2 , where σ1, σ2 ∈ µTp , it is possible to find effectively

a derivation D
(ι)
mim in AC= that mimics D(ι), i.e. a derivation of the form

[σ1 = σ2]

D
(ι)
mim

τ [σ1/α] = τ [σ2/α]

(7.21)

for which D
(ι)
mim - D(ι) holds, and hence concl(D

(ι)
mim) = concl(D(ι)) as well as

set(assm(D
(ι)
mim)) ⊆ set(assm(D(ι))) = {σ1 = σ2} .

First we consider the base case |τ | = 0 of the induction.

If τ ≡ ⊥ or τ ≡ > or τ ≡ β with β 6≡ α, then both of τ [σ1/α] and τ [σ2/α]

denote τ and hence D
(ι)
mim can be chosen as the axiom τ = τ belonging to the

axiom scheme (REFL) of AC=. If τ ≡ α then τ [σ1/α] denotes σ1 and hence

D
(ι)
mim can be chosen as the assumption σ1 = σ2 .

Secondly, we consider the induction step in which |τ | ≥ 1 holds.

In the first subcase, we assume that, for some τ1, τ2 ∈ µTp , τ ≡ τ1 → τ2 is the
case, and that D(ι) is a derivation of the form (7.20) with some σ1, σ2 ∈ µTp .
We denote by D(ι1) and D(ι2) the two derivations of the form (7.20) with τ1
and τ2 in place of τ (admissibility of the substitution expressions τj [σi/α] ,
for i, j ∈ {1, 2} , in the conclusions of D(ι1) and D(ι2) follows from the implicit
side-conditions of the admissibility of the substitution expressions τ [σi/α] , for
i ∈ {1, 2} , occurring in the conclusion of the assumed derivation D(ι)). Then

by the induction hypothesis respective derivations D
(ι1)
mim and D

(ι2)
mim in AC=

with D
(ι1)
mim - D(ι1) and D

(ι2)
mim - D(ι2) can be produced effectively. It follows

that the derivation

[σ1 = σ2]

D
(ι1)
mim

τ1[σ1/α] = τ1[σ2/α]

[σ1 = σ2]

D
(ι2)
mim

τ2[σ1/α] = τ2[σ2/α]
ARROW

τ [σ1/α] = τ [σ2/α]

in AC= mimics D(ι) and hence can be chosen as the desired derivation D
(ι)
mim.

In the second subcase, we assume that τ ≡ µβ. τ0 , for some β ∈ TVar and
τ0 ∈ µTp, is the case, and that D(ι) is a derivation of the form (7.20) with some
σ1, σ2 ∈ µTp . If α /∈ fv(τ) holds, then τ [σ1/α] and τ [σ2/α] both denote τ

and hence D
(ι)
mim can be chosen as the axiom τ = τ of AC=. Hence we can

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 215

now assume that α ∈ fv(τ). It follows that α 6≡ β and α ∈ fv(τ0). We denote
by D(ι0) the derivation of the form (7.20) with τ0 in place of τ (admissibility of
the substitution expression τ0[σi/α], for i ∈ {1, 2}, in the conclusion of D(ι0)
follows by Lemma 3.3.10, (i), due to the implicit side-condition of the admis-
sibility of τ [σi/α], for i ∈ {1, 2} , in the conclusion of the assumed derivation

D(ι)). By the induction hypothesis there exists a derivation D
(ι0)
mim in AC=

with D
(ι0)
mim - D(ι0) . It follows that

[σ1 = σ2]

D
(ι0)
mim

τ0[σ1/α] = τ0[σ2/α]
µ-COMPAT

µβ. τ0[σ1/α]
︸ ︷︷ ︸

WV
(I)

(µβ. τ0)[σ1/α]

= µβ. τ0[σ2/α]
︸ ︷︷ ︸

WV
(II)

(µβ. τ0)[σ2/α]

is a derivation in AC= that mimics the derivation D(ι) and hence can be

chosen as the derivation D
(ι)
mim in this case; the equality equivalences labeled

by (I) and (II) follow from Lemma 3.3.10 due to α 6≡ β and the admissibility
of (µβ. τ0) [σ1/α] and (µβ. τ0) [σ2/α] .

In this way we have carried out the induction step and hence have concluded
the proof by induction of the derivability in AC= of substitution rules of Defi-
nition 7.1.7, (ii), and of the possibility to find respective mimicking derivations
effectively.

(3) Here we have to show that part of the assertion (7.16) which refers to sub-
stitution rules R = SUBST(.)′[./α] for some type variable α ∈ TVar . We will
see that this is an easy consequence of the parts (1) and (2) of this proof, and
in particular, of the admissibility in AC= of the substitution rules of kinds
(i) and (ii) of Definition 7.1.7.

For showing this, we fix an arbitrary type variable α. Let D be an arbitrary
derivation without assumptions that is of the form

D1

τ1 = τ2
D2

σ1 = σ2 SUBST(.)′[./α]

τ ′1[σ1/α] = τ ′2[σ2/α]

(7.22)

where D1 and D2 are AC=-derivations and where τ ′1 and τ ′2 are variants of τ1
and τ2 respectively. Let τ ′′2 be another variant of τ2 such that both σ1 and σ2
are substitutible for α in τ ′′2 . Then the derivation D̃

D1

τ1 = τ2 SUBST(.)′[σ1/α]

τ ′1[σ1/α] = τ ′′2 [σ1/α]

D2

σ1 = σ2 SUBSTτ ′′2 [./α]
τ ′′2 [σ1/α] = τ ′′2 [σ2/α]

TRANS
τ ′1[σ1/α] = τ ′′2 [σ2/α] RENr
τ ′1[σ1/α] = τ ′2[σ2/α]

216 Transforming Derivations from AC= to HB=

is a derivation in the extension of the system AC= by adding the rules
SUBST(.)′[σ1/α], SUBSTτ ′′2 [./α], and RENr. Due to items (1) and (2) of this

proof, the two subderivations of D̃ that end in the premises of the displayed
application of TRANS can be replaced by effectively found AC=-derivations
D′1 and D′2 without assumptions and with the same respective conclusion.
Then in the resulting derivation D̃′ the application RENr at its bottom can
be replaced by an application of TRANS with an axiom (REN). In this way
we have effectively eliminated the application of SUBST(.)′[./α] at the bottom
of the assumed derivation D of the form (7.22), and we have reached, in an
effective way, an AC=-derivation D′ without assumptions and with the same
conclusion τ ′1[σ1/α] = τ ′2[σ2/α] as D.

Remark 7.1.10. Assertion (ii) of Lemma 7.1.9, the proof of which was certainly not
equally involved as that of assertion (i), is actually used by Amadio and Cardelli at
various places in [AmCa93]. Notably, it is used there in example (2) of Section 5.1.2,
“Derived Rules”, on page 29, where it is shown that the formulas of the scheme of
axioms (µµ−µ) in Lemma 3.8.4 are in fact theorems of AC= (in Example 5.1.8
we have demonstrated that the axioms of the scheme (µµ−µ) are in fact theorems
of the variant system AC=

∗ of AC=). And furthermore, the admissibility of the
rules SUBSTτ [./α] (for arbitrary τ and α) is also essentially used in the proof for
Lemma 5.2.2, “A system of contractive equations has a unique solution”, on page 30
in [AmCa93].

As an aside, we observe that the assertion of Lemma 7.1.9 stays correct if the
substitution rules of kind (ii) in Definition 7.1.7 are replaced by the variant rules
introduced in Remark 7.1.8.

Proposition 7.1.11. For all τ ∈ µTp and α ∈ TVar it holds that the substitution
rule SUBST(τ)′[./α] (defined in Remark 7.1.8) is derivable in AC=.

Proof. For all τ ∈ µTp and α ∈ TVar , mimicking derivations in AC= for appli-
cations of SUBST(τ)′[./α] can be found from mimicking derivations of respective
derivations of rules SUBSTτ ′′′[./α], for appropriate variants τ ′′′ of τ , by appending
one or two subsequent applications of RENl/r.

Definition 7.1.12 (The variant systems AC=
− and AC=

∗− of AC=). The
(pure) Hilbert-style proof system AC=

−, a variant system of the system AC= of
Definition 5.1.1, is defined as follows: The formulas of AC=

− are the equations
between recursive types in µTp–Eq. The axioms ofAC=

− are all those, that belong to
one of the axiom schemes (REFL), (REN) or (FOLD/UNFOLD) of Definition 5.1.1
together with those of the scheme

(µ−⊥)′ µαα1 . . . αn. α = ⊥ (where n ∈ ω) (7.23)

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 217

of the system HB= (which axiom scheme properly contains the axioms (µ−⊥) of
AC=). The inference rules of AC=

− are the rules SYMM, TRANS, ARROW and
UFP of AC=, i.e. AC=

− contains all rules of AC= except the rule µ-COMPAT.
Furthermore, we let AC=

∗− be the system that arises from the system AC=
∗

of Definition 5.1.5 by removing, on the one hand, the axioms (µ−⊥) and the rule
µ-COMPAT, and by adding, on the other hand, the axioms (µ−⊥)′ of (7.23). £

By this definition AC=
− is an extension of the system AC=−µ-COMPAT. In

particular, every derivation in AC=−µ-COMPAT is also a derivation in AC=
−. In

the same way also AC=
∗− is an extension of the system AC=

∗ −µ-COMPAT.

Proposition 7.1.13. The systems AC=
− and AC=

∗− are equivalent. What is more,
every derivation D in AC=

− can effectively be transformed (in an easy way) into
a derivation D∗ in AC=

∗− with the same conclusion and the same (if any) open
assumptions as D; and vice versa.

Proof. This can be shown in the same way as the equivalence (and the manner to
make this an “effective” assertion) of the systems AC= and AC=

∗ was shown in the
proof of Proposition 5.1.6.

For the main theorem of this section we will need the fact, stated by the following
lemma, that not only are substitution rules of kind (i) in Definition 7.1.7 admissible
in AC= and in AC=

∗ (as stated by Lemma 7.1.9, (ii)) but also in AC=
∗ and in

AC=
∗−.

Lemma 7.1.14. For all σ ∈ µTp and α ∈ TVar , the rules SUBST(.)′[σ/α] are ad-
missible in AC=

−. Moreover every derivation D in AC=
−+{ SUBST(.)′[σ/α]}σ,α with-

out assumptions can effectively be transformed into an AC=
−-derivation D

′ without
assumptions and with the same conclusion.

Proof. This can be shown by an analogous (in fact almost identical but shorter)
proof than the one in item (1) of the proof of Lemma 7.1.9, (i). Only the following
consequences of the difference between AC= and AC=

− have to be observed for an
analogous proof by induction:

(a) For the base case of the induction: applications of SUBST(.)′[σ/α] that im-
mediately follow AC=

−-axioms of the scheme (µ − ⊥)′ amount to taking a
variant on the left hand side of the equation in the axiom, since such axioms
do not contain free variables and therefore substitutions of recursive types in
them are to no effect; such applications can therefore always be replaced by
applications of the transitivity rule TRANS with a variant axiom (REN).

(b) For the induction step:

(a) Rules µ-COMPAT are not contained in AC=
− and hence there is no need

here to here treat upwards-permutation of rules SUBST(.)′[σ/α] over ap-
plications of µ-COMPAT-rules.

218 Transforming Derivations from AC= to HB=

(b) The possibility to permute SUBST(.)′[σ/α]-rules upwards over AC
=-rules

other than µ-COMPAT does not depend on the presence of the rules
µ-COMPAT in AC= (and therefore all such permutations of AC=

−-rules
can indeed be performed in AC=

− in the same way done in the proof for
item (i) of Lemma 7.1.9).

We are now able to prove the main theorem of this section. Informally, it states
that the rule µ-COMPAT of AC= and AC=

∗ can be dispensed with in either of the
systems AC=

− and AC=
∗−.

Theorem 7.1.15. The rule µ-COMPAT is an admissible rule of AC=
− and of

AC=
∗−. What is more, every derivation D of the form

D1

τ1 = τ2 µ-COMPAT ,
µα. τ1 = µα. τ2

(7.24)

where D1 is an AC=
−-derivation without open assumptions, can effectively be trans-

formed into an AC=
−-derivation D

′ with the same conclusion as D and without
assumptions. And an analogous assertion holds with respect to derivations in the
system AC=

∗−.

Proof. LetH be one of the systemsAC=
− orAC=

∗−. For showing that µ-COMPAT is
admissible inH, it suffices to prove that every derivation D of the form (7.24), where
D1 denotes a derivation in H without assumptions, can effectively be transformed
into a derivation D′ in H with the same conclusion as D and without assumptions.
In order to demonstrate this, we let D be an arbitrary derivation in H of the form
(7.24) such that D1 is a derivation in H without assumptions. We distinguish two
cases:

Case 1: α 6 ↓ τ1 and α 6 ↓ τ2.

Then by Lemma 7.1.1 it holds that τ1 ≡ µα1 . . . αn1 . α and τ2 ≡ µα̃1 . . . α̃n2 . α
for some n1, n2 ∈ ω and variables α1, . . . , αn1 , α̃1 . . . α̃n2 6≡ α. Then µα. τ1 =
⊥ and µα. τ2 = ⊥ are axioms of the scheme (µ − ⊥)′ of H and hence the
derivation D′

(µ−⊥)′

µα. τ1 = ⊥

(µ−⊥)′

µα. τ2 = ⊥
SYMM

⊥ = µα. τ2
TRANS

µα. τ1 = µα. τ2

is a derivation in H with the same conclusion as D and without open assump-
tions.

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 219

Case 2: α ↓ τ1 or α ↓ τ2.

Suppose for once, that α ↓ τ1 holds (it will be obvious from the transformation
described below that the case α ↓ τ2 can even be treated easier). Let τ ′1
and τ ′2 be variants of τ1 and τ2 respectively, such that µα. τ2 (and then also
µα. τ ′2) is substitutible for α in both τ ′1 and τ ′2. Then α ↓ τ ′1 holds as well
(by Lemma 7.1.2, (i)), which justifies the application of CONTRACT in the
following derivation D(1):

D1

τ1 = τ2
SYMM

τ2 = τ1 SUBST(.)′[µα. τ ′2/α]

τ ′2[µα. τ
′
2/α] = τ ′1[µα. τ

′
2/α] FOLDl

µα. τ ′2 = τ ′1[µα. τ
′
2/α]

CONTRACT
µα. τ ′2 = µα. τ ′1

RENl, RENr
µα. τ2 = µα. τ1

SYMM
µα. τ1 = µα. τ2

The subderivation D
(1)
1+ of D(1), whose last rule application is the displayed ap-

plication of SUBST(.)′[µα. τ ′2/α]
in D(1), can—due to Lemma 7.1.14—effectively

be transformed into an AC=
−-derivation D

(2)
1+ with the same conclusion and

without assumptions. Let the result of replacing D
(1)
1+ in D(1) by D

(2)
1+ be D(2).

In the case H =AC=
∗− the derivation D(2) can be directly transformed into

a derivation in H by eliminating the two displayed applications of RENl/r,
and the application of FOLDl. In the case H =AC=

− additionally the single

application of CONTRACT has to be removed from D(2) (this can be done as
shown in the proof of Proposition 5.1.6). In both cases the result effectively
reached is a derivation D′ in H with the same conclusion as D and without
assumptions.

In both cases a derivation D′ in H with the same conclusion µα. τ1 = µα. τ2 as D
and without assumptions has effectively been found.

Remark 7.1.16. The proof of Theorem 7.1.15 yields some additional informa-
tion: if AC=

− or AC=
∗− is enriched by the substitution rules SUBST(.)′[σ/α] (for

all α ∈ TVar and σ ∈ µTp), then µ-COMPAT is even a derivable rule. That is,
µ-COMPAT is a derivable rule in each of the systems AC=

−+{SUBST(.)′[σ/α]}σ,α
and AC=

∗−+{SUBST(.)′[σ/α]}σ,α .

Corollary 7.1.17. The axiom systems AC=, AC=
∗ , AC

=
− and AC=

∗− are equiva-
lent, i.e. all of these systems possess the same theorems. Furthermore every deriva-
tion D in either of these systems can effectively be transformed into a derivation
D′ in one of the other systems such that D′ has the same conclusion and the same
assumptions as D.

220 Transforming Derivations from AC= to HB=

Proof. In view of Proposition 5.1.6 and of Proposition 7.1.13 it suffices to show
the equivalence of AC= and AC=

− and the existence of effective transformations
between these two systems.

To show on the one hand that every AC=
−-derivation can be transformed into an

AC=-derivation with the same conclusion, it suffices to give derivations for every
axiom of the scheme (µ−⊥)′ of AC= (because all other axioms of AC=

− as well as
all of its rules are also, respectively, axioms and rules of AC=). All axioms of the
scheme (µ−⊥)′ allow in fact derivations from axioms (µ−⊥) and (FOLD/UNFOLD)
with rules TRANS and µ -COMPAT. Here only an example shall be presented: the
axiom µαα2αα1. α (where α1, α2 6≡ α) ofAC=

−. This equation admits the derivation

(FOLD/UNFOLD)

µαα2αα1. α = µα2αα1. α

(FOLD/UNFOLD)

µα2αα1. α = µαα1. α D0
TRANS

µα2αα1. α = ⊥
TRANS

µαα2αα1. α = ⊥

in AC=, where D0 is the derivation

(FOLD/UNFOLD)

µα1. α = α
µ-COMPAT

µαα1. α = µα. α

(µ−⊥)

µα. α = ⊥
TRANS

µαα1. α = ⊥

To show on the other hand that every AC=-derivation can effectively be trans-
formed into an AC=

−-derivation with the same conclusion, it suffices to prove (since
derivations in AC=−µ-COMPAT are derivations in AC=

−) that applications of
µ-COMPAT can effectively be eliminated from an arbitrary AC=-derivation D.
But this follows clearly from the theorem by induction on the number of applica-
tions of µ-COMPAT in an AC=-derivation D, where in the induction step always
topmost occurrences of µ-COMPAT are considered and removed.

Remark 7.1.18. By a similar argument as used in the above proof for the deriv-
ability of the axioms (µ−⊥) in AC=, it can be shown that the axioms of the
scheme (µ−⊥)′ in AC=

− can actually be derived from ones belonging to the proper
subscheme

(µ−⊥)′′ µαα1 . . . αn. α = ⊥ (where n ∈ ω and α 6≡ α1, . . . , αn) (7.25)

of (µ−⊥)′ by derivations using additionally only axioms (FOLD/UNFOLD) and
applications of TRANS. Consequently, it had been possible to take up the axiom
scheme (µ−⊥)′′ of (7.25) instead of the axiom scheme (µ−⊥)′ from (7.23) into
the definition of the systems AC=

− and AC=
∗− in Definition 7.1.12 and equivalent

systems would have resulted respectively. We have chosen not to do so in the aim
of avoiding the obligation to carry along the inessential restriction α 6≡ α1, . . . , αn
on the axioms of the form (7.23).

7.1 Admissibility of µ-COMPAT in a Variant System AC=
− of AC= 221

The following theorem states that, with the single exception of the statement
concerning derivability of rules SUBSTτ [./α], for all τ ∈ µTp and α ∈ TVar , the
assertion of Lemma 7.1.9 stays true if the system AC= is replaced everywhere by
the system AC=

−. We will show this theorem by appropriately applying the proof-
theoretic transformations developed in the proofs of this section.

Theorem 7.1.19. All of the substitution rules from Definition 7.1.7 are admissible
in AC=

− and can effectively be eliminated from derivations in the extension of AC=
−

by adding these additional rules.

Proof. It suffices to show that every derivation without assumptions in the extension
ofAC=

− by the substitution rules from Definition 7.1.7 can effectively be transformed
into a derivation in AC=

−.
Let an arbitrary derivation D without assumptions in the extension of AC=

−

by the substitution rules from Definition 7.1.7 be given. The derivation D can be
effectively transformed into a derivation D′ in AC=

− without assumptions and with
the same conclusion as D be performing the following four steps:

(1) Elimination of substitution rules from Definition 7.1.7, (iii): Using the trans-
formation described in item (3) of the proof of Lemma 7.1.9, it is possible
to eliminate from D all applications of the substitution rule SUBST(.)′[./α],
for arbitrary α ∈ TVar. Hereby this transformation is applied successively to
arbitrarily chosen occurrences of applications of SUBST(.)′[./α], thereby elimi-
nating the respective application and introducing no new applications of such
rules (but introducing substitution rules of kind (i) and (ii) in Definition 7.1.9
instead), until no applications of rules SUBST(.)′[./α], for some α ∈ TVar are

left. The result D(1) of this elimination process is then a derivation in the
extension of AC=

− by adding the substitution rules of kinds (i) and (ii) in
Definition 7.1.7.

(2) Elimination of substitution rules from Definition 7.1.7, (ii): Using the trans-
formation described in item (2) of the proof of Lemma 7.1.9, it is possible
to eliminate from D(1) all applications of substitution rules SUBSTτ [./α], for
arbitrary τ ∈ µTp and α ∈ TVar . In each such elimination-step of an arbi-
trarily chosen application of a rule SUBSTτ [./α] no new occurrences of such
rules are introduced but possibly the rule µ-COMPAT (which is not present
in AC=

−) is used. The result D(2) is then a derivation without assumptions
and with the same conclusion as D in the extension of AC=

− by adding the
rule µ-COMPAT as well as substitution rules of kind (i) in Definition 7.1.7.

(3) Elimination of µ-COMPAT: All applications of the rule µ-COMPAT in D(2)

can successively be eliminated in an effective way by using the transformation
from the proof of the Theorem 7.1.15. Each such elimination step (applied
first to D(2) and then to the intermediate-results of derivations still containing
applications of µ-COMPAT) can be done in such a way that no new application
of µ-COMPAT is introduced, but only axioms ofAC=, applications of rules of
AC=

−, and applications of substitution rules a SUBST(.)′[σ/α], for some σ, α.

222 Transforming Derivations from AC= to HB=

The result of these successive and stepwise eliminations of all applications of
µ-COMPAT in D(2) is a derivation D(3) without assumptions and with the
same conclusion as D in the extension of AC= with substitution rules of kind
(i) in Definition 7.1.7.

(4) Elimination of substitution rules from Definition 7.1.7, (i): By Lemma 7.1.14
it follows now that D(3) can effectively be transformed by the elimination of
applications of SUBST(.)′[σ/α] into an AC=

−-derivation D
′ without assump-

tions and with the same conclusion as D.

We conclude this section with two propositions that complement the ‘positive’
statements of the substitution rules and of the rule µ-COMPAT being admissible
in AC=

− and in AC=
∗− by ‘negative’ statements concerning derivability in these

systems of µ-COMPAT and of substitution rules of kind (i) in Definition 7.1.7.

Proposition 7.1.20. The rule µ-COMPAT is neither derivable in AC=
− nor in

AC=
∗−.

Proof. It suffices to prove that µ-COMPAT is not a derivable rule in AC=
− because,

as a consequence of Proposition 7.1.13, for every derivation D in AC=
− that mimics

an application ι of µ-COMPAT there exists a derivation D∗ in AC=
∗− that also

mimics ι. We will give two auxiliary assertions in item (a) below and will conclude
the proof in item (b).

(a) We notice first the consequence
[

`AC=

−

τ = σ ⇒ L′(τ) = L′(σ)
]

(for all τ, σ ∈ µTp) (7.26)

of Lemma 5.3.1, (iii). In an alternative way, (7.26) follows from the soundness
of AC=

− with respect to =µ (because AC=
− and AC= are equivalent, the

soundness of AC=
− with respect to =µ is entailed by the soundness of AC=

with respect to =µ).

Secondly, also the statement

[[α = β]

D
τ = σ

is a derivation in AC=
− with at least one assm.

of the form α = β and with no other assms.
=⇒

=⇒ L′(τ),L′(σ) ∈ {α, β,→}

]

(for all τ, σ ∈ µTp) (7.27)

can be shown in a quite straightforward way by induction on the depth |D|
of a derivation D in AC=

− with at least one occurrence of a assumption of
the form α = β and without other assumptions. In the induction step the
assertion (7.26) is used for settling one subcase of the case with an application
of TRANS at the bottom of D.

7.1 A Transformation of AC=- via AC=
−- into HB=-Derivations 223

(b) µ-COMPAT is not a derivable rule in AC=
− :

Suppose, to the contrary, that µ-COMPAT is a derivable rule in AC=
− and

let α and β be type variables such that α 6≡ β . Then for the application of
µ-COMPAT of the form

α = β
µ-COMPAT

µα. α = µα. β

there exists a derivation D in AC=
− that has conclusion µα. α = µα. β and

that does not contain assumptions other than possibly such of the form α = β
. If D does not contain assumptions at all, then its conclusion µα. α = µα. β
is a theorem of AC=

−; but this contradicts (7.26) because of

L′(µα. α) = ⊥ and L′(µα. β) = β . (7.28)

However, if D contains assumptions of the form α = β , then a contradiction
with (7.27) arises, again due to (7.28). Thus our assumption that µ-COMPAT
is derivable in AC=

− cannot be sustained.

Proposition 7.1.21. Not all of the substitution rules SUBST(·)′[σ/α], for σ ∈ µTp
and α ∈ TVar , are derivable in AC=. And the same assertion holds with respect
to AC=

∗ .

Proof. Close inspection of the proof of Lemma 7.1.15 shows that µ-COMPAT would
be derivable in both AC= and AC=

∗ if all substitution rules SUBST(·)′[σ/α], for
σ ∈ µTp and α ∈ TVar , were derivable in both of these systems (we have observed
a related statement in Remark 7.1.16). However, Proposition 7.1.20 tells us that
µ-COMPAT is neither derivable in AC= nor in AC=

∗ . Therefore the statement of
the proposition follows.

7.2 A Transformation of AC=-Derivations via
AC=

−-Derivations into HB=-Derivations

In this section we describe and justify an effective proof-theoretic transformation
from derivations in the proof system AC= of Amadio and Cardelli into derivations
in the proof system HB= of Brandt and Henglein. This transformation produces,
starting from a derivation D in AC= without assumptions, a derivation D′ in HB=

without open assumptions and with the same conclusion as D. It proceeds in three
main steps, the first of which will be based on preparatory work done in the previous
section, while the second and the third will be developed in this section. In the first
of these steps, a given derivation D in AC= without assumptions is transformed
into a derivation D(1) in the variant system AC=

− of AC= such that D(1) has the
same conclusion as D and does not contain assumptions. And in the second and

224 Transforming Derivations from AC= to HB=

Figure 7.1: Illustration of the three main steps in the transformation developed in
this section from derivations in AC= without assumptions into mimicking deriva-
tions in HB=.

D
τ = σ

AC=-derivation
without

assumptions

D(1)

τ = σ
D(2)

τ = σ

HB=+UFP−(nd)-
derivation

without open
assumptions

AC=
−-derivation
without

assumptions

Renaming of

UFP- into UFP−(nd)-
applications

Elimination of

UFP−(nd)-applications
Elimination of

µ-COMPAT-applications

D′

τ = σ

HB=-derivation
without open
assumptions

third steps, the derivation D(1) in AC=
− is then transformed into a derivation D′ in

HB= with the same conclusion as D and without open assumption classes.
Now we are going to outline, in some more detail, the three main steps of the

transformation in their application to a derivation in AC=. For this purpose we let
an arbitrary derivation D inAC= be given. We refer to Figure 7.1 for an illustration
of this transformation, and start by sketching its first step:

(1) µ-COMPAT-elimination Step: The AC=-derivation D without assumptions
is transformed, by an effective process of µ-COMPAT-elimination, into a mim-
icking derivation D(1) in AC=

−, i.e. a derivation without assumptions and with
the same conclusion as D.

For the existence of such a process of µ-COMPAT-elimination we will be able to
refer to Corollary 7.1.17; a particular procedure of this kind underlies the proof of
this corollary, and can be extracted from there and from the proofs of some other
statements in Section 7.1, to which the proof of Corollary 7.1.17 refers to (most im-
portantly, from the proof of Theorem 7.1.15, for effective µ-COMPAT-elimination,
and from the proof of Lemma 7.1.9, for effective elimination of substitution rules).

The second and the third steps of the transformation will be based on the fol-
lowing observation: the systems AC=

− and HB= have the same axioms and they
differ only in the rule UFP, which is a rule of AC=, but not of HB=, and in
the rule ARROW/FIX, which is a rule HB=, but not of AC=; however, we have
ignored in this sentence that AC=

− is a pure Hilbert-system, whereas HB= is a
natural-deduction system. Still, it follows that if it is possible to ‘mimic’ arbitrary
applications of UFP in HB=, then every derivation in AC=

− can be transformed,
by successively replacing applications of UFP by appropriate mimicking derivations
(more precisely, by mimicking derivation-contexts), into a derivation in HB= with-

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 225

out open assumptions and with the same conclusion. These considerations form the
basis for the second and the third step, which are are outlined below:

(2) Renaming Step of UFP- into UFP−(nd)-applications: The derivation D(1) in

AC=
− without assumptions is altered into a derivation D(2) without open

assumptions in an extension of HB= with an appropriate natural-deduction-
system counterpart UFP−(nd) of the rule UFP in AC=. This step will always

consist purely of renaming applications of UFP in D(1) into applications of
UFP−(nd) in D(2). This modification of D(1) does not affect the conclusion of

the derivation, and hence D(2) has the same conclusion as D(1), and therefore
also the same conclusion as D.

(3) UFP−(nd)-elimination Step: In this step all applications of UFP−(nd) are effec-

tively eliminated from the derivation D(2) in HB=+UFP−(nd) with the result

of a derivation D′ in HB= without open assumptions and with the same
conclusion as D(2), and thereby also with the same conclusion as D.

The second step of the transformation will later be justified by Proposition 7.2.2
(i). And the third step will be based upon Lemma 7.2.3, (ii), for which we will
actually show that the mentioned natural-deduction-system version UFP−(nd) of the

rule UFP is derivable in HB=, and hence that every application of UFP−(nd) in

HB= +UFP−(nd) can be mimicked by an appropriate derivation context in HB=

without open assumptions.
Contrasting with the elimination of µ-COMPAT-applications from anAC=-deriva-

tion without assumptions, which needs a somewhat complicated procedure related
to the fact that µ-COMPAT is only admissible, but not derivable in AC=

−, the

elimination of UFP−(nd)-applications from a derivation D(2) in HB=+UFP−(nd), as

this takes place in the third step of the transformation, is a comparably easier
process due to the fact that UFP−(nd) will be recognized to be a derivable rule in

HB=. This implies namely that it is possible to directly “translate” applications ι

of UFP−(nd) into mimicking derivation-contexts DC
(ι)
mim in HB=, with the effect that

an application ι̃ of UFP−(nd) at the bottom of a derivation D̃ in HB=+UFP−(nd) like

D̃1

τ1 = τ [τ1/α]

D̃2

τ2 = τ [τ2/α] UFP−(nd)
τ1 = τ2

(7.29)

can be eliminated by replacing D̃ with the derivation D̃′ in HB=+UFP−(nd) of the

form
D̃1

[τ1 = τ [τ1/α]]1

D̃2

[τ2 = τ [τ2/α]]2

DC
(ι̃)
mim

τ1 = τ2

(7.30)

226 Transforming Derivations from AC= to HB=

Figure 7.2: Illustration of the three main steps in the transformation developed in
this section from derivations in AC=

∗ without assumptions into mimicking deriva-
tions in HB=.

D
τ = σ

AC=
∗ -derivation
without

assumptions

D(1)

τ = σ
D(2)

τ = σ

derivation in
HB=+CONTR.−(nd)

without open
assumptions

AC=
∗−-derivation
without

assumptions

Renaming of

CONTRACT- into

CONTRACT−(nd)-
applications

Elimination of

CONTRACT−(nd)-
applications

Elimination of

µ-COMPAT-applications

D′

τ = σ

HB=-derivation
without open
assumptions

where DC
(ι̃)
mim ∈ DerCtxt2(HB

=) is a mimicking derivation context for ι̃ in HB=.
However, the number of UFP−(nd)-applications may actually increase during such

an elimination step if both context-holes []1 and []2 occur in DC
(ι)
mim and if, for

some i ∈ {1, 2} , the derivation Di contains UFP−(nd)-applications and the derivation

context DC
(ι̃)
mim contains more than one occurrence of the context-hole []i. But the

elimination of topmost occurrences of UFP−(nd) in such a transformation step does

actually decrease the number of UFP−(nd)-applications in a derivation inHB=; more

precisely, if, for the derivation D̃ in (7.29), the subderivations D̃1 and D̃2 are actually
HB=-derivations, then the respective transformed derivation D̃′ is also a derivation

in HB= (we will show that DC
(ι)
mim can be chosen such that D̃ and D̃′ have the same

open assumption classes).

We will also describe an analogous transformation from derivations D with-
out assumptions in the variant system AC=

∗ of AC= into derivations D′ in HB=

without open assumptions and with the same conclusion as D. This transforma-
tion is diagrammatically pictured in Figure 7.2, which is analogous to Figure 7.1,
the schematic illustration we have given above for the transformation between
AC=- and HB=-derivations. Here, a suitable natural-deduction-system version
CONTRACT−(nd) of the AC

=
∗ -rule CONTRACT comes into play. In the first step,

a derivation D in AC=
∗ without assumptions is transformed into a derivation D(1)

in AC=
∗− such that D(1) does not contain assumptions and has the same conclusion

as D. Then in the second step, each occurrence of an application of CONTRACT
in D(1) is merely renamed into an occurrence of CONTRACT−(nd) with the result

of a derivation D(2) in HB=+CONTRACT−(nd) without open assumptions that has

the same conclusion as D. Finally in the third step, D(2) is transformed into a

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 227

derivation D′ in HB= without open assumptions and with the same conclusion as
D by a process of effective CONTRACT−(nd)-elimination.

We are going to present the proof for the existence of the effective transforma-
tion from arbitrary AC=-derivations without assumptions into HB=-derivations
without open assumption classes and with respectively the same conclusions in a
bottom-up manner: we state the main theorem first, and prove it only later after
the statement of a main lemma; this lemma will in its turn be proven only subse-
quently after the formulation of a further needed lemma; and so on in a similar way.
The reason for this interleaving bottom-up approach in presenting our proof and
in developing the transformation here consists in the amount of necessary technical
details, which could quite easily deter the attention from our goal of establishing
the existence of the desired transformation.

The proof of the main theorem of this section, Theorem 7.2.1 just below, uses a
number of technical lemmas, of which the proof of Lemma 7.2.3 will actually contain
the effective method of finding mimicking derivations in HB= for the applications
of the rules CONTRACT−(nd) and UFP−(nd). The proof of Lemma 7.2.9 employs,

in a somewhat implicit way, the method from the completeness-proof of Brandt
and Henglein. Lemma 7.2.6 follows from Lemma 7.2.9 by an additional lemma,
Lemma 7.2.13, concerning the possibility to generate new HB=

0 -derivations from
given ones by performing certain kinds of substitutions throughout a HB=

0 -deriva-
tion. Lemma 7.2.6 is the main tool for proving Lemma 7.2.3.

Theorem 7.2.1 (Effective transformation of AC=- and AC=
∗ -derivations

into HB=-derivations). Every derivation D in one of the systems AC= or
AC=

∗ without assumptions can be transformed effectively into a derivation D′ in
HB= with the same conclusion and without open assumption classes.

We will prove this theorem subsequently on page 230. But first we introduce
natural-deduction-system versions CONTRACT−(nd) and UFP−(nd) of the rules CON-

TRACT and UFP, give a proposition related to these rules, and formulate two lem-
mas that are concerned with what is the central issue to be settled in this section
for the proof of Theorem 7.2.1: the elimination of applications of CONTRACT−(nd)
and UFP−(nd) from derivations in the extension of HB= with these rules.

We start by introducing the following natural-deduction-system variants of the
rules UFP and CONTRACT from the systems AC= and AC=

∗ . In a natural-
deduction system S that has µTp–Eq as its set of formulas, the rule UFP−(nd) enables

all applications that, at the bottom of a derivation in S+UFP−(nd), are of the form

D1

τ1 = τ [τ1/α]

D2

τ2 = τ [τ2/α] UFP−(nd) (no side-conditions on D1 and D2)
τ1 = τ2

(7.31)

where τ, τ1, τ2 ∈ µTp , α ∈ TVar , and D1,D2 ∈ Der(S) ; this rule does not allow
other applications. And similarly, the rule CONTRACT−(nd) enables all applications

228 Transforming Derivations from AC= to HB=

that, at the bottom of a derivation in S+UFP−(nd), are of the form

D1

τ1 = τ [τ1/α] CONTRACT−(nd) (no side-condition on D1)
τ1 = µα. τ

(7.32)

where τ, τ1 ∈ µTp , α ∈ TVar , and D1 ∈ Der(S) ; CONTRACT−(nd) does not allow

other applications. The symbol − in the rule names UFP−(nd) and CONTRACT−(nd)
is intended to indicate, similarly as in the case of the rule DECOMP−(nd) intro-

duced in Chapter 5, Section 5.3, that applications of these rules are not sub-
ject to any side-conditions on the occurring open assumptions in immediate sub-
derivations. Since the statements we are going to show apply even to these un-
restricted natural-deduction-system versions of UFP and CONTRACT, we do not
need to introduce here more restrictive natural-deduction-system versions UFP(nd)

and CONTRACT(nd) (analogously to the version DECOMP(nd) of DECOMP that
was introduced in Chapter 5, Section 5.3), applications of which would be subject
to the side-condition that no open assumptions are present.

The proposition below asserts that every derivation D without assumptions in
AC=, or in AC=

∗ , can be transformed in an immediate way into a derivation D̃ in
HB= +UFP−(nd), or respectively in HB= +CONTRACT−(nd), such that D′ mimics

D. This statement will be used in the proof of Theorem 7.2.1 to justify the second
step of our transformation from AC=- and AC=

∗ -derivations into HB
=-derivations

(in the case of AC=-derivations, confer the illustration in Figure 7.1).

Proposition 7.2.2. (i) Let D be a derivation in AC=
− without assumptions. The

result D̃ of renaming each application of UFP in D into an application of
UFP−(nd), i.e. the prooftree that results from D by changing the rule name label

of applications of UFP into UFP−(nd), is a derivation in HB= +UFP−(nd)
without open assumptions and with the same conclusion as D.

(ii) Similarly, every derivation D in AC=
∗− without assumptions can be trans-

formed, by merely changing rule labels at applications of CONTRACT in
D from CONTRACT to CONTRACT−(nd), into a derivation D̃ in HB= +

+CONTRACT−(nd) without open assumptions and with the same conclusion
as D.

Proof. Both statements of the proposition are immediate consequences of the fact
that all axioms of AC=

− and of AC=
∗− are also axioms of HB=, and that all rules of

AC=
− and of AC=

∗− except the rules UFP and CONTRACT are also rules of HB=.
There is, however, a conceptual difference between, for example, the rule SYMM in
AC=

− or in AC=
∗−, and the rule SYMM in HB=: the first one is a pure-Hilbert-

system rule, whereas the second one is a natural-deduction-system rule.3 But both

3In the notation we use here frequently for such natural-deduction-system variants of pure-
Hilbert-system rules, applications of which do not take into account the presence or absence

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 229

statements of the lemma can be shown in a straightforward way by induction on
the depth |D| of derivations D without open assumptions in AC=

−, or in AC
=
∗−.

The first of the mentioned lemmas is concerned with the elimination of such
applications of CONTRACT−(nd)and UFP−(nd) that occur at the bottom of deriva-

tions in HB= +CONTRACT−(nd)+UFP−(nd). And the subsequent second lemma

formulates a statement about the elimination of all applications of these two rules
from arbitrary given derivations in HB= +CONTRACT−(nd)+UFP−(nd).

Lemma 7.2.3. The rules CONTRACT−(nd) and UFP−(nd) are derivable rules of

HB=. In particular, applications of these two rules can effectively be eliminated
from the bottom of derivations in HB= +CONTRACT−(nd)+UFP−(nd), more pre-

cisely, the following two statements hold:

(i) Every derivation D in HB= +CONTRACT−(nd)+UFP−(nd), which possibly

contains open assumptions, that is of the form

D1

τ1 = τ [τ1/α] CONTRACT−(nd) ,
τ1 = µα. τ

(7.33)

where D1 is a derivation in HB=, can effectively be transformed into a deriva-
tion D′ in HB= of the form

D1

[τ1 = τ [τ1/α]]1

DC
(ι)
mim

τ1 = µα. τ

(7.34)

where the derivation context DC
(ι)
mim ∈ DerCtxt1(HB

=) does not contain open

marked assumptions (i.e. massm(DC
(ι)
mim) = ∅ holds), such that D′, the result

of filling context-holes []1 in DC
(ι)
mim with the derivation D1, has the same con-

clusion and the same open assumption classes as D. In particular, it holds that

the derivation context DC
(ι)
mim can effectively be produced from the application

ι of CONTRACT−(nd) at the bottom of D.

(ii) Every derivation in HB= +UFP−(nd)+CONTRACT−(nd), with possibly open

assumptions, that is of the form

D1

τ1 = τ [τ1/α]

D2

τ2 = τ [τ2/α] UFP−(nd) ,
τ1 = τ2

(7.35)

of open assumptions in immediate subderivations, the rule SYMM in HB= could actually be
denoted by SYMM−

(nd)
referring to the rule SYMM of AC=; also in this case the symbol − in

the rule designation SYMM−

(nd)
would be intended to express (and make it abundantly clear) that

applications of this rule in HB= are not subject to any side-conditions on the open assumptions
occurring in immediate subderivations.

230 Transforming Derivations from AC= to HB=

where D1 and D2 are derivations in HB=, can effectively be transformed into
a derivation D′ in HB= of the form

D1

[τ1 = τ [τ1/α]]1

D2

[τ2 = τ [τ2/α]]2

DC
(ι)
mim

τ1 = τ2

(7.36)

where DC
(ι)
mim ∈ DerCtxt2(HB

=) with massm(DC
(ι)
mim) = ∅ , such that D′, the

result of the filling context-holes []1 and []2 in DC
(ι)
mim respectively with the

derivations D1 and D2, has the same conclusion and the same open assump-

tion classes as D. Again, the derivation context DC
(ι)
mim can effectively be

produced from the application ι of UFP−(nd) at the bottom of D.

We will prove this lemma below on page 233. But first we proceed with stating
and proving the second lemma mentioned above, and then with giving a proof of
Theorem 7.2.1 that relies on this lemma for justifying the third step of the trans-
formation developed here from AC=- and AC=

∗ -derivations into HB
=-derivations.

Lemma 7.2.4. Applications of CONTRACT−(nd) and of UFP−(nd) can effectively

be eliminated from derivations in the extension of HB= with these rules. More
precisely, every derivation D in HB= +CONTRACT−(nd)+UFP−(nd) can be trans-

formed effectively, by successively eliminating arbitrarily chosen applications of the
rules CONTRACT−(nd) or UFP−(nd), into a derivation D′ in HB= with the same

conclusion and with the same open assumption classes as D.

Sketch of Proof. The statement of the lemma can be shown by straightforward
induction on the number of occurrences of applications of CONTRACT−(nd) and

UFP−(nd) in a derivation in HB= +CONTRACT−(nd)+UFP−(nd), where in the in-

duction step the transformations guaranteed by Lemma 7.2.3 are applied to an
arbitrarily picked application of CONTRACT−(nd) or UFP−(nd) in such a derivation.

Proof of Thm. 7.2.1. Let S be one of the systems AC= or AC=
∗ , and let D be

an arbitrary derivation in S without assumptions and with conclusion τ = σ , for
some τ, σ ∈ µTp . We denote by S− the system AC=

−, if S = AC= , and the system
AC=

∗−, if S = AC=
− .

The derivation D can effectively be transformed into a derivation D′ in HB=

with the same conclusion and without open assumptions by performing the following
three steps (we refer here again to the illustrations we have already given, namely,
to Figure 7.1, for the case S = AC= , and to Figure 7.2, for the case S = AC=

∗):

(1) µ-COMPAT-elimination step: Using the effective transformation stated by
Corollary 7.1.17, transform the derivation D in S (by stepwise and effective
elimination of the applications of µ-COMPAT in D) into a derivation D(1) in
the system S− without assumptions and with the same conclusion as D.

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 231

For recognizing what task remains to be carried out in further steps, we ignore
for a moment the conceptual difference between rules of the same name in the
Hilbert-style proof systems S and S−, on the one hand, and in the natural-
deduction-style system HB=, on the other hand, and in doing so we notice
the following: The systems S− and HB= have the same axioms and differ,
with respect to their inference rules, only in the rules UFP or CONTRACT
(which are rules of S−, but not ofHB

=) and ARROW/FIX (which is a rule of
HB=, but not of S−). This suggest the following possibility for constructing
a derivation in HB= without open assumptions and with conclusion τ = σ
from D(1) : view D(1) as a derivation D(2) without open assumptions in a
corresponding natural-deduction system, and then eliminate from D(2) all
those applications of natural-deduction system rules that correspond to the
rules UFP and CONTRACT.

(2) Renaming step of applications of UFP and CONTRACT into applications of
UFP−(nd) and CONTRACT−(nd): Replace all applications of the rules UFP or of

CONTRACT in D(1) by applications of the natural-deduction-system variants
UFP−(nd) and CONTRACT−(nd) of UFP and CONTRACT, respectively. Due

to Proposition 7.2.2, the result is a derivation D(2) in the natural-deduction
system HB= +UFP−(nd)+CONTRACT−(nd) such that D(2) has the same con-

clusion as D and such that it does not contain open assumptions.

It remains to eliminate all applications of UFP−(nd) and CONTRACT−(nd) from

D(2) in a further step.

(3) UFP−(nd)/CONTRACT−(nd)-elimination step: By applying the effective trans-

formation stated by Lemma 7.2.4, eliminate successively (relying on the elim-
ination steps described by by Lemma 7.2.3) all applications of UFP−(nd) or

of CONTRACT−(nd) from D(2). The result is then a derivation D′ in HB=

without open assumptions and with the same conclusion τ = σ as D.

In this effective way we have found a derivation D′ in HB= that contains no open
assumptions and that has the same conclusion as the derivation D in S, which we
have assumed to be arbitrary.

Remark 7.2.5. By taking a closer look at the proof above, it is easy to notice that
the second and third steps of our transformation (cf. the schematic illustration in
Figure 7.1 and in Figure 7.2) can also be carried out for derivations containing as-
sumptions. More precisely, it can be shown analogously that every derivation D(1)

in AC=
− or in AC=

∗− can effectively be transformed into a derivation D′ in HB=

such that the inhabited open assumption classes of D′ correspond bijectively to oc-
currences of assumptions in D, where this correspondence relates, for all ρ, χ ∈ µTp
and assumption markers u, an inhabited open assumption class [ρ = χ]u of D′ with
a particular occurrence of the assumption ρ = χ in D.

232 Transforming Derivations from AC= to HB=

The reason for this is that Lemma 7.2.3 asserts that the unrestricted natural-
deduction-system versions UFP−(nd) and CONTRACT−(nd) of the rules UFP and

CONTRACT are derivable in HB=, and not just that the restricted natural-
deduction-system versions UFP(nd) and CONTRACT(nd) (which can only be ap-
plied in the absence of open assumptions) of UFP and CONTRACT are derivable
in HB=. An equivalent reason is that the rules UFP−(nd) and CONTRACT−(nd)
are not just admissible, but even derivable in HB=, as stated by Lemma 7.2.3;
this makes it possible to directly translate an arbitrary derivation D(2) in HB= +
+CONTRACT−(nd)+UFP−(nd) into a mimicking derivations D′ in HB= also in the

case that D(2) contains open assumptions.
For showing Theorem 7.2.1, however, a weaker version of Lemma 7.2.3 would

actually have been sufficient that only stated derivability in HB= of the rules
UFP(nd) and CONTRACT(nd), or equivalently, that only stated admissibility of

the rules UFP−(nd) and CONTRACT−(nd) in HB
=.

The proof we give for Lemma 7.2.3 below, which will contain an effective method
to “translate” applications of rules UFP−(nd) and CONTRACT−(nd) into the system

HB=, makes essential use of the following technical Lemma 7.2.6 and will be given
subsequently to the formulation of this auxiliary statement.

Lemma 7.2.6. Let τ ∈ µTp and α ∈ TVar such that α ↓ τ and α ∈ fv(τ) holds.
Furthermore, let σ1, σ2 ∈ µTp such that σ1 and σ2 are substitutible for α in τ .

Then there exists a derivation Dτ,α;σ1,σ2 in HB=
0 of the form

[
σ1 = σ2

]u

Dτ,α;σ1,σ2. ARROW or ARROW/FIX
τ (0)[σ1/α] = τ (0)[σ2/α]
. .. (FOLDl, FOLDr, REN)∗

τ [σ1/α] = τ [σ2/α]

(7.37)

with some τ (0) ∈ µTp, some assumption marker u, and where [σ1 = σ2]
u is the

single open assumption class in this derivation that is inhabited. Hereby Dτ,α;σ1,σ2
denotes the entire displayed derivation with conclusion τ [σ1/α] = τ [σ2/α]; dotted
lines have been used to indicate rule applications at the bottom of this derivation to
prevent the impression that Dτ,α;σ1,σ2 ends at the displayed application of ARROW
or of ARROW/FIX. The indicated application of ARROW or ARROW/FIX is
always present in Dτ,α;σ1,σ2 , whereas the number of following, possibly multiple,
applications of FOLDl, FOLDr and REN might be zero.

Moreover, given τ, σ1, σ2 and α as assumed above, a HB=
0 -derivation of the

form (7.37) can effectively be constructed.

The proof for this lemma is given towards the end of this section on page 253.
This proof will rely on another important technical lemma, Lemma 7.2.9 below,
as well as on a further statement, Lemma 7.2.13, which is concerned with the
‘asymmetric’ substitution of two recursive types on the left- and right-hand sides of

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 233

all equations between recursive types in aHB=
0 -derivation. Before we continue with

the proof of Lemma 7.2.3, we formulate, as an aside, a rather obvious consequence
of Lemma 7.2.6.

Proposition 7.2.7. For all τ ∈ µTp and for all α ∈ TVar , the substitution rule
SUBSTτ [./α] is derivable in HB=

0 .

Proof. Let τ ∈ µTp and α ∈ TVar be arbitrary. For showing that the substitution
rule SUBSTτ [./α] is derivable in HB=

0 , we consider an arbitrary application of this
rule of the form (7.13) with some σ1, σ2 ∈ µTp .

If α /∈ fv(τ), then this application can be mimicked by an axiom τ = τ ofHB=
0 .

If α 6 ↓ τ holds, then τ ≡ µα1 . . . αn. α for some n ∈ ω and α1, . . . , αn ∈ TVar
with α1, . . . , αn 6≡ α . Since, due to the admissibility of the substitution expres-
sions τ [σ1/α] and τ [σ2/α] in the conclusion of the considered SUBSTτ [./α]-applica-
tion, α1, . . . , αn do not occur free in σ1 and σ2, the considered application can be
mimicked by a sequence of n FOLDl- and n FOLDr-applications with conclusion
µα1 . . . αn. σ1=µα1 . . . αn. σ2 and with single assumption σ1 = σ2 .

If, however, α ∈ fv(τ) and α ↓ τ holds, then the considered application of
SUBSTτ [./α] can be mimicked by the derivation Dτ,α;σ1,σ2 in HB=

0 that is guaran-
teed to exist by Lemma 7.2.6.

Proof of Lemma 7.2.3. Derivability of the rules CONTRACT−(nd) and UFP−(nd) in

HB= follow from stronger formulations (i)′ and (ii)′ of the statements (i) and (ii)
in the lemma. More precisely, derivability of CONTRACT−(nd) in HB= means,

according to Definition 4.3.2, (iv), the statement

(i)′ Every derivation D in an extension by enlargement Sext such that D is of
the form (7.33) with D1 ∈ Der(Sext) can effectively be transformed into a

derivation D′ in Sext of the form (7.34) where DC
(ι)
mim ∈ DerCtxt1(HB

=) such
that D′ has the same conclusion and the same open assumption classes as D.

Similarly, a statement (ii)′ that expresses that UFP−(nd) is derivable in HB= can

be formulated as a stronger version of item (ii) of the lemma. The assertions (i)′

and (ii)′ can be shown (entirely) analogously to items (i) and (ii) in the lemma.
Therefore we only show here the assertions (i) and (ii) of the lemma; this is done
in items (a) and (b) below, respectively.

(a) Let D be an arbitrary derivation in HB= +CONTRACT−(nd)+UFP−(nd) of

the form (7.33), for some τ, τ1 ∈ µTp and α ∈ TVar , and for some derivation
D1 in HB=. Then α ↓ τ holds as the side-condition on the application
of CONTRACT−(nd) at the bottom of D. We have to show that a derivation

context DC
(ι)
mim ∈ DerCtxt1(HB

=) with massm(DC
(ι)
mim) = ∅ can effectively be

found such that the derivation (7.34), which is built by filling the context-hole

[]1 in DC
(ι)
mim by D1, has the same conclusion and the same open assumption

classes as D.

234 Transforming Derivations from AC= to HB=

Case 1. α /∈ fv(τ) .

In this case the application ι of CONTRACT−(nd) at the bottom of D

corresponds to an application of the HB=
0 -rule FOLDr. An applica-

tion of this rule can be mimicked in HB= by an application of TRANS
with an axiom (FOLD/UNFOLD) and an application of SYMM just
above its right premise. In particular, the desired derivation context

DC
(ι)
mim ∈ DerCtxt1(HB

=) can here be chosen as

[
τ1 = τ

]

1

(FOLD/UNFOLD)

µα. τ = τ [µα. τ/α]
︸ ︷︷ ︸

WV τ
SYMM

τ = µα. τ
TRANS

τ1 = µα. τ

(where for reading convenience the premise τ1 = τ of ι has been indicated

inside the context-hole []1 in DC
(ι)
mim); obviously massm(DC

(ι)
mim) = ∅ holds

for DC
(ι)
mim. With this derivation context, the derivation of the form (7.34)

has the same conclusion and the same open assumption classes as D.

Case 2. α ∈ fv(τ) .

For the proof of the existence, in this case, of the desired derivation

context DC
(ι)
mim, we will make the simplifying assumption that µα. τ is

substitutible for α in τ . If this is not the case, then our argumentation
below can be used, as can be verified easily, to find an appropriate deriva-

tion context DC
(ι)
mim also in this situation, employing the observation that

D can first be transformed into a mimicking derivation for D of the form

D1

τ1 = τ [τ1/α]
REN

τ1 = τ ′[τ1/α] CONTRACT−(nd)
τ1 = µα. τ ′

REN ,
τ1 = µα. τ

where τ ′ ∈ µTp is such that τ ′ ≡ren τ and that both τ1 and µα. τ (as
well as then also µα. τ ′) are substitutible for α in τ ′.

We therefore assume now that µα. τ is substitutible for α in τ . Now

we first build a derivation context D̃C
(ι)
mim ∈ DerCtxt1(HB

=
0 +TRANS)

of the form shown in Figure 7.3: the part-derivation D′τ,α; τ1,µα. τ oc-
curring there is the result of renaming appropriately, if this is neces-
sary, the assumption markers in discharged assumptions in the derivation
Dτ,α; τ1,µα. τ , which can effectively be found due to Lemma 7.2.6 (this is
applicable due to α ∈ fv(τ) and α ↓ τ), such that there is no assump-
tion marker used in discharged assumptions of D′τ,α; τ1,µα. τ that occurs
as a marker for open assumptions in D1. And furthermore, the assump-

tion marker v used in D̃C
(ι)
mim does not occur in D1 nor in D′τ,α; τ1,µα. τ .

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 235

Figure 7.3: Mimicking derivation context D̃C
(ι)
mim in HB=

0 +TRANS for an
application ι of CONTRACT−(nd) at the bottom of a derivation D in HB= +

+CONTRACT−(nd) of the form (7.33), given that α ∈ fv(τ) holds for this appli-

cation. For reading convenience, the premise τ1 = τ [τ1/α] of ι is indicated inside

of occurrences of the hole []1 in D̃C
(ι)
mim.

[
τ1 = τ [τ1/α]

]

1

[
τ1 = τ [τ1/α]

]

1

(
τ (0)[τ1/α] = τ (0)[µα. τ/α]

)v

(FOLDl/r, REN)∗

τ [τ1/α] = τ [µα. τ/α]
FOLDr

τ [τ1/α] = µα. τ
TRANS

[τ1 = µα. τ]

D′τ,α; τ1,µα. τ. ARROW/FIX, v
τ (0)[τ1/α] = τ (0)[µα. τ/α]
. .. (FOLDl/r, REN)∗

τ [τ1/α] = τ [µα. τ/α]
FOLDr

τ [τ1/α] = µα. τ
TRANS

τ1 = µα. τ

This derivation context D̃C
(ι)
mim obviously fulfills massm(D̃C

(ι)
mim) = ∅ since

Dτ,α; τ1,µα. τ , and hence also D′τ,α; τ1,µα. τ , contains only the open assump-
tion class [τ1 = µα. τ]u for some marker u, and also because the occur-
rence of the marked assumption (τ (0)[τ1/α] = τ (0)[µα. τ/α])v at the top

of D̃C
(ι)
mim is discharged within D̃C

(ι)
mim. Furthermore, D̃C

(ι)
mim contains at

least two occurrences of the context-hole []1; in fact it follows, since the
assumption class4 [τ1 = µα. τ]u at the top of Dτ,α; τ1,µα. τ , and hence also
in D′τ,α; τ1,µα. τ , is inhabited, that there are actually 1+n many context-

holes []1 in D̃C
(ι)
mim, where m is the number of assumptions in the open

assumption class [τ1 = µα. τ]u of D′τ,α; τ1,µα. τ .

By utilizing the transformation described in the proof of Lemma 5.1.19,

the derivation context D̃C
(ι)
mim ∈ DerCtxt1(HB

=
0) can effectively be trans-

formed into a corresponding derivation context DC
(ι)
mim ∈ DerCtxt1(HB

=)

with the property massm(DC
(ι)
mim) = ∅ , with the same conclusion, and

with at least two occurring context-holes []1. With this derivation con-

text DC
(ι)
mim it holds that the derivation of the form (7.34) is a derivation

in HB=
0 with the same conclusion and with the same open assumption

classes as D.

4Within D̃C
(ι)
mim the marker u used in this assumption class disappears because there the part-

derivation D′τ,α; τ1,µα. τ
of D̃C

(ι)
mim gets enlarged above all of the open assumptions (τ1 = µα. τ)u .

236 Transforming Derivations from AC= to HB=

(b) Item (ii) of the lemma can now be shown immediately by using item (i) as
follows.

We assume a derivation D in HB=
0 +UFP−(nd)+CONTRACT−(nd) of the form

(7.35), which ends with an application of UFP−(nd) and where D1 and D2

are two derivations in HB=, to be given. We have to show that it is pos-

sible to find effectively a derivation context DC
(ι)
mim ∈ DerCtxt2(HB

=) with

massm(DC
(ι)
mim) = ∅ such that the derivation (7.36), which is built by filling

the context-holes []1 and []2 in DC
(ι)
mim respectively by D1 and by D2, has the

same conclusion and the same open assumption classes as D.

Similarly as UFP-applications can be mimicked by derivations in the extension
AC=+CONTRACT of AC= (cf. Proposition 5.1.6), arbitrary applications of
UFP−(nd) can be mimicked by derivations in HB= +CONTRACT−(nd), the

extension of HB= with the rule CONTRACT−(nd). Hence the derivation D

can obviously be transformed into a derivation D̃ of the form

D1

τ1 = τ [τ1/α] CONTRACT−(nd)
τ1 = µα. τ

D2

τ2 = τ [τ2/α] CONTRACT−(nd)
τ2 = µα. τ

SYMM
µα. τ = τ2

TRANS
τ1 = τ2

with the same conclusion and with the same open assumption classes as D.

Now we let DC
(ι1)
mim and DC

(ι2)
mim be derivation-contexts in DerCtxt1(HB

=) that
can effectively be found due to item (i) of the lemma for the two applications ι1
and ι2 of CONTRACT−(nd)in D̃, which immediately follow the subderivations

D1 and D2, such that DC
(ι1)
mim and DC

(ι2)
mim that fulfill massm(DC

(ι1)
mim) = ∅ and

massm(DC
(ι2)
mim) = ∅ , and such that, by the construction in item (a) of this

proof, they respectively contain at least one occurrence of the context-hole
[]1. These two derivation contexts can now be arranged to form the new

derivation context DC
(ι)
mim ∈ DerCtxt2(HB

=) of the form

DC
(ι1)
mim

DC
(ι2)
mim[[]2 / []1]

SYMM
µα. τ = τ2

TRANS
τ1 = τ2

where DC
(ι2)
mim[[]2 / []1] is the result of replacing all context-holes []1 in DC

(ι2)
mim

by the context-hole []2. It follows that massm(DC
(ι)
mim) = ∅ and that DC

(ι)
mim

contains at least one occurrence each of the context-holes []1 and []2.

Due to this, the derivation context DC
(ι)
mim is of the desired form: it follows

that the derivation of the form (7.36) is a derivation in HB= with the same

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 237

Figure 7.4: Mimicking derivation context D̃C
(ι)
mim in HB=

0 +TRANS for an ap-
plication ι of UFP−(nd) at the bottom of a derivation D in HB= +UFP−(nd) of the

form (7.35), given that α ∈ fv(τ) holds for this application. For reading conve-
nience, the premises τ1 = τ [τ1/α] and τ2 = τ [τ2/α] of ι have been indicated inside

of occurrences in D̃C
(ι)
mim of the context-holes []1 and []2, respectively.

[
τ1 = τ [τ1/α]

]

1

[
τ1 = τ [τ1/α]

]

1

(
τ (0)[τ1/α] = τ (0)[τ2/α]

)v

. .. (FOLDl/r , REN)
∗

τ [τ1/α] = τ [τ2/α]

[
τ2 = τ [τ2/α]

]

2
SYMM

τ [τ2/α] = τ2
TRANS

τ [τ1/α] = τ2
TRANS

[τ1 = τ2]

D′τ,α; τ1,τ2. ARROW/FIX, v

τ (0)[τ1/α] = τ (0)[τ2/α]
. .. (FOLDl/r , REN)

∗

τ [τ1/α] = τ [τ2/α]

[
τ2 = τ [τ2/α]

]

2
SYMM

τ [τ2/α] = τ2
TRANS

τ [τ1/α] = τ2
TRANS

τ1 = τ2

conclusion and the same open assumption classes as D. And our construction

clearly also shows that such derivation contexts DC
(ι)
mim can be found by apply-

ing an effective procedure to a given application ι of UFP−(nd) at the bottom

of a derivation D in HB= +UFP−(nd) of the form (7.35).

Remark 7.2.8. We want to mention that the detour made in the proof of item (ii)
of the lemma via the proof of (i) is not inherently necessary. This is because a
bottommost application of UFP−(nd) in a derivation D of the form (7.35) can also

be eliminated effectively in a very similar way as done so for the elimination of an
application of CONTRACT−(nd) in the proof of item (i) of the lemma. In particular,

for applications ι of UFP−(nd) at the bottom of a derivation D of the form (7.35)

with the property that α ∈ fv(τ) holds, a mimicking derivation context DC
(ι)
mim in

DerCtxt2(HB
=
0) can be found from D̃C

(ι)
mim ∈ DerCtxt2(HB

=
0 + SYMM+TRANS),

the derivation context depicted in Figure 7.4. There, the part-derivation D′τ,α;τ1,τ2
that appears in D̃C

(ι)
mim arises from a derivation Dτ,α;τ1,τ2 in HB=

0 , which is guar-
anteed by Lemma 7.2.6, by appropriate renamings of the assumption markers of
the discharged assumption classes in Dτ,α;τ1,τ2 such that no marker of an open as-
sumption class in D1 or D2 coincides with an assumption marker for a discharged
assumption class in D′τ,α;τ1,τ2 . And the assumption marker v is different from all
assumption markers in either of D1, D2 or D′τ,α;τ1,τ2 .

The next lemma will be our most important tool in the proof of Lemma 7.2.6. Its

238 Transforming Derivations from AC= to HB=

own proof, which we are going to give in rather much detail, employs methods from
the completeness-proof of Brandt and Henglein for their coinductively motivated
axiomatizations of the relations =µ and ≤µ.

Lemma 7.2.9. For all τ ∈ µTp and α ∈ TVar such that α ↓ τ and α ∈ fv(τ)
holds, and for all σ1, σ2 ∈ µTp that are substitutible for α in τ , there exists a

derivation D
(σ1,σ2)
τ,α in HB=

0 of the form

(REFL)
[]

α = α

D
(σ1,σ2)
τ,α. ARROW or ARROW/FIX

τ (0) = τ (0)
. (FOLDl, FOLDr, REN)∗ ,

τ = τ

(7.38)

where

(i) D
(σ1,σ2)
τ,α does not contain open assumptions,

(ii) for all formulas χ1 = χ2 in D
(σ1,σ2)
τ,α , the recursive types σ1 and σ2 are sub-

stitutible for α in both χ1 and χ2,

(iii) there is at least one occurrence of an axiom (REFL) of the form α = α at the

top of D
(σ1,σ2)
τ,α (i.e. the class of axioms

[
(REFL)

α = α

]

indicated at the top of the

symbolic prooftree (7.38) for D
(σ1,σ2)
τ,α is inhabited),

(iv) D
(σ1,σ2)
τ,α does not contain, in leaves at its top, any axioms (REFL) of the form

χ = χ such that χ 6≡ α and α ∈ fv(χ) holds,

(v) as indicated through dotted lines at the bottom of the symbolic prooftree (7.38)

for D
(σ1,σ2)
τ,α , this derivation contains at its bottom an application of ARROW

or ARROW/FIX that is then followed immediately by zero, one, or more
applications of REN, FOLDl or FOLDr.

and which derivation can always can be found effectively for given τ, σ1, σ2 and α
as above.

We prove this lemma, starting on page 239, immediately below the following
two remarks. The first of these remarks explains a consequence of condition (iv) in
Lemma 7.2.9 (given that condition (i) in the lemma is fulfilled). And the second
remark sketches a similarity between the proof of Lemma 7.2.9 that we will give
below and the completeness proof given by Brandt and Henglein in [BrHe98].

Remark 7.2.10. Under the assumptions on τ , σ1, σ2 and α that are stipulated in
Lemma 7.2.9, it is a consequence of the conditions (i) and (iv) on the derivation

D
(σ1,σ2)
τ,α , which is stated to exist there, that for all occurrences of equations between

recursive types χ1 = χ2 , where χ1, χ2 ∈ µTp , in leaves at the top of the prooftree

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 239

D
(σ1,σ2)
τ,α the following holds: if α occurs free in χ1 or in χ2, then this formula

occurrence takes place either within an axiom (REFL) of the form α = α or within

a marked assumption (χ1 = χ2)
u that is discharged in D

(σ1,σ2)
τ,α .

Remark 7.2.11. The proof of Lemma 7.2.9 that we will develop below is very
similar to the proof given by Brandt and Henglein in [BrHe98] for the completeness
of their axiomatization of the subtyping relation ≤µ between recursive types; we will
refer to this axiomatization here by HB≤. In both proofs a desired derivation for
a valid conclusion (i.e. an equation between recursive types τ = τ such that for an
α ∈ TVar α ∈ fv(τ) and α ↓ τ holds, in the case of the proof below of Lemma 7.2.9,
and an inequality between recursive types τ ≤ σ such that τ ≤µ σ holds, in the
case of the proof in [BrHe98]) is built by a procedure that acts as following: It
repeatedly extends a derivation, starting with the given conclusion and proceeding
with intermediately reached derivations, in single steps to larger derivations, which
usually are not yet of respectively desired form (of a derivation of the form (7.38)
and as stated by Lemma 7.2.9, in our case, and of a derivation in HB≤ without
open assumptions, in the case treated in [BrHe98]).

These extension-steps consist in picking an appropriate leaf in the reached
derivation, and in extending the prooftree above this leaf by a few more rule ap-
plications, or in binding back and discharging the formula at this leaf to a rule
application occurring deeper down in the derivation. Although during the exten-
sion process as a whole there is a certain order imposed on which leaves at the top
of intermediatel yreached derivations have to be chosen for immediate treatment,
some limited cause for non-determinism is left in these choices; however, this has
no effect on termination of the procedure.

In the case treated in [BrHe98] of the completeness proof for HB≤ with respect
to the relation ≤µ it is possible to choose the extension-steps, starting from a
given inequality τ ≤ σ where τ, σ ∈ µTp such that τ ≤µ σ , in such a way that
after finitely many of such steps a derivation in HB≤ without open assumptions
and with conclusion τ ≤ σ is found effectively. And also in the analogous, but
somewhat easier situation here of the proof below for Lemma 7.2.9, the extension-
steps can be chosen in such a way that ultimately a derivation of the desired form
(7.38) is always found after finitely many steps. The first of these extension steps is
hereby applied to an axiom (REFL) τ = τ , where τ ∈ µTp and α ∈ TVar are such
that α ∈ fv(τ) and α ↓ τ holds. The produced derivation will here, in particular,
be such that it contains no open assumptions and no axioms (REFL) of the form
χ = χ at the top with the properties χ 6≡ α and α ∈ fv(χ) .

Notwithstanding these similarities between procedures in a proof in [BrHe98],
and in the proof of Lemma 7.2.9 below, we will describe the respective extension-
procedure here in a more proof-theoretically motivated way than this done so in
[BrHe98].

Now we give the somewhat technical and lengthy proof for the Lemma 7.2.9.

240 Transforming Derivations from AC= to HB=

Proof of Lemma 7.2.9. We assume recursive types τ, σ1, σ2 ∈ µTp and α ∈ TVar
to be given, such that

α ∈ fv(τ), α ↓ τ and σ1, σ2 are substitutible for α in τ . (7.39)

It is our purpose to produce a derivation D
(σ1,σ2)
τ,α of the form (7.38) with the prop-

erties (i)–(v) of the lemma.
We will first define a process P that is able to bring an intermediary derivation

D in HB= which is of a form in between an axiom (REFL) τ = τ and the desired

derivation D
(σ1,σ2)
τ,α in (7.38) by one simple step nearer to the desired form. P

proceeds by choosing such a leaf at the top of an an intermediary derivation D that
witnesses that D is not yet of the form (7.38) (for now, we will call such leaves to
be “not of required form”) and by then treating this in one of two possible ways:
either by extending D above the considered leaf by some 1–3 more applications of
HB=

0 -rules or by being able to discharge the equation between recursive types at
that leaf in D (by binding it to an application of ARROW or ARROW/FIX deeper
down in D). P will be applicable to intermediary derivations as long as a derivation
of the form (7.38) and as described in the lemma has not yet been found. Thereby
it furthermore always chooses such a leaf with the property “not of the required
form” that is of minimal height over the conclusion in the intermediary derivation.

If the process P is started on the initial derivation D(0) consisting of just
the axiom (REFL) τ = τ , and is then iterated on its outcomes, then a sequence
〈D(0),D(1),D(2), . . .〉 of derivations is produced that get larger and larger, and ex-
tend each other in the sense that they have common end-derivations5. It will turn
out that if the process P ∗, the iteration of P , is started on the derivation consisting
of the axiom (REFL) τ = τ then it will terminate in a desired derivation of the
form (7.38) after finitely many executions of P . The most important argument for
termination of P will be the following: the minimal heights in the derivations D(n)

of leaves that are not of the required form will increase steadily with the number
of executions of P (though by far not necessarily with every execution of P) and
would converge to infinity, if P ∗ did not terminate. Reasons for this are the pre-
cise definition of P in the following, which leads to the following features of this
process: that (a) P always chooses bottommost leaves in a given (intermediary)
derivation, which are not of required form, and that (b) for the finite or infinite se-
quence D(0),D(1),D(2), . . . generated by the repeated application of P to the initial
derivation τ = τ it holds that, for all i, j ∈ ω with j < i , the derivation D(i) is of
larger size than the derivation D(j), i.e. s(D(i)) > s(D(j)) holds.

Since the definition of the extension-steps performed by P will guarantee (to-
gether with a lemma on the finiteness of the number of subterms of a recursive type
modulo taking variants), that there is in fact a bound depending on a quadratic
function in the size s(τ) of τ on the length of threads in the intermediary derivations
D(n) produced by P ∗ (this is described in Appendix A). This will finally show the

5This is a slight simplification here because it can happen that applications of ARROW in
“common end-derivations” are changed into respective applications of ARROW, at which open
assumptions are discharged, from a certain member of the sequence onwards once and forever.

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 241

termination of the application of P ∗ to the initial derivation consisting of just the
axiom (REFL) τ = τ .

(1) We start by defining the process P :

The process P acts on all such HB=
0 -derivations D, which with respect to

the given τ, σ1, σ2 ∈ µTp and α ∈ TVar with the property (7.39) fulfills the
following properties (7.40) and (7.41) described below; on other derivations
(or on other objects) the process D is undefined. The property (7.40) consists
thereby of the following six assertions:

(a) D is a HB=
0 -derivation without open assumption classes and with the

conclusion τ = τ .

(b) The leaves at the top of the prooftree D are either axioms (REFL) of
HB=

0 or marked assumptions that are discharged in D.

(c) σ1, σ2 are substitutible for α in every equation between recursive types
χ1 = χ2 occurring in D.

(d) D fulfills the condition AA (cf. Definition C.3 in Appendix C).

(e) D does not contain nlµb-decreasing applications of FOLDl/r (see Defini-
tion C.9, Appendix C).

(f) D does not contain two successive applications of REN. Furthermore, at
the top of D no application of REN takes place immediately below an
occurrence of axiom (REFL) (however, applications of REN are allowed
to follow marked assumptions in D, also if these are of the (REFL)-
axiom-like form (χ = χ)u in D, where χ ∈ µTp and u is an assumption
marker).

As indicated above we will refer to the statement

“The above properties (a)–(f) are fulfilled with respect to
D, α, τ, σ1 and σ2.”

}

(7.40)

by using its label (7.40). And furthermore the property (7.41) refers to the
assertion:

“There is at least one occurrence of an axiom (REFL) of the
form χ = χ as leaf at the top of D, for which χ 6≡ α and

α ∈ fv(χ) holds.”

(7.41)

For a given derivation D with (7.40) and (7.41) the process P picks an arbi-
trary axiom χ = χ in an unmarked formula at the top of D with the property,
that χ 6≡ α and α ∈ fv(χ) , and which is moreover of minimal height with
this property in D (this entails that there sometimes are finitely many non-
deterministic choices possible for the process P). By displaying, in boldface,
the chosen axiom occurrence in a leaf, the derivation D can be written as

(REFL)
()

χ = χ

D
τ = τ

242 Transforming Derivations from AC= to HB=

The process P will transform the derivation D in HB=
0 into a derivation D′

in HB=
0 of either the form (7.42) or (7.43). In the first case D′ is of the form

(REFL)
()

χ1 = χ1

(REFL)
{()}

χ2 = χ2
De

(χ = χ)

D
τ = τ

(7.42)

where χ1, χ2 ∈ µTp are some generated subterms of χ which are reachable
from χ by →ren-steps together with a single →out-dec- or →out-unf-reduction
step, and where De is a short HB=

0 -derivation of between one and three rule
applications with one or two new leaves arising; the possible second new axiom
occurring at the top of De has been indicated by curly brackets. In the second
case, D′ is of the form

(χ′ = χ′)u
REN

(χ = χ)

D(d)

τ = τ

(7.43)

where the marked assumption (χ′ = χ′)u is discharged at an application of
(ARROW/FIX, u) in the derivation D(d) that is the same as D except that
possibly one application of ARROW in D has been changed to an application
of (ARROW/FIX, u) at which in this case the marked hypothesis (χ′ = χ′)u

at the top of D is then discharged.

In both cases the transformed derivation D′ will again have the property
(7.40); but in the second case the property (7.41) may have been lost during
a final execution-step of P , in which (as it will turn out) a derivation of the
desired form (7.38) and with the properties as described in the lemma will
have been reached.

For the detailed description of these extensions we let D be aHB=
0 -derivation,

which fulfills (7.40) and (7.41), and we fix an axiom occurrence χ = χ in D
that is of miminal height above the conclusion of D with the property that
χ 6≡ α and α ∈ fv(χ) hold.

For the definition of P , we distinguish the only two possible cases for χ that, on
the one hand, χ is a composite recursive type χ1 → χ2 , for some χ1, χ2 ∈ µTp,
or that, on the other hand, χ starts with a µ-binding and is of the form µβ. χ0,
for some β ∈ TVar and χ0 ∈ µTp .

Case 1. χ ≡ χ1 → χ2 for some χ1, χ2 ∈ µTp.

Subcase A: In the thread in D downwards from the considered axiom occur-
rence χ = χ in a leaf there is an occurrence of the formula χ′ = χ′

for some variant χ′ of χ as the conclusion of an application of AR-
ROW or ARROW/FIX.

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 243

For instance, with the considered axiom occurrence typeset in bold-
face, D is of the form

(REFL)
()

χ1 → χ2
︸ ︷︷ ︸

≡χ

= χ1 → χ2
︸ ︷︷ ︸

≡χ

D1

χ′1 = χ′1

D2

χ′2 = χ′2
ARROW

(χ′1 → χ′2
︸ ︷︷ ︸

≡χ′

= χ′1 → χ′2
︸ ︷︷ ︸

≡χ′

)

DC0
τ = τ

(7.44)

where χ′ ≡ χ′1 → χ′2, χ
′
1 ≡ren χ1 and χ′2 ≡ren χ2 for some χ′1, χ

′
2 ∈

∈ µTp , and where further the displayed application of ARROW
is the topmost occurrence of an application of ARROW or AR-
ROW/FIX in the thread down from this considered leaf that has
a conclusion χ′′ = χ′′ for some χ′′ ∈ µTp with χ′′ ≡ren χ .

In this situation the process P transforms D into the derivation D′

(χ′1 → χ′2 = χ′1 → χ′2)
u

REN
(χ1 → χ2 = χ1 → χ2)

D1

χ′1 = χ′1

D2

χ′2 = χ′2 ARROW/FIX, u
(χ′1 → χ′2 = χ′1 → χ′2)

DC0
τ = τ

(the position of the original leaf-occurrence of the axiom χ = χ is
still typeset in boldface) where u is a new6 assumption marker, i.e.
one that does not occur elsewhere in D. For the sake of convenience
in regard to a later argument, we use a (then trivial) application of
REN for the extension here even in the case χ ≡ χ′ , and hence also
in a situation in which such an application would not be necessary
to facilitate the back-binding.

If the considered axiom occurrence of χ = χ in the subderivation
D2 in a derivation of the form (7.44) (instead of in D1 as displayed
there), then P acts by extending D above this leaf in an analogous
way to a derivation D′.

If D is of a similar form to (7.44), but with an application of AR-
ROW/FIX, v instead of the displayed application of ARROW, then

6It would suffice to demand that u is not the marker of an assumption class (whether open or
still undischarged) in D1 or in D2.

244 Transforming Derivations from AC= to HB=

P acts similarly by discharging, in the transformed derivation D′,
a newly introduced marked assumption (χ′1 → χ′2 = χ′1 → χ′2)

v at
this application of ARROW/FIX, v. Generally, there is no need for
a new assumption marker to be introduced in this case. However ,
if the assumption marker v is also used to discharge assumptions
within D1 (i.e. if there occur assumptions in D1 marked by v that
are discharged within D1), then we rename all open assumptions
of the form (χ′1 → χ′2 = χ′1 → χ′2)

v in D1 into open assumptions of
the form (χ′1 → χ′2 = χ′1 → χ′2)

w for some entirely fresh assumption
marker w, and we also mark the newly arising leaf in D′ by w.

If the considered axiom occurrence of χ = χ takes place in the sub-
derivation D2 in a derivation of the form (7.44) (instead of in D1 as
displayed there), and the topmost application of ARROW or AR-
ROW/FIX below this axiom occurrence is an application of AR-
ROW/FIX, then P acts on D in an analogous way as described in
the previous paragraph.

Clearly in all these situations the derivations D′ produced by P again
satisfy (7.40).

Subcase B: The condition in Subcase A does not hold for the derivation D
and the considered axiom occurrence of χ = χ at the top of D.

Then P transforms D into the derivation D′

(REFL)

χ1 = χ1

(REFL)

χ2 = χ2
ARROW

(χ1 → χ2
︸ ︷︷ ︸

≡χ

= χ1 → χ2
︸ ︷︷ ︸

≡χ

)

D
τ = τ

which again satisfies (7.40).

Case 2. χ ≡ µβ. χ0 for some χ0 ∈ µTp.

Since α ∈ fv(χ) , it must hold that β 6≡ α , and because furthermore σ1, σ2
are substitutible for α in µβ. χ0 , it follows that β /∈ fv(σ1) ∪ fv(σ2) . Due
to α ∈ fv(χ0) and α 6≡ β , it furthermore follows, due to Lemma 7.1.1,
(i), that β ↓ χ0 .

Now let χ′0 be a variant of χ0 such that (a) µβ. χ0 (and as a consequence
then also µβ. χ′0) is substitutible for β in χ′0, and (b) σ1 and σ2 are
substitutible for α and β in χ′0. Then (since β /∈ fv(σi)) σi is substitutible
for α in µβ. χ′0 for each i ∈ {1, 2} . And furthermore, (µβ. χ′0)[σi/α]
is (again due to β /∈ fv(σi)) substitutible for β in χ′0[σi/α] for each
i ∈ {1, 2} . From β ↓ χ0 , which we saw above, it also follows that β ↓ χ′0
by Lemma 7.1.2, (i).

Now due to α 6≡ β , β /∈ fv(σ) , and the admissibility of the substitu-
tion expressions χ′0[µβ. χ

′
0/β] and (µβ. χ′0)[σi/α] (which admissibility

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 245

statements follow respectively from (a) and (b) above), an application of
Lemma 3.3.13 gives that

χ′0[µβ. χ
′
0/β] [σi/α] WV χ′0[σi/α] [(µβ. χ

′
0)[σi/α]/β]

holds for each i ∈ {1, 2} . From above we know that the implicit side con-
ditions on the right expression are fulfilled here. Hence we can conclude
that σ1 and σ2 are then also substitutible for α in χ′0[µβ. χ

′
0/β] .

Now the process P extends D above the considered leaf χ = χ by three
rule applications with the derivation D′ in HB=

0 of the form

(REFL)

χ′0[µβ. χ
′
0/β] = χ′0[µβ. χ

′
0/β] FOLDr

χ′0[µβ. χ
′
0/β] = µβ. χ′0 FOLDl

µβ. χ′0 = µβ. χ′0
REN

(µβ. χ0
︸ ︷︷ ︸

≡χ

= µβ. χ0
︸ ︷︷ ︸

≡χ

)

D
τ = τ

as the result (where the position in D′ corresponding to the leaf in D
above which D has been extended has again been typeset in boldface).

It is now easy to see, that D′ again suffices condition (7.40). In particular
it holds, due to β ↓ χ0 which we have found above, that the two new
applications of FOLDl and of FOLDr are not nlµb-decreasing.

Hereby we have concluded the definition of the process P .

Summarizing we notice the following property of the process P : for every
derivation D̃ in HB=

0 the assertion

D̃ fulfills (7.40) and (7.41) =⇒

=⇒ the result of applying P to D̃ fulfills (7.40)

}

(7.45)

holds.

(2) We will now show the following: if, for given τ, σ1, σ2 ∈ µTp and α ∈ TVar
such that (7.39) holds, the process P is started on the HB=

0 -derivation D(0)

consisting of the axiom τ = τ (REFL), then it terminates after finitely many
steps and it produces a derivation D in HB=

0 with the properties (7.40) and
¬ (7.41) (the negation of (7.41)).

To prove this, we let τ, σ1, σ2 ∈ µTp and α ∈ TVar be such that (7.39) holds,
and we let D(0) be the trivial HB=

0 -derivation consisting of just the axiom

(REFL)

τ = τ
(7.46)

246 Transforming Derivations from AC= to HB=

It is easy, indeed mostly trivial, to check that

D(0) satisfies (7.40) and (7.41). (7.47)

Now we define the sequence 〈D(n)〉n∈ω of HB=
0 -derivations or of the symbol

↑ (with the meaning “undefined”) that starts with D(0) and is defined by the
inductive clause

(∀n ∈ ω)

[

D(n+1) =def

=def

result of
applying P to D(n)

. . . D(n) is defined
and fulfills (7.40)

↑ . . . else

]

. (7.48)

In the following we consider only that finite or infinite subsequence SD =def

=def 〈D
(n)〉n∈I of this sequence, which consists of D(0) and all following

HB=
0 -derivations D(n) until for the first time ↑ is encountered. This means

that I is an initial segment of ω containing zero, and it holds either that
I = ω , if D(n) is defined by (7.48) for all n ∈ ω , or that I = {0, 1, . . . , nmax}
for some nmax ∈ ω , if there exists a natural number j such that D(j) = ↑ and
where nmax is the smallest natural number n such that D(n) is defined, but
D(n+1) is undefined, i.e. D(n+1) ≡↑ holds.

We noticed after the definition of the process P in (1) that for everyHB=
0 -deriva-

tion D̃ the assertion (7.45) holds. From this and from (7.47) it follows, due
to the inductive definition of the sequence 〈D(n)〉n∈ω above (through (7.46)
and (7.48) and the definition of I), by induction on n that it holds:

(∀n ∈ I)
[(
n+ 1 ∈ I =⇒ D(n) satisfies (7.40) and (7.41)

)
&

&
(
n+ 1 /∈ I =⇒ D(n) satisfies (7.40) and ¬ (7.41)

)]
.

(7.49)

We further observe from the description of the process P in (1) that if P is
applied to a derivation D̃ such that (7.40) and (7.41) holds, then P extends D̃
by between one and three additional rule applications to the result D̃′; hence
the size s(D̃′) of the prooftree D̃ is always strictly greater than the size s(D̃)
of D̃. This implies for our sequence SD the following statement:

(∀n ∈ I)
[
n+ 1 ∈ I =⇒ s(D(n+1)) ≥ s(D(n)) + 1

]
(7.50)

We will now show that the sequence SD is actually finite.

Suppose that this is not the case, that I = ω and hence that SD = 〈D(n)〉n∈ω .
Then it follows from (7.50) that the sizes s(D(n)) of the derivations D(n)

diverge against ∞, more symbolically, that

〈s(D(n))〉n∈ω →∞ (7.51)

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 247

holds. Since the system HB=
0 possesses only contain one- and two-premise

rules (and that hence prooftrees ofHB=
0 -derivations certainly are only finitely

branching), this implies
〈|D(n)|〉n∈ω →∞ (7.52)

as well, i.e. that also the depths |D(n)| of the derivations D(n) diverge against
∞. Due to I = ω , it follows from (7.49) that (7.40) holds for all D(n) with
n ∈ ω . Thus the assumptions of Theorem C.11 in Appendix C.11 are fulfilled
for all D(n). Hence this theorem can be applied here and it implies that

(∀n ∈ ω)
[
|D(n)| < 2

(
(s(τ) + 1)2 + 8|τ |+ 2

)]
(7.53)

holds, i.e. that there is a finite bound on the depth of the derivations D(n) of
the sequence SD. This is an obvious contradiction to (7.52). Therefore our
assumption that SD is infinite cannot be sustained.

In this way we have shown that the sequence SD is finite, i.e. that, for some
nmax ∈ ω and I = {0, . . . , nmax} , SD = 〈D(n)〉n∈I is the case, and that the
process P ∗ builds up, from the derivation D(0) by precisely nmax iterations of
P , a derivation D(nmax) with the properties (7.40) and ¬ (7.41) (this follows
now from (7.49)).

(3) Finally we show: if the process P ∗ is started on the derivation D(0) consisting
only of the axiom (REFL) of the form τ = τ , then it terminates after finitely

many steps and produces a derivation D
(σ1,σ2)
τ ;α in HB=

0 that is of the required
form (7.38) with the properties (i)–(v) in the lemma.

We have shown in (2) that if the process P ∗ is started on the derivation D(0) in
HB=

0 consisting only of the axiom (REFL) of the form τ = τ , then it produces
a finite sequence 〈D(n)〉n∈I with I = {0, . . . , nmax} , for some nmax ∈ ω\{0} ,
such that (7.49) holds and such that P ∗ terminates after exactly n executions
of P due to the failure of condition (7.41) for Dnmax .

We let D =def D
(nmax) and will demonstrate the assertion in this item by

showing that D does actually fulfill the requirements (i)–(v) in the lemma,

and hence that it can rightly be taken as the desired derivation D
(σ1,σ2)
τ, α .

Since D satisfies (7.40), the requirements (i) and (ii) in the lemma are clearly
fulfilled for D. The requirement (iv) in the lemma holds, because it is the
negation of (7.41), for which negation, ¬ (7.41), we know that it holds for D.

Hence it remains to show, that D is indeed of the form (7.38) (with D in place

of D
(σ1, σ2)
τ, α), where the displayed class of axioms α = α at the top of the

symbolic prooftree D gathers all occurrences of axioms of this form at the top
of D and where this class is actually inhabited (non-empty). In particular, it
suffices to show, that

D contains one application of ARROW or of ARROW/FIX,
which towards the conclusion of D is only succeeded by a finite
number (that may be zero) of applications of rules FOLDl/r

and/or rules REN,

(7.54)

248 Transforming Derivations from AC= to HB=

and that

there is at least one occurrence of an axiom (REFL) of the
form α = α at the top of the prooftree D.

}

(7.55)

First we show (7.54). We are going to consider the two cases, that nlµb(τ) = 0
holds, and respectively, that nlµb(τ) > 0 holds, separately below.

Case (i): nlµb(τ) = 0.

Here τ must be of the form τ ≡ τ1 → τ2 , for some τ1, τ2 ∈ µTp , because
due to the assumption (7.39) α ∈ fv(τ) and α ↓ τ holds. It follows that
the derivation D(1) built by the first application of P to D1 is actually
of the form

(REFL)

τ1 = τ1

(REFL)

τ2 = τ2
ARROW

τ1 → τ2 = τ1 → τ2

(7.56)

since the process P applied to D(1) has to act here according to Case 1,
Subcase B, in its definition in (1). Since further executions of P on D(1)

extend this derivation only above its leaves, the premises and the con-
clusion of the last rule application in D are the same as, respectively, the
premises and the conclusion of the last rule application in D(1); however,
it may be the case that the bottommost application of ARROW at the
bottom of D(1) is ultimately replaced by an application of ARROW/FIX,
at which some assumptions of D get discharged. In any case D must then
be of the form

D1

τ1 = τ1
D2

τ2 = τ2 ARROW or ARROW/FIX, u
τ1 → τ2 = τ1 → τ2

(7.57)

for some subderivations D1 and D2 (if the last rule application in D is
one of ARROW/FIX with an assumption marker u attached to it, D1

and D2 must contain open assumptions of the form [τ1 → τ2 = τ1 → τ2]
u

that are discharged at the bottom of D). Hence (7.54) holds for D in
this case.

Case (ii): nlµb(τ) = m > 0.

In this situation it follows that the first m derivations of the sequence
〈D(n)〉n∈I , which is defined as sequence according to (7.46) and (7.48)
and by removing all trailing symbols ↑ from the sequence if such occur,
are all of the form

(REFL)

τj = τj
FOLDl/r, REN

...
FOLDl/r, REN

τ1 = τ1 FOLDl/r, REN
τ = τ

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 249

for some τ1, . . . , τm ∈ µTp with α ∈ fv(τj), α ↓ τj and nlµb(τj) = m− j
for all j ∈ {1, . . . ,m} . This is because the process P extends, in aHB=

0 -
derivation, a leaf that carries an axiom (REFL) of the form µα̃. τ̃0 =
= µα̃. τ̃0 with the properties α ∈ fv(µα̃. τ̃0) and α ↓ µα̃. τ̃0 according to
Case 2 of the definition of P in (1) by a new subderivation that carries
one new leaf of the form τ̃ ′[µα̃. τ̃ ′0/α̃] = τ̃ ′[µα̃. τ̃ ′0 /α̃] for some τ̃ ′ ≡ren τ̃
and with α ∈ fv(τ̃ ′[µα̃. τ̃ ′0/α̃]), nlµb(τ̃

′[µα̃. τ̃ ′0/α̃]) = nlµb(µα̃. τ̃ ′0)−1 (cf.
Lemma 3.5.7) and with α ↓ τ̃ ′[µα̃. τ̃ ′0/α̃] (cf. Lemma 7.1.2). – It follows
that nlµb(τm) = 0, α ∈ fv(τm) as well as α ↓ τm , and hence that, for
some τm1, τm2 ∈ µTp , τm ≡ τm1 → τm2 is the case. And from this it is
clear that the (m + 1)-st extension-step of the process P ∗ by extending
D(m) to D(m+1) is of the kind Case 1, Subcase B, in definition of P in
(1); since furthermore P ∗ extends D(m) only above its leaves this means
that eventually D is of the form

Da1
τm1 = τm1

Da2
τm2 = τm2 ARROW or ARROW/FIX, u

τm = τm
(REN, FOLDl/r)

3m

τ = τ

(7.58)

with (possibly) some marker u and some subderivations Da1 and Da2
(with possibly the discharged assumption class [τm = τm]u). Therefore
(7.54) holds again in this case.

In this way we have shown the needed statement (7.54) about the form of D
with an application of ARROW or ARROW/FIX at the bottom of D, which
is then only possibly followed by applications of one-premise rules of HB=

0 .

Now we are going to show (7.55), i.e. that there is indeed at least one axiom
α = α as an unmarked leaf at the top of D.

To show this, we define the minimal syntactical depth min-dpα̃(τ̃) of a free
occurrence of the variable α̃ in a recursive type τ̃ : for all α̃ ∈ TVar and
τ̃ ∈ µTp , we define the positive integer min-dpα̃(τ̃) by induction on the syn-
tactical depth |τ̃ | of τ̃ using the clauses

min-dpα̃(τ̃) =def

0 . . . |τ̃ | = 0 or α̃ /∈ fv(τ̃) ,

1 + min
{
min-dpα̃(τ̃i) | i ∈ {1, 2}, α̃ ∈ fv(τ̃i)

}

. . . α ∈ fv(τ̃) and τ̃ ≡ τ̃1 → τ̃2 ,

1 + min-dpα̃(τ̃0) . . . α̃ ∈ fv(τ̃) and τ̃ ≡ µβ. τ̃0 .

We will use the following three properties of this notion: for all α̃, β ∈ TVar
and τ̃1, τ̃2, τ̃0 ∈ µTp it holds that

α̃ ∈ fv(τ̃1 → τ̃2) =⇒ (∃ i ∈ {1, 2})
[
min-dpα̃(τ̃1 → τ̃2) = 1 +min-dpα̃(τ̃i)

]
, (7.59)

τ̃1 ≡ren τ̃2 =⇒ min-dpα̃(τ̃1) = min-dpα̃(τ̃2) , (7.60)

α̃ ∈ fv(µβ. τ̃0) =⇒ min-dpα̃(µβ. τ̃0) = 1 +min-dpα̃(τ̃0[µβ. τ̃0/β]) . (7.61)

250 Transforming Derivations from AC= to HB=

Hereby (7.59) follows immediately from the definition of min-dpα̃(·). (7.60)
and (7.61) can be proven quite similar to analogous properties of the notion
mµdα̃(·) of the minimal µ-depth of a variable in a recursive type τ̃ used in the
proof of Lemma 3.9.9, (i), in Appendix A, Section A.5, starting on page 341 .
In particular, (7.60) follows easily

α̃ ∈ fv(τ̃) & β 6≡ α̃ =⇒ min-dpα̃((τ̃)) = min-dpα̃(τ̃ [σ̃/β])

Our main observation for the proof of (7.55) consists in the following assertion:

Suppose that α̃ ∈ TVar and χ ∈ µTp with α̃ ∈ fv(χ) and χ 6≡ α̃

and suppose further that De
χ = χ

is the extension-derivation

above a picked leaf of the form χ = χ , which the process P pro-

duces in Case 1, Subcase B, or in Case 2 of its definition in (1).

=⇒ There exists a leaf χ0 = χ0 in De with α̃ ∈ fv(χ0)

and with min-dpα̃(χ0) = min-dpα̃(χ)− 1 .

(7.62)

This assertion follows very easily from checking the definition of P in Case 1,
Subcase A and in Case 2 in item (1) above and by using the above properties
(7.59), (7.60) and (7.61).

Since during the execution of the process P ∗ to D(0) that is of the form of
an axiom (REFL) τ = τ , where τ is such that (7.39) holds, in intermediary
derivations D(n) of the sequence 〈D(n)〉n∈I defined by (7.46) and (7.48) all
occurring leaves χ = χ with α ∈ fv(χ) and α 6≡ χ are extended at some
stage (in one of the three different ways described in (1)), the assertion (7.62)
actually implies the following statement

There exists a thread Θ in D from the conclusion τ = τ upwards
on which, beginning from the conclusion χ0 = χ0 that is equal
to the conclusion τ = τ of D, after respectively at most three
rule applications the next following formula of the sequence

ξ =def 〈 (χ0 = χ0), (χ1 = χ1), . . . , (χm−1 = χm−1), (χm = χm) 〉

can be found, where m =def min-dpα(τ) and χ0, χ1, . . . , χm ∈
∈ µTp , such that furthermore the following conditions are sat-
isfied:

(∀ i ∈ {0, . . . ,m})
[
α ∈ fv(χi)

]
,

(∀ i ∈ {0, . . . ,m− 1})
[
min-dpα(χi+1) = min-dpα(χi)− 1

]
,

min-dpα(χm) = 0 .

(7.63)

Hereby it is used that, in inductively building up the thread Θ with the
sequence ξ of formulas on it in (7.63) via by successive respective extensions
over leaves carrying equations χ = χ with χ 6≡ α and α ∈ fv(χ), at no stage

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 251

an extension of the kind in Case 1, Subcase A, is used for inserting new
rule applications above a leaf χj = χj , since otherwise the situation would
occur, that j + 1 = m and that i ∈ {0, 1, . . . , j − 1} existed with χi ≡ren χj ,
which would entail min-dpα(χi) = min-dpα(χj) by (7.60) in contradiction to
min-dpα(χj) < min-dpα(χi) due to the construction of the thread.

(7.63) implies that α ∈ fv(χm) and min-dpα(χm) = 0 for the topmost formula
χm in the thread holds and hence that χm ≡ α . Since the process P never
extends a derivation above a leaf carrying the equation α = α , this means
that the topmost formula in the thread postulated by (7.63) is actually itself
a topmost formula in D, which—since such a formula is unable to be bound
by an application of ARROW/FIX—must be an axiom α = α (REFL) at the
top of the prooftree D.

Hence we have shown the desired statement (7.55).

For being eventually able to give our proof for Lemma 7.2.6, we need also a
statement that is concerned with substituting two, possibly different, recursive types
σ1 and σ2 for some type variable α on the left-hand side, and respectively on the
right-hand side of each equation between recursive types in a derivation in HB=

0 .

For formulating such a statement, we first define, under suitable restrictions,
prooftrees that are the outcomes of such ‘asymmetric’ substitutions inHB=

0 -deriva-
tions. And in the subsequent lemma we show that, under the same conditions, these
defined prooftrees are again HB=

0 -derivations.

Definition 7.2.12 (‘Asymmetric’ substitution in a HB=
0 -derivation). Let

recursive types τ1, τ2, σ1, σ2 ∈ µTp , a type variable α ∈ TVar , and a derivation D
in HB=

0 of the form
(REFL)

[]

α = α
D

τ1 = τ2

(7.64)

be given, where the class of occurrences of axioms (REFL) of the form α = α , indi-
cated at the top of the symbolic prooftree (7.64), are meant to gather all occurrences
of axioms (REFL) of the form α = α at the top of D, such that

(i) for all axioms (REFL) of the form χ = χ , where χ ∈ µTp , that occur at the
top of the derivation D, either α /∈ fv(χ) or χ ≡ α holds (in the latter case
the axiom χ = χ is then part of the class of axioms α = α indicated at the
top of the symbolic prooftree (7.64)).

(ii) for all equations between recursive types χ1 = χ2 that occur in D, it holds,
for all i, j ∈ {1, 2} , that σi is substitutible for α in χj .

Let now u be an assumption marker that does not occur in D. Then we define

252 Transforming Derivations from AC= to HB=

by D[[σ1/α ||σ2/α]](u) the prooftree that is of the symbolic form

[
σ1 = σ2

]u

D[[σ1/α ||σ2/α]]

τ1[σ1/α] = τ2[σ2/α]

(7.65)

and that arises from the derivation D by

– replacing each occurrence of an equation between recursive types χ1 = χ2 in
D by an occurrence of the formula χ1[σ1/α] = χ2[σ2/α], and by

– attaching the assumption marker u to such equations σ1 = σ2 that are the
result of substituting σ1 and σ2 for α in axioms (REFL) of the form α = α
at the top of D.

That is, D[[σ1/α ||σ2/α]](u) is the result of substituting σ1 for α on the left-hand
side and of substituting σ2 for α on the right-hand side of each occurrence of an
equation between recursive types χ1 = χ2 in D, and of marking with the marker u
all those assumptions σ1 = σ2 that arise by such substitutions in axiom occurrences
of α = α at the top of D. £

Lemma 7.2.13 (‘Asymmetric’ substitution in an HB=
0 -derivation). Let re-

cursive types τ1, τ2, σ1, σ2 ∈ µTp, a type variable α ∈ TVar , and a derivation D in
HB=

0 of the form (7.64) be given such that the conditions (i) and (ii) in Defini-
tion 7.2.12 are fulfilled. Furthermore let u be an assumption marker that does not
occur in D.

Then the prooftree D[[σ1/α ||σ2/α]](u) is a derivation in HB=
0 that has the

conclusion τ1[σ1/α] = τ2[σ2/α] . The derivation D[[σ1/α ||σ2/α]](u) has the same
depth and the same size as D. And the following holds for the open marked assump-
tions of D[[σ1/α ||σ2/α]](u) : if the derivation D contains at least one occurrence
of an axiom (REFL) in a leaf at its top, then for the open marked assumptions of
D[[σ1/α ||σ2/α]](u) it holds

massm(D[[σ1/α ||σ2/α]](u)) =
{
(σ1 = σ2)

u
}
∪

∪
{
(χ1[σ1/α] = χ2[σ2/α])

v | (χ1 = χ2)
v ∈ massm(D)

}
;

and otherwise just

massm(D[[σ1/α ||σ2/α]](u)) =

=
{
(χ1[σ1/α] = χ2[σ2/α])

v | (χ1 = χ2)
v ∈ massm(D)

}

holds. If, in particular, the derivation D is such that it does not contain open
assumptions and such that it contains at least one occurrence of an axiom (REFL)
of the form α = α in a leaf at the top, then D[[σ1/α ||σ2/α]](u) is a derivation in
HB=

0 with conclusion τ1[σ1/α] = τ2[σ2/α] and with single open assumption class
[σ1 = σ2]

u , which is inhabited.

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 253

Sketch of Proof. The proof of this lemma consists in a straightforward induction on
|D| and is in principle largely analogous to the proof of Lemma 7.1.4.

The only missing element for finally concluding the proof of Theorem 7.2.1
consists in a proof of Lemma 7.2.6. But such a proof can now be assembled easily
with the help of Lemma 7.2.9 and Lemma 7.2.13.

Proof of Lemma 7.2.6. Let arbitrary τ ∈ µTp and α ∈ TVar with the property
α ↓ τ and α ∈ fv(τ) be given. We have to show that a derivation Dτ,α;σ1,σ2 of the
form (7.37) and with single inhabited open assumption class [σ1 = σ2]

u , for some
assumption marker u, can effectively be found.

By Lemma 7.2.9 a derivation D
(σ1,σ2)
τ,α of the form (7.38) without open assump-

tion classes can effectively be found, which with respect to σ1 and σ2 satisfies the

assumptions of Lemma 7.2.13 (i.e. that D
(σ1,σ2)
τ,α is of the form with the conditions

(i) and (ii) in (7.64) Definition 7.2.12 fulfilled); we choose D
(σ1,σ2)
τ,α in this way.

Hence Lemma 7.2.13 can be applied and it gives that, for some assumption mark-

ers u, the derivation D
(σ1,σ2)
τ,α [[σ1/α||σ2/α]]

(u) is a derivation in HB=
0 of the form

(7.37), and that this derivation contains the single open undischarged assumption
class [σ1 = σ2]

u , which is inhabited since the class of axioms [α = α] is inhabited

by the choice of D
(σ1,σ2)
τ,α . This shows the claim of Lemma 7.2.6.

We conclude this section by giving a very easy example for the effective trans-
formation, asserted by Theorem 7.2.1 and described in the proofs given here, from
derivations in AC= or in AC=

∗ without assumptions into derivations in HB= with
respectively the same conclusion and without open assumption classes.

Example 7.2.14 (Transforming an AC=
∗ -derivation into a HB=-deriva-

tion). We consider the derivation D in AC=
∗ given in Example 5.1.7 for the

equation between recursive types τ1 = σ1 with σ1 =def µβ. ((β → ⊥)→ ⊥) and
τ1 =def µα. (α→ ⊥) and that with respect to its subderivation D1 of the form

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = (τ1 → ⊥)→ ⊥
TRANS

τ1 = (τ1 → ⊥)→ ⊥

can be written as

D1

τ1 = (τ1 → ⊥)→ ⊥
︸ ︷︷ ︸

≡ ((β→⊥)→⊥) [τ1/β]
CONTRACT

τ1
︸︷︷︸

≡µα. (α→⊥)

= σ1
︸︷︷︸

≡µβ. ((β→⊥)→⊥)

(7.66)

254 Transforming Derivations from AC= to HB=

We are going to transform the AC=
∗ -derivation D, according to the transformation

described in the proof of Theorem 7.2.1, and thereby in the proofs of the lemmas
used for this theorem, into a derivation D′ in HB= with the same conclusion and
without open assumptions. In doing so we will perform the three steps of this
transformation that are diagrammatically outlined in Figure 7.2.

For the first step of the transformation, there is no work to be done here. This
is because D does not contain applications of µ-COMPAT nor occurrences of the
axiom (µ−⊥), and hence D is also a derivation without assumptions in the system
AC=

−. Therefore, the first step in the transformation described in the proof of
Theorem 7.2.1, elimination of µ-COMPAT-applications in D, is unnecessary here,
and we may take D itself for the outcome of this trivial first step, the derivation
D(1) in AC=

− that mimics D.
In the second step of the transformation described into the proof of Theo-

rem 7.2.1, D(1) is translated in a derivation in HB= +CONTRACT−(nd) by sim-

ply changing the rule labels of applications of CONTRACT into CONTRACT−(nd).

Here we arrive at a derivation D(2) of the form

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(FOLD/UNFOLD)

τ1 = τ1 → ⊥

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = (τ1 → ⊥)→ ⊥
TRANS

τ1 = (τ1 → ⊥)→ ⊥ CONTRACT−(nd)
τ1 = σ1

(7.67)

with just one application of CONTRACT−(nd). Since all of the axioms and rules

occurring in it are also part of HB=, the subderivation D
(2)
1 leading up to the

premise of the application of CONTRACT−(nd) in D(2) is already a derivation in

HB=.
In the third step of the transformation, we are therefore only required to elim-

inate the application ι of CONTRACT−(nd) at the bottom of D(2), and we can

do so by an appeal to the transformation stated by Lemma 7.2.3, (i). From the
proof of this lemma we learn that for building up the translation of the applica-

tion ι of CONTRACT−(nd) into the mimicking derivation context DC
(ι)
mim inHB=, we

need to obtain a derivation D(β→⊥)→⊥, β; τ1, σ1 which, due to β ∈ fv((β → ⊥)→ ⊥)
and β ↓ (β → ⊥)→ ⊥ , is guaranteed to exist by Lemma 7.2.6. And for producing
D(β→⊥)→⊥, β; τ1, σ1 in its turn, we see from the proof of Lemma 7.2.6 that also a

derivation D
(τ1, σ1)
(β→⊥)→⊥, β with the properties as stated by Lemma 7.2.9 is needed.

In carrying out the procedure detailed in the proof of Lemma 7.2.9 for building

up the HB=
0 -derivation D

(τ1, σ1)
(β→⊥)→⊥, β , we arrive at the derivation

(REFL)

β = β

(REFL)

⊥ = ⊥
ARROW

β → ⊥ = β → ⊥

(REFL)

⊥ = ⊥
ARROW

(β → ⊥)→ ⊥ = (β → ⊥)→ ⊥

7.2 A Transformation of AC=- via AC=
−- into HB=-Derivations 255

that does not contain open assumptions (nor for that matter discharged assump-

tions). The derivation D
(τ1, σ1)
τ, β , where τ =def (β → ⊥)→ ⊥ , is seemingly just a

very redundant derivation in HB=
0 , and here also in HB=, for its conclusion τ = τ

that corresponds to an axiom (REFL). However, the equation τ = τ is formally

proven by D
(τ1, σ2)
τ, β in an ‘analytical way’ and such that β occurs in an axiom

χ = χ at the top only if χ ≡ β . This makes it possible to mimic inferences in
AC=

∗ or AC=
∗− involving substitutions of recursive types for β in τ (such as the

application of CONTRACT−(nd) at the bottom of the derivation D(2) in (7.67)) by

derivations in HB=
0 , and eventually be derivations in HB=.

As in the proof of Lemma 7.2.6, the derivation D(β→⊥)→⊥, β; τ1, σ1 can now

be chosen as D
(τ1, σ1)
(β→⊥)→⊥, β [[τ1/β||σ1/β]]

(u) , i.e. as the result of substituting τ1 for

β on the left-hand side and of substituting σ1 for β on the right-hand side of

every formula in D
(τ1, σ1)
(β→⊥)→⊥, β , and of attaching the assumption marker u to those

formula occurrences of τ1 = σ1 at the top that arise by such substitutions in axiom
occurrences of α = α . In this way we find here the derivation D(β→⊥)→⊥, β; τ1, σ1

of the form

(τ1 = σ1)
u

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = σ1 → ⊥

(REFL)

⊥ = ⊥
ARROW

(τ1 → ⊥)→ ⊥ = (σ1 → ⊥)→ ⊥

with the single open assumption (τ1 = σ1)
u .

Using this derivation, we can now construct, according to Figure 7.3, the unary

mimicking derivation-context D̃C
(ι)
mim in HB=

0 +TRANS for the application ι of

CONTRACT−(nd) at the bottom of D(2) where D̃C
(ι)
mim is now of the form

[
τ1 = (τ1 → ⊥)→ ⊥

]

1

[
τ1 = (τ1 → ⊥)→ ⊥

]

1

(
(τ1 → ⊥)→ ⊥ = (σ1 → ⊥)→ ⊥

)v

FOLDr

(τ1 → ⊥)→ ⊥ = σ1
TRANS

τ1 = σ1

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = σ1 → ⊥

(REFL)

⊥ = ⊥
ARROW/FIX, v

(τ1 → ⊥)→ ⊥ = (σ1 → ⊥)→ ⊥
FOLDr

(τ1 → ⊥)→ ⊥ = σ1
TRANS

τ1 = σ1

(as in Figure 7.3 we have again indicated for reading convenience the premise of ι,

namely τ1 = (τ1 → ⊥)→ ⊥ , inside occurrences of the context-hole []1 in D̃C
(ι)
mim).

And by inserting the immediate subderivation D
(2)
1 of D(2) in (7.67) into occurrences

of the context-holes []1 of D̃C
(ι)
mim, we can now build the derivation D̃′ of the form

256 Transforming Derivations from AC= to HB=

D1

τ1 = (τ1 → ⊥)→ ⊥

D1

τ1 = (τ1 → ⊥)→ ⊥

(
(τ1 → ⊥)→ ⊥ = (σ1 → ⊥)→ ⊥

)u

FOLDr

(τ1 → ⊥)→ ⊥ = σ1
TRANS

τ1 = σ1

(REFL)

⊥ = ⊥
ARROW

τ1 → ⊥ = σ1 → ⊥

(REFL)

⊥ = ⊥
ARROW/FIX, u

(τ1 → ⊥)→ ⊥ = (σ1 → ⊥)→ ⊥
FOLDr

(τ1 → ⊥)→ ⊥ = σ1
TRANS

τ1 = σ1

in HB= +TRANS+FOLDr that contains no open assumptions and has the same
conclusion as D. By eliminating from D̃′ the two applications of FOLDr in D̃

′ in an
obvious way (according to the transformation described in the proof of Lemma 5.1.19),
we can finally build a derivation D′ in HB= without open assumptions and with
the same conclusion τ1 = σ1 as D. We only indicate that the (subderivation be-
longing to) topmost application of FOLDr in D̃′ can be replaced by the mimicking
derivation

(
(τ1 → ⊥)→ ⊥ = (σ1 → ⊥)→ ⊥

)v

(FOLD/UNFOLD)

σ1 = (σ1 → ⊥)→ ⊥
SYMM

(σ1 → ⊥)→ ⊥ = σ1
TRANS

(τ1 → ⊥)→ ⊥ = σ1

inHB= and do not typeset the resulting derivation D′ here due to its typographical
breadth.

In this way we have carried out the three steps of the transformation and have
arrived at a derivation D′ in HB= without open assumptions and with the same
conclusion τ1 = σ1 as the derivation D in AC=

∗ from which we started.
We conclude this example by observing that the derivation D′ in HB= that

we have found here is in fact not of mimimal size for a derivation in HB= with
conclusion τ1 = σ1 . Indeed, it is a little more complex than a derivation D̃2 in
HB= without open assumptions and with the same conclusion as D′ that results
from the HB=

0 -derivation D2 in Figure 6.8 by transforming it into a derivation in
HB=: D′ has depth |D′| = 7 and size s(D′) = 23, whereas D̃2 has depth7 |D̃2| = 7
and size s(D̃2) = 16.

The observation at the end of the example above indicates that the transforma-
tion developed in this section does not necessarily produce mimicking derivations
in HB= of minimal size, nor of minimal depth (as can be seen by other examples),
for given derivations in AC= and AC=

∗ without assumptions.

7More precisely, |D̃2| = 7 can be reached by replacing from the two successive applications of
FOLDl/r at the top of D the application of FOLDl first, and then the application of FOLDr (for
which an additional application of SYMM is needed in a mimicking derivation).

Chapter 8

Transforming Derivations
from HB= to AC=

In this chapter we will develop, in two stages, an effective transformation from
derivations without open assumption classes in the Brandt-Henglein system HB=

into derivations with respectively the same conclusion in the system AC= of Ama-
dio and Cardelli. The core of this transformation consists of a method, described in
Section 8.1, of building, for every derivation without open assumption classes in the
variant-Brandt-Henglein system HB=

0 , a derivation in AC= with the same conclu-
sion and without assumptions. Unfortunately, this method cannot be generalized,
at least not directly, to one that defined a similar transformation from arbitrary
derivations in the original Brandt-Henglein system HB= into derivations in AC=;
however, it can be adapted to HB=-derivations that arise1 from HB=

0 -derivations.
But instead of generalizing the transformation between HB=

0 - and AC=-deriva-
tions to derivations in HB=, we will complement it in Section 8.2 with an effective
method that accomplishes the following task: transforming an arbitrary derivation
in HB= without open assumptions by a ‘symmetry-and-transitivity-elimination
procedure’ into a derivation in HB=

0 with the same conclusion and without open
assumptions.

Hereby perhaps only some rather more theoretical value can be attributed to
the second part, the transformation developed in Section 8.2 fromHB=-derivations
without open assumptions into mimicking HB=

0 -derivations. This is because of the
following two facts. Firstly, if an equation τ = σ , for some τ, σ ∈ µTp , is provable
by a derivation inHB= without open assumptions, then τ and σ are strongly equiv-

1By this we mean derivations in HB= that are the ‘image’ of HB=

0
-derivations under the

transformation described in the proof of Lemma 5.1.19. A derivation D′ in HB= that is the
result of applying the procedure implicit in the proof of Lemma 5.1.19 to a derivation in D in
HB=

0
is of a special form: each application of SYMM in D occurs immediately below an axiom

(FOLD/UNFOLD) or (µ−⊥)′, and each application of TRANS in D′ has an immediate subderiva-
tion that terminates with an application of SYMM, or that consists of an axiom (FOLD/UNFOLD)
or (µ−⊥)′.

258 Transforming Derivations from HB= to AC=

alent due to the completeness of HB= with respect to =µ. And secondly, for every
pair 〈τ, σ〉 of strongly equivalent recursive types, a derivation inHB=

0 without open
assumptions and with τ = σ as its conclusion can effectively be produced, by an
algorithmic method that can be extracted from the completeness proof for HB=

by Brandt and Henglein in [BrHe98]. However, the transformation from HB= to
HB=

0 described in Section 8.2 is interesting in its own right: it can be viewed as a
method of ‘normalizing’ HB=-derivations with the outcome of HB=

0 -derivations of
a particular form2 that correspond toHB=-derivations very directly. This transfor-
mation proceeds, in a manner reminiscent of classical cut-elimination procedures,
by stepwisely upwards-permuting applications of the symmetry rule, and separately,
of applications of the transitivity rule in derivations of HB=

0 +SYMM+TRANS,
and by ultimately eliminating such rule applications altogether.

The following theorem gathers the main result of the two sections of this chapter
about effective transformations of HB=

0 -derivations into AC=-derivations, and of
HB=-derivations into HB=

0 -derivations, for stating the existence of an effective
transformation of HB=

0 - into AC=-derivations.

Theorem 8.0.1 (Effective transformation of HB=- into AC=-derivations).
Every derivation D in the system HB= with conclusion τ = σ (for arbitrary τ, σ ∈
µTp) and without open assumption classes can be transformed by a sequence of
effective steps into a derivation D′ in the system AC= with the same conclusion.

Proof. This theorem is an immediate consequence of the main results of the two
subsections of this section, of Theorem 8.2.2 on page 284 and of Theorem 8.1.8 on
page 277.

8.1 A Transformation of Derivations in HB=
0

into Derivations in AC=

In this section an effective transformation of derivations in the Brandt-Henglein
system HB=

0 without open assumptions into derivations in the Amadio-Cardelli
system AC= will be developed. As an important auxiliary concept for this trans-
formation, we will introduce an annotated version ann-HB=

0 of the proof system
HB=

0 . Formulas of the system ann-HB=
0 are equations between recursive types

that are additionally annotated by recursive types. The role being played by the
annotated system ann-HB=

0 for the transformation to develop here consists in
facilitating the ‘extraction’ of an AC=-derivation from a HB=

0 -derivation.

Our transformation will namely first annotate a given derivation D in HB=
0

without open assumptions, producing the intermediary result of a derivation D̂ in
ann-HB=

0 without open assumptions, before transforming D̂ further into a deriva-
tion (D̂)′ in AC= without assumptions and with the same conclusion as D. Spelt

2Cf. the description of HB=-derivations of ‘special form’ in footnote 1.

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 259

Figure 8.1: Illustration of the main steps in the transformation developed in this
section that for an arbitrary derivation inHB=

0 without open assumptions is able to
construct a derivation in AC= with the same conclusion and without assumptions.

D̂
χ : τ = σ

(D̂)(1)

τ = χ

(D̂)(2)

σ = χ
SYMM

χ = σ
TRANS

τ = σ

D
τ = σ

HB=
0 -deriva-

tion without
open

assumptions

ann-HB=
0 -deriva-

tion without open
assumptions

AC=-derivations
without

assumptions

(D̂)(1)

τ = χ

(D̂)(2)

σ = χ AC=-derivation (D̂)′

without assumptions

Annotation Step Extraction Step Combination Step

out in a little more details, the transformation will proceed, starting from an arbi-
trary derivation D in HB=

0 without open assumptions and with conclusion τ = σ
(for some τ, σ ∈ µTp) by performing the following three steps:

(1) Annotation Step: The derivation D in HB=
0 is annotated with recursive types

such that the result is a derivation D̂ in ann-HB=
0 with conclusion χ : τ = σ ,

for some annotation χ ∈ µTp , and equally as D without open assumption
classes. In this step the structure of the derivation D gets ‘analyzed’, to some
extent, by the annotation χ in the conclusion of D̂. The underlying process
of annotating HB=

0 -derivations is rather straightforward, proceeds by finding
appropriate annotations for the occurring formulas, and can be defined by
induction on the depth of HB=

0 -derivations.

(2) Extraction Step: From the derivation D̂ in ann-HB=
0 that has the conclusion

χ : τ = σ , but that does not have open assumptions, two derivations (D̂)(1)

and (D̂)(2) in AC= with respective conclusions τ = χ and σ = χ and without
assumptions are ‘extracted’. The process underlying the extraction of two
such AC=-derivations from an ann-HB=

0 -derivation can again be defined by
induction on the depth of ann-HB=

0 -derivations.

(3) Combination Step: The derivations (D̂)(1) and (D̂)(2) inAC= with the respec-
tive conclusions τ = χ and σ = χ are combined by one additional application
of each of the rules SYMM and TRANS into an AC=-derivation (D̂)′ without
assumptions and with the same conclusion τ = σ as D.

An illustration of these three steps is given in Figure 8.1. The justification for
the transformation steps (1), (2), and (3) will be provided below by the proofs of
Lemma 8.1.5, (i), of Lemma 8.1.6, (i), and of Lemma 8.1.6, (ii), respectively.

260 Transforming Derivations from HB= to AC=

There is, however, one additional complication of the transformation developed
below that has not been mentioned in the outline just given. Namely, the trans-
formation justified by Lemma 8.1.6, (i), will actually proceed by (1) extracting two
derivations in the µ-COMPAT-free variant systemAC=

∗− of the systemAC=
∗ , which

differs from AC= by the absence of the rule UFP and the presence instead of the
rule CONTRACT, and by then (2) translating these two AC=

∗−-derivations into
respective mimicking derivations in AC=. The reason for this is that it turns out
to be slightly more immediate to extract, for arbitrary derivations D̂ in ann-HB=

0

without open assumptions, two derivations (D̂)
(1)
∗− and (D̂)

(2)
∗− in the version AC=

∗−

of the Amadio-Cardelli system containing applications of CONTRACT instead of
derivations (D̂)(1) and (D̂)(2) inAC= that have to rely on applications of UFP. As an
obvious consequence of justifying the extracting step in this manner via AC=

∗−-deri-
vations, the results of this section lead actually to the in effect stronger statement of
a transformation from derivations in HB=

0 without open assumptions into deriva-
tions in AC=

∗− without assumptions and with the same respective conclusions (and
similarly, to an analogous transformation with resulting AC=

−-derivations).

Now we start with developing the annotation step of the transformation outlined
above. As a prerequisite for this step, the annotated version ann-HB=

0 mentioned
above of the variant-Brandt-Henglein system HB=

0 is needed. Below we give the
definition of this annotated system. The formulas of ann-HB=

0 are equations be-
tween recursive types that are additionally annotated by recursive types. And the
axioms and rules of ann-HB=

0 are the result of adding appropriate annotations to
corresponding axioms and rules of HB=

0 .

Definition 8.1.1 (The annotated version ann-HB=
0 of the system HB=

0).
The natural-deduction-style proof system ann-HB=

0 is defined as follows.

The formulas of ann-HB=
0 are precisely all recursive-type annotated equations

of recursive types, i.e. all formal objects of the form χ : τ = σ with χ, τ, σ ∈ µTp .
The axioms of ann-HB=

0 are exactly all those formulas of ann-HB=
0 that belong

to the formula scheme (REFL) shown in Figure 8.2. The marked assumptions
that may be used in derivations in ann-HB=

0 are, as is also shown in Figure 8.2,
marked formulas of the form (α : τ = σ)α with τ, σ ∈ µTp and α ∈ TVar such
that α /∈ fv(τ) ∪ fv(σ) .

The inference rules of ann-HB=
0 are the seven rules of the seven rules REN,

(µ−⊥)⊥derl , (µ−⊥)⊥derr , FOLDl, FOLDr, ARROW and ARROW/FIX that are are
schematically defined in Figure 8.2 (to underscore the correspondence between rules
of ann-HB=

0 and rules of HB=
0 , we use the same names for corresponding rules).

Notably different from the case of the underlying system HB=
0 , applications of the

rules ARROW and ARROW/FIX are subject the following side-condition S on the
annotations in open assumptions of the derivations D1 and D2 leading up to the left
and, respectively, to the right premise of an ARROW or ARROW/FIX-application:

(a) In different open assumption classes in D1 and D2 different annotation-vari-
ables occur. Put differently and more formally, if, for some i ∈ {1, 2} , it holds
that (α : τi = σi)

α is an open marked assumption inDi and (α : τ3−i = σ3−i)
α

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 261

Figure 8.2: The annotated version ann-HB=
0 of the ‘analytic’ Brandt-Henglein

system HB=
0 .

The axioms and possible marked assumptions in ann-HB=
0 :

(REFL) τ : τ = τ (Assm) (α : τ = σ)α (if α /∈ fv(τ) ∪ fv(σ))

The inference rules of ann-HB=
0 :

χ : τ = σ
REN (where τ ′ ≡ren τ and σ′ ≡ren σ)

χ : τ ′ = σ′

χ : ⊥ = σ
(µ−⊥)⊥derlχ : µαα1 . . . αn. α = σ

χ : τ = ⊥
(µ−⊥)⊥derr

χ : τ = µββ1 . . . βn. β

χ : τ [µα. τ/α] = σ
FOLDlχ : µα. τ = σ

χ : τ = σ[µβ. σ/α]
FOLDr

χ : τ = µβ. σ

D1

χ1 : τ1 = σ1

D2

χ2 : τ2 = σ2
ARROW (if side-cond. S)

χ1 → χ2 : τ1 → τ2 = σ1 → σ2

[α : τ1 → τ2 = σ1 → σ2]
α

D1

χ1 : τ1 = σ1

[α : τ1 → τ2 = σ1 → σ2]
α

D2

χ2 : τ2 = σ2 ARROW/FIX, α
(if side-cond.s. S and I)µα. (χ1 → χ2) : τ1 → τ2 = σ1 → σ2

is an open marked assumption in D3−i, then it must be the case that τ1 ≡ τ2
and σ1 ≡ σ2 .

(b) Type variables used in annotations of open marked assumptions in D1 do not
occur free in axioms used in D2, and vice versa. More precisely: if, for some
i ∈ {1, 2} , the formula (α : τi = σi)

α is an open marked assumption in Di
and the axiom τ : τ = τ occurs as a leaf at the top of D3−i, then α /∈ fv(τ)
must be satisfied.

(c) Type variables used in annotations of open marked assumptions in D1 do not
occur free in annotated equations occurring in open marked assumptions in D2,
and vice versa. This means in more detail: If, for some i ∈ {1, 2} , the formula
(αi : τi = σi)

α is an open marked assumption in Di and (α3−i : τ3−i = σ3−i)
α

262 Transforming Derivations from HB= to AC=

is an open marked assumption in D3−i, then it follows that

α1 /∈ fv(τ2) ∪ fv(σ2) and α2 /∈ fv(τ1) ∪ fv(σ1) .

Equally as in HB=
0 , applications of ARROW/FIX are also in ann-HB=

0 subject
to the side-condition I, which demands that always at least one open marked as-
sumption is actually discharged. For an application of ARROW/FIX as depicted
in Figure 8.2 the side-condition I demands precisely:

The open assumption class [α : τ1 → τ2 = σ1 → σ2]
α is inhabited in D1

or in D2, i.e. there is at least one occurrence of an open assumption
(α : τ1 → τ2 = σ1 → σ2)

α in D1 or in D2.

£

Remark 8.1.2. (a) According to Definition 8.1.1, a possible marked assump-
tion for a derivation in ann-HB=

0 is an equation between recursive types
which is annotated by a type variable that does not occur free in the recur-
sive type on either side of the equation and that is also used to mark the
entire formula as an assumption. This dual use of a type variable α in a
marked assumptions (α : τ = σ)α both as an annotation for the equation
τ = σ and as an assumption marker is in fact redundant: due to the side-
condition α /∈ fv(τ) ∪ fv(σ) on a marked assumption (α : τ = σ)α , a formula
in a marked assumption cannot be an axiom of ann-HB=

0 . This entails that,
if assumptions in ann-HB=

0 -derivations were not marked, we could still tell
from a formula at a leaf-position of an ann-HB=

0 -derivation whether it is an
axiom or an assumption.

Notwithstanding the possible formal simplification of the system ann-HB=
0

suggested by this observation, assumption markers have been kept here in ac-
cordance with the usual notation for derivations in natural-deduction systems.

(b) In Definition 6.2.1 (in Section 6.2 of Chapter 6) we have introduced a general
‘circular’ rule FIX and shown that it is cr-admissible with respect to the
system HB=

0 . In Remark 6.2.2, (b), we noted that this rule does not fit into
the format of ANDS-rule as introduced in Section B.2 of Appendix B. In
the context of the system ann-HB=

0 defined above, however, it is possible to
introduce a version of the rule FIX that can be formalized as an ANDS-rule.

This is because, for derivations D with conclusion χ : τ = σ in ann-HB=
0 ,

a side-condition analogous to (6.4) on the contractiveness (in the sense of
Definition 6.2.1) of D with respect to certain open assumptions (α : τ = σ)α

can be expressed as the condition of contractiveness (in the sense of Defini-
tion 5.1.1) of χ with respect to the type variable α. More precisely, the rule
FIX can here be defined as the rule with applications of the form

[α : τ = σ]α

D1

χ : τ = σ
FIX (if α ↓ χ)

µα. χ : τ = σ

(8.1)

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 263

(with arbitrary α ∈ TVar and τ, σ, χ ∈ µTp). In applications of the form
(8.1) no explicit restriction is imposed on the form of the subderivation D1 ;
however, it is easy to prove that the side-condition α ↓ χ guarantees that the
following assertion holds about the structure of D1 :

“There are either no undischarged marked assumptions in D1 of the form
(α : τ = σ)α or there is at least one occurrence of an application of ARROW
or ARROW/FIX in D1.”

Now is easy to see that, unlike the rule FIX defined in Definition 6.2.1, the
rule FIX with applications defined according to (8.1) can in fact be formalized
as an ANDS-rule.

We mention here without proof the fact that the rule FIX with applications
of the form (8.1) is cr-admissible in ann-HB=

0 and that furthermore every
derivation D in ann-HB=

0 +FIX can effectively be transformed into a mim-
icking derivation D′ in ann-HB=

0 ; this can be shown analogously as in the
proof of Lemma 6.2.3. What is more, an annotated version ann-e-HB=

0 of
the system e-HB=

0 from Definition 6.2.4 can be given (by introducing an-
notated versions of the rules REN/FIX, FOLDl/FIX, and FOLDr/FIX in a
similar way as an annotated version of FIX is defined according to (8.1)) and
shown to be equivalent to ann-HB=

0 ; this can be demonstrated by a proof
analogous to the one given for Theorem 6.2.6.

For the formulation of statements, and for proofs in this section, we will use
the following convention for simple symbolic prooftrees with open assumptions in
HB=, HB=

0 and in ann-HB=
0 .

Notation 8.1.3. Let S be one of the systems HB= or HB=
0 . Throughout this

subsection an S-derivation D denoted by a symbolic prooftree of the simple form

{ [τi= σi]
ui }i=1,...,n

D
τ = σ

(8.2)

(with some n ∈ ω , τ, σ, τ1, . . . , τn, σ1, . . . , σn ∈ µTp and some assumption markers
u1, . . . , un) that is considered independently and not as an occurrence within a
more complicated prooftree will be understood in the following way: as a derivation
D in the system S with conclusion τ = σ , whose open and inhabited assumption
classes are precisely those that are members of the family { [τi = σi]

ui }i=1,...,n of
assumption classes which is displayed in (8.2) at the top. Spelt out in more detail,
this means: if D contains open assumptions, then n = 0 is the case, otherwise
n ∈ ω\{0} holds. If n > 0 holds, then for all open marked assumptions of the form
(ρ1 = ρ2)

u there must exists i ∈ {1, . . . , n} such that u ≡ ui , ρ1 ≡ τi and ρ2 ≡ σi
are the case; and furthermore, for all i ∈ {1, . . . , n} , there does exist at least one
open marked assumption of the form (τi = σi)

ui in D.

264 Transforming Derivations from HB= to AC=

However, this convention will not apply to symbolic prooftrees of more compli-
cated forms, for example, for an S-derivation denoted by a symbolic prooftree

{
[τi = σi]

ui
}

i=1,...,n

D1

τ̃1 = σ̃1

{
[τi = σi]

ui
}

i=1,...,n

D2

τ̃2 = σ̃2
ARROW

τ̃1 → τ̃2 = σ̃1 → σ̃2

(8.3)

(with some n ∈ ω , τ, σ, τ1, . . . , τn, τ̃1, τ̃2, σ1, . . . , σn, σ̃1, σ̃2 ∈ µTp and assumption
markers u1, . . . , un) ending with an application of ARROW. In particular, it does
not apply to the symbolic prooftrees denoting the immediate subderivations D1 and
D2 of D within the symbolic prooftree (8.3) for D: we do not assume that every
assumption [τi = σi]

ui , for (τi = σi)
ui , does in fact occur as an open assumption

in both the subderivations D1 and D2. In this case we will generally only assume
that every assumption [τi = σi]

ui , for i ∈ {1, . . . , n} , does in fact occur as an open
assumption in one of D1 or D2; however this will be spelt out explicitly in such
situations.

The use of this notation will also be extended analogously to the symbolic de-
notation of derivations in the annotated system ann-HB=

0 .
£

The side-condition S on the annotations in open marked assumptions of the
immediate subderivations of an ann-HB=

0 -derivation that ends with an application
of ARROW or ARROW/FIX implies very similar, but in fact stronger statements
than the conditions (a), (b), and (c) in Definition 8.1.1. These stronger statements
are the respective assertions (a), (b), and (c) in the following lemma, which we will
need later.

Lemma 8.1.4. Let D be a derivation in ann-HB=
0 with conclusion χ : τ = σ ,

where χ, τ, σ ∈ µTp.
Suppose that, for some n ∈ ω , recursive types τ, σ, χ, τ1, . . . , τn, σ1, . . . , σn , and

type variables α1, . . . , αn , the derivation D is of the form

{ [αi : τi= σi]
αi }i=1,...,n

D
χ : τ = σ

(8.4)

and that furthermore, for some m ∈ ω , {τ̄1, . . . , τ̄m} is the set of all recursive types
τ̄ that appear in occurrences of axioms (REFL) τ̄ : τ̄ = τ̄ at the top of D.

Then the following three statements hold about the open marked assumptions of
D:

(a) In different open assumption classes of D different type variables are used as
annotations. With the denotations used here for D, this means:

(∀i ∈ {1, . . . , n}) (i 6= j ⇒ αi 6≡ αj) .

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 265

(b) Type variables used as annotations in open marked assumptions of D do not
have free occurrences in the recursive types appearing in axioms (REFL) sit-
uated at the top of the prooftree D. Here this means:

(∀i ∈ {1, . . . , n}) (∀j ∈ {1, . . . ,m}) (αi /∈ fv(τ̄j)) .

(c) Type variables that are used as annotations in open marked assumptions in D
do not have free occurrences in recursive types that appear on either side of
the equation in an open marked assumption in D. More precisely,

(∀i, j ∈ {1, . . . , n}) (αi /∈ fv(τj) ∧ αi /∈ fv(σj)) .

must hold with respect to the denotations used here.

Furthermore it holds that

fv(χ) = {α1, . . . , αn}]
m⋃

i=1

fv(τ̄i) , (8.5)

where the symbol] is used to designate a disjoint union of sets.

Proof. The lemma can be shown by induction on the depth |D| of a derivation D
in ann-HB=

0 of the form (8.4).
For the base case of the induction, we have to consider a derivation D in

ann-HB=
0 of the form (8.4) with |D| = 0. This entails that D is either an ax-

iom or a marked assumption. If D is an axiom (REFL) of the form τ : τ = τ ,
then the statements (a), (b) and (c) are empty conditions, and (8.5) is the asser-
tion fv(τ) = ∅] fv(τ), which holds obviously. If, on the other hand, D is a marked
assumption (α : τ = σ)α , then statement (a) is trivial, statement (b) is an empty
condition, and statement (c) consists of the parts α /∈ fv(τ) and α /∈ fv(σ), both of
which are true assertions due to the side-condition that must be fulfilled by marked
assumptions appearing in ann-HB=

0 -derivations.
For the treatment of the induction step, let now D be an arbitrary derivation in

ann-HB=
0 of the form (8.4) with |D| > 0. If the last rule application in D is that

of a one-premise rule, then the statements to show coincide with respective parts
of the induction hypothesis; this is because one-premise rules do neither discharge
assumptions nor change the annotation of the equation in their premise. Hence in
this case there remains nothing to be shown for the induction hypothesis.

The remaining cases, in which the last rule application in D is either that of
an ARROW- or that of an ARROW/FIX-rule, are very similar to treat. Here we
will consider in some detail only the case with an ARROW-rule, in which D can be
written as

{
[α′i1 : τ

′
i1

= σ′i1]
α′i1
}

i1
{
[α′′′i3 : τ

′′′
i3

= σ′′′i3]
α′′′i3
}

i3

D1

χ1 : τ̃1 = σ̃1

{
[α′′i2 : τ

′′
i2

= σ′′i2]
α′′i2
}

i2
{
[α′′′i3 : τ

′′′
i3

= σ′′′i3]
α′′′i3
}

i3

D2

χ2 : τ̃2 = σ̃2
ARROW

χ1 → χ2 : τ̃1 → τ̃2 = σ̃1 → σ̃2

(8.6)

266 Transforming Derivations from HB= to AC=

where, for some n1, n2, n3 ∈ ω , the indices i1, i2 and i3 range, respectively, over the

sets {1, . . . , n1} , {1, . . . , n2} , and {1, . . . , n3} ; furthermore
{
[α′i1 : τ

′
i1

= σ′i1]
α′i1
}

i1
denotes the family of those open assumption classes in D2 that are inhabited only in

D1 (but not in D2), accordingly
{
[α′′i2 : τ

′′
i2

= σ′′i2]
α′′i2
}

i2
denotes the family of those

open assumption classes in D2 that are inhabited only in D2 (but not in D1), and

the respective families {[α′′′i3 : τ
′′′
i3

= σ′′′i3]
α′′′i3 }i3 indicated at the top of D1 and D2

denote the family of the respective parts in D1 and D2 of all those open assumption
classes of D that are inhabited in both D1 and D2.

The conditions (a), (b) and (c) for D are very similar to verify. They all follow
from the induction hypothesis (concerning the assertions (a), (b) and (c)) on D1

and D2 together with appeals to the side-condition S on the application of AR-
ROW at the bottom of D. Here comes just a little piece of the argument as an
example. As part of verifying the condition (c) for D it has to be checked that α′′j
(with j ∈ {1, . . . , n2}) does not occur in fv(τ ′′i2) ∪ fv(σ′′i2) for all i2 ∈ {1, . . . , n2} ,
neither in fv(τ ′′′i3) ∪ fv(σ′′′i3) for all i3 ∈ {1, . . . , n3} , nor in fv(τ ′i1) ∪ fv(σ′i1) for all
i1 ∈ {1, . . . , n1} . Clearly the first two assertions follow from the induction hypoth-
esis on D2 (concerning the condition (c)) and the third one follows from the part
(c) of the side-condition S on the bottommost application of ARROW in D.

For showing the assertion (8.5) for D, let the sets {τ̄1, . . . , τ̄m} , {τ̄
′
1, . . . , τ̄

′
m1} ,

and {τ̄ ′′1 , . . . , τ̄
′′
m2} , where m,m1,m2 ∈ ω , be the sets of all recursive types τ̄ that

occur in axioms τ̄ : τ̄ = τ̄ at the top of D, D1, and D2, respectively. Hence it is
clear that

{τ̄1, . . . , τ̄m} = {τ̄
′
1, . . . , τ̄

′
m1 , τ̄

′′
1 , . . . , τ̄

′′
m2} . (8.7)

Since D was assumed to be both of the form (8.4) and of the form (8.6), it follows
that

{α1, . . . , αn} = {α
′
1, . . . , α

′
n1 , α

′′
1 , . . . , α

′′
n2 , α

′′′
1 , . . . , α

′′′
n3} . (8.8)

Two applications of the induction hypothesis (more precisely, that part of it which
concerns the assertion (8.5)) to D1 and to D2 give the statements

fv(χ1) = {α
′
1, . . . , α

′
n1 , α

′′′
1 , . . . , α

′′′
n3}]

m1⋃

j=1

fv(τ̄ ′j) ,

fv(χ2) = {α
′′
1 , . . . , α

′′
n2 , α

′′′
1 , . . . , α

′′′
n3}]

m2⋃

j=1

fv(τ̄ ′′j) .

(8.9)

Since by the part (b) of the assertion of the induction step, the proof of which part
we have hinted at above, no type variable used as an annotation in either D1 and
D2 does occur free in an axiom at the top of D, it follows from (8.7), (8.8) and (8.9):

fv(χ1 → χ2) = {. . . , α
′
i1 , . . . , α

′′
i2 , . . . , α

′′′
i3 , . . .}]

(m1⋃

j=1

fv(τ̄ ′j) ∪
m2⋃

j=1

fv(τ̄ ′′j)
)

= {α1, . . . , αn}]
m⋃

j=1

fv(τ̄j) .

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 267

This shows the part concerning the assertion (8.5) of the induction step in the case
considered here of an application of an ARROW-rule at the bottom of D.

The induction step for the case of an application of ARROW/FIX at the bot-
tom of D can be treated very similarly, and what concerns the part regarding the
assertion (8.5), with just slightly more effort. It is clear that, relative to similar de-
notations as the ones used above for the case with an ARROW-rule, the annotation
α0 of the open assumption class [α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]

α0 , which is discharged
by a considered application of ARROW/FIX, disappears from fv(µα0. (χ1 → χ2))
for the annotation in the conclusion

µα0. (χ1 → χ2) : τ̃1 → τ̃2 = σ̃1 → σ̃2

of D. But it has to be checked that no other variable besides α0 disappears
from the set fv(χ1 → χ2)= fv(χ1) ∪ fv(χ2) (due to side-condition I on the con-
sidered ARROW/FIX-application and the induction hypothesis we indeed find
α0 ∈ fv(χ1 → χ2)); this ultimately follows from the fulfilledness of the conditions
(a), (b) and (c) for D as can be argued analogously to the case treated above of an
application of ARROW at the bottom of a derivation of the form (8.4).

The following lemma concerns the relationship between derivations in the sys-
tem HB=

0 and derivations in the annotated system ann-HB=
0 . By its proof a

transformation from derivations in HB=
0 to derivations in ann-HB=

0 is defined
that proceeds by finding appropriate annotations, and another one in the opposite
direction that proceeds by ‘forgetting’ annotations. The annotation step of our
transformation between HB=

0 and AC= is guaranteed by the statement in item (i)
of the lemma and by the mentioned effective transformation of HB=

0 -derivations
into ann-HB=

0 -derivations.

Lemma 8.1.5. The following two kinds of effective transformations are possible
between derivations in the system HB=

0 and derivations in the annotated system
ann-HB=

0 :

(i) Every derivation D in HB=
0 can effectively be annotated by appropriate re-

cursive types with a derivation D̂ in ann-HB=
0 as the result. More formally,

the statement (i) of the Precise Formulation, which is given below, holds.

(ii) Conversely, every derivation D in ann-HB=
0 can effectively be transformed

into a HB=
0 -derivation Ď by stripping it of its annotations. More precisely,

the assertion (ii) of the Precise Formulation, which is stated below, holds.

Precise Formulation. The statements (i) and (ii) of the lemma refer to the following
two refined statements (i) and (ii), respectively, which are illustrated together by
Figure 8.3.

(i) Let an arbitrary derivation D in HB=
0 of the form

{ [τi= σi]
ui }i=1,...,n

D
τ = σ

(8.10)

268 Transforming Derivations from HB= to AC=

Figure 8.3: Illustration of the statement of Lemma 8.1.5: there exist an anno-

tation transformation (̂·) from derivations in HB=
0 into derivations in ann-HB=

0 ,
and an annotation-removing transformation (̌·) from derivations in ann-HB=

0 into
derivations in HB=

0 .

{[τi = σi]
ui}i=1,...,n

D
τ = σ

(̂·)
7−→
←−[
(̌·)

{[αi : τi = σi]
αi}i=1,...,n

D̂
χ : τ = σ

HB=
0 -derivation ann-HB=

0 -derivation

with n ∈ ω and recursive types τ, σ and τi, σi for all i ∈ {1, . . . , n} be given.
Then there exist annotations consisting of recursive types for each formula,
i.e. equation between recursive types, in D, an annotation χ ∈ µTp for the
conclusion τ = σ of D and different type variables α1, . . . , αn as annotations
for the open assumption classes of D, such that the result of prefixing the re-
spective annotations to all formulas occurring in D is an ann-HB=

0 -derivation
of the form

{ [αi : τi= σi]
αi }i=1,...,n

D̂
χ : τ = σ

(8.11)

(ii) Let D be a derivation in ann-HB=
0 of the form

{ [αi : τi= σi]
αi }i=1,...,n

D
χ : τ = σ

with some n ∈ ω , recursive types τ, σ and τi, σi for all i = 1, . . . , n as well
as with type variables α1, . . . , αn . Then the result Ď of replacing, for all
τ̃ , σ̃, χ̃ ∈ µTp , each occurrence of an ann-HB=

0 -formula χ̃ : τ̃ = σ̃ in the
prooftree D by an occurrence of the HB=

0 -formula τ̃ = σ̃ , thereby also re-
placing each occurrences of a marked assumption (α̃ : τ̃ = σ̃)α̃ (for some
α̃ ∈ TVar) by an occurrences of a marked assumption (τ̃ = σ̃)α̃ , is a deriva-
tion in HB=

0 of the form

{ [τi= σi]
αi }i=1,...,n

Ď
τ = σ

(hereby the type variables used as annotations and assumption markers in
marked assumptions of D are retained as assumption markers for respective
corresponding assumptions in Ď).

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 269

Proof. The parts (i) and (ii) of the lemma are respectively treated in the items (a)
and (b) below.

(a) It suffices to show the statement (i) in the Precise Formulation of the lemma
only for such derivations of the form (8.10), in which the assumption markers
are type variables with the property that (1) type variables used as markers for
different assumption classes (whether discharged or open) in D are different,
and that (2) type variables used as assumption markers in D do not occur in
recursive types τ̃ or σ̃ for any equation between recursive types τ̃ = σ̃ in D.

This simplification in what has to be shown is justified because: it is clearly
possible to replace the assumption markers in a derivation of the form (8.10)
by type variables that did not previously occur in the derivation. This can be
done in such a way that different type variables are used to annotate different
assumption classes (whether ultimately discharged or undischarged ones) in
D. Then clearly the above mentioned properties (1) and (2) are satisfied for
the annotations of marked assumptions in the resulting derivation.

But now the definition of a transformation of a derivation D in HB= of the
form (8.10), where the type variables used as assumption markers fulfill the
above conditions (1) and (2), into a derivation D̂ in ann-HB=

0 of the form
(8.11) is a matter of a straightforward induction. Because many of the involved
finer details occur in a very similar way in the proofs of Lemma 8.1.4 and of
Lemma 8.1.6, some of them will not be explained in full precision here.

For an outline of this inductive definition, let D be an arbitrary derivation in
HB=

0 of the form (8.10), where the type variables used as assumption markers
fulfill the conditions (1) and (2) above.

In the base case of the induction, where |D| = 0, D is either an axiom (REFL)
of HB=

0 of the form τ = τ with some τ ∈ µTp or a marked assumption of the
form (τ = σ)α with τ, σ ∈ µTp and α ∈ TVar such that α /∈ fv(τ) ∪ fv(σ)
(since the condition (2) is satisfied for D). In the first case D̂ can obviously
be defined as τ : τ = τ and in the second case as the marked assumption
(α : τ = σ)α (which is allowed in ann-HB=

0 because of α /∈ fv(τ) ∪ fv(σ)).

For the induction step, we assume that the derivation D is as above and has
depth |D| ≥ 1. We distinguish the cases, in which the last rule application in
D is that of a one-premise rule or that of a two-premise rule of ann-HB=

0 .

In the case of a one-premise rule, the derivation D is of the form

{ [τi= σi]
αi }i=1,...,n

D1

τ̃ = σ̃
R

τ = σ

with some recursive types τ̃ , σ̃ and τi, σi for all i ∈ {1, . . . , n} and type vari-
ables α1, . . . , αn , such that furthermore the conditions (1) and (2) are fulfilled,
and where R is one of the rules FOLDl/r or (µ−⊥)

⊥der
l/r . Due to the induction

270 Transforming Derivations from HB= to AC=

hypothesis it is possible to produce effectively, starting from the subderivation
D1 of D, a derivation D̂1 in ann-HB

=
0 with the conclusion χ : τ̃ = σ̃ for some

annotation χ ∈ µTp and with the open assumption classes [αi : τi = σi]
αi for

i ∈ {1, . . . , n} . Choosing D̂1 in this way the desired derivation D̂ can then be
defined as of the form

{ [αi : τi= σi]
αi }i=1,...,n

D̂1

χ : τ̃ = σ̃
R

χ : τ = σ

in ann-HB=
0 , where the rule application labeled by R at the bottom of D̂

is an application of a rule in ann-HB=
0 of the same kind as the application

labeled by R stood for as last rule application in D. This definition is indeed
justified, since in all cases of one-premise rules of ann-HB=

0 the annotation
in the premise does not differ from the annotation in the conclusion.

In the case of a two-premise rule, the bottommost rule application in D is
one of the rule ARROW or one of the rule ARROW/FIX. We consider only
the definition of D̂ from D the subcase with an application of ARROW/FIX
because the case with an application of ARROW can be settled analogously
and easier. In this subcase the HB=

0 -derivation D can be written as of the
form

[τ̃1 → τ̃2 = σ̃1 → σ̃2]
α0

{
[τi = σi]

αi
}

i=1,...,n

D1

τ̃1 = σ̃1

[τ̃1 → τ̃2 = σ̃1 → σ̃2]
α0

{
[τi = σi]

αi
}

i=1,...,n

D2

τ̃2 = σ̃2 ARROW/FIX, α0
τ̃1 → τ̃2 = σ̃1 → σ̃2

for some τ̃1, τ̃2, σ̃1, σ̃2 and a type variable α0, where due to the side-condition
I on the application of ARROW/FIX at the bottom of D, the assumption
class [τ̃1 → τ̃2 = σ̃1 → σ̃2]

α0 is inhabited in at least one of the immediate sub-
derivations D1 and D2 of D. By the induction hypothesis the two ann-HB=

0 -
derivations D̂1 and D̂2 can be generated effectively that have the respective
conclusions χ1 : τ̃1 = σ̃1 and χ2 : τ̃2 = σ̃2 for some χ1, χ2 ∈ µTp and that
have open assumption classes among [αi : τi = σi]

αi for i ∈ {2, . . . , n} and
[α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]

α0 . We choose D̂1 and D̂2 in this way and observe
that the induction hypothesis also entails that the aforementioned n + 1 as-
sumption classes are precisely those open assumption classes that are inhab-
ited in at least one of D1 or D2. Now D̂ can be defined as the derivation

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 271

[α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]
α0

{
[αi : τi = σi]

αi
}

i=1,...,n

D̂1

χ1 : τ̃1 = σ̃1

[α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]
α0

{
[αi : τi = σi]

αi
}

i=1,...,n

D̂2

χ2 : τ̃2 = σ̃2
ARROW/FIX, α0

µα0. (χ1 → χ2) : τ̃1 → τ̃2 = σ̃1 → σ̃2

in ann-HB=
0 . That the side-condition S is satisfied for the application of AR-

ROW/FIX at the bottom of D̂ is a consequence of the conditions (1) and (2)
that we assumed for D, i.e. it is a consequence of special way how assumption
markers have been chosen for D. The fulfilledness of the side-condition I on
the application of ARROW/FIX at the bottom of D̂ follows from the side-
condition I on the application of ARROW/FIX at the bottom of D together
with what the induction hypothesis implies about the assumption classes of
D1 and D2. And furthermore, similar reasoning shows that D̂ indeed possesses
exactly the family {[αi : τi = σi]

αi}i=1,...,n of open assumption classes.

(b) This can be shown by straightforward induction on the depth |D| of D.

The following lemma justifies the extraction and combination steps, outlined at
the start of this section, of the transformation fromHB=

0 -derivations intoAC=-deriva-
tions. It asserts in particular that two AC=-derivations can be ‘extracted’ from
every derivation D in the annotated variant-Brandt-Henglein system ann-HB=

0

with conclusion χ : τ = σ , and that these two derivations can be combined into an
AC=-derivation with the conclusion τ = σ .

Lemma 8.1.6. The following two statements hold concerning transformations of
derivations in ann-HB=

0 into derivations in AC=:

(i) For every derivation D in ann-HB=
0 that is of the form

{ [αi : τi= σi]
αi }i=1,...,n

D
χ : τ = σ

(8.12)

with some n ∈ ω , χ, τ, σ, τ1, . . . , τn, σ1, . . . , σn ∈ µTp, and α1, . . . , αn ∈ TVar ,
two AC=-derivations D(1) and D(2) without assumptions and of the respective
form

D(1)

τ = χ[τ1/α1, . . . , τn/αn]

D(2)

σ = χ[σ1/α1, . . . , σn/αn]
(8.13)

can effectively be constructed from D.

(ii) Every derivation D in ann-HB=
0 without open assumption classes and with

conclusion χ : τ = σ , for some χ, τ, σ ∈ µTp, can effectively be transformed
into a derivation D′ in AC= without assumptions and with the conclusion
τ = σ .

272 Transforming Derivations from HB= to AC=

Since, as mentioned earlier, it is slightly more immediate to extract AC=
∗−-deri-

vations than AC=-derivations from ann-HB=
0 -derivations without open assump-

tions, we do not prove this lemma directly, but give its proof immediately after
stating the following lemma (which proof is then but an easy consequence). The
lemma below contains the in effect stronger statement of the existence of similar
transformations from derivations in ann-HB=

0 into derivations in the µ-COMPAT-
free variant system AC=

∗− of the systems AC=
∗ and AC=. Its proof contains the

main, and perhaps single not entirely straightforward, part of the transformation
developed in this section.

Lemma 8.1.7. The following two statements hold concerning transformations of
derivations in ann-HB=

0 into derivations in AC=
∗− :

(i) For every derivation D in ann-HB=
0 that is of the form (8.12), where n ∈ ω ,

α1, . . . , αn ∈ TVar and χ, τ, σ, τ1, . . . , τn, σ1, . . . , σn ∈ µTp, two AC
=
∗−-deri-

vations D
(1)
∗− and D

(2)
∗− without assumptions and of the respective form

D
(1)
∗−

τ = χ[τ1/α1, . . . , τn/αn]

D
(2)
∗−

σ = χ[σ1/α1, . . . , σn/αn]
(8.14)

can effectively be constructed from D.

(ii) Every derivation D in ann-HB=
0 without open assumption classes and with

conclusion χ : τ = σ , for some χ, τ, σ ∈ µTp, can effectively be transformed
into a derivation D′∗− in AC=

∗− without assumptions and with the conclusion
τ = σ .

The proof of this lemma is given below, subsequent to its application for ob-
taining a proof for Lemma 8.1.6.

Proof of Lemma 8.1.6. The items (i) and (ii) of the lemma follow from the re-
spective items (i) and (ii) in Lemma 8.1.7 in view of Corollary 7.1.17. Let us
demonstrate this only in the case of item (ii) here. We consider an arbitrary deriva-
tion D in ann-HB=

0 without open assumptions and with conclusion χ : τ = σ , for
some χ, τ, σ ∈ µTp . By Lemma 8.1.7, (ii), D can effectively be transformed into a
derivation D′∗− in AC=

∗− with conclusion τ = σ and without assumptions. And by
Corollary 7.1.17 the derivation D′∗− can effectively be transformed into a derivation
D′ in AC= without assumptions and with the same conclusion τ = σ .

Proof of Lemma 8.1.7. (a) We shall first show that item (ii) is an obvious conse-
quence of the statement in item (i) of the lemma.

Suppose that D is an arbitrary derivation in ann-HB=
0 without open assump-

tion classes. Let χ : τ = σ be the conclusion of D, where χ, τ, σ ∈ µTp .

Since D does not contain open assumptions, item (i) of the lemma implies

that two derivations D
(1)
∗− and D

(2)
∗− with the respective conclusions τ = χ and

σ = χ and without open assumptions can be produced effectively from D; let

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 273

D
(1)
∗− and D

(2)
∗− be such AC=

∗−-derivations. Then the derivation D′∗− of the
form

D
(1)
∗−

τ = χ

D
(2)
∗−

σ = χ
SYMM

χ = σ
TRANS

τ = σ

is a derivation in AC=
∗− without assumptions and with conclusion τ = σ ;

furthermore it can also be built effectively from D.

In this way we have shown that from every ann-HB=
0 -derivation D without

open assumption classes and with conclusion χ : τ = σ , for some χ, τ, σ ∈ µTp,
a derivation D′∗− in AC=

∗− without assumptions and with conclusion τ = σ
can be constructed effectively.

(b) Item (i) of the lemma will be shown by induction on the depth |D| of a
derivation D in ann-HB=

0 of the form (8.12).

For the base case of the induction, letD be an arbitrary derivation in ann-HB=
0

of the form (8.12) with |D| = 0. Then D is either an axiom of ann-HB=
0 or

a marked assumption. In the case that D is an axiom and hence of the

form τ : τ = τ for some τ ∈ µTp , both D
(1)
∗− and D

(2)
∗− can be chosen as the

AC=
∗−-derivation consisting of the axiom τ = τ . And in the case that D

is a marked assumption of the form (α : τ = σ)α for some τ, σ ∈ µTp and
α ∈ TVar , it is clear, because of α[τ/α] ≡ τ and α[σ/α] ≡ σ , that the de-

sired AC=
∗−-derivations D

(1)
∗− and D

(2)
∗− can be chosen as the axioms τ = τ and

σ = σ , respectively.

For the treatment of the induction step, let D be an arbitrary derivation in
ann-HB=

0 of the form (8.12) with |D| > 0. We distinguish seven different
cases according to which rule of ann-HB=

0 is applied at the bottom of D.

For the five cases, in which the bottommost rule application in D is that of a
one-premise rule of ann-HB=

0 , the induction step can be carried out in a very
similar way. Here we shall treat the case of the rule FOLDl as an example:
for this purpose we suppose that D is of the form

{ [αi : τi = σi]
αi }i=1,...,n

D1

χ : τ̃ [µα̃. τ̃/α̃] = σ
FOLDl

χ : µα̃. τ̃ = σ

Due to the induction hypothesis, two derivations in AC=
∗− of respective form

(D1)
(1)
∗−

τ̃ [µα̃. τ̃/α̃] = χ[τ1/α1, . . . , τn/αn]

(D1)
(2)
∗−

σ = χ[σ1/α1, . . . , σn/αn]

274 Transforming Derivations from HB= to AC=

exist and can effectively be constructed fromD1. Now for theAC=
∗−-derivation

D
(2)
∗− of the respective form in (8.13), which derivation is desired to be effec-

tively found as one half of the induction step, obviously (D1)
(2)
∗− can be chosen.

And for the derivation D
(1)
∗− of the respective form in (8.13) we can choose the

derivation

(FOLD/UNFOLD)

µα̃. τ̃ = τ̃ [µα̃. τ̃/α̃]

(D1)
(1)
∗−

τ̃ [µα̃. τ̃/α̃] = χ[τ1/α1, . . . , τn/αn]
TRANS

µα̃. τ̃ = χ[τ1/α1, . . . , τn/αn]

in AC=
∗− without assumption classes. – In the cases of an application of a

rule (µ−⊥)⊥derl or (µ−⊥)⊥derr at the bottom of D, the presence in AC=
∗−

of the scheme (µ−⊥)′ of axioms of the form µαα1 . . . αn. α = ⊥ , where
α, α1, . . . , αn ∈ µTp , is used.

If the last rule application in D is that of an ARROW-rule, then D can be
written as of the form

{
[α′i1 : τ

′
i1

= σ′i1]
α′i1
}

i1
{
[α′′′i3 : τ

′′′
i3

= σ′′′i3]
α′′′i3
}

i3

D1

χ1 : τ̃1 = σ̃1

{
[α′′i2 : τ

′′
i2

= σ′′i2]
α′′i2
}

i2
{
[α′′′i3 : τ

′′′
i3

= σ′′′i3]
α′′′i3
}

i3

D2

χ2 : τ̃2 = σ̃2
ARROW

χ1 → χ2 : τ̃1 → τ̃2 = σ̃1 → σ̃2

for some τ̃1, τ̃2, σ̃1, σ̃2, χ1, χ2 ∈ µTp such that τ ≡ τ1 → τ2 , σ ≡ σ1 → σ2 ; the
indices i1, i2 and i3 in the three kinds of families of marked assumptions in-
dicated at the top range, for some n1, n2, n3 ∈ ω , over the sets {1, . . . , n1} ,

{1, . . . , n2} , and {1, . . . , n3} , respectively; hereby
{
[α′i1 : τ ′i1 = σ′i1]

α′i1
}

i1
denotes the family of all those open assumption classes in D1 that are inhab-

ited only in D1 (but not in D2), accordingly
{
[α′′i2 : τ

′′
i2

= σ′′i2]
α′′i2
}

i2
denotes

the family of all those open assumption classes in D2 that are inhabited only

in D2 (but not in D1), and the respective families {[α′′′i3 : τ ′′′i3 = σ′′′i3]
α′′′i3 }i3

indicated at the top of D1 and of D2 denote the family of parts in D1 and D2

of all those open assumption classes of D that are inhabited both in D1 and in
D2. Given this denotation for the open assumption classes in D, Lemma 8.1.4,
(a), implies that all type variables α′i1 , α

′′
i2

and α′′′i3 occurring as annotations
for open marked assumption in D are mutually different. Since D was also
assumed to be of the form (8.12), we find that

{α1, . . . , αn} = {α′1, . . . , α
′
n1}] {α

′′
1 , . . . , α

′′
n2}] {α

′′′
1 , . . . , α

′′′
n3} (8.15)

holds and that the family
{
[αi : τi = σi]

αi
}

i
of open marked assumption

classes in D is the disjoint union of the three families of assumption classes

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 275

{
[α′i1 : τ

′
i1

= σ′i1]
α′i1
}

i1
,
{
[α′′i2 : τ

′′
i2

= σ′′i2]
α′′i2
}

i2
and {[α′′′i3 : τ

′′′
i3

= σ′′′i3]
α′′′i3 }i3

appearing above. Furthermore it follows that, for all i ∈ {1, . . . , n} , the type
variables αi are distinct.

An application of the induction hypothesis to D1 implies that from D1 an

derivation (D1)
(1)
∗− in AC=

∗− that is of the form

(D1)
(1)
∗−

τ̃1 = χ1[. . . , τ
′
i1
/α′i1 , . . . , τ

′′′
i3
/α′′′i3 , . . .]

and that does not contain assumptions can effectively be produced. Let

(D1)
(1)
∗− be chosen in this way. From the way in which the assumption classes

of D have been denoted above, it follows with the help of Lemma 8.1.4 that

α′′i2 /∈ fv(χ1) for all i2 ∈ {1, . . . , n2} .

Hence (D1)
(1)
∗− can also be written as of the form

(D1)
(1)
∗−

τ̃1 = χ1[. . . , τ
′
i1/α

′
i1 , . . . , τ

′′
i2/α

′′
i2 , . . . , τ

′′′
i3 /α

′′′
i3 , . . .]

︸ ︷︷ ︸

≡
(∗)

χ1[τ1/α1,...,τn/αn]

where for the equivalence labeled by (*) it was appealed to (8.15) as well as
to the above noted facts, that all αi for i ∈ {1, . . . , n} are different, and that
the family

{
[αi : τi = σi]

αi
}

i
of open assumption classes in D is composed

by the three families of mutually disjoint assumption classes used above.

By a completely analogous argument it is possible to conclude that an deriva-

tion (D2)
(1)
∗− in AC=

∗− without assumptions that is of the form

(D2)
(1)
∗−

τ̃2 = χ2[τ1/α1, . . . , τn/αn]

can effectively be built from D2; we also choose (D2)
(2)
∗− in such a way. From

(D1)
(1)
∗− and (D2)

(1)
∗− we can now build the derivation

(D1)
(1)
∗−

τ̃1 = χ1[τ1/α1, . . . , τn/αn]

(D2)
(1)
∗−

τ̃2 = χ2[τ1/α1, . . . , τn/αn]
ARROW

τ̃1 → τ̃2 = (χ1 → χ2)[τ1/α1, . . . , τn/αn]

in AC=
∗−; this derivation does not contain assumptions and can be chosen

as the derivation D
(1)
∗− that was desired for the induction step here. The

276 Transforming Derivations from HB= to AC=

derivation D
(2)
∗−, which is also required for the induction step, can be built in

a completely analogous way from the AC=
∗−-derivations (D1)

(2)
∗− and (D2)

(2)
∗−,

whose effective existence is also guaranteed by the induction hypothesis.

If the last rule application in D is that of an ARROW/FIX-rule, then D is of
the form

[α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]
α0

{
[αi : τi = σi]

αi
}

i

D1

χ1 : τ̃1 = σ̃1

[α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]
α0

{
[αi : τi = σi]

αi
}

i

D2

χ2 : τ̃2 = σ̃2
ARROW/FIX, α0

µα0. (χ1 → χ2) : τ̃1 → τ̃2 = σ̃1 → σ̃2

for some τ̃1, τ̃2, σ̃1, σ̃2, χ1, χ2 ∈ µTp such that τ ≡ τ1 → τ2 , σ ≡ σ1 → σ2 , and
for some type variable α0 ; the index i varies over the set {1, . . . , n} , for
some n ∈ ω ; the open assumption class [α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]

α0 and the
family

{
[αi : τi = σi]

αi
}

i
of open assumptions classes, where i varies through

i ∈ {1, . . . , n} , at the top of D1 and D2 stand respectively for that parts of
these assumption classes in D1 and accordingly in D2 which consist of all
occurrences of the respective marked assumptions in D1 and accordingly in
D2; furthermore each of the assumption classes [α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]

α0 ,
and [αi : τi = σi]

αi , for i ∈ {1, . . . , n} , are assumed to be inhabited in D
(but are not assumed to be inhabited necessarily in both D1 and in D2):
for the assumption class [α0 : τ̃1 → τ̃2 = σ̃1 → σ̃2]

α0 this is due to the side-
condition I on the bottommost application of ARROW/FIX, for the other
assumption classes this follows from the fact that D was assumed to be of the
form (8.12).

Now we describe the construction of the derivation D
(2)
∗− of the respective

form in (8.13) that is required for demonstrating the induction step. By the
same reasoning as before in the treatment of the case with an ARROW-rule
(i.e. by (1) dividing the occurring assumption classes into those that are in-
habited respectively (I) only in D1, (II) only in D2 and (III) in both D1

and D2, and by (2) using the side-condition S for the bottommost applica-
tion of ARROW/FIX in D and by (3) using the conditions implied for D by
Lemma 8.1.4), we find that the induction hypothesis, applied for D1 and for
D2, implies the existence and the possibility to generate effectively from D1

and D2 two AC=
∗−-derivations (D1)

(2)
∗− and (D2)

(2)
∗− that are of the form

(Dj)
(2)
∗−

σ̃j = χj [σ̃1 → σ̃2/α0, σ1/α1, . . . , σn/αn]
(for each j ∈ {1, 2}).

and that do not contain assumptions. Using (D1)
(2)
∗− and (D2)

(2)
∗−, it is now

possible to assemble a derivation in AC=
∗− of the form

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 277

(D1)
(2)
∗−

σ̃1 = χ1[σ̃1 → σ̃2/α0, . . .]

(D2)
(2)
∗−

σ̃2 = χ2[σ̃1 → σ̃2/α0, . . .]
ARROW

σ̃1 → σ̃2 = (χ1 → χ2)[σ̃1 → σ̃2/α0, σ1/α1, . . . , σn/αn]
︸ ︷︷ ︸

≡
(8.16)

((χ1→χ2)[σ1/α1,...,σn/αn])[σ̃1→σ̃2/α0]

CONTRACT
σ̃1 → σ̃2 = µα0. ((χ1 → χ2)[σ1/α1, . . . , σn/αn])

︸ ︷︷ ︸

≡
(8.16)

(µα0. (χ1→χ2))[σ1/α1,...,σn/αn]

that does not contain assumptions and that can be taken as the desired deriva-

tion D
(2)
∗− (the side-condition α0 ↓ (χ1 → χ2)[σ1/α1, . . . , σn/αn] for the dis-

played application of CONTRACT at the bottom of this derivation is obvi-
ously satisfied). At two places we have used here that

α0 /∈ fv(σj) for j ∈ {1, . . . , n} (8.16)

holds, which is implied by applications of Lemma 8.1.4, (c), to both D1 and D2

and by the side-condition S on the bottommost application of ARROW/FIX

in D. By having explained how to construct the derivation D
(2)
∗− in an effec-

tive way from the assumed derivation D we have shown one half of what is
necessary to prove for the induction step in this case.

The derivation D
(1)
∗−, whose effective existence is also required to be proved,

can be built in an analogous way from the derivations (D1)
(1)
∗− and (D2)

(1)
∗−

that can effectively be constructed in their turn from D1 and D2 due to the
induction hypothesis.

This concludes the induction on |D| with D as in (8.12) for the proof of item (i)
of the lemma.

The existence of an effective transformation from an arbitrary derivation D in
HB=

0 without open assumption classes via an annotated derivation D̂ in ann-HB=
0

into a derivation (D̂)′ in AC= with the same conclusion as D is now a direct
consequence of the statements shown so far (compare also the illustration of the
three main steps of this transformation in Figure 8.1).

Theorem 8.1.8. Every derivation in HB=
0 without open assumption classes can

effectively be transformed into a derivation in AC= with the same conclusion and
without assumptions.

Proof. This is an immediate consequence of Lemma 8.1.4 and Lemma 8.1.6.

Now we want to illustrate this transformation by performing a ‘test-run’ on the
example of a HB=

0 -derivation without open assumptions that we have encountered
in Chapter 6 before.

278 Transforming Derivations from HB= to AC=

Example 8.1.9. We consider the two strongly equivalent recursive types

τ ≡ µα. ((α→ α)→ α) and σ ≡ µα. (α→ (α→ α)) , (8.17)

which correspond to the recursive types τ2 and σ2 in Example 3.6.3, and a deriva-
tion of τ = σ in HB=

0 that we have encountered before, with different assumption
markers, in Figure 6.2. We let D be the derivation

(. . .)β

τ = σ

(. . .)γ

τ → τ = σ

(. . .)β

τ = σ

(τ → τ)→ τ = σ → σ

τ = σ → σ γ
τ → τ = σ → (σ → σ)

FOLDr

τ → τ = σ

(. . .)β

τ = σ

(. . .)δ

τ = σ → σ

τ → τ = σ → (σ → σ)

τ → τ = σ

(. . .)β

τ = σ
δ

(τ → τ)→ τ = σ → σ
FOLDl

τ = σ → σ
(ARROW/FIX)β

(τ → τ)→ τ = σ → (σ → σ)
FOLDl/r

µα. ((α→ α)→ α)
︸ ︷︷ ︸

≡τ

= µα. (α→ (α→ α))
︸ ︷︷ ︸

≡σ

in HB=
0 . The rule applications labeled by γ, and by δ in this symbolic prooftree

for D are applications of ARROW/FIX at which the assumption classes marked by
γ, and respectively those marked by δ are discharged. Obviously, the derivation
D contains no open assumption classes. We set out to perform the three steps in
the transformation developed in this section and to observe its main effects on the
‘input’ D. We want to build, in a stepwise manner, a derivation (D̂)′ in AC= with
the same conclusion as D and without assumptions.

In performing the steps of the transformation developed in this section, we
will at some places only display the occurring intermediary derivations in AC=

∗−,
and will then only hint how these can be transformed further into corresponding
AC=-derivations. We do so because the respectiveAC=-derivations tend to become
quite large and very hard to deal with typographically, and furthermore because
the elimination of applications of FOLDl/r and CONTRACT from derivations in
AC=

∗−+FOLDl/r with the result of AC=-derivations with respectively the same
conclusion is always a very easy matter (the elimination of CONTRACT-applica-
tions has been described in the proof of Proposition 5.1.6).

The first step in the transformation of D, the annotation step, consists, along the
proof of Lemma 8.1.5, (i), in finding appropriate annotations for the formulas in D
such that the result D̂ of prefixing these annotations in the respective formulas of D
is a derivation in ann-HB=

0 . We observe that the markers used for assumptions inD
are already from the start recursive types, which furthermore satisfy the conditions
(1) and (2) in item (a) of the proof of Lemma 8.1.5, namely, (1) they do not occur as
variables anywhere in formulas of D, and (2) they fulfill the property that different
assumption classes in D are marked by different type variables. Hence we are able
to follow the inductive definition of D̂ from D sketched in item (a) of the proof of

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 279

Lemma 8.1.5. In doing so, we arrive at a derivation D̂ of the form

(β : . . .)β

β : τ = σ

(γ : . . .)γ

γ : τ → τ = σ

(β : . . .)β

β : τ = σ

γ → β : . . .

γ → β : τ = σ → σ
γ

µγ. (β → (γ → β)) : . . .

µγ. (β → (γ → β)) : τ → τ = σ

(β : . . .)β

β : τ = σ

(δ : . . .)δ

δ : τ = σ → σ

β → δ : . . .

β → δ : τ → τ = σ

(β : . . .)β

β : τ = σ
δ

µδ. ((β → δ)→ β) : . . .

µδ. ((β → δ)→ β) : τ = σ → σ
β

µβ.
(
µγ. (β → (γ → β))→ µδ. ((β → δ)→ β)

)
: (τ → τ)→ τ = σ → (σ → σ)

µβ.
(
µγ. (β → (γ → β))→ µδ. ((β → δ)→ β)

)
: τ = σ

in ann-HB=
0 , where we have abbreviated, for typographical reasons, the marked

assumptions

(β : (τ → τ)→ τ = σ → (σ → σ))β , (γ : τ → τ = σ → (σ → σ))γ ,

and (δ : (τ → τ)→ τ = σ → σ)δ

at the top of D̂ as well as the annotated formulas

γ → β : (τ → τ)→ τ = σ → σ , β → δ : τ → τ = σ → (σ → σ) ,

µγ. (β → (γ → β)) : τ → τ = σ → (σ → σ),

and µδ. ((β → δ)→ β) : (τ → τ)→ τ = σ → σ

within D̂. We note that, equally as D, the annotated derivation D̂ does not contain
open assumption classes (as this also stated for the transformation developed in
the proof of Lemma 8.1.5, (i), by the assertion of the Precise Formulation of this
statement; see also Figure 8.3).

The second step of the transformation, the extraction step, consists in the appli-
cation of the transformation guaranteed by Lemma 8.1.6, (i), which implies that two
derivations D̂(1) and D̂(2) in AC= with the respective conclusions τ = χ and σ = χ
can effectively be extracted from the ann-HB=

0 -derivation D̂, where we designate
with χ, here and below, the annotation in the conclusion of D̂, i.e. we let

χ ≡ µβ.
(
µγ. (β → (γ → β))→ µδ. ((β → δ)→ β)

)
. (8.18)

In following the proof of Lemma 8.1.6, we find that we first have to extract from

D̂ two derivations (D̂)
(1)
∗− and (D̂)

(2)
∗− in AC=

∗− without assumptions and with the
respective conclusions τ = χ and χ = ρ , which derivations have to be translated
subsequently into the desired AC=-derivations D̂(1) and D̂(2).

For the purpose of being able to deal with the arising derivations typographically,
we use the following abbreviating notation: we denote by D̂111, and respectively by
D̂112 those two subderivations of D̂ that lead up to the left, and to the right premise

280 Transforming Derivations from HB= to AC=

of that application of ARROW/FIX in D̂ at which the assumptions marked by β
are discharged. Thus D̂111 is of the form

(β: (τ→τ)→τ =σ→(σ→σ))β

β : τ = σ

(γ: τ→τ =σ→(σ→σ))γ

γ : τ → τ = σ

(β: (τ→τ)→τ =σ→(σ→σ))β

β : τ = σ
ARROW

γ → β : (τ → τ)→ τ = σ → σ
FOLDl

γ → β : τ = σ → σ
ARROW/FIX, γ

µγ. (β → (γ → β)) : τ → τ = σ → (σ → σ)
FOLDr

µγ. (β → (γ → β)) : τ → τ = σ
(8.19)

and has [β : (τ → τ)→ τ = σ → (σ → σ)]β as its single class of open assumptions
(the assumption with marker γ has already been discharged in D̂111). The sub-
derivation D̂112 of D̂ is given below in (8.21). These two subderivations of D̂ are
now displayed in (8.19), and respectively in (8.21), in greater detail than this was
typographically possible in the earlier given, abbreviated prooftree for D̂.

For extracting the two needed AC=
∗−-derivations (D̂)

(1)
∗− and (D̂)

(2)
∗− from D̂, we

can effect the transformation that is defined in the proof of Lemma 8.1.7, (i), by
induction on the depth of an arbitrary ann-HB=

0 -derivations. Here it follows that

in the course of building the derivation (D̂)
(1)
∗− from D̂, we encounter the subtask of

having to produce the derivation (D̂111)
(1)
∗− from D̂111 at some earlier stage, and that

(D̂111)
(1)
∗− is bound to appear eventually in the result (D̂)

(1)
∗−; and a similar assertion

holds for (D̂112)
(1)
∗− with respect to D̂112 and D̂

(1)
∗−. By following the inductive defi-

nition described in the proof of Lemma 8.1.7, (i), we arrive, as can be verified in a

straightforward manner, at the derivation (D̂111)
(1)
∗− in AC=

∗− that results from the
derivation

(REFL)

(τ→τ)→τ = β [(τ→τ)→τ/β]
FOLDl

τ = β [(τ→τ)→τ/β]

(REFL)

τ→τ = γ [τ→τ/γ]

(REFL)

(τ→τ)→τ = β [(τ→τ)→τ/β]
FOLDl

τ = β [(τ→τ)→τ/β]
ARROW

(τ→τ)→τ = (γ→β) [(τ→τ)→τ/β, τ→τ/γ]
FOLDl

τ = (γ→β) [(τ→τ)→τ/β, τ→τ/γ]
ARROW

τ → τ = (β → (γ → β)) [(τ → τ)→ τ/β, τ → τ/γ]
︸ ︷︷ ︸

≡ ((β→(γ→β)) [(τ→τ)→τ/β]) [τ→τ/γ]
CONTRACT

τ → τ = µγ.
(
(β → (γ → β)) [(τ → τ)→ τ/β]

)

︸ ︷︷ ︸

≡ (µγ. (β→(γ→β)) [(τ→τ)→τ/β])

(8.20)

in AC=
∗−+FOLDl by eliminating each of the three applications of FOLDl, in each

case using instead an axiom (FOLD/UNFOLD) that is followed by an application
of TRANS.

In a similar way as (D̂111)
(1)
∗− has been extracted inductively from the subderiva-

8.1 A Transformation of HB=
0 -Derivations into AC=-Derivations 281

tion D̂111 of D̂, from the subderivation D̂112 of D that is of the form

(β: (τ→τ)→τ =σ→(σ→σ))β

β : τ = σ

(δ: (τ→τ)→τ =σ→σ)δ

FOLDl

δ : τ = σ → σ
ARROW

β → δ : τ → τ = σ → (σ → σ)
FOLDr

β → δ : τ → τ = σ

(β: (τ→τ)→τ =σ→(σ→σ))β

β : τ = σ
ARROW/FIX, δ

µδ. ((β → δ)→ β) : (τ → τ)→ τ = σ → σ
FOLDl

µδ. ((β → δ)→ β) : τ = σ → σ
(8.21)

a derivation (D̂112)
(1)
∗− in AC=

∗− can be extracted that results from the derivation

(REFL)

(τ→τ)→τ = β [(τ→τ)→τ/β]

τ = β [(τ→τ)→τ/β]

(REFL)

(τ→τ)→τ = δ [(τ→τ)→τ/δ]

τ = δ [(τ→τ)→τ/δ]
ARROW

τ→τ=(β→δ)[(τ→τ)→τ/β,(τ→τ)→τ/δ]

(REFL)

(τ→τ)→τ = β [(τ→τ)→τ/β]

τ = β [(τ→τ)→τ/β]
ARROW

(τ → τ)→ τ = ((β → δ)→ β) [(τ → τ)→ τ/β, (τ → τ)→ τ/δ]
︸ ︷︷ ︸

≡ (((β→δ)→β) [(τ→τ)→τ/β]) [(τ→τ)→τ/δ]
CONTRACT

(τ → τ)→ τ = µδ.
(
((β → δ)→ β) [(τ → τ)→ τ/β]

)

︸ ︷︷ ︸

≡ (µδ. ((β→δ)→β)) [(τ→τ)→τ/β]
FOLDl

τ =
(
µδ. ((β → δ)→ β)

)
[(τ → τ)→ τ/β]

(8.22)

in AC=
∗−+FOLDl by eliminating each of the four occurring applications of FOLDl

analogously as indicated above for the case of the derivation in (8.20).

By continuing to follow the inductive construction of (D̂)
(1)
∗− from D̂ it is pos-

sible to verify that, relative to the already reached derivations D̂111 and D̂112, the

derivation (D̂)
(1)
∗− in AC=

∗− results from the derivation

(D̂111)
(1)
∗−

τ→τ = (µγ. (β→(γ→β))) [(τ→τ)→τ/β]

(D̂112)
(1)
∗−

τ = (µδ. ((β→δ)→β)) [(τ→τ)→τ/β]
ARROW

(τ→τ)→τ = (µγ. (β→(γ→β))→µδ. ((β→δ)→β))[(τ→τ)→τ/β]
CONTRACT

(τ → τ)→ τ = µβ.
(
µγ. (β → (γ → β))→ µδ. ((β → δ)→ β)

)

FOLDl

τ = µβ.
(
µγ. (β → (γ → β))→ µδ. ((β → δ)→ β)

)

(8.23)

by eliminating (as hinted above) the bottommost application of FOLDl.

Having obtained the AC=
∗−-derivation (D̂)

(1)
∗−, it can be transformed into the

derivation (D̂)(1) in AC= required for the extraction step, by the transformation
stated by Corollary 7.1.17, and hence by eliminating the three applications of CON-

TRACT in (D̂)
(1)
∗− (that can be seen in (8.20), (8.22) and (8.23), respectively) using

the statement of Proposition 5.1.6.
The construction of the second derivation needed for the extraction step, the

derivation (D̂)(2) in AC= with conclusion σ = χ and without assumptions can

282 Transforming Derivations from HB= to AC=

be performed in an analogous manner: first a derivation (D̂)
(2)
∗− in AC=

∗− without

assumptions and with conclusion σ = χ is extracted from D̂ according to the proof

of Lemma 8.1.7, (i), and then (D̂)
(2)
∗− is transformed into the desired derivation

(D̂)(2) in AC= by eliminating CONTRACT-applications from (D̂)
(2)
∗− according to

the transformation stated by Proposition 5.1.6. Since the extraction of (D̂)(2) in
this way from D̂ is straightforward and similar to the extraction of (D̂)(1) from D̂

outlined above, we do not show it here. We only stipulate D̂
(2)
∗− to be the AC=-

derivation with conclusion σ = χ and without assumptions that is found in the way
sketched here.

In the third step of the transformation, the combination step, the two reached
derivations (D̂)(1) and (D̂)(2) in AC= with the respective conclusions τ = χ and
σ = χ (where χ was defined in (8.18)) are combined with the AC=-derivation (D̂)′

(D̂)(1)

τ = µβ. (µγ. (β→(γ→β))→µδ. ((β→δ)→β))

(D̂)(2)

σ= µβ. (µγ. (β→(γ→β))→µδ. ((β→δ)→β))
SYMM

µβ. (µγ. (β→(γ→β))→µδ. ((β→δ)→β))= σ
TRANS

µα. ((α→ α)→ α)
︸ ︷︷ ︸

≡ τ

= µα. (α→ (α→ α))
︸ ︷︷ ︸

≡σ

as the result that does not contain assumptions. This step followed the assertion of
Lemma 8.1.6, (ii), and is a transformation similar to the one described in the proof
of Lemma 8.1.7, (ii). It is easy to see that the derivation (D̂)′ is actually also a
derivation in the µ-COMPAT-free variant system AC=

− of AC=.
In this way we have outlined how to construct, from the given derivation D in

HB=
0 without open assumptions, a derivation (D̂)′ in AC= without assumptions

and with the same conclusion as D.

In conclusion of this section we want to report of some of our attempts to
generalize the transformation developed here fromHB=

0 -derivations intoAC=-deri-
vations.

Remark 8.1.10 (Generalizations of the transformation from HB=
0 to AC=).

In the below items (a) and (b) we consider respectively the questions of whether
the transformation from derivations in HB=

0 into derivations in AC= constructed
in this section can be generalized to one from e-HB=

0 - into AC=-derivations, or to
one from HB=- into AC=-derivations.

(a) The transformation developed in this section fromHB=
0 -derivations via deriva-

tions in ann-HB=
0 , and in fact via AC=

∗−-derivations, into AC
=-derivations

can actually be extended, in a rather straightforward way, into one that trans-
forms e-HB=

0 -derivations into AC=-derivations in an analogous manner. A
prerequisite for such a transformation is an annotated version ann-e-HB=

0

of the extension e-HB=
0 of HB=

0 which is easy to define (cf. Remark 8.1.2,
(b), for a definition of a generalized FIX-rule, on which the introduction of

8.1 A Transformation of HB=-Derivations into HB=
0 -Derivations 283

such an annotated system ann-e-HB=
0 can be based). Relying on such a sys-

tem ann-e-HB=
0 , it is then straightforward to define a transformation from

e-HB=
0 -derivations into AC=-derivations that proceeds by the same kind of

steps as are depicted in Figure 8.1: a given derivation D in e-HB=
0 with-

out open assumptions and with conclusion τ = σ , for some τ, σ ∈ µTp , is
first annotated into a derivation D̂ in ann-e-HB=

0 without open assumptions
and with conclusion χ : τ = σ , for some χ ∈ µTp ; then two AC=-derivations

(D̂)(1) and (D̂)(2) (or for that matter, AC=
∗−-derivations (D̂)

(1)
∗− and (D̂)

(2)
∗−)

without assumptions and with respective conclusion τ = χ and σ = χ are ex-
tracted from D̂; and finally, (D̂)(1) and (D̂)(2) are combined into an AC=-deri-
vation (D̂)′ in AC= with the same conclusion as D and without assumptions.

(b) It is not clear to us at present how the transformation developed in this
section could be generalized into one that is applicable to arbitrary derivations
D in HB= without open assumptions (and not just to HB=-derivations of
special form in the sense of fn. 1 on page 1), that proceeds in the spirit of the
transformation given here, and that produces a derivation D′ in AC= without
assumptions and with the same conclusion as D. We will also pose this as
Open Problem 9.1.1 in Chapter 9.

8.2 A Transformation of Derivations in HB=

into Derivations in HB=
0

The existence of a transformation from derivations in HB=
0 into derivations in

HB= that preserves respective conclusions and open assumption classes was stated
in Lemma 5.1.19, Chapter 5; in the proof of this lemma we described an easy
transformation to this effect. We have also mentioned that it is not equally simple
to give also a transformation for the opposite direction, i.e. one that is able to
produce, for every given derivation in HB=, a derivation in HB=

0 with the same
conclusion and with the same open assumption classes.

In fact, whereas the transformation given in the proof of Lemma 5.1.19 acts on
all derivations D in HB=

0 with or without open assumption classes and produces a
derivation D′ in HB= with the same conclusion and with the same open assump-
tion classes, a transformation in the opposite direction with an analogous property
does not exist in general. So it is, for instance, the case that for none of the two
derivations consisting of just the applications

(⊥ = α)u
SYMM

α = ⊥
and

(⊥ = α)v (α = >)w
TRANS

⊥ = >

of SYMM and TRANS (both of which derivations contain open marked assump-
tions) there exists a respective mimicking derivation in HB=

0 , i.e. a derivation with
respectively the same conclusion and with the same open assumption classes. In
both cases this is a simple consequence of the fact that the system HB=

0 fulfills the

284 Transforming Derivations from HB= to AC=

subformula property SP1 (cf. Proposition 5.1.17, Chapter 5, Section 5.1): due to
α 6v ⊥ (and also due to ⊥ 6v α), there does not exist a derivation in HB=

0 with
conclusion α = ⊥ and with the formula ⊥ = α occurring in an open assumption;
similarly, there does not exist such a HB=

0 -derivation with conclusion ⊥ = > that
contains an open assumption ⊥ = α (or α = ⊥). This observation can also be
reformulated as the following proposition.

Proposition 8.2.1. The rules SYMM and TRANS are not derivable in HB=
0 .

Therefore a general transformation which would be able to transform every
derivation D in HB=

0 +SYMM+TRANS into a derivation D′ inHB=
0 that mimics

D does not exist .
However, if we restrict our considerations to derivations in HB= without open

assumptions, then there does certainly exist an effective transformation of deriva-
tions D into respective mimicking derivations in HB=

0 , i.e. into derivations in HB=
0

without open assumptions and with respectively the same conclusion. As we have
already mentioned at the outset of this chapter, plain existence of such a trans-
formation is namely just a consequence of the soundness theorem for HB= with
respect to =µ, and the fact that the completeness theorem for HB=

0 with respect to
=µ can be “made effective” (in the sense that, for every pair 〈τ, σ〉 of recursive types
that are strongly equivalent, a derivation in HB=

0 without open assumptions and
with conclusion τ = σ can effectively be built3). But such an argumentation only
leads to a transformation that completely ignores its input consisting of a deriva-
tion D in HB= without open assumptions and that instead builds up a mimicking
derivation for D in HB=

0 purely from scratch. This is clearly not what one has in
mind as a proof-theoretic transformation. In contrast with such a transformation,
here we will develop a sequence of effective, concrete and mainly locally applied
manipulation steps that can be applied to an arbitrary given derivation D in HB=

with the outcome of a mimicking derivation D′ for D in HB=
0 .

Now we give the main theorem of this section, which states the existence of
an effective proof-theoretic transformation from derivations in the system HB=

without open assumptions into mimicking derivations in the system HB=
0 . The

proof of this theorem is going to proceed by developing an effective method for
‘normalizing’ derivations of HB=

0 +SYMM+TRANS by “effective SYMM- and
TRANS-elimination” (which will be performed by a similar technique as is applied in
classical proofs for cut-elimination in Gentzen systems). This method could indeed
also be called a ‘normalization procedure’ for HB=

0 -derivations because it enables
to transform derivations inHB=, and thus derivations that do not necessarily fulfill
the subformula property SP1, into mimicking derivations in HB=

0 , which fulfill SP1

as a consequence of the fact that HB=
0 obeys the subformula property SP1.

Theorem 8.2.2. Every derivation D in HB= without open assumptions can be
transformed, by an effective proof-theoretic transformation, into a derivation D′ in
HB=

0 with the same conclusion and without open assumptions.

3For this, an algorithm for building HB=

0
-derivations with equations between strongly equiv-

alent recursive types as conclusions can be used that is similar to Algorithm S given in [BrHe98]
on page 11.

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 285

The proof for this theorem will be given below on page 318. For this proof we will
invoke three main lemmas, Lemma 8.2.3, Lemma 8.2.13, and Lemma 8.2.21, which
will formalize the three principal steps in our demonstration of Theorem 8.2.2. Be-
fore successively stating and proving these lemmas, we give an approximate outline
of the steps in the transformation to which these lemmas correspond respectively.

By a slightly simplified account, the three main steps in our proof of Theo-
rem 8.2.2 consist in the proof of the assertions that are formulated and explained
in the following items (St1), (St2), and (St3):

(St1) Every derivation in HB= can be transformed into a derivation in HB=
0 +

+SYMM+TRANS in a very easy and straightforward way.

(St2) For every derivation D in HB=
0 +SYMM+TRANS with conclusion τ = σ ,

for some τ, σ ∈ µTp , and without open assumption classes it is possible, by
performing the effective operations of

(a) permuting applications of rules SYMM and TRANS upwards over appli-
cations HB=

0 -rules, and of

(b) ‘unfolding’ applications of ARROW/FIX,

to build up, in a stepwise and effective way, a finite or infinite sequence SD =
= 〈D(n)〉n∈I , where I = ω or I = [0, nmax] ∩ ω for some nmax ∈ ω , of deriva-
tions in HB=

0 +SYMM+TRANS such that

– SD starts with D, i.e. D(0) is D,

– for all n ∈ I , the derivation D(n) has conclusion τ = σ and does not
have open assumptions, i.e. D(n) mimics D,

– either SD is finite and it ends, for some nmax ∈ ω , with a derivation
D(nmax) in HB=

0 (and hence with a derivation without SYMM- and
TRANS-applications),

– or SD is infinite and the minimal heights hn of applications of SYMM or
TRANS in the derivationsD(n) diverge against infinity, i.e. 〈hn〉n∈ω →∞
holds (and hence all derivations in the sequence SD contain applications
of SYMM and/or of TRANS).

The construction of the sequence SD ensures that, if the applications of
SYMM and TRANS are not eliminated during the construction steps of the se-
quence SD, as result of successively permuting them upwards as far as possible
in derivations D(n) and of repeatedly ‘unfolding’ these derivations appropri-
ately, then at least the “HB=

0 -end-parts” of the derivations D(n) get larger
and larger (in the sense that the heights hn of the bottommost of applications
SYMM or TRANS grow and tend to infinity). Hereby we have called, and
will do so again below in (St3), the SYMM- and TRANS-free end-part of a
derivation D̃ also the HB=

0 -end-part of D̃; it will also be denoted by dD̃eHB=

0

(cf. Definition 8.2.11 for two precise notions that formalize this concept).

286 Transforming Derivations from HB= to AC=

(St3) From every infinite sequence SD = 〈D(n)〉n∈ω of derivations in the system
HB=

0 +SYMM+TRANS with conclusion τ = σ and without open assump-
tion classes such that 〈hn〉n∈ω →∞ (where the numbers hn are, as in (St2),
the minimal heights in D(n) of an application of SYMM and TRANS) a deriva-
tion D′ in HB=

0 (and hence a derivation without applications of SYMM and
TRANS) without open assumptions and with conclusion τ = σ can eventually
be extracted; more precisely, for all n ∈ ω such that hn ≥ h(τ,σ) in relation to
a certain bound h(τ,σ) , which depends on the sizes and depths of the recursive

types τ and σ in the conclusion τ = σ of D(n), the HB=
0 -end-part dD(n)eHB=

0

of D(n) can be effectively be transformed into a derivation D′ in HB=
0 with

conclusion τ = σ and without open assumption classes. This transformation
can then be carried out by dropping unnecessary subderivations and by al-
lowing appropriate back-bindings of then newly arising open assumptions to
respective occurrences of applications4 ARROW or ARROW/FIX present in
dD(n)eHB=

0
.

From the assertions in (St1)–(St3) above an effective algorithm for transforming
derivations in HB= without open assumptions into mimicking derivations in HB=

0

can actually be extracted that acts as follows: given a derivation D inHB= without
open assumption classes and with conclusion τ = σ , first perform (St1) with a
mimicking derivation D̃ in HB=

0 +SYMM+TRANS1 as the result; then construct
stepwisely a sequence SD= 〈D(0),D(1),D(2), . . .〉 of derivations inHB=

0 +SYMM+
+ {TRANSk}k that is guaranteed by (St2) and that starts with D(0) = D̃ ; proceed
with the construction of this sequence as long as hn < h(τ,σ) holds for an n ∈ ω ,

that is, as long as the minimal height hn in D(n) of an application of SYMM or
TRANS is less than a certain bound h(τ,σ) given below that depends on τ and
σ; and finally, if for the first time hn ≥ h(τ,σ) holds for an n ∈ ω (this always
happens eventually because 〈hn〉n →n→∞ ∞ is guaranteed by the construction of
the sequence SD according to (St2)), extract a HB=

0 -derivation D′ without open
assumptions and with conclusion τ = σ from the HB=

0 -end-derivation dD(n)eHB=

0

of D(n) (this is possible due to the assertion in (St3)). We will give a flow-chart like
illustration of a refined version of this algorithm in Figure 8.4 below.

The description we have given above of the main steps in the transformation
between HB=-derivations without open assumptions and mimicking derivations in
HB=

0 was simplified insofar, as it will actually not be TRANS-applications that
are permuted upwards in derivations but applications of a variant rule TRANS1
of TRANS (upwards-permutations of SYMM will however indeed be used); appli-
cations of the rule TRANS1 allow to take variants of the recursive types in the
two equations in its premises first before applying the usual transitivity rule. Fur-
thermore, we will also use still more general transitivity rules TRANSk, for all
k ∈ ω\{0} , during steps of the transformation, where an application of TRANSk
can be mimicked by a ‘cascade’ of k TRANS1-applications. And lastly, we will also
use more general versions ∗(µ−⊥)⊥derl/r of the rules (µ−⊥)⊥derl/r of HB=

0 . Although

4Strictly speaking, a back-binding to an application of ARROW is not possible literally, but in
this case a renaming of this application to an application of ARROW/FIX is necessary.

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 287

we will utilize these additional rules for intermediary steps of the transformation
and although the lemmas in our proof of Theorem 8.2.2 refer to applications of the
rules {TRANSk}k (one also to applications of ∗(µ−⊥)⊥derl/r), the above account in

steps (St1)–(St3) could be reconstructed in the form of precise statements. This
is due to the fact shown below that all mentioned additional rules are derivable in
HB=

0 and that henceforth their applications can be eliminated from derivations in
the extension of HB=

0 by adding these rules.

With these additional rules, the steps (St1)′, (St2)′, and (St3)′ in our proof of
Theorem 8.2.2 below on page 318 will be the result of letting the role of the rule
TRANS be taken over by generalized transitivity rules of the family {TRANSk}k:
step (St1)′ will consist in the proof of the assertion that every derivation inHB=

0 can
be transformed in a straightforward way into a mimicking derivation D̃ in HB=

0 +
+SYMM+ {TRANSk}k ; step (St2)′ will justify the assertion that for every deriva-
tion D in HB=

0 +SYMM+ {TRANSk}k a sequence SD = 〈D(n)〉n∈I of mimicking
derivations in HB=

0 +SYMM+ {TRANSk}k can be built effectively such that the
minimal heights hn of applications of SYMM or rules from {TRANSk}k grow and
tend to infinity; and in (St3)′ the assertion will be proved that from every such se-
quence SD = 〈D(n)〉n of derivations a derivation D′ in HB=

0 without open assump-
tions and with the same conclusion as D(0) can eventually be extracted effectively.
Hereby step (St1)′ will be justified by Lemma 8.2.3, step (St2)′ by Lemma 8.2.13,
and (St3)′ by Lemma 8.2.21.

Similarly as described above for the simplified steps (St1)–(St3), also from the
actual steps (St1)′, (St2)′, and (St3)′ just outlined of the proof later of Theorem 8.2.2
an effective proof transformation algorithm can be extracted. An illustration of such
an algorithm as a flow-chart-like picture is given in Figure 8.4. We place this figure
here in the intention of giving some further outline of the transformation developed
in this section, notwithstanding the fact that some details appearing in it will only
be explained later on.

The actual steps (St1)′–(St3)′ of the eventual proof of Theorem 8.2.2 that have
been sketched above correspond roughly to the following action illustrated in the
flow-chart in Figure 8.4: step (St1)′ corresponds to the first action taken at the top
between the derivations D and D̃; the construction in step (St2)′ of a sequence SD
in HB=

0 +SYMM+ {TRANSk}k corresponds to repeated executions of the single
loop in this flow-chart (and this construction would be continued indefinitely if this
loop were never left); and finally step (St3)′ corresponds to the action taken as
soon as this loop is left (actually also the second test in this loop, the conditional
dependent on whether applications of SYMM and {TRANSk}k are of sufficient
“height” in D(n), will be part of step (St3)′ of the proof).

We are going to motivate and introduce the mentioned additional rules and
gather some of their later needed, basic properties below after the following lemma
that justifies the first step (St1) of the transformation as described in our tentative
account given above (and in fact, this lemma will also be the main part of step
(St1)′ in the proof of Theorem 8.2.2).

Lemma 8.2.3. Every derivation D in HB=
0 , with possibly open assumptions, can

288 Transforming Derivations from HB= to AC=

Figure 8.4: Illustration as a flow-chart of the transformation developed in this
section from derivations in the Brandt-Henglein systemHB= without open assump-
tions into mimicking derivations in the variant Brandt-Henglein system HB=

0 .

SYMM or
{TRANSk}k -applications

in D(n)?

Are appl.’s

of SYMM and {TRANSk}k
of “sufficient” height

in D(n)?

D′ ← D(n)

D̃
τ = σ

n ← −1

n ← n+ 1

D(n) ← Result of permuting the SYMM-
and {TRANSk}k -applications in D̃
upwards as far as possible

D
(n)
i1 D

(n)
i2 . . . D

(n)
i(ki+1)

TRANS
(n)
ki {

(τ
(n)
i1 → τ

(n)
i2 = σ

(n)
i1 → σ

(n)
i2)i

}

i∈I
(n)
1

(Assm)

(σ
(n)
i1 → σ

(n)
i2 = τ

(n)
i1 → τ

(n)
i2)ui

SYMM{
(τ
(n)
i1 → τ

(n)
i2 = σ

(n)
i1 → σ

(n)
i2)i

}

i∈I
(n)
2

DC(n)

τ = σ

= D(n)

yes

no

no

D′

τ = σ

HB=
0 +SYMM+TRANS1 -derivation
without open assumptions

HB=
0 -derivation

without open assumptions

yes

HB=
0 +SYMM+{TRANSk}k -derivation

without open assumptions
and HB=

0 -end-derivation-context DC(n)

D̃ ← Result of replacing all of axioms (µ−⊥), (FOLD/UNFOLD)
and REN by mimicking derivations in HB

=

0 +SYMM+TRANS,
and of replacing TRANS- by TRANS1-applications

D
τ = σ

HB=-derivation
without open assumptions

D′ ← Result of extracting a derivation in

HB
=

0 without open assumptions from

the HB
=

0 -end-derivation of D
(n)

D̃ ← Result of ‘unfolding’ D(n)

above bottommost of its SYMM-
and {TRANSk}k -applications

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 289

effectively be transformed into a derivation D′ in HB=
0 +SYMM+TRANS that

mimics D.

Proof. Every derivation D in HB= can be transformed into a derivation D′ in
HB=

0 +SYMM+TRANS with the same conclusion and with the same open as-
sumption classes by performing the following two kinds of actions:

(a) Rename all those applications of ARROW/FIX, at which no assumptions are
discharged, into applications of ARROW.

(b) Replace all occurrences of axioms (REN), (µ−⊥)′ and (FOLD/UNFOLD) at
the top of the derivation by respective derivations consisting only of an axiom
(REFL) that is followed by a single application of REN, (µ−⊥)⊥derl , or FOLDl,
respectively.

Upwards-permutation of applications of TRANS over applications of rules be-
longing toHB=

0 is not an entirely straightforward matter, for at least three reasons.
Firstly, it is not obvious how to proceed in the situation of a derivation D inHB=

0 +
+TRANS like

D11

τ ′ = ρ′
REN

τ = ρ

D21

ρ′′ = σ′
REN

ρ = σ
TRANS

τ = σ

where the immediate subderivations of D both end with applications of REN. Sec-
ondly, also in the situation of a derivation D in HB=

0 +TRANS of the form

D11

τ = ⊥
(µ−⊥)⊥derr τ = µα1α2. α1

D21

µα1α2α1. α1 = σ
FOLDl

µα1α2. α1 = σ
TRANS

τ = σ

the bottommost application of TRANS cannot directly be permuted upwards over
one or over both of the last rule applications in immediate subderivations. And
thirdly, a TRANS-application that follows upon an application of ARROW/FIX
in, say, the right premise and an application of ARROW or ARROW/FIX in the
left premise cannot be permuted upwards in a straightforward manner; furthermore
also the case with a marked assumption in a premise of a TRANS-application
poses a similar difficulty. For overcoming the first and second problems, we will
respectively introduce, for auxiliary purposes, variant rules TRANS1 of TRANS
and ∗(µ−⊥)⊥derl/r of (µ−⊥)⊥derl/r . And the third problem will later be dealt with by
introducing operations that can be used to ‘unfold’ derivations in HB=

0 +SYMM+
+ {TRANSk}k above marked assumptions or above conclusions of ARROW/FIX-
applications (where the family {TRANSk}k of generalized transitivity rules will also
be defined below).

Of the mentioned additional rules, we first introduce TRANS1 and ∗(µ−⊥)⊥derl/r .

290 Transforming Derivations from HB= to AC=

Definition 8.2.4 (The rules TRANS1 and
∗(µ−⊥)⊥der

l/r). In the items (i) and (ii)

below we define the rules TRANS1, and the rules ∗(µ−⊥)⊥derl as well as ∗(µ−⊥)⊥derr

by stipulating, for an arbitrary natural-deduction system S with µTp–Eq as its set
of formulas, what applications these rules respectively enable when added to S.

(i) Applications of TRANS1 at the bottom of derivations D in S+TRANS1 have
the form

D1

τ ′ = ρ

D2

ρ′ = σ′
TRANS1 (given that (*))

τ = σ

(8.24)

where τ, τ ′, ρ, ρ′, σ, σ′ ∈ µTp and where the condition (*) means that τ ≡ren τ
′ ,

ρ ≡ren ρ
′ and σ ≡ren σ

′ .

(ii) Applications of ∗(µ−⊥)⊥derl and ∗(µ−⊥)⊥derr at the bottom of derivations D
in S+∗(µ−⊥)⊥derl/r have the respective forms

D1

⊥ = σ∗(µ−⊥)⊥derl µα1α2 . . . αn. αi = σ

D1

τ = ⊥ ∗(µ−⊥)⊥derr
τ = µβ1β2 . . . βn. βi

(8.25)

where n ∈ ω\{0} , α1, . . . , αn, β1, . . . , βn ∈ TVar , i ∈ {1, . . . , n} , and τ, σ ∈
∈ µTp .

£

The following proposition formulates the obvious observation that every ap-
plication of TRANS1 can be mimicked using an application of TRANS with an
application of REN above each of its premises.

Proposition 8.2.5. Let S be a natural-deduction system with µTp–Eq as its set of
formulas and with the property that S contains the rules TRANS and REN. Then
the rule TRANS1 is derivable in S. In particular, TRANS1 is derivable in HB=

0 .

Also applications of the rules ∗(µ−⊥)⊥derl/r can be mimicked with the help of

HB=
0 -rules. More precisely, every application of ∗(µ−⊥)⊥derl or ∗(µ−⊥)⊥derr of

respective form in (8.25), with n ∈ ω\{0} and i ∈ {1, . . . , n} , and with α1, . . . , αn ∈
∈ TVar , σ ∈ µTp , or respectively with β1, . . . , βn ∈ TVar and τ ∈ µTp , can be
mimicked by a unary derivation-context in HB=

0 without open assumptions of the
respective form

[
⊥ = σ

]

1
(µ−⊥)⊥derl

µαj1 . . . αn. αi = σ
FOLDl

µα1 . . . αn. αi = σ

or

[
τ = ⊥

]

1
(µ−⊥)⊥derr

τ = µβj2 . . . βn. βi
FOLDr

τ = µβ1 . . . βn. βi
(8.26)

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 291

(for reading convenience, we have inserted the premises of the mimicked applica-
tions into the context-holes []1 of these derivation-contexts), where j1 ∈ {1, . . . , n}
on the left-hand side is such that α1, . . . , αj1−1 6≡ αi and αj1 ≡ αi , and where
j2 ∈ {1, . . . , n} on the right-hand side is such that β1, . . . , βj2−1 6≡ βi and βj2 ≡ βi
(these particular stipulations prevent nlµb-decreasing applications of FOLDl/r from
occurring in derivation-contexts of the form (8.26))5.

By a (∗(µ−⊥)⊥derl/r Ã (µ−⊥)⊥derl/r , FOLDl/r)-mimicking step we will mean an ar-

bitrary replacement step within a derivation D in HB=
0 +SYMM+ {TRANSk}k +

+ ∗(µ−⊥)⊥derl/r of an application of ∗(µ−⊥)⊥derl or ∗(µ−⊥)⊥derr by a respective

mimicking derivation-context as displayed in (8.26). The possibility of performing
such mimicking steps demonstrates the assertion of the following proposition.

Proposition 8.2.6. Let S be a natural-deduction system such that µTp–Eq is its
set of formulas and such that S contains the rules (µ−⊥)⊥derl/r and FOLDl/r. Then

the rules ∗(µ−⊥)⊥derl/r are derivable in S. In particular, the rules ∗(µ−⊥)⊥derl/r are
derivable in HB=

0 .

With these new rules it is now possible to show the following lemma, which is
going to play a key role in the construction of the second step of the transforma-
tion developed in this section. It states conditions under which an application of
TRANS1 is upwards-permutable in derivations in the extension of HB=

0 with the
rules SYMM, TRANS1, and (µ−⊥)⊥derl/r , and it describes the possible outcomes of
single upwards-permutation steps of TRANS1-applications.

Lemma 8.2.7 (Upwards-permuting of TRANS1-applications). Let D be
a derivation in HB=

0 +SYMM+TRANS1+
∗(µ−⊥)⊥der

l/r , with possibly open as-
sumption classes, that is of the form

D1

τ ′ = ρ

D2

ρ′ = σ′
TRANS1τ = σ

(8.27)

such that the subderivations D1 and D2 are of respective depth |D1|, |D2| ≥ 1 , and
D1 and D2 end with applications of rules of HB=

0 + ∗(µ−⊥)⊥der
l/r other than AR-

ROW/FIX.
Then D can be transformed, by permuting the application of TRANS1 at the

bottom of D upwards over one or over both of the last rule applications in D1 and
D2, into a derivation D̃ in HB=

0 +SYMM+TRANS1+
∗(µ−⊥)⊥der

l/r of one of the
following three forms:

D̃111 D̃112 TRANS1
τ̃1 = σ̃1

R
τ̃ = σ̃

REN
τ = σ

or
D̃1 D̃2 TRANS1 ,
τ = σ

(8.28)

5Our proofs below do not make use of this convenient property of the mimicking derivation-
contexts defined here for applications of ∗(µ−⊥)⊥der

l/r
because in the transformation we develop

applications of nlµb-decreasing applications of FOLDl/r are repeatedly eliminated after the elim-

ination of applications of ∗(µ−⊥)⊥der
l/r

.

292 Transforming Derivations from HB= to AC=

where |D̃111|+ |D̃112| < |D1|+ |D2| and “R” indicates an application of a rule
FOLDl/r or ∗(µ−⊥)⊥der

l/r , and where respectively |D̃1|+ |D̃2| < |D1|+ |D2| holds,
or

D̃11 D̃12 TRANS1τ1 = σ1

D̃21 D̃22 TRANS1τ2 = σ2
ARROW

τ = σ

(8.29)

where, for each j ∈ {1, 2} , |D̃j1|+ |D̃j2| < |D1|+ |D2| holds.

Since upwards-permutation steps of TRANS1-applications constitute the most
important basic operations within our transformation from HB= to HB=

0 , we set
out to give the proof for this lemma in some detail.

Proof. Let D be an arbitrary derivation in the system HB=
0 +SYMM+TRANS1+

+ ∗(µ−⊥)⊥derl/r , with possibly open assumption classes, that is of the form (8.27),

with some τ, ρ, σ ∈ µTp and respective variants τ ′, ρ′, σ′ ∈ µTp of τ , ρ and σ, such
that the subderivations D1 and D2 have depths |D1|, |D2| ≥ 1, and such that D1 and
D2 end with applications of rules of HB=

0 + ∗(µ−⊥)⊥derl/r other than ARROW/FIX.
By the assumptions on D, the last rule applications in D1 and D2 must be

applications of REN, (µ−⊥)⊥derl/r , FOLDl/r, ARROW or ∗(µ−⊥)⊥derl/r . Due to this

and the fact that the rules (µ−⊥)⊥derl/r may be looked upon as special cases of the

rules ∗(µ−⊥)⊥derl/r , it suffices to consider the following six cases for showing the
assertion of the lemma:

(1) at least one of D1 or D2 ends with an application of REN,

(2) D1 ends with an application of FOLDl or
∗(µ−⊥)⊥derl , or D2 ends with an

application of FOLDr or ∗(µ−⊥)⊥derl ,

(3) D1 ends with an application of FOLDr and D2 ends with an application of
FOLDl,

(4) D1 ends with an application of ∗(µ−⊥)⊥derr and D2 ends with an application
of ∗(µ−⊥)⊥derl ,

(5) D1 ends with an application of FOLDr and D2 ends with an application of
(µ−⊥)⊥derl , or D1 ends with an application of (µ−⊥)⊥derr and D2 ends with
an application of FOLDl,

(6) D1 and D2 both end with an application of ARROW.

Apart from (6) and (1) there are no other cases in which an application of ARROW
is able to occur at the bottom of D1 or D2 : it is easy to see that if one of D1 or D2

terminates with an application of ARROW, then the other derivation cannot end
with an application of FOLDl/r, (µ−⊥)

⊥der
l/r or ∗(µ−⊥)⊥derl/r .

In case (1) the application of REN at the bottom of D1 or D2 can simply
be “amalgamated” with the application of TRANS1 at the bottom of D with a

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 293

derivation D̃ as the result that is of the form of the prooftree on the right in (8.28)
and that has the desired property.

For settling case (2), we only consider the case with an application of FOLDl at
the bottom of D1; all other cases can be treated similarly. Therefore we consider
the case that D is of the form

D11

τ̃0[µα̃. τ̃0/α̃] = ρ
FOLDl µα̃. τ̃0 = ρ

D2

ρ′ = σ′
TRANS1

µα. τ0 = σ

for some α, α̃ ∈ TVar and τ0, τ̃0 ∈ µTp such that τ ≡ µα. τ0 and τ ′ ≡ µα̃. τ̃0 ; from
this and from τ ≡ren τ

′ , a consequence of D being of the form (8.27), µα. τ0≡ren

≡ren µα̃. τ̃0 follows. In this situation D can be transformed into the derivation D̃ of
the form

D11

τ̃0[µα̃. τ̃0/α̃] = ρ

D2

ρ′ = σ′
TRANS1

τ̃0[µα̃. τ̃0/α̃] = σ
FOLDl

µα̃. τ̃0 = σ
REN

µα. τ0 = σ

which is of the form of the left prooftree in (8.28) and has the respective desired
property.

In case (3) D is of the form

D11

τ ′ = ρ0[µα. ρ0/α]
FOLDr

τ ′ = µα. ρ0

D21

ρ̃0[µα̃. ρ̃0/α̃] = σ′
FOLDl

µα̃. ρ̃0 = σ′
TRANS1

τ = σ

for some α, α̃ ∈ TVar such that ρ ≡ µα. ρ0 and ρ′ ≡ µα̃0. ρ̃0 (which due to ρ ≡ren ρ
′

entails µα. ρ0 ≡ren µα̃. ρ̃0). Here D can be transformed into the derivation D̃ of the
form

D11

τ ′ = ρ0[µα. ρ0/α]

D21

ρ̃0[µα̃. ρ̃0/α̃] = σ′
TRANS1

τ = σ

due to Lemma 3.4.2, (3.24). The transformed derivation D̃ is of the form of the
prooftree on the right in (8.28) and has the desired property.

As an example for case (5), we consider a situation in which D1 ends with an
application of ∗(µ−⊥)⊥derl/r and D2 ends with an application of FOLDl/r , more
precisely, we consider a situation in which the bottommost application in D1 corre-
sponds to an application of (µ−⊥)⊥derr ; it is easy to check that all other subcases

294 Transforming Derivations from HB= to AC=

of this case can be settled similarly. We assume that D is of the form

D11

τ ′ = ⊥∗(µ−⊥)⊥derr
τ ′ = µα1 . . . αn. α1

D21

µα̃2 . . . α̃nα̃1 . . . α̃n. α̃1 = σ′
FOLDl

µα̃1 . . . α̃n. α̃1 = σ′
TRANS1

τ = σ

for some n ∈ ω\{0} , α1, . . . , αn, α̃1, . . . , α̃n ∈ µTp such that µα̃1 . . . α̃n. α̃1 is a
variant of µα1 . . . αn. α1 . Here D can be transformed into the derivation D̃ of the
form

D11

τ ′ = ⊥∗(µ−⊥)⊥derr
τ ′ = µα̃2 . . . α̃nα̃1 . . . α̃n. α̃1

D21

µα̃2 . . . α̃nα̃1 . . . α̃n. α̃1 = σ′
TRANS1

τ = σ

which is of the form of the prooftree on the right in (8.28) and which has the
respective desired property.

In case (6) the derivation D is of the form

D11

τ ′1 = ρ1

D12

τ ′2 = ρ2
ARROW

τ ′1 → τ ′2 = ρ1 → ρ2

D21

ρ′1 = σ′1

D22

ρ′2 = σ′2
ARROW

ρ′1 → ρ′2 = σ′1 → σ′2 TRANS1
τ1 → τ2 = σ1 → σ2

for some τ1, τ2, τ
′
1, τ

′
2, . . . , σ

′
1, σ

′
2 ∈ µTp such that, for each i ∈ {1, 2} , σ′i ≡ren σi

holds as well as ρ′i ≡ren ρi and and τ ′i ≡ren τi . Here D can be transformed into the
derivation D̃ of the form

D11

τ ′1 = ρ1

D21

ρ′1 = σ′1TRANS1
τ1 = σ1

D12

τ ′2 = ρ2

D22

ρ′2 = σ′2 TRANS1
τ2 = σ2

ARROW
τ1 → τ2 = σ1 → σ2

which is of the form of the prooftree in (8.29) and has the desired properties.
In this way we have shown the lemma by having settled all six possible cases

for a derivation D that was assumed to be arbitrary, but in accordance with the
hypothesis of the lemma.

As a consequence of the third kind of problems mentioned above concerning
upwards-permutation of the rule TRANS over HB=

0 -rules, even topmost applica-
tions of transitivity rules TRANS1 in HB=

0 +SYMM+TRANS1 cannot always
be removed eventually by permuting them upwards sufficiently often until axioms
are reached. The reason is that upwards-permutation movements of TRANS1-
applications may be blocked by the occurrence of marked assumptions in a premise

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 295

or of an immediate subderivation that ends with an application of ARROW/FIX
(note that, in particular, these cases are not covered by Lemma 8.2.7). And further-
more, if non-topmost applications of TRANS1 are permuted upwards, then such a
movement may also be blocked by the appearance of another TRANS1-application
above one of the premises. For dealing with the last mentioned situation, we intro-
duce now more general variants TRANSk, for all k ∈ ω\{0} , of the rule TRANS1,
applications of which correspond to k TRANS1-applications. We will see shortly
that two TRANS1-applications in a derivation inHB=

0 +SYMM+TRANS1, where
one of these applications occurs immediately above the other, can be “amalga-
mated” into a single application of TRANS2.

Definition 8.2.8 (The family {TRANSk}k of generalized transitivity rules).
We define the rules of the family {TRANSk}k∈ω\{0}, which we henceforth write in
the abbreviated form {TRANSk}k, by stipulating for an arbitrary natural-deduction
system S with µTp–Eq as its set of formulas and for arbitrary k ∈ ω\{0} : An ap-
plication of the rule TRANSk at the bottom of a derivation D in S+TRANSk has
the form

D1 D2

τ = ρ1 ρ′1 = ρ2 . . .

Dk Dk+1

ρ′k−1 = ρk ρ′k = σ′
TRANSk (given that (**))

τ = σ
(8.30)

where τ, τ ′, ρ1, ρ
′
1, ρ2, ρ

′
2, . . . , ρk−1, ρ

′
k−1, ρk, ρ

′
k ∈ µTp , and where the condition (**)

means that τ ≡ren τ
′ , ρ1 ≡ren ρ

′
1 , ρ2 ≡ren ρ

′
2 , . . . , ρk−1 ≡ren ρ

′
k−1 , ρk ≡ren ρ

′
k , and

σ ≡ren σ
′ .

£

We have not taken up a rule TRANS0 into the family {TRANSk}k∈ω\{0} intro-
duced in this definition because in the special case k = 0 the definition of a rule
TRANSk would just coincide with the definition of the rule REN, which is certainly
not a transitivity rule.

Applications of rules of {TRANSk}k can easily be replaced by TRANS1-ap-
plications: every application of TRANSk, for some k ∈ ω\{0} , at the bottom of a
derivation D of the form (8.30) can be eliminated by replacing it with k TRANS1-ap-
plications that are, for example, arranged in a cascaded form at the bottom of the
derivation D′ of the form

D1

τ ′ = ρ1

D2

ρ′1 = ρ2
TRANS1

τ = ρ2

. . .

τ = ρk−1

Dk
ρ′k−1 = ρk

TRANS1
τ = ρk

Dk+1

ρ′k = σ′
TRANS1

τ = σ

296 Transforming Derivations from HB= to AC=

which mimics D. We call such an elimination step of a TRANSk-application, also if
it is performed in a derivation in HB=

0 +SYMM+ {TRANSk}k to some subderiva-
tion, a ({TRANSk}k Ã TRANS1)-mimicking step.

The following proposition is an immediate consequence of Proposition 8.2.5 and
of the existence of mimicking steps as just described.

Proposition 8.2.9. Let S be a natural-deduction system with µTp–Eq as its set of
formulas and with the property that S contains the rules TRANS and REN. Then,
for all k ∈ ω\{0} , the rule TRANSk is derivable in S. And in particular, all rules
of the family {TRANSk}k are derivable in HB=

0 .

The principal reason why we have introduced the family of rules {TRANSk}k
consists in the fact already hinted above that, for all k1, k2 ∈ ω\{0} , an application
of TRANSk1 can be amalgamated with an application of TRANSk2 into an appli-
cation of TRANSk1+k2 if one of these applications occurs immediately above the
other. So, for instance, the two displayed applications of TRANS2 in a derivation
D of the form

D1

τ = ρ1

D2

ρ′1 = ρ2

D31

ρ′′2 = ρ31

D32

ρ′31 = ρ32

D33

ρ′32 = σ′′
TRANS2

ρ′32 = σ′′
TRANS2

τ = σ
(8.31)

can be amalgamated into the application of TRANS4 at the bottom of the derivation
D′ of the form

D1

τ = ρ1

D2

ρ′1 = ρ2

D31

ρ′′2 = ρ31

τ = σ

D32

ρ′31 = ρ32

D33

ρ′32 = σ′′
TRANS4

(8.32)

which mimics D. We call transformation steps that are of this or of a similar form
{TRANSk}k-amalgamation steps.

The possibility to carry out such amalgamation steps makes it possible to sim-
plify derivations in HB=

0 +SYMM+ {TRANSk}k in the way as stated by the fol-
lowing proposition.

Proposition 8.2.10 (Amalgamating {TRANSk}k-applications). Every deriva-
tion D in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k can effectively be trans-

formed, by applying {TRANSk}k-amalgamation steps, into a derivation D̃ in HB=
0 +

+ ∗(µ−⊥)⊥der
l/r +SYMM+ {TRANSk}k with the same conclusion, with the same

open assumption classes as D, and with the property that no immediate subderiva-
tion leading up to a premise of an applications of a rule TRANSk1 in D̃, for some
k1 ∈ ω\{0}, has a bottommost application of a rule TRANSk2 , for any k2 ∈ ω\{0}.

Sketch of the Proof. The assertion of the lemma can be shown by induction on
the size s(D) of a derivation D in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k.

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 297

The induction step is straightforward and only one situation requires some atten-
tion. Namely, the case that D ends with an application of TRANSk1 , for some
k1 ∈ ω\{0} , and that additionally one immediate subderivation of D also ends
with a rule TRANSk2 , for some k2 ∈ ω\{0} (for example, the derivation (8.31) is
of such form). Here a {TRANSk}k-amalgamation step at the bottom of D has to
be carried out first with a resulting derivation D(1) that ends with an application
of TRANSk1+k2 , that mimics D, and that is of smaller size than D (for an example,
we refer again to the step between the derivations in (8.31) and (8.32)). Then the
induction hypothesis can be applied to D(1) and in this way a desired derivation D̃
is reached.

In the tentative outline given above of the transformation developed here, we
have used the somewhat imprecise expression “HB=

0 -end-part”, which was desig-
nated by dDeHB=

0
, of a derivation in HB=

0 +SYMM+TRANS. Now we define two
precise notions derived from this concept: the HB=

0 -end-derivation-context, and
the HB=

0 -end-derivation of a derivation D in the extension of HB=
0 with the addi-

tional rules introduced above. For given derivations D of this kind, the HB=
0 -end-

derivation-context, and the HB=
0 -end-derivation are the respective results of first

cutting off all subderivations of D that lead up to conclusions of applications of
non-HB=

0 -rules (but keeping the respective conclusions), and of then replacing all
formulas at the top originating from such conclusions by distinct context-holes, and
respectively, by distinct marked assumptions.

Definition 8.2.11. (HB=
0 -end-derivations, HB

=
0 -end-derivation-contexts

of HB=
0 + ∗(µ−⊥)⊥der

l/r +SYMM+TRANS+ {TRANSk}k-derivations).

Let D be a derivation in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS+ {TRANSk}k

that can be represented as of the form

Di1 Di2 Di(ki+1)

τ ′ = ρ1 ρ′1 = ρ2 . . . ρ′ki = σ′
TRANSki {

(τi = σi)i
}

i∈I1

Di1
σi = τi

SYMM{
(τi = σi)i

}

i∈I2

DC
τ = σ

(8.33)

where the following holds:

(i) I1, I2 ⊆ ω , I1 ∩ I2 = ∅ , and I1 ∪ I2 = {1, . . . ,m} for some m ∈ ω (if m = 0
then I1 = I2 = ∅),

(ii) for all i ∈ I1, ki ∈ ω\{0}, τi, σi, ρi1, ρ
′
i1, . . . , ρi(ki+1), ρ

′
i(ki+1) ∈µTp and Di1,

. . . , Di(ki+1) are derivations in HB=
0 + ∗(µ−⊥)⊥derl/r +TRANS+SYMM+

+ {TRANSk}k, and for all i ∈ I2 , τi, σi ∈ µTp and Di1 is a derivation in
HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS+ {TRANSk}k, and

298 Transforming Derivations from HB= to AC=

(iii) DC ∈ DerCtxtm(HB=
0) , in which every context-hole []i, for i ∈ {1, . . . ,m}

occurs precisely once, and the context-holes []1, . . . , []m occur at the top of
DC ordered in a traversal from left to right in the labeled tree underlying DC.

Then we say that the derivation-context DC is the HB=
0 -end-derivation-context

of D, and we designate DC by dDe{[]i}iHB=

0

.

Let furthermore {ui}i=1,...,m be a family of distinct assumption markers that
do not occur in D. Then we call the derivation

{
((τi = σi)

ui)i
}

i∈I1∪I2

DC
τ = σ

(8.34)

in HB=
0 , which arises as the result DC[(τ1 = σ1)

u1]1 . . . [(τm = σm)um]m of fill-
ing the marked assumptions (τ1 = σ1)

u1 , . . . , (τm = σm)um into the context-holes
[]1, . . . , []m of DC respectively, a HB=

0 -end-derivation of D, and we designate it
dDe{ui}iHB=

0

.

Similarly, if D is a derivation in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS+

+ {TRANSk}k of the form (8.33) for which the conditions (i), (ii) and (instead
of (iii))

(iii)′ DC ∈ DerCtxtm(HB=
0) , in which every context-hole []i, for i ∈ {1, . . . ,m}

occurs precisely once, and the context-holes []1, . . . , []m occur at the top of
DC ordered in a traversal from left to right in the labeled tree underlying DC.

hold, then we say that the derivation-context DC is the (HB=
0 + ∗(µ−⊥)⊥der

l/r)-end-
derivation-context of D.

£

As a further auxiliary notion that is needed for the formulation of a number of
lemmas below, we define the “HB=

0 -height” of derivations that contain also rules
which are not part of the system HB=

0 .

Definition 8.2.12 (HB=
0 -height of derivations containing non-HB

=
0 -rules).

Let D be a derivation in HB=
0 +SYMM+TRANS+ {TRANSk}k +

∗(µ−⊥)⊥derl/r

that contains at least one application of a rule that is not contained in HB=
0 .

By the HB=
0 -height hHB=

0
(D) of D we mean the minimal height in D of the

conclusion of an application of SYMM, TRANS, ∗(µ−⊥)⊥derl/r , or of a rule from

{TRANSk}k in D, i.e. the minimal number of rule applications that are passed in
D from the conclusion of an application of a non-HB=

0 -rule on a thread downwards
to the conclusion of D. £

We are now able to formulate as the following lemma the main auxiliary assertion
for step two in our transformation (cf. (St2) in the tentative overview given earlier);
it will eventually be used to justify step (St2)′ in our proof of Theorem 8.2.2 on
page 318.

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 299

Lemma 8.2.13. Let τ, σ ∈ µTp, and let D be a derivation in HB=
0 +SYMM+

+ {TRANSk}k with conclusion τ = σ and without open assumptions.
Then a sequence SD = 〈D(n)〉n∈I of derivations in the system HB=

0 +SYMM+
+ {TRANSk}k can effectively be built, where the index set I is either ω or of the
form [0, nmax] ∩ ω , for some nmax ∈ ω (hence 0 ∈ I and SD is either finite or
countably infinite, but not empty), with the following properties:

(i) the derivation D(0) is the derivation D (i.e. the sequence SD starts with D(0));

(ii) for all n ∈ ω , the derivation D(n) has conclusion τ = σ and does not contain
open assumptions (and hence as a consequence of this and of (i), all D(n)

mimic D);

(iii) for all n ∈ I \ {0}, D(n) does not contain successive applications of REN, nor
nlµb-decreasing applications of FOLDl/r (see Definition C.9, Appendix C);

(iv) for all n ∈ I such that n+ 1 ∈ I , the derivation D(n+1) is the result of ap-
plying an effective proof-theoretic transformation to the derivation D(n) ;

(v) if SD is finite, i.e. if I = {0, 1, . . . , nmax} and SD = 〈D(1), . . . ,D(nmax)〉 with
some nmax ∈ ω , then all derivations D(n) in SD with n ∈ {0, . . . , nmax − 1}
contain applications of SYMM and/or of rules from {TRANSk}k, in contrast
with the last derivation D(nmax) of SD, which is a derivation in HB=

0 ;

(vi) if SD is infinite, i.e. if SD = 〈D(n)〉n∈ω holds, then all derivations in SD
contain applications of SYMM and/or TRANS, and furthermore,

〈
hHB=

0
(D(n))〉n −→n→∞ ∞ (8.35)

holds, i.e. the HB=
0 -heights of D(n), and thus the minimal heights of SYMM-

or + {TRANSk}k-applications in D(n), tend to infinity.

The proof of this lemma will be given below on page 314. In this proof a num-
ber of further lemmas will be used that formulate assertions about particular forms
of derivations in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k, which forms can be
produced by using primarily the operations of upwards-permuting of applications
of SYMM as well as of rules in {TRANSk}k, and of ‘unfolding’ derivations appro-
priately.

As an aside, we want to mention that our proof of Lemma 8.2.13 will actually
show a slightly more specific statement concerning the proof-theoretic transfor-
mation between successive derivations D(n) and D(n+1) belonging to the sequence
SD = 〈D(n)〉n∈I in the statement of this lemma: our proof is in fact able to demon-
strate the statement which results from the assertion of the lemma by replacing
property (iv) there by the property

(iv)∗ for all n ∈ I such that n+ 1 ∈ I , the derivation D(n+1) is the result of ap-
plying to the derivation D(n) an effective proof-theoretic transformation that
uses only the steps (a)–(i) mentioned in Lemma 8.2.19 below (and itemized
there as well as in Lemma 8.2.15, Lemma 8.2.16, and in Lemma 8.2.18).

300 Transforming Derivations from HB= to AC=

We state and prove the lemmas required for the proof of Lemma 8.2.13 suc-
cessively below. We start with a rather easy statement about a special form of
derivations in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k that can be reached by
upwards-permutation movements of applications of SYMM.

Lemma 8.2.14. Every derivation D in the system HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+

+ {TRANSk}k can be transformed into a derivation D̃ in HB=
0 + ∗(µ−⊥)⊥derl/r +

+SYMM+ {TRANSk}k with the same conclusion, with the same open assumption
classes as D, and such that the derivation D̃ contains applications of SYMM only
as single applications immediately below marked assumptions.

Sketch of the Proof. The following three facts are either entirely obvious (those in
items (a) and (b)) or easy to verify (the fact in item (c)):

(a) Applications of SYMM that immediately follow axioms of HB=
0 (i.e. that

follow axioms (REFL)) can be removed.

(b) Any two successive applications of SYMM can be removed.

(c) Applications of SYMM can be permuted upwards over every application of a
rule in HB=

0 + {TRANSk}k.

These three observations are sufficient to show the assertion of the lemma by a
straightforward induction on the depth |D| of derivations D in HB=

0 +SYMM+
+TRANS with a subinduction on the number of applications of ARROW/FIX in
D. Hereby the subinduction is invoked only invoked in the induction step for the
case that a bottommost application of SYMM has to be permuted upwards over a
preceding application of ARROW/FIX.

Next we formulate and prove a lemma about transforming an arbitrary deriva-
tion in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k that contains only a single ap-
plication of TRANS1, which occurs at the bottom, into a special form by permuting
this application of TRANS1 upwards as far as possible.

Lemma 8.2.15. Let D be a derivation in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS1

that is of the form

D1

τ ′ = ρ

D2

ρ′ = σ′
TRANS1 ,

τ = σ

(8.36)

where D1 and D2 are derivations in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM (and that there-

fore do not contain applications of TRANS1), and that fulfills the following condi-
tion:

all open marked assumptions of D are equations between composite
recursive types, i.e. they are of the form (χ11 → χ12 = χ21 → χ22)

u

for respective χ11, χ12, χ21, χ22 ∈ µTp, and assumption markers u.

}

(8.37)

Then D can effectively be transformed, by

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 301

(a) upwards-permutation steps of SYMM and TRANS1-applications,

(b) easy replacement-steps concerned with the presence of axioms in premises of
SYMM- and TRANS1-applications,

(c) elimination-steps of pairs of successive SYMM-applications, and by

into a derivation D′ in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS1 of the form

Di1
τ ′i1 → τ ′i2 = ρi1 → ρi2

Di2
ρ′i1 → ρ′i2 = σ′i1 → σ′i2

TRANS1 {
(τi1 → τi2 = σi1 → σi2)i

}

i∈I1

(Assm)

(σi1 → σi2 = τi1 → τi2)
ui

SYMM{
(τi1 → τi2 = σi1 → σi2)i

}

i∈I2

DC
τ = σ

(8.38)

where

(i) I1, I2 ⊆ ω , I1 ∩ I2 = ∅ , and I1 ∪ I2 = {1, . . . ,m} for some m ∈ ω (if m = 0
then I1 = I2 = ∅),

(ii) DC ∈ DerCtxtm(HB=
0 +∗(µ−⊥)⊥derl/r) (in particular, DC contains no applica-

tions of SYMM and TRANS1) is the (HB=
0 + ∗(µ−⊥)⊥der

l/r)-end-derivation-

context of D′,

(iii) all derivations Dij , for i ∈ I1 and j ∈ {1, 2} , are derivations in HB=
0 +

+SYMM+TRANS1+
∗(µ−⊥)⊥derl/r that are of one of the four possible forms

(Assm)

(τ̃ = σ̃)ũ

(Assm)

(σ̃ = τ̃)ũ
SYMM

τ̃ = σ̃

Dij. ARROW
τ̃ = σ̃

[τ̃ = σ̃]ũ

Dij. ARROW/FIX, ũ

τ̃ = σ̃
(8.39)

for respective τ̃1, τ̃2, σ̃1, σ̃2 ∈ µTp and assumption markers ũ (i.e. each Dij is
a derivation consisting of a marked assumption, or of a marked assumption
that is immediately followed by an application of SYMM, or it is a derivations
that ends with an application of ARROW or ARROW/FIX), and where, for
all i ∈ I1 , not both of Di1 and Di2 end with an application of ARROW,

such that D′ has the same conclusion and the same open assumption classes as D.

Proof. In view of Lemma 8.2.14 if suffices to prove the lemma for all such deriva-
tions in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS1 of the form (8.36) with (8.37)

fulfilled, where D1 and D2 are derivations in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM that

contain applications of SYMM only immediately below marked assumptions as sin-
gle applications. This is because for every derivation D in HB=

0 + ∗(µ−⊥)⊥derl/r +

+SYMM+TRANS1 of the form (8.36), where D1 and D2 are derivations inHB
=
0 +

+ ∗(µ−⊥)⊥derl/r , D1 and D2 can first be transformed due to Lemma 8.2.14, by

302 Transforming Derivations from HB= to AC=

upwards-permutations of SYMM-applications and by removing successive applica-
tions of SYMM, into derivations D̃1 and D̃2 with the same conclusion and the same
open assumption classes as, respectively, D1 and D2, and where D̃1 and D̃2 contain
SYMM-applications only immediately below marked assumptions. In proving the
described restricted statement, we will proceed by induction on |D1|+ |D2| .

For this, we let therefore D be a derivation in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+

+TRANS1 of the form (8.36) with (8.37) fulfilled, where D1 and D2 are such deriva-
tions inHB=

0 +SYMM+ ∗(µ−⊥)⊥derl/r that contain SYMM-applications only imme-
diately below marked assumptions as single applications. We have to show that D
can be transformed, by steps of the kind (a)–(c) as described in the lemma, into
a derivation D′ of the form (8.38) that fulfills the conditions (i)–(iii) in the lemma
and that has the same conclusion and the same open assumption classes as D. We
will do so by case-distinction on the form of the subderivations D1 and D2 of D,
and in particular by distinguishing cases according to the last rule applications in
D1 and D2, if such are present.

If one of D1 and D2 is an axiom (REFL), then for D′ the result of appending
an application of REN to the other derivation (out of D1 and D2) can be chosen.

If both of D1 and D2 consist of marked assumptions or a marked assumption
that is respectively followed by an application of SYMM, then D is itself already of
the required form.

Next, let us now consider the case in which one of D1 or D2 consists either
of a marked assumption or ends with an application of SYMM while the other
derivation is not an axiom nor a marked assumption, but ends with an application
of a HB=

0 + ∗(µ−⊥)⊥derl/r -rule. For example, we consider the case that D is of the
form

(ρ1 → ρ2 = τ ′1 → τ ′2)
u

SYMM
τ ′1 → τ ′2 = ρ1 → ρ2

D21

ρ̃ = σ̃
R

ρ′1 → ρ′2 = σ′
TRANS1τ1 → τ2 = σ

(8.40)

with some τ1, τ2, τ
′
1, τ

′
2, ρ1, ρ2, ρ

′
1, ρ

′
2, ρ̃, σ, σ̃ ∈ µTp and an assumption marker u,

where R means the name of a rule in HB=
0 + ∗(µ−⊥)⊥derl/r (since we have assumed

(8.37) on D, the marked assumption (ρ1 → ρ2 = τ ′1 → τ ′2)
u in D1 is not of a special

form!); our treatment of this subcase can be carried over to all other subcases of
the considered situation here. Due to the form of the conclusion of the displayed
application of R (as an equation between composite recursive types), this can only
be an application of ARROW, ARROW/FIX, FOLDr, (µ−⊥)

⊥der
r , ∗(µ−⊥)⊥derr , or

REN. If it is an application of ARROW or ARROW/FIX, then D is already itself
of the desired form. If the displayed application of R is one of FOLDr, (µ−⊥)

⊥der
r ,

∗(µ−⊥)⊥derr , or REN, then D21 has conclusion ρ′′1 → ρ′′2 = σ̃ for some ρ′′1 , ρ
′′
2 ∈ µTp

such that ρ′′1 → ρ′′2 is a variant6 of ρ1 → ρ2 and of ρ′1 → ρ′2. Therefore it can be
transformed, by permuting the application of TRANS1 upwards over the application

6If the displayed application of R is an application of FOLDr, (µ−⊥)⊥der
r , or ∗(µ−⊥)⊥der

r ,
then ρ′′1 and ρ′′2 are actually equal to ρ′1 and ρ′2, respectively.

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 303

of R at the bottom of D2, into the derivation D̃ of the form

(ρ1 → ρ2 = τ ′1 → τ ′2)
u

SYMM
τ ′1 → τ ′2 = ρ1 → ρ2

D21

ρ′′1 → ρ′′2 = σ̃
TRANS1

τ1 → τ2 = σ̃
R

τ1 → τ2 = σ

(8.41)

in which the induction hypothesis can be applied to the subderivation D̃1 ending
with the TRANS1-application (since 1 + |D21|< 1 + |D2|= |D1|+ |D2|). Therefore
D̃1 can be transformed into a derivation D̃′1 of the required form. And by replacing
D̃1 in D̃ by D̃′1, we eventually arrive at a derivation D′ in HB=

0 + ∗(µ−⊥)⊥derl/r +
+SYMM+TRANS1 of the required form that furthermore has the same conclusion
and the same open assumption classes as D.

If one of D1 or D2 ends with an application of ARROW/FIX, while the other ter-
minates with an application of a HB=

0 + ∗(µ−⊥)⊥derl/r -rule other than ARROW/FIX
and ARROW, then it can be argued analogously as in the previous case above. If
one of D1 and D2 end with an application of ARROW/FIX, and the other is a
marked assumption or it ends with an application of SYMM, of ARROW, or of
ARROW/FIX, then D is already itself of the required form.

If, however, both D1 and D2 are derivations that end with an application of a
HB=

0 + ∗(µ−⊥)⊥derl/r -rule other than ARROW/FIX, then the application of TRANS1
at the bottom of D can be permuted upwards over one or over both of the immedi-
ately preceding rule applications as stated and described by Lemma 8.2.7 with the
result of a derivation D̃. Then the induction hypothesis can be applied to the sub-
derivation(s) of D̃ ending with the newly arisen TRANSk-application(s) (according
to Lemma 8.2.7 there are at most two such subderivations), thereby giving deriva-
tions of the required form, which can be combined (according to the position of the
mentioned subderivations in D̃) to reach a derivation D′ in HB=

0 + ∗(µ−⊥)⊥derl/r +

+SYMM+ {TRANSk}k of the required form and with the same conclusion and the
same open assumption classes as D.

In this way we have considered all possible cases for the subderivations D1 and
D2 and have carried out the induction step for the statement we needed to prove.

The next lemma is a generalization of Lemma 8.2.15: it states that every deriva-
tion D inHB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k with a bottommost applica-
tion of TRANS1, which is not necessarily the single application of TRANS1 inD, can
be transformed into a similar special form as stated by Lemma 8.2.15. The transfor-
mation applied hereby proceeds primarily by permuting applications of TRANS1 up-
wards, by ({TRANSk}k Ã TRANS1)-mimicking steps, and by {TRANSk}k-amal-
gamation steps.

Lemma 8.2.16. Let D be a derivation in the extension HB=
0 + ∗(µ−⊥)⊥derl/r +

304 Transforming Derivations from HB= to AC=

+SYMM+ {TRANSk}k of HB=
0 such that D is of the form

D1

τ ′ = ρ

D2

ρ′ = σ′
TRANS1

τ = σ

(8.42)

where D1 and D2 are derivations in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k,

too, and such that D fulfills the condition (8.37) on its open marked assumptions.

Then D can effectively be transformed, by steps (a)–(c) as described above in
Lemma 8.2.15 and additionally by

(d) ({TRANSk}k Ã TRANS1)-mimicking steps,

(e) {TRANSk}k-amalgamation steps,

into a derivation D′ in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k of the form

Di1 Di2 . . . Di(ki+1)
TRANSki {

(τi1 → τi2 = σi1 → σi2)i
}

i∈I1

(Assm)

(σi1 → σi2 = τi1 → τi2)
ui

SYMM{
(τi1 → τi2 = σi1 → σi2)i

}

i∈I2

DC
τ = σ

(8.43)

where

(i) I1, I2 ⊆ ω , I1 ∩ I2 = ∅ , and I1 ∪ I2 = {1, . . . ,m} for some m ∈ ω (if m = 0
then I1 = I2 = ∅),

(ii) for all i ∈ I1 , ki ∈ ω\{0}, τi1, τi2, σi1, σi2 ∈ µTp, and Di1, Di2, . . . , Di(ki+1)

are derivations in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k, and further-

more, for all i ∈ I2 , ui is an assumption marker and τi1, τi2, σi1, σi2 ∈ µTp,

(iii) DC ∈ DerCtxtm(HB=
0 +∗(µ−⊥)⊥derl/r) is the HB=

0 + ∗(µ−⊥)⊥derl/r -end-deriva-
tion-context of D,

(iv) all derivations Di1, Di2, . . . , Di(ki+1), for i ∈ I1 , are such derivations in

HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k that are of one of the four pos-

sible forms in (8.39) for respective τ̃1, τ̃2, σ̃1, σ̃2 ∈ µTp and assumption mark-
ers ũ, and where not all of Di1, Di2, . . . , Di(ki+1) end with an application of
ARROW,

such that D′ has the same conclusion and the same open assumption classes as D.

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 305

Sketch of the Proof. In view of Lemma 8.2.15 it suffices to prove the following re-
stricted statement of the lemma:

For all derivations in HB=
0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k

of the form (8.42), where D1 and D2 are derivations in HB=
0 +

+ ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k that are themselves of the

form as described in the consequence of the lemma (i.e. that have
the property that bottommost SYMM-applications which are not
followed by {TRANSk}k-applications have marked assumptions in
their premise, and that the immediate subderivations of bottom-
most {TRANSk}k-applications are of one of the four possible forms
in (8.39), but do not all end with ARROW-applications) it holds
that D can effectively be transformed, by steps (a)–(e) as men-
tioned in the lemma, into a derivation D′ in HB=

0 + ∗(µ−⊥)⊥derl/r +

+SYMM+ {TRANSk}k of the form (8.43) with (i)–(iv) and with
the same conclusion and the same open assumption classes as D.

(8.44)

This reduction of our proof obligation is due to the fact that the special case of
the statement of the lemma with a derivation D in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+

+ {TRANSk}k of the form (8.42), where D1 and D2 do not contain applications of
{TRANSk}k, is settled by Lemma 8.2.15; and that, due to the restricted statement
of the lemma, the (unrestricted) statement of the lemma follows, for every derivation
D in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k of the form (8.42), by

– mimicking all TRANSk-applications, for all respective k ∈ ω\{0} , in D1 and
D2 by respectively k TRANS1-applications with the result of D̃1 and D̃2 in
HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+TRANS1, and by then

– successively applying the transformation guaranteed by the restricted state-
ment (8.44) to topmost, yet untreated TRANS1-applications that originate
from TRANS1-applications in D̃1 and in D̃2 (i.e. that are “residuals” of
TRANS1-applications in D̃1 or D̃2 under successive transformations carried
out in this step according to the restricted statement of the lemma).

The restricted statement of the lemma can be shown, for all derivations D
in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k of the form (8.42) with immedi-

ate subderivations D1 and D2, by induction on |D1|+ |D2| in an analogous way
as in our proof above for Lemma 8.2.15. Namely, by treating the case with an
axiom in either premise, and by upwards-permuting, if necessary, the application
of TRANS1 at the bottom of D over one or over two HB=

0 + ∗(µ−⊥)⊥derl/r -appli-

cations immediately above either of its premise in D1 or/and in D2. The only
additional case to be treated here consists in the situation that D1 or D2 or both
of them end with an application of TRANSk, for some k ∈ ω\{0} . Here a desired
derivation D′ in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k of the form (8.43)

with (i)–(iv) and such that D′ mimics D can be found simply by amalgamating, by
{TRANSk}k-amalgamation steps, the application of TRANS1 at the bottom of D

306 Transforming Derivations from HB= to AC=

with the application(s) of {TRANSk}k-rules at the bottom of D1 and/or D2 (since
D1 and D2 are already of the required form by the assumption of the restricted
statement).

Eventually the following lemma generalizes Lemma 8.2.16 into a statement that
asserts the existence of a transformation which is applicable to all derivations in
HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k.

Lemma 8.2.17. Suppose that D is a derivation in HB=
0 + ∗(µ−⊥)⊥der

l/r +SYMM+

+ {TRANSk}k that fulfills the condition (8.37) on its open marked assumptions.
Then D can effectively be transformed, by utilizing appropriate ones of the steps

(a)–(e) as described in Lemma 8.2.15 and Lemma 8.2.16, into a derivation D′ in
HB=

0 + ∗(µ−⊥)⊥der
l/r +SYMM+ {TRANSk}k that is of the form (8.43), where (i),

(ii), (iii), and (iv) in Lemma 8.2.16 are fulfilled, and such that D′ has the same
conclusion and the same open assumption classes as D.

Sketch of the Proof. In view of Lemma 8.2.14 it suffices to show the restriction of the
statement of the lemma to such derivations D in HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+

+ {TRANSk}k that contain applications of SYMM only immediately below marked
assumptions as single applications. And this restricted statement can be shown by
induction on the depth |D| of such derivations D inHB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+

+ {TRANSk}k ; in the induction-step, the cases in which the derivation D has a
bottommost application of SYMM, ∗(µ−⊥)⊥derl/r , or of a rule of HB=

0 can be settled
in a straightforward manner; in the case in which D has a bottommost application of
TRANSk, for some k ∈ ω\{0}, this application is first mimicked by k applications of
TRANS1, by a ({TRANSk}k Ã TRANS1)-mimicking step, and then Lemma 8.2.16
is applied to the bottommost of these TRANS1-applications.

For our proof later of Lemma 8.2.13 we will actually need a version of Lemma 8.2.17
in which the ‘auxiliary’ rules ∗(µ−⊥)⊥derl/r are not mentioned any more. The next
lemma is such a statement, which is an easy consequence of Lemma 8.2.17 in the
light of Proposition 8.2.6, and more precisely, in the light of the possibility to elim-
inate applications of ∗(µ−⊥)⊥derl/r by (∗(µ−⊥)⊥derl/r Ã (µ−⊥)⊥derl/r , FOLDl/r)-mim-
icking steps.

Lemma 8.2.18. Let D be a derivation in HB=
0 +SYMM+ {TRANSk}k that ful-

fills the condition (8.37) on its open marked assumptions.
Then D can effectively be transformed, by appropriate ones of the steps (a)–(e)

as described in Lemma 8.2.15 and Lemma 8.2.16, and additionally by

(f) (∗(µ−⊥)⊥der
l/r Ã (µ−⊥)⊥der

l/r , FOLDl/r)-mimicking steps,

into a derivation D′ in HB=
0 +SYMM+ {TRANSk}k that is of the form (8.43)

where the four conditions

(i) I1, I2 ⊆ ω , I1 ∩ I2 = ∅ , and I1 ∪ I2 = {1, . . . ,m} for some m ∈ ω (if m = 0
then I1 = I2 = ∅),

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 307

(ii) for all i ∈ I1 , ki ∈ ω\{0}, τi1, τi2, σi1, σi2 ∈ µTp, and Di1, Di2, . . . , Di(ki+1)

are derivations in HB=
0 +SYMM+ {TRANSk}k, and furthermore, for all

i ∈ I2 , ui is an assumption marker and τi1, τi2, σi1, σi2 ∈ µTp,

(iii) DC ∈ DerCtxtm(HB=
0) is the HB=

0 -end-derivation-context dDe{[]i}iHB=

0

of D,

(iv) all derivations Di1, Di2, . . . , Di(ki+1), for i ∈ I1 , are such derivations in
HB=

0 +SYMM+ {TRANSk}k that are of one of the four possible forms in
(8.39) for respective τ̃1, τ̃2, σ̃1, σ̃2 ∈ µTp and assumption markers ũ, and where
not all of Di1, Di2, . . . , Di(ki+1) end with an application of ARROW,

are fulfilled, and such that D′ has the same conclusion and the same open assumption
classes as D.

Proof. The assertion of the lemma is an immediate consequence of Lemma 8.2.17
in view of the following easily verifiable fact: every derivation D̃ in the system
HB=

0 + ∗(µ−⊥)⊥derl/r +SYMM+ {TRANSk}k that is of the form as described in

the conclusion of the statement of Lemma 8.2.16 (referring to a prooftree of the
form (8.43) and the conditions (i)–(iv) in Lemma 8.2.16) can effectively be trans-
formed, by eliminating all applications of rules ∗(µ−⊥)⊥derl/r using (∗(µ−⊥)⊥derl/r Ã

Ã (µ−⊥)⊥derl/r , FOLDl/r)-mimicking steps, into a mimicking derivation D′ for D̃ in

HB=
0 +SYMM+ {TRANSk}k of the form (8.43) such that the conditions (i)–(iv)

in the lemma to prove here are fulfilled.

In derivations in HB=
0 +SYMM+ {TRANSk}k of a form (8.43) with the condi-

tions (i)–(iv) in Lemma 8.2.18 on the occurring designations fulfilled the displayed
occurrences of applications of SYMM and of TRANSki are prevented from being
permuted further upwards by the presence, just above them, of marked assump-
tions, or of applications of ARROW/FIX. A possibility to proceed in this situation
consists in ‘unfolding’ a derivation D of this form with respect to bindings of as-
sumptions to applications of ARROW/FIX, in such a way, that it then becomes
possible again to permute the applications of SYMM and of TRANSki immediately
above the HB=

0 -end-derivation-context of D still further upwards.
For this purpose we use two kinds of transformations for ‘unfolding’ deriva-

tions in HB=
0 +SYMM+ {TRANSk}k with respect to bindings in them of marked

assumptions to respective applications of ARROW/FIX where these assumptions
are discharged: firstly, the transformation illustrated in Figure 8.5 of ‘unfolding’ a
derivation above a the conclusion of a particular occurrence of an ARROW/FIX-
application, and secondly, the transformation described in Figure 8.6 of ‘unfolding’
a derivation above a particular occurrence of a discharged assumption. In both
cases the goal for performing a transformation of this kind to a derivation D in
HB=

0 +SYMM+ {TRANSk}k consists in extending D above a considered occur-
rence of a marked assumption or of a conclusion of an ARROW/FIX application
in such a way that, firstly, a mimicking derivation D̃ for D is effectively produced,
and that secondly, the considered formula occurrence becomes the conclusion of an
application of ARROW in the transformed derivation D̃.

308 Transforming Derivations from HB= to AC=

Figure 8.5: ‘Unfolding’ of a derivation D in HB=
0 +SYMM+ {TRANSk}k above

a particular occurrence of a conclusion of an ARROW/FIX-application (this occur-
rence in the original derivation D on the right-hand side, and the corresponding
formula occurrence in the resulting derivation D̃ on the left-hand side are both
typeset in boldface).

[τ1 → τ2 = σ1 → σ2]
u

Da. ARROW/FIX, u

(τ1 → τ2 = σ1 → σ2)

DC0
τ = σ

7−→

[τ1 → τ2 = σ1 → σ2]
u

Da. ARROW/FIX, u

[τ1 → τ2 = σ1 → σ2]

D′a. ARROW
(τ1 → τ2 = σ1 → σ2)

DC0
τ = σ

‘Unfolding’ of a derivation above a conclusion of ARROW/FIX: in a trans-
formation step of the form shown in Figure 8.5, the displayed assumption class
[τ1 → τ2 = σ1 → σ2]

u at the top of the symbolic prooftree for a derivation D at
the left-hand side is assumed to be discharged at the displayed application of
ARROW/FIX ; and the same holds, respectively, for the assumption class of the
form [τ1 → τ2 = σ1 → σ2]

u that is displayed at the top of the symbolic prooftree
of the transformed derivation D̃ on the right-hand side. The subderivation D′a in
D̃ arises from the subderivation Da of D by changing the rule label of the bottom-
most application of Da from ARROW/FIX to ARROW with resulting derivation

D
(0)
a , and by taking an appropriate “variant-derivation” of D

(0)
a such that unwanted

bindings of assumptions due to the construction of D̃ from D are avoided; more

precisely, D′a results from D
(0)
a by performing renamings of assumption markers

different from u of discharged assumptions in Da in such a way that D′a mimics

D
(0)
a and such that no open assumption in a new copy of Da at the top of D̃ gets

discharged in the part D′a of D̃. In a transformation step shown in Figure 8.5, the
desired occurrence of a conclusion of an ARROW/FIX-application, above which
the derivation on the left-hand side is ‘unfolded’, and the corresponding formula
occurrence in the transformed derivation D̃ on the right-hand side are both typeset
in boldface.

‘Unfolding’ of a derivation above a discharged assumption: a transformation step
shown in Figure 8.6 of ‘unfolding’ a derivation D in HB=

0 +SYMM+ {TRANSk}k
above the occurrence, typeset in boldface, of a marked assumption in D has to
be understood in a similar way, but the stipulations used there are slightly more
involved. In particular, in a derivation D that is depicted on the right-hand side
of such a step there is only one particular occurrence of a marked assumption
(τ1 → τ2 = σ1 → σ2)

u considered from the assumption class [τ1 → τ2 = σ1 → σ2]
u

that is assumed to be discharged at the displayed application of ARROW/FIX at

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 309

Figure 8.6: ‘Unfolding’ of a derivation D in HB=
0 +SYMM+ {TRANSk}k above

a particular occurrence of a discharged assumption (this assumption occurrence
in the original derivation D on the left-hand side, and the corresponding formula
occurrence in the resulting derivation D̃ on the right-hand side are both typeset in
boldface).

[(τ1 → τ2 = σ1 → σ2)]
u

Da. ARROW/FIX, u

(τ1 → τ2 = σ1 → σ2)

DC0
τ = σ

7−→

[τ1 → τ2 = σ1 → σ2]
u

Da. ARROW/FIX, u

[τ1 → τ2 = σ1 → σ2]

D′′a. ARROW
(τ1 → τ2 = σ1 → σ2)

D′a. ARROW/FIX, u
or ARROW

(τ1 → τ2 = σ1 → σ2)

DC0
τ = σ

the bottom of the subderivation Da. The derivation D
′′
a in the symbolic prooftree for

the resulting derivation D̃ on the right-hand side of the transformation step arises
from Da by changing the label for its bottommost application from ARROW/FIX

to ARROW with resulting derivation D
(0)
a , and by making sure, through renam-

ings of assumption markers of discharged assumption classes in D
(0)
a , that no open

assumptions of a new copy of Da at the top of D̃ are discharged in the part D′′a
of D̃. And the subderivation D′a of Da arises by similar appropriate renamings of

assumption markers in the derivation D
(00)
a , which results from Da by changing

the rule label of its last rule application from ARROW/FIX to ARROW in case
that the considered occurrence of (τ1 → τ2 = σ1 → σ2)

u at the top of D is the only
member of the open assumption class displayed there, and which is equal to Da oth-
erwise. And furthermore, the (respective) assumption classes [τ1 → τ2 = σ1 → σ2]

u

in copies of Da at the top of D̃ are assumed to be discharged respectively at dis-
played occurrences of ARROW/FIX at the bottom of displayed copies of Da in the
symbolic prooftree for D̃; contrasting with this, the bottommost displayed applica-
tion of (ARROW/FIX, u) in D̃ is assumed to discharge precisely all those marked
assumptions [τ1 → τ2 = σ1 → σ2]

u that are “untouched” by ‘unfolding’ D above
the considered occurrence of [τ1 → τ2 = σ1 → σ2]

u in D. The corresponding for-
mula occurrence in the transformed derivation D̃ of the assumption above which D
was extended is also typeset in boldface in the derivation D̃ on the right-hand side.

The subsequent lemma will later be used in the proof of Lemma 8.2.13 to justify
the induction step in the inductive definition, for arbitrary derivations D in HB=

0 +
+SYMM+ {TRANSk}k, of a sequence SD = 〈D(n)〉n∈I of derivations in HB=

0 +

310 Transforming Derivations from HB= to AC=

+SYMM+ {TRANSk}k with the properties (i)–(vi) in Lemma 8.2.13. This lemma
states that every derivation D of the special form as described in the consequence
of Lemma 8.2.18 can be transformed into a mimicking derivation D′ of the same
special form, but with a strictly larger HB=

0 -end-derivation-context. The transfor-
mation used hereby proceeds essentially by applying the ‘unfolding’-operations just
explained, by performing upwards-permutation steps for applications of rules from
{TRANSk}k, and furthermore by utilizing the transformations (a)–(f) mentioned
in Lemma 8.2.18.

Lemma 8.2.19. Let τ, σ ∈ µTp. Furthermore, let D be a derivation in HB=
0 +

+SYMM+ {TRANSk}k

(I) without open assumption classes and with conclusion τ = σ ,

(II) that contains at least one application of SYMM or TRANSk, for some k ∈ ω ,

(III) that does not contain successive applications of REN nor nlµb-decreasing ap-
plications of FOLDl/r,

(IV) that is of the form as described in the consequence of Lemma 8.2.18; in partic-
ular, D is of the form (8.43) such that (i), (ii), (iii), and (iv) in Lemma 8.2.18
hold, in particular with HB=

0 -end-derivation-context DC ∈ DerCtxtm(HB=
0),

for some m ∈ ω\{0} .

Then D can be transformed effectively, by the steps (a)–(f) described or referred
to in Lemma 8.2.18, and additionally by

(g) ‘unfolding’-operations of HB=
0 +SYMM+ {TRANSk}k-derivations that are

defined with the help of the illustrations in Figure 8.5 and Figure 8.6,

(h) upwards-permutation steps of {TRANSk}k-applications over ARROW-appli-
cations as described in Proposition 8.2.20 below,

(i) elimination steps for nlµb-decreasing FOLDl/r-applications as described in the
proof of item (iii) of Lemma C.10, Appendix C,

into a derivation D′ in HB=
0 +SYMM+ {TRANSk}k

(A) without open assumption classes and with conclusion τ = σ , and

(B) that does not contain successive applications of REN nor nlµb-decreasing ap-
plications of FOLDl/r,

(C) that is also of the form as described in the consequence of Lemma 8.2.18, with a
HB=

0 -end-part DC′ ∈ DerCtxtm′(HB
=
0) , for some m′ ∈ ω , where DC′ arises

from DC by hole-filling of the occurrences of []1, . . . , []m with appropriate
derivation-contexts DC1,DC2, . . . ,DCm ; furthermore

s(DC′) > s(DC) (8.45)

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 311

holds, i.e. DC′ is of greater size than DC; and if D′ still contains applications
of SYMM or {TRANSk}k, then also

hHB=

0
(D′) > hHB=

0
(D) (8.46)

holds, i.e. the HB=
0 -height of D′ is greater than that of D.

We prove this lemma immediately below the following proposition, which states
and describes the possibility to permute an arbitrary {TRANSk}k-application up-
wards in a derivation of HB=

0 +SYMM+ {TRANSk}k provided that all immediate
subderivations end with an application of ARROW.

Proposition 8.2.20 (Upwards-permutation of {TRANSk}k -applications
over ARROW-applications). Let D be a derivation in HB=

0 +SYMM+
+ {TRANSk}k that ends with an application of TRANSk, for some k ∈ ω\{0} ,
and that is such that all immediate subderivations of D end with an application of
ARROW. Then the application of TRANSk at the bottom of D can be permuted
upwards simultaneously over all applications of ARROW immediately above this
TRANSk-application.

More precisely, every derivation D in HB=
0 +SYMM+ {TRANSk}k of the form

D11

τ ′1 = ρ11

D12

τ ′2 = ρ12
ARROW

τ ′1 → τ ′2 = ρ11 → ρ12 . . .

D(k+1)1

ρ′k1 = σ′1

D(k+1)2

ρ′k2 = σ′2
ARROW

ρ′k1 → ρ′k2 = σ′1 → σ′2
TRANSk

τ1 → τ2 = σ1 → σ2

can be transformed into a derivation D′ in HB=
0 +SYMM+ {TRANSk}k of the

form

D11

τ ′1 = ρ11 . . .

D(k+1)1

ρ′k1 = σ′1
TRANSk

τ1 = σ1

D12

τ ′2 = ρ12 . . .

D(k+1)2

ρ′k2 = σ′2
TRANSk

τ2 = σ2
ARROW

τ1 → τ2 = σ1 → σ2

with the same conclusion and with the same open assumption classes as D.

Proof of Lemma 8.2.19. Let τ, σ ∈ µTp be arbitrary, and let D be an arbitrary
derivation in HB=

0 +SYMM+ {TRANSk}k such that the conditions (I)–(IV) in
the lemma are met. In particular, D has the conclusion τ = σ , does not contain
open assumptions, contains at least one application of SYMM or TRANSk, for some
k ∈ ω\{0} , does not contain successive applications of REN nor nlµb-decreasing

312 Transforming Derivations from HB= to AC=

applications of FOLDl/r, and is of the form

Di1 Di2 . . . Di(ki+1)
TRANSki {

(τi1 → τi2 = σi1 → σi2)i
}

i∈I1

(Assm)

(σi1 → σi2 = τi1 → τi2)
ui

SYMM{
(τi1 → τi2 = σi1 → σi2)i

}

i∈I2

DC
τ = σ

(8.47)

where the conditions (i)–(iv) in Lemma 8.2.18 are fulfilled on the occurring desig-
nations, and where in particular DC ∈ DerCtxtm(HB=

0) , for some m ∈ ω\{0} , is
the HB=

0 -end-derivation-context of D.

By ‘unfolding’ the derivationD immediately above the bottommost of its SYMM-
and {TRANSk}k-applications, which are displayed schematically in (8.47), i.e. by
applying the transformations described in Figure 8.5 and Figure 8.6 above all such
occurrences of marked assumptions or of conclusions of ARROW/FIX that are im-
mediately, or after a single SYMM-application, followed by one of the occurrences
of SYMM or TRANSki displayed in (8.47), and by, if necessary, permuting single
occurrences of SYMM-applications just above displayed occurrences of TRANSki
upwards over newly arising occurrences of ARROW, a derivation D̃ in HB=

0 +
+SYMM+ {TRANSk}k of the form

D̃i1
ARROW .

(τi1 → τi2 = ρi11 → ρi12) . . .

D̃i2. ARROW
(ρ′i(ki+1)1

→ ρ′i(ki+1)2
= σi1 → σi2)

TRANSki {
(τi1 → τi2 = σi1 → σi2)i

}

i∈I1 D̃i1. ARROW
(σi1 → σi2 = τi1 → τi2)

SYMM{
(τi1 → τi2 = σi1 → σi2)i

}

i∈I2

DC
τ = σ

(8.48)

without open assumptions can be found. The mentioned ‘unfolding’-operations
have here been possible due to the fact that D does not contain open assumption
classes. In D̃ all bottommost applications of SYMM and of rules {TRANSk}k now
have exclusively such immediate subderivations that end with an application of
ARROW.

The HB=
0 -end-derivation-context DC of D̃ (and also of D) can now be enlarged

by permuting the bottommost applications of TRANSki , for i ∈ I1 , and SYMM,
which are displayed in (8.48), upwards over the preceding rule applications of AR-
ROW. Upwards-permutation of SYMM- over ARROW-applications is an easy mat-
ter, while upwards-permutation of applications of {TRANSk}k over applications of
ARROW is described in Proposition 8.2.20 (but it is clearly also straightforward).
By performing these permutations of rule applications, we arrive here at a derivation

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 313

˜̃D in HB=
0 +SYMM+ {TRANSk}k of the form

˜̃Di1
TRANSki

τi1 = σi1

˜̃Di2. TRANSki
τi2 = σi2

ARROW {
(τi1 → τi2 = σi1 → σi2)i

}

i∈I1

˜̃Di1
SYMM

τi1 = σi1

˜̃Di2. SYMM
τi2 = σi2

ARROW{
(τi1 → τi2 = σi1 → σi2)i

}

i∈I2

DC
τ = σ

(8.49)

without open assumption-classes. ˜̃D obviously has aHB=
0 -end-derivation-context of

greater size than D̃, and also the HB=
0 -height of ˜̃D is now strictly greater than that

of D (note that ˜̃D still contains applications of SYMM or of rules from {TRANSk}k).

However, the derivation ˜̃D is not yet again of a form as described in the consequence

of Lemma 8.2.18 (in particular, the immediate subderivations of the derivations ˜̃Di1

and ˜̃Di2, for i ∈ I1 ∪ I2 , may not yet be of one of the four possible forms in (8.43)).
By applying the transformation stated by Lemma 8.2.18, for all i ∈ I1 ∪ I2 , to

each of the subderivations ˜̃Di1 and ˜̃Di2 of ˜̃D, mimicking derivations D′i1 and D′i2
in HB=

0 +SYMM+ {TRANSk}k for ˜̃Di1 and ˜̃Di2 can effectively be found that are
of the form as described in the consequence of Lemma 8.2.18; in particular, for all
i ∈ I1 ∪ I2 , D

′
i1 and D′i2 are of the respective forms

{
(D′i1j)j

}

j∈Ji1

DC′i1
τi1 = σi1

{
(D′i2j)j

}

j∈Ji2

DC′i2
τi2 = σi2

where Ji1, Ji2 ⊆ ω are finite index sets, DC′i1 and DC
′
i2 are theHB

=
0 -end-derivation

contexts of D′i1 and D′i2 and where each derivation D′i1j , for j ∈ Ji1 , and D′i2j ,
for j ∈ Ji2 , ends with an application of SYMM or a rule in {TRANSk}k. In the
following we assume that all derivationsDikj , for i ∈ I1 ∪ I2 , k ∈ {1, 2} and j ∈ Jik ,
do not contain successive applications of REN nor nlµb-decreasing applications of
FOLDl/r; if for some derivation Dikj this is not the case from the outset, then these
applications are respectively removed first (nlµb-decreasing FOLDl/r-applications
can be eliminated due to the transformation described in the proof of item (iii)
of Lemma C.10, Appendix C). We find now that the derivation D′ in HB=

0 +
+SYMM+ {TRANSk}k of the form

{ (D′i1j)j }j∈Ji1

DC′i1
τi1 = σi1

{ (D′i2j)j }j∈Ji2

DC′i2
τi2 = σi2

ARROW{
(τi1 → τi2 = σi1 → σi2)i

}

i∈I1∪I2

DC
τ = σ

(8.50)

314 Transforming Derivations from HB= to AC=

is a mimicking derivation for ˜̃D (and henceforth also for D̃ andD) and it has the form
as described in the consequence of Lemma 8.2.18. Due to the construction of D′ and,
in particular, due to the choice of the subderivations D′ikj , the derivation D

′ contains
neither successive REN-applications nor nlµb-decreasing applications of FOLDl/r.
Therefore D′ certainly fulfills the conditions (A) and (B) in the consequence of the
lemma. Let now DC′ be the HB=

0 -end-derivation-context of D′. Due to the form of
D′, the derivation-context DC ′ ∈ DerCtxtm′(HB

=
0) for some m′ ∈ ω , DC′ results

from filling the context-holes []1, . . . , []m in DC by the contexts

(DC′i1)
′

τi1 = σi1

(DC′i2)
′

τi2 = σi2
ARROW

τi1 → τi2 = σi1 → σi2

for i ∈ I1 ∪ I2 = {1, . . .m} , where the derivation-contexts (DC ′i1)
′ and (DC′i2)

′ arise
by exchanging the context-holes in DC ′i1 and DC′i2 by respective ones carrying ap-
propriate numbers such that the context-holes []1, . . . , []m′ in DC

′ are ordered in
a traversal from let to right as required for a HB=

0 -end-derivation-context accord-
ing to Definition 8.2.11. Furthermore it follows that (8.45) holds, and, if D′ again
contains applications of SYMM or {TRANSk}k, also (8.46). Hence D′ satisfies also
the condition (C) in the consequence of the lemma.

In this way we have effectively found, for the derivation D that we have assumed
arbitrarily inHB=

0 +SYMM+ {TRANSk}k according to the hypotheses (I)–(IV) of
the lemma, a mimicking derivation D′ in the same system that fulfills the properties
(A), (B), and (C) in the assertion of the lemma; and furthermore it is easy to check
(by going through this proof and collecting the kind of transformation steps that
have been performed here, either explicitly or as part of transformations guaranteed
by the lemmas we have used) that we have not used other transformation steps that
those that are mentioned as the items (a)–(i) in the lemma.

Now we have eventually gathered all lemmas that are needed for our proof below
of Lemma 8.2.13, the statement that will guarantee the second step (St2)′ in the
proof of the theorem of this section, Theorem 8.2.2.

Proof of Lemma 8.2.13. Let τ, σ ∈ µTp be arbitrary, and let D be an arbitrary
derivation in HB=

0 +SYMM+ {TRANSk}k without open assumptions and with
conclusion τ = σ . We have to show that a sequence SD = 〈D(n)〉n∈I of derivations
in HB=

0 +SYMM+ {TRANSk}k can effectively be built, where I is either ω or
of the form [0, nmax] ∪ ω for some nmax ∈ ω , such that SD fulfills the conditions
(i)–(vi) in the lemma.

We proceed by defining the sequence SD = 〈D(n)〉n∈I inductively. In the in-
duction step we will assume that we have already constructed a finite sequence
SD(n) = 〈D(0), . . . ,D(n)〉 of derivations in HB=

0 +SYMM+ {TRANSk}k with the
seven properties

(i)′ D(0), the first derivation in SD(0), is the derivation D,

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 315

(ii)′ all derivations in SD(n) have conclusion τ = σ and do not contain open as-
sumptions,

(iii)′ all derivations in SD(n) except D(0) do not contain successive applications of
REN, nor nlµb-decreasing applications of FOLDl/r,

(iv)′ for all i ∈ {0, . . . , n− 1} , the derivation D(i+1) is the result of applying an
effective proof-theoretic transformation to the derivation D(i),

(v)′ all derivations in SD(n) contain applications of SYMM or of rules from the
family {TRANSk}k,

(vi)′ all derivations in SD(n) except D(0) are of a form (8.43) such that the condi-
tions (i)–(iv) in Lemma 8.2.16 on the occurring designations are fulfilled,

(vii)′ the HB=
0 -heights of the derivations in the sequence SD are strictly increasing

after the first step, i.e. it holds:

hHB=

0
(D(n)) > hHB=

0
(D(n−1)) > . . . > hHB=

0
(D(1)) ,

and we will then construct a derivation D(n+1) in HB=
0 +SYMM+ {TRANSk}k

such that the extended sequence SD(n+1) = 〈D(0), . . . ,D(n+1)〉 fulfills, for n + 1
instead of n, the conditions (i)′–(vii)′ above with the possible exception of (v)′

(if D(n+1) is namely a HB=
0 -derivation). Then SD(n+1) can either be taken as

the desired sequence SD, if D(n+1) does not contain SYMM- nor {TRANSk}k-

applications, or otherwise SD(n+1) again fulfills (i)′–(vii)′, but with n + 1 instead
of n. It is easy to see that the result of this inductive definition is a desired se-
quence SD = 〈D(n)〉n∈I of derivations in HB=

0 +SYMM+ {TRANSk}k, where I
is as above mentioned, that fulfills the properties (i)–(vi) in Lemma 8.2.13.

Case 1. n = 0 (Base Case).

Here we let D(0) be the derivation D, and SD(0) = 〈D(0)〉 . If D(0) contains
neither SYMM- nor {TRANSk}k-applications, then we stop with the con-

struction of SD and let it simply be SD = SD(0) ; SD obviously satisfies
the conditions (i)–(vi) in the lemma (in (v) let nmax = 0). Otherwise SD(0)

clearly fulfills conditions (i)′–(vii)′, for n = 0.

Case 2. n = 1 (Induction Step from n = 0→ n = 1).

By the induction hypothesis on SD(n), D(0) contains SYMM- or {TRANSk}k-
applications, but does not have open assumptions. Therefore Lemma 8.2.18
can be applied: it implies that D(0) can effectively be transformed, by a
proof-theoretic transformation, into a derivation D(0)′ in the system HB=

0 +
+SYMM+ {TRANSk}k that mimics D(0) and that is of a form (8.43) such
that (i)–(iv) in Lemma 8.2.18 are fulfilled for the occurring designations. By
removing from D(0)′ all pairs of successive REN-applications, and by elim-
inating all nlµb-decreasing applications of FOLDl/r according to the trans-
formation described in the proof of item (iii) of Lemma C.10, Appendix C,

316 Transforming Derivations from HB= to AC=

we reach effectively a derivation D(1) in HB=
0 +SYMM+ {TRANSk}k that

is still of the form (8.43) with (i)–(iv) in Lemma 8.2.18 fulfilled for the oc-
curring designations, but that now satisfies the conditions (I), (III), and (IV)
in Lemma 8.2.19 (D(1) might however violate (II) in this lemma in case that
it does not contain SYMM- or {TRANSk}k-applications any more). Now we

let SD(1) = 〈D(0),D(1)〉 , and find that SD(1) fulfills, for n = 1, the condi-
tions (i)′–(vii)′ with the possible exception of (v)′.

If D(1) contains neither SYMM- nor {TRANSk}k-applications, then we stop

the inductive definition of SD and let SD = SD(1) ; SD then fulfills the con-
ditions (i)–(vi) in the lemma (in (v) let nmax = 1). If, however, D(1) contains
SYMM- or {TRANSk}k-applications, then D

(1) fulfills the conditions (I)–(IV)

in Lemma 8.2.19, and as a consequence, SD(1) fulfills again the properties (i)′–
(vii)′, for n = 1.

Case 3. n > 1 (Induction Step from n→ n+ 1).

By the induction hypothesis we assume a sequence SD(n) = 〈D(0), . . . ,D(n)〉
in HB=

0 +SYMM+ {TRANSk}k with the properties (i)′–(vii)′ to be given.

Due to the fulfilledness of (ii)′, (iii)′, (v)′, and (vi)′ for SD(n), it follows that
D(n) satisfies the hypothesis (I)–(IV) of Lemma 8.2.19. Hence this lemma
can be applied to D(n), and thus D(n) can be transformed effectively, by a
proof-theoretic transformation, into a derivation D(n+1) in HB=

0 +SYMM+
+ {TRANSk}k that mimics D(n), that is of the form (8.43) such that (i)–(iv) in
Lemma 8.2.18 are fulfilled for some m ∈ ω\{0} and DC ∈ DerCtxtm(HB

=
0),

and that does not contain successive applications of REN nor nlµb-decreasing
applications of FOLDl/r; and furthermore D(n+1) fulfills

hHB=

0
(D(n+1)) > hHB=

0
(D(n)) (8.51)

ifD(n+1) contains applications of SYMM or {TRANSk}k (otherwise theHB
=
0 -

height of D(n+1) is not defined). We let SD(n+1) = 〈D(0), . . . ,D(n),D(n+1)〉 ,

and find now that SD(n+1) fulfills, with n + 1 in place of n, the conditions
(i)′–(vii)′ except possibly (v)′ (since D(n+1) might already be a HB=

0 -deriva-
tion): this follows from the induction hypothesis, the construction of D(n+1)

and by (8.51).

If D(n+1) does not contain applications of SYMM or {TRANSk}k, then we

stop with the construction of the sequence SD and let SD = SD(n+1) ; as a
consequence of the fulfilledness, for n+1 instead of n, of conditions (i)′–(vii)′

except (v)′ for SD(n+1), and of the choice of D(n+1) and the induction hy-

pothesis on SD(n), it follows now that the sequence SD satisfies the conditions
(i)–(vi) in the lemma.

If, however, D(n+1) contains again applications of SYMM or {TRANSk}k,

then the sequence SD(n+1) also fulfills (v)′, and hence now satisfies the con-
ditions (i)′–(vii)′, with n+ 1 in place of n.

By this inductive definition we have effectively produced a sequence SD = 〈D〉i∈I

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 317

of derivations inHB=
0 +SYMM+ {TRANSk}k with the properties (i)–(vi) as listed

in the lemma.

Having proved Lemma 8.2.21 as an auxiliary statement for justifying step (St2)′

in our proof later of Theorem 8.2.2, we continue by stating and proving a lemma that
will enable us to perform step (St3)′ in that proof. The assertion of the lemma below
is a reformulation with respect to derivations inHB=

0 +SYMM+ {TRANSk}k, and
also a refinement into a precise statement, of step (St2) in the simplified summary
given earlier of the transformation developed here between derivations in HB= and
derivations in HB=

0 .

Lemma 8.2.21. Let τ, σ ∈ µTp. Furthermore, let SD = 〈D(n)〉n∈ω be an infi-
nite sequence of derivations in HB=

0 +SYMM+ {TRANSk}k that has the following
properties:

– all derivations D(n) in SD have conclusion τ = σ and do not possess open
assumptions,

– all derivations D(n) in SD contain SYMM- or {TRANSk}k-applications,

– for all n ∈ ω , D(n) does not contain successive applications of REN, nor
nlµb-decreasing applications of FOLDk or FOLDr,

– for all n ∈ ω , the derivation D(n+1) is the result of applying an effective proof-
theoretic transformation to D(n),

– the HB=
0 -heights hHB=

0
(D(n)) of the derivations D(n) tend to infinity, that is,

put symbolically,
〈
hHB=

0
(D(n))

〉

n∈ω
→n→∞ ∞ holds.

Then for all n ∈ ω with the property hHB=

0
(D(n)) > h(τ,σ) , where

h(τ,σ) =def 2
(
(s(τ) + 1)(s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
, (8.52)

a HB=
0 -end-derivation dD(n)e{ui}iHB=

0

of D(n), where {ui}i is an appropriate family of

distinct assumption markers not occurring in D(n), can effectively be transformed,
by the transformation described in the proof of Theorem C.14 in Appendix C, into
a derivation D(n)′ in HB=

0 without open assumptions and with conclusion τ = σ .

And in particular, a derivation D′ in HB=
0 with conclusion τ = σ , without

open assumptions, and with depth |D′| < h(τ,σ) can effectively be produced by a

proof-theoretic transformation from D(0), the first derivation in the sequence SD.

Proof. Let τ, σ ∈ µTp be arbitrary and let SD = 〈D(n)〉n∈ω be a sequence of deriva-
tions in HB=

0 +SYMM+ {TRANSk}k as in the hypothesis of the lemma. And let
h(τ,σ) be defined as in (8.52).

318 Transforming Derivations from HB= to AC=

By assumption on SD
〈
hHB=

0
(D(n))

〉

n∈ω
→n ∞ is the case, i.e. the minimal

heights hHB=

0
(D(n)) in D(n) of conclusions of rules SYMM or {TRANSk}k tend to

infinity. Due to this there exist infinitely many n ∈ ω with the property

hn ≥ h(τ,σ) . (8.53)

Let now n ∈ ω be arbitrary such that (8.53) holds. Furthermore, let m ∈ ω\{0}
be such that dD(n)e{[]i}iHB=

0

∈ DerCtxtm(HB=
0), and let {ui}i=1,...,m be a family of dis-

tinct assumption markers that do not occur in D(n). Then the hypotheses of Corol-
lary C.15 in Appendix C.11 are satisfied for a HB=

0 -end-derivation dD(n)e{ui}iHB=

0

of

D(n) : conditions (i) and (ii) in Theorem C.11 are satisfied for dD(n)e{ui}iHB=

0

because

they are satisfied for D(n) by assumption on SD; and furthermore, due to (8.53)
and the fact that D(n) is a derivation in HB=

0 +SYMM+TRANS without open
assumptions, it follows that dD(n)e{ui}iHB=

0

contains open assumptions only at heights

≥ h(τ,σ) . Therefore Corollary C.14 can be applied; it entails that dD(n)e{ui}iHB=

0

can ef-

fectively be transformed into a derivation D(n)′ in HB=
0 without open assumptions,

with conclusion τ = σ and with depth |D(n)′| < h(τ,σ) .
Since there exists an n ∈ ω such that (8.53) holds (there are in fact infinitely

many such n), it is possible, by successively generating derivations D(j) of the se-
quence DC and by checking whether or not hj ≥ h(τ,σ) holds, to find effectively
a first n0 ∈ ω with the property hn0 ≥ h(τ,σ) . By what we have already shown

above, it follows that dD(n0)e{ui}iHB=

0

can effectively be transformed into a derivation

D′ in HB=
0 without open assumptions, with conclusion τ = σ and with depth

|D′| < h(τ,σ) . Hence a derivation D′ with these properties can effectively be gen-
erated from the presupposed sequence SD of derivations, and hence from the first
derivation D(0) in SD because by assumption on SD each derivation in this sequence
can effectively be produced from its predecessor derivation.

We are now finally able to give the proof for Theorem 8.2.2, the main theorem
in this section about a proof-theoretic transformation between derivations in the
systems HB= and HB=

0 .

Proof of Theorem 8.2.2. Let D be a derivation in HB= without open assumptions
and with conclusion τ = σ , for some τ, σ ∈ µTp . We have to show that D can be
transformed, by an effective proof-theoretic procedure, into a derivation D′ inHB=

0

without open assumptions and with the same conclusion τ = σ as D.

(St1)′ Applying Lemma 8.2.3, D can effectively be transformed, in a proof-theoretic
way, into a derivation D̃ in HB=

0 +SYMM+TRANS without open assump-
tions and with the same conclusion τ = σ as D. Let D̃(0) be a derivation
that is found in this way. By furthermore renaming all applications of the
transitivity rule TRANS in D̃(0) into applications of the generalized transi-
tivity rule TRANS1, we reach effectively a mimicking derivation D̃ for D in

8.2 A Transformation of HB=-Derivations into HB=
0 -Derivations 319

HB=
0 +SYMM+ {TRANSk}k without open assumptions and with conclusion

τ = σ .

(St2)′ Due to Lemma 8.2.13, there exists a sequence SD = 〈D(n)〉n∈I , where I = ω
or I = [0, nmax] ∩ ω for some nmax ∈ ω , of derivations in HB=

0 +SYMM+
+ {TRANSk}k that starts with D(0) = D̃ and that fulfills the conditions (ii)–
(vi) in Lemma 8.2.13. Let SD be such a sequence. Because of condition (iv)
in Lemma 8.2.13, it holds in particular that, for all n ∈ I with n+ 1 ∈ I ,
the derivation D(n+1) is the result of applying a proof-theoretical procedure
to the derivation D(n). Now we distinguish two cases depending on whether
SD is finite or infinite.

If the sequence SD is finite, i.e. if I = [0, nmax] ∩ ω for some nmax ∈ ω , then it
ends (since condition (v) in Lemma 8.2.13 is fulfilled for SD) with a derivation
D(nmax) in HB=

0 without open assumptions and with the conclusion τ = σ ,
the same as that of D̃ and of D. By overlooking and gathering all effective
steps carried out during the sequence SD and the initial transformation step
from D to D̃, we can say that D(nmax) is the result of applying an effective
proof-theoretic transformation to D. In this case we can take D(nmax) as the
desired mimicking derivation D′ in HB=

0 for D.

The case in which SD is infinite is treated in (St3).

(St3)′ If the sequence SD is infinite, then it fulfills, due to its choice, the hypotheses
of Lemma 8.2.21. Hence this lemma can be invoked to show that a derivation
D′ in HB=

0 without open assumptions and with the same conclusion as D
can effectively be produced from D̃ by a proof-theoretic transformation. Let
D′ be a derivation that is found in this way. Because the initial step from D
to D̃ has been of an effective proof-theoretic character, too, it follows that D′

can also be produced from D by an effective proof-theoretic transformation.

In both cases that are able to occur in (St2)′, of SD being either finite or infinite, we
have effectively produced from D, by a proof-theoretic transformation, a derivation
D′ in HB=

0 without open assumptions and with the same conclusion τ = σ as D.

We close this section with the following observation: it is easy to see that the
transformation we have demonstrated to exist in the proof of Theorem 8.2.2 can
be taken to pieces and then reassembled more elegantly again with the algorithm
defined by the flow-chart in Figure 8.4 as the result.

320 Transforming Derivations from HB= to AC=

Chapter 9

Conclusion

In this final chapter we have two goals: firstly, to summarize the transformations
between proof systems developed in previous chapters, as well as to discuss some
specific issues concerning the way how these transformations interact and are re-
lated, and secondly, to outline directions for possible extensions of the results we
have obtained. These issues are treated separately in Section 9.1 and in Section 9.2.

9.1 The Obtained Network of Transformations

In Figure 9.1 a schematic overview is given about how the proof systems of the
three kinds of systems introduced in Chapter 5 and in later chapters are linked by
the proof-theoretic transformations that we have developed. The Amadio-Cardelli
systemsAC=, AC=

∗ , AC
=
−, andAC

=
∗−, the Brandt-Henglein systemsHB=, HB=

0 ,
e-HB=

0 , and ann-HB=
0 , and the syntactic-matching systems (Ariola-Klop systems)

AK= andAK=
0 have been arranged into a ‘network’ whose ‘wirings’ represent trans-

formations described in the Chapters 5–8. Hereby references to respective existence
statements for the transformations have been attached to the arrows representing
them, accordingly.

Thin arrows have been used to symbolize easy transformations, and thick ar-
rows for more involved ones. For example, the transformation between derivations in
AC= into mimicking derivations in AC=

∗ is considered “easy” because it proceeds
by an elimination procedure of UFP-applications which is comparatively simple
owing to the fact that UFP is a derivable rule of AC=

∗ ; in contrast with this, for
instance the transformation from derivations in AC= into mimicking derivations in
AC=

− that proceeds by µ-COMPAT-elimination as described in the proof of Theo-
rem 7.1.15 is certainly “more involved”, which also reflects the fact that µ-COMPAT
is merely admissible, but not derivable, in AC=

−.

It has to be mentioned that the arrows in both ways between e-HB=
0 and

AK=
0 , and betweenHB=

0 andAK=
0 represent different kind of transformations than

the other arrows. They symbolize transformations that ‘implement’ the reflection

322 Conclusion

Figure 9.1: ‘Connecting’ proof systems for recursive type equality: the ‘network’
of the developed transformations between derivations in the Amadio-Cardelli sys-
tems AC=, AC=

∗ , AC
=
−, and AC=

∗−, derivations in the Brandt-Henglein systems
HB=,HB=

0 , e-HB=
0 , and ann-HB=

0 , and consistency-unfoldings, and respectively
derivations, in the Ariola-Klop systems AK=

0 and AK=.

D
u
al
it
y

S
p
ec
ia
li
ze
d
D
u
al
it
y

AK=
0

Cor. 7.1.17

Cor. 7.1.17

Cor. 7.1.17
Cor. 7.1.17Cor. 7.1.17

AC=
∗−

AC=
Thm. 5.1.6

AC=
∗

AC=
−

HB=

ann-HB=
0

HB=
0

e-HB=
0

AK=
0

Thm. 7.1.15,Cor. 7.1.17Thm. 7.1.15,

Thm. 6.2.6

Thm. 8.2.2

Lem 5.1.19

Thm. 5.1.6

(trivial)

Lem. 8.1.5

(i)(ii)

Lem. 7.2.4

Lem. 7.2.4

Prop. 7.2.2, (ii),

Lem. 8.1.7

Thm. 6.6.3

Thm. 6.5.1

Lem. 8.1.5

Amadio-Cardelli systems

Brandt-Henglein systems

Ariola-Klop systems
(syntactic-matching systems)

Prop. 7.2.2, (i),

AK=Lem. 5.2.15

functions C and D between derivations in e-HB=
0 and consistency-unfoldings in

AK=
0 , and respectively, between derivations in HB=

0 and consistency-unfoldings in
AK=

0 (with the property D). In contrast with this, each of the other arrows in
Figure 9.1 denotes a transformation between derivations in the proof system at the
arrow’s source into derivations in the system at its target.

An interesting observation is related to the position of the variant proof systems
AC=

− and AC=
∗− of AC= and AC=

∗ within the ‘network’ in Figure 9.1 of the trans-
formations that we have given; it concerns the way in which the transformations
from AC= to HB= and, vice versa, from HB= to AC= have actually been found.
On the one hand, each of the transformations, corresponding to paths in the ‘net-
work’ in Figure 9.1, from derivations in AC= into derivations in HB= proceeds via
derivations in one of the µ-COMPAT-free variant systems AC=

− and AC=
∗− of AC=

and AC=
−. And on the other hand, also all transformations, made possible by the

results given here, between derivations inHB= and derivations inAC= proceed via

9.1 The Obtained Network of Transformations 323

intermediary results of derivations in AC=
− and AC=

∗−.
1 The first fact mentioned

is merely a consequence of the way how we have constructed the transformation
from AC= to HB= : by setting out to eliminate µ-COMPAT-applications from
AC=-derivations always right away, which choice of procedure has lead us to the
introduction of the systems AC=

− and AC=
∗− in the first place. Contrasting with

this, the second fact came as a slight surprise, later, after developing the trans-
formation from HB=-derivations via ann-HB=

0 -derivations into AC=-derivations
described in Chapter 8, Section 8.1: only then did we notice that the AC=-deriva-
tions this transformation produces do not contain applications of µ-COMPAT, or
put as a stronger assertion, that this transformation produces derivations in AC=

∗−

in a natural way .2 This observation lends some legitimacy to the claim we want
to make here that the µ-COMPAT-free variant systems AC=

∗− and AC=
− can be

viewed as axiomatizations of recursive type equality that may be viewed to be more
‘compact’ than AC= and AC=

∗ (because AC=
∗− and AC=

− contain fewer rules), but
that are equally ‘natural’.

The network of transformations in Figure 9.1 also reflects the facts that the
transformation from HB=-derivations into AC=-derivations developed in Chap-
ter 8 makes a ‘detour’ via derivations in the analytic variant system HB=

0 of HB=

and derivations in the annotated version ann-HB=
0 of HB=

0 , and that we have
not developed a more direct transformation: there is no arrow pointing directly
from HB= to AC=. Therefore the only possibility for an effective transformation
from HB=-derivations into AC=-derivations enabled by the results given here is
to ‘normalize’ a given HB=-derivation in the first step by applying the procedure
detailed in Section 8.2, which is rather involved. In Remark 8.1.10, at the end of
Section 8.1, it has already been mentioned that we do not know presently how to
construct a more direct transformation from HB= to AC=, one that avoids the
complicated process of ‘normalizing’ HB=

0 -derivations. We pose this as an Open
Problem here.

Open Problem 9.1.1. Does there exist a more direct effective transformation
from derivations D in HB= without open assumptions into derivations D′ in AC=

without assumptions and with the same conclusion asD than the one that is justified
by the results in Chapter 8 (and that proceeds via derivations in the analytic variant
HB=

0 of HB= and the annotated version ann-HB=
0 of HB=

0)? Furthermore,
can the approach of first assigning appropriate annotations, and of subsequently
extracting AC=-derivations be generalized from HB=

0 -derivations to HB=-deriva-

1The arrows in the ‘network’ even tell us that all such transformations proceed via intermedi-
ary results of derivations in AC=

∗− . This is indeed the case for the transformations justified by

our proofs. However, these proofs could easily be altered slightly to produce AC=

− -derivations

instead of AC=

∗− -derivations and in this manner to circumvent AC=

∗− -derivations. In particular,

Lemma 8.1.6 could be proved directly and analogously to Lemma 8.1.7, in place of being shown
as an immediate consequence of Lemma 8.1.7, thereby creating a detour via AC=

∗− -derivations.
2Also, it takes only little effort to modify this transformation into producing AC=

− -derivations

without µ-COMPAT-applications, or into producing AC=
∗ - or AC=-derivations (of the specific

form that they contain µ-COMPAT applications only above such formulas that occur in the axiom
scheme (µ−⊥)′).

324 Conclusion

tions in some way?

In Remark 8.1.10, we have also mentioned that the transformation ofHB=
0 -deri-

vations into AC=-derivations explained in Section 8.1 can be extended to an analo-
gous transformation from derivations in the extension e-HB=

0 of HB=
0 into deriva-

tions in AC=, in such a way that the more general transformation proceeds via
derivations in an annotated version ann-e-HB=

0 of e-HB=
0 and derivations in the

µ-COMPAT-free variant system AC=
∗− of AC=

∗ and AC=. Since this result has
not been proved here (also the annotated version ann-e-HB=

0 of e-HB=
0 has not

been formally introduced), corresponding arrows have not been taken up into the
network of transformations in Figure 9.1.

9.2 Directions for Possible Extensions

In this section we describe a number of directions into which the work presented
here about proof-theoretic transformations between recursive type equality can be,
or is likely to be, generalized. Hereby we are also going to report informally about
results that we have obtained, but that have not been published already.

9.2.1 Brandt-Henglein Systems with More Circular Rules

In Chapter 6, Section 6.2, we introduced an extension e-HB=
0 of the analytic

Brandt-Henglein system HB=
0 by adding new ‘circular’ rules, a system in which

there are also other rules that formalize coinductive reasoning apart from the famil-
iar rule ARROW/FIX of the axiomatization of Brandt and Henglein for recursive
type equality. For this purpose we first introduced a general such rule FIX that
allows applications of the form

[τ = σ]u

D1

τ = σ
FIX, u (if side-condition (9.2))

τ = σ

(9.1)

with the indicated proviso that the immediate subderivation D1 is contractive with
respect to the open marked assumptions that get discharged by this FIX-application,
i.e. open marked assumptions in D1 of the form (τ = σ)u ; by this, the restriction

“For each open marked assumption of the form (τ = σ)u in D1,
the thread down to the conclusion of D1 crosses an application of
ARROW or ARROW/FIX at least once.”

(9.2)

was meant. Then we showed that FIX is cr-admissible inHB=
0 as well as that appli-

cations of FIX can be eliminated effectively from every derivation D in HB=
0 +FIX

with the result of a mimicking derivation for D in HB=
0 . And subsequently, we

defined ‘circular’ variants of the rules REN, FOLDl and FOLDr in HB=
0 , the rules

REN/FIX, FOLDl/FIX, and FOLDr/FIX, and used cr-admissibility of FIX inHB=
0

9.2 Directions for Possible Extensions 325

to show cr-admissibility in HB=
0 also for these new rules. Eventually, we defined

an extension e-HB=
0 of HB=

0 by adding these three new rules, and proved that
e-HB=

0 and HB=
0 are equivalent (and hence that also e-HB=

0 is a sound and
complete axiomatization for =µ).

We have recalled these results here for the following reason: the question can
be asked whether the basic Brandt-Henglein system HB= can be extended in a
similar manner by adding rules of an analogous kind (such that, in particular, no
new theorems become derivable); of if there did actually exist a substantial reason
for why in the axiomatization of Brandt and Henglein only one ‘circular’ rule figures,
namely the rule ARROW/FIX.

The answers that we want to give here to the two parts of the question just
formulated are “yes” and “no”, respectively. Below we report, without giving proofs,
on results that we have obtained concerning these issues.

• It turns out that the rule FIX with applications of the form (9.1), where (9.2)
is fulfilled, is actually not only cr-admissible in HB=

0 , but also in HB=. This
can be shown by a similar, albeit rather more complicated, proof than the
one we gave for Lemma 6.2.3: derivations in HB=+FIX can be ‘unfolded’
above a considered application of FIX in a certain manner, using a more-step
process and utilizing the deductive power of the rule ARROW/FIX in HB=

to discharge newly arising open assumptions at specific positions.

• Relying on cr-admissibility of FIX inHB=, other ‘circular’ rules can be shown
to be cr-admissible in HB= as well: this holds, in particular, for a variant
SYMM/FIX of the rule SYMM of HB=, and for the rule TRANS/FIX with
applications of the form

[τ = σ]u

D1

τ = ρ

[τ = σ]u

D2

ρ = σ
TRANS/FIX, u (if side-condition C) ,

τ = σ

where, analogously as for the rules REN/FIX and FOLDl/r/FIX defined in
Definition 6.2.4, the side-condition C demands that both of the immediate
subderivations D1 and D2 are contractive with respect to open marked as-
sumptions of the form (τ = σ)u .

• As a consequence, an extension e-HB= of HB= by adding the rules SYMM/
FIX and TRANS/FIX can be shown to be equivalent to HB=. Eventually
also a system ext-HB= that is defined as the union of e-HB=

0 and e-HB=

can be proved to be equivalent with the basic Brandt-Henglein system HB=.

And what is more, a close connection can be established between these extensions
of the basic Brandt-Henglein system HB= for recursive type equality and a system
for “coercion typing rules” for the subtyping relation ≤µ on recursive types that
is given by Brandt and Henglein in [BrHe98, Fig.6, p.19]; the latter system also
contains a general ‘circular’ FIX-rule.

326 Conclusion

9.2.2 Syntactic-Matching Tableaux

The definition in Chapter 6 of consistency-unfoldings in a syntactic-matching sys-
tem as downwards-growing derivation trees with special properties (of containing
back-bound leaf-occurrences of marked formulas that fulfill certain conditions) was
devised for the special purpose at hand here: for formulating and proving duality
statements between consistency-unfoldings in AK=

0 and derivations in HB=
0 or in

e-HB=
0 . However, it is not difficult to see that the concept of consistency-unfolding

bears a striking analogy with the concept ‘closed analytic tableau’ as introduced by
Smullyan in [Sm68].

Closer inspection of this analogy shows that the two duality theorems stated and
proved in Chapter 6, Theorem 6.5.1 and Theorem 6.6.3, lend themselves for being
reformulated with respect to an in each case suitably defined tableau calculus. It is
possible to prove analogous theorems about a close functional relationship between
derivations in HB=

0 , or derivations in e-HB=
0 , and so called ‘syntactic-matching

tableaux’ in a respective tableau system. For tentative formulations of results in
this direction we refer to [Gra02a], the slides for a talk given at the CWI Amsterdam
in May 2002.

9.2.3 Proof Systems for Subtyping on Recursive Types

The three kinds of proof systems for recursive type equality which have been defined
in Chapter 5 possess closely related counterparts in proof systems for the subtyp-
ing relation ≤µ on recursive types that was introduced3 by Amadio and Cardelli
in [AmCa93]. These authors have also given a complete axiomatization for ≤µ in
what can actually be formulated as a natural-deduction system AC≤ (see (9.3) be-
low for the rule µ-INTRO of this system, applications of which typically discharge
open assumptions); the system AC≤ contains the axiomatization AC= introduced
in Chapter 5 as its part. A more recent (complete) axiomatization of ≤µ has been
given by Brandt and Henglein in [BrHe98]; a natural-deduction system formulation
HB≤ of their (sequent-style) system is very similar to the system HB= introduced

in Chapter 5. For this system, an ‘analytic’ variant system HB
≤
0 can be defined

in analogy with the variant system HB=
0 of HB= introduced in Chapter 5. And

finally, also the syntactic-matching proof systems AK= and AK=
0 possess coun-

terparts in respective syntactic matching systems AK≤ and AK
≤
0 for ≤µ : these

systems are sound and complete with respect to ≤µ in the sense that, for arbitrary
τ, σ ∈ µTp , the subtype inequality τ ≤ σ can be added consistently4 to the system
if and only if τ ≤µ σ holds.

It turns out that most of the transformations that we have developed here be-
tween proof systems for recursive type equality =µ can be adapted to yield similar

3In the words of [BrHe98], “[AmCa93] extend the standard contravariant structural subtyping
relation on µ-free types (to be thought of as finite trees) [. . .] in a natural fashion to infinite trees”.

4For this statement a clarification is needed of what a ‘contradiction with respect to ≤µ’ is.
It turns out that a definition of this notion is quite directly suggested by the definition of the
subtyping relation ≤µ due to Amadio and Cardelli.

9.2 Directions for Possible Extensions 327

transformations between the mentioned proof systems for the subtyping relation
≤µ. Below we report of the following: firstly, of three results that we have obtained
concerning adaptations of transformations detailed here to proof systems for ≤µ
(see items (i)–(iii)); then of a result about the admissibility in HB≤ of a rule FIX≤

that is similar to a result only sketched here in Subsection 9.2.1 (confer item (iv));
and lastly, and of an observation which can be paraphrased by saying that there ex-
ists a substantially closer proof-theoretic relationship between the Amadio-Cardelli
systems and the Brandt-Henglein systems for the subtyping relation ≤µ than be-
tween the Amadio-Cardelli and Brandt-Henglein systems for recursive type equality
=µ (see the assertions in item (v) below).

(i) There exists an immediate ‘duality’ between consistency-unfoldings in AK
≤
0

and derivations without open assumptions inHB
≤
0 . This duality has the form

of statements similar to Theorem 6.5.1 and Theorem 6.6.3.

(ii) Every derivation D in AC≤ without assumptions can be transformed, by an
effective proof-theoretic transformation, into a derivation D′ in HB≤ with
the same conclusion as D and without open assumptions.

(iii) Reversely, the following holds: every derivation D in HB≤ without open as-
sumptions can be transformed, by an effective proof-theoretic transformation,
into a derivation D′ in AC≤ with the same conclusion as D and without
assumptions.

(iv) A rule FIX≤ for a system with inequations between recursive types as formulas
that is defined similar to the rule FIX as introduced in Definition 6.2.1 is
cr-admissible in HB≤. What is more, applications of this rule FIX≤ can
effectively be eliminated from derivations in HB≤+FIX≤ with the results of
respective mimicking derivations in HB≤.

(v) There is a close proof-theoretic connection between a particular rule of AC≤,
the rule µ-INTRO, that has applications of the form

[α ≤ β]u

D1

τ ≤ σ
µ-INTRO, u (if (9.4) is fulfilled),

µα. τ ≤ µβ. σ

(9.3)

where the side-condition

“α occurs only in τ , not in σ ; β occurs only in σ, not in τ ;
and neither of α and β occurs in an open marked assumption
of D1 that is different from (α ≤ β)u .”

(9.4)

has to be observed, with the rule ARROW/FIX in HB≤ as well as with the
rule FIX≤ mentioned in (iv). To be more precise: µ-INTRO is cr-admissible in
HB≤, and applications of this rule can effectively be eliminated from deriva-
tions in HB≤+µ-INTRO with the result of respective mimicking derivations.

328 Conclusion

And reversely, the rules ARROW/FIX and FIX≤ are cr-admissible in AC≤

and can be eliminated effectively from derivations in the extension of AC≤ by
adding these rules such that respective mimicking derivations are produced.

Some more information about the transformations and statements asserted in
(i)–(v) above can be found on [Gra01], the slides for a talk given at the Catholic
University of Nijmegen (KUN) in January 2001.

9.2.4 Proof Systems for Equivalence of Regular Expressions

As an example of quite different, but (respectively) conceptually related proof sys-
tems to which we expect that the transformations developed here can be adapted,
we mention formal systems for the equivalence relation on regular expressions. A
complete axiomatization for Kleene’s theory of ‘regular events’ and ‘regular expres-
sions’ was first given by Salomaa in [Sal66]. (However, Salomaa mentions that an
almost identical axiomatization was given, together with a completeness proof, by
Anderaa in [And65].)5 The use of coinduction for proving the equivalence of regular
expressions has been studied by Rutten in [Rut98], based on the ‘differential calcu-
lus of events’ (as developed, for instance, by Conway in [Con71, Ch. 5]). Following
[Rut98] it is not difficult to give a coinductively motivated proof system for the
equivalence relation on regular expressions, a system that is conceptually analogous
to the axiomatizations of recursive type equality and recursive subtyping given by
Brandt and Henglein. Furthermore, a syntactic-matching system can be defined by
following a remark in [Rut98] that the coinduction proof method can also be used
to detect if two given regular expressions E1 and E2 are not equivalent (namely,
by showing that the assumption that there is a bisimulation containing the pair
〈E1, E2〉 leads to a ‘contradiction’). Such a syntactic-matching system for equa-
tions between regular expressions, a counterpart to the systems AK= and AK=

0

studied here, can be used for determining whether or not two regular expressions E
and F are equivalent by testing for whether or not the equation E = F is consistent
relative to the system.

It is very likely that most of the transformations that we have developed for proof
systems regarding recursive type equality have counterparts in transformations be-
tween respective proof systems for the equivalence relation on regular expressions.
What we are able to report as a fact is that the transformation between HB=

0 and
AC= described in Section 8.1 can be adapted for the purpose of establishing an
analogous link between similar kinds of proof systems concerning the equivalence
relation between regular expressions. Namely, there exists an effective transforma-
tion from derivations in an ‘analytic’ version cREG0 of a coinductively motivated
proof system cREG and derivations in a slight variant REG, taken from Conway’s
book [Con71], of the axiomatization by Salomaa.

5Salomaa even acknowledges in [Sal66] that some parts of his completeness proof “were essen-
tially simplified by Anderaa’s proof”; but in the same passage he goes on to say that Anderaa uses
a result “which is not quite correct” (and Salomaa explains the problem in an earlier remark).

9.2 Directions for Possible Extensions 329

For explaining the most important features of the mentioned proof systems in a
little more detail, we introduce some basic notions concerning regular expressions.
All of our stipulations below presuppose a given finite alphabet Σ that can be
chosen according to a specifically considered situation. We do not always formulate
it explicitly that the statements we give hold with respect to all choices of finite
alphabets Σ, but we hint at such assertions by relativizing all of our designations
for sets, functions, and proof systems on regular expressions to the symbol Σ that
denotes the alphabet on which the respective sets, functions, and proof systems
depend.

We let the set Reg(Σ) of regular expressions over alphabet Σ be defined as those
words over Σ that are generated by the grammar

E ::= 0 | 1 | a
︸︷︷︸

∈Σ

|E + F |EF |E∗

and we let the function L : Reg(Σ)→ P(Σ∗) that to every regular expression E
assigns the formal language L(E) ⊆ Σ∗ represented by E be defined inductively by
the clauses

L(0) = ∅ , L(1) = {ε} , L(a) = {a} (f.a. a ∈ Σ) ,

L(E + F) = L(E) ∪ L(F) , L(EF) = L(E)L(F) , L(E∗) = L(E)∗ ,

where the ‘concatenation product’ L1L2 of two formal languages L1 and L2, and
the ‘iteration’ L∗ of a language L are defined

L1L2 =def {w1w2 | w1 ∈ L1, w2 ∈ L2} ,

L∗ =def

⋃

n∈ω

Ln , where L0 =def {ε} , and

Li+1 =def LLi (for all i ∈ ω) .

Two regular expressions E and F are called equivalent (denoted by E =L F) if and
only if L(E) = L(F) holds, i.e. iff they represent the same formal language.

Furthermore a function o : Reg(Σ)→ {0, 1}, E 7→ o(E) is defined by

o(E) =def

{

1 . . . ε ∈ L(E)

0 . . . ε /∈ L(E) .

It is easy to give a definition of o using induction on the length of regular expressions.
In the terminology of Salomaa, a regular expression E ∈ Reg(Σ) has the empty word
property if and only if o(E) = 1 holds.

Based on the ‘differential calculus of events’ (see [Con71, Ch. 5]), it is further-
more easy to give, for all a ∈ Σ, inductive definitions for a-derivatives on Reg(Σ),
that is, for functions

(·)a : Reg(Σ)→ Reg(Σ), E 7→ Ea

that have the respective property

L(Ea) = {w | aw ∈ L(E)} (for all a ∈ Σ and E ∈ Reg(Σ)) .

330 Conclusion

(The a-derivative Ea of a regular expression E, for all E ∈ Reg(Σ) and a ∈ Σ, rep-
resents the “a-derivative” of the language represented by E, where, for all a ∈ Σ,
the a-derivative La of a language L over Σ is defined by La =def {w | aw ∈ L} in
[Con71].) In an inductive definition of (·)a, for arbitrary a ∈ Σ, the clauses concern-
ing regular expressions with + and ∗ as their outermost symbols can respectively
be chosen as

(E + F)a =def Ea + Fa (E∗)a =def EaE
∗

(the inductive clause for regular expressions with the concatenation symbol as out-
ermost symbol is slightly more involved).

The characteristic feature of the axiomatization F1 given by Salomaa in [Sal66]
is a fixed-point rule which facilitates that “regular expression equations of the form
E = EF +G are solvable by a rule of inference” ([Sal66])6. This rule is schemati-
cally defined by

E = EF +G
(if o(F) = 0).

E = GF ∗
(9.5)

A different version of this fixed-point rule is used by Conway in [Con71] for a sys-
tem that differs from the axiomatizations F1 and F2 in [Sal66] also in a number of
axioms, despite the fact that it is introduced under the name “Salomaa’s axiomati-
zation”. Applications of the fixed-point rule used in [Con71] result from inference
figures in (9.5) by replacing products EF and GF ∗ by FE and F ∗G, respectively;
this rule is schematically defined by

E = FE +G
CONTRACT (if o(F) = 0)

E = F ∗G
(9.6)

(we have decided to call it CONTRACT here in order to underscore its similarity
with the fixed-point rule bearing the same name in the proof system AC=

∗). The
reason behind Conway’s choice of this version of the fixed-point rule (9.5) in the
Salomaa system F1 seems to be that it is much closer related to the particular dif-
ferential calculus of events he introduces (in which the derivative La of a language
L is defined as the language of all words w such that aw (instead of wa) is a word
of L). We designate Conway’s system by REG(Σ): more precisely, we let REG(Σ)
be the (pure) Hilbert system that contains all axioms referred to in [Con71, p.107]
(namely, the axioms (C1)–(C13) given in [Con71, p.25]), the rule CONTRACT de-
fined as in (9.6), and additionally all rules of equational logic for equations between
regular expressions over alphabet Σ (the rules for reflexivity, symmetry, transitivity,
substitution, and context-compatibility); Conway only mentions the rule (9.6), but
other rules for reasoning with equations are obviously needed as well7.

A coinductively motivated proof system cREG(Σ) for the equivalence relation
on regular expressions with respect to alphabet Σ = {a1, . . . , an} can be built by

6We have used E, F , and G here instead of the syntactical variables α, β and γ that are
employed for regular expressions throughout [Sal66].

7In the case of Salomaa’s axiomatization F1 the rules of equational logic are admissible, as
stated by Lemma 1 in [Sal66], owing to the presence of the specific substitution rule (R1) in F1.

9.2 Directions for Possible Extensions 331

using a ‘circular version’ of the composition rule

Ea1 = Fa1 . . . Ean = Fan COMP (if o(E) = o(F))
E = F

the soundness of which (with respect to =L) is an easy consequence of the fact

(∀E ∈ Reg(Σ))
[
E =L o(E) + a1Ea1 + . . .+ anEan

]
; (9.7)

(9.7) follows, in its turn, from the definition of the derivatives (·)a and from the
“fundamental theorem of formal languages” (which is a version of (9.7) for languages
instead of for regular expressions). In a natural-deduction system formulation, the
circular version of COMP is a rule COMP/FIX that allows applications of the form

[E = F]u

D1

Ea1 = Fa1 . . .

[E = F]u

Dn
Ean = Fan COMP/FIX, u

(if o(E) = o(F)).E = F

We propose an ‘analytic’ version cREG0(Σ) of a natural-deduction system named
cREG(Σ) that contains the rule COMP/FIX: the system cREG0 possesses all
equations of the form E = E as reflexivity axioms belonging to the scheme called
(REFL), it contains COMP/FIX, and furthermore the two rules

D1

C[E1] = F
ApplAxREG

C[E2] = F

D1

F = C[E1] ApprAxREG(Σ)

F = C[E2]

(9.8)

(respectively if E1 = E2 or E2 = E1 is an axiom of REG(Σ))

(here C denotes a context for regular expressions with one or more occurrences of
a hole [], and where, for all such contexts C and E ∈ Reg(Σ), C[E] stands for the
result of hole-filling in C by E). The two rules in (9.8) allow to apply axioms of
Conway’s system REG(Σ) in subexpressions of regular expressions on the left-, or
respectively, on the right-hand side of an equation. The system cREG0(Σ) does
not contain symmetry and transitivity rules and it can therefore be viewed to be
‘analytic’ (in a certain precise formulation of this notion).

Now we are able to give a rough sketch of the connection mentioned earlier be-
tween the systems cREG0 and REG: there exists an effective transformation from
cREG0(Σ)-derivations into REG(Σ)-derivations that proceeds by analogous steps
as the transformation from HB=

0 -derivations into AC=-derivations developed in
Section 8.1. More precisely, there exists an annotated version ann-cREG0(Σ) of
the system cREG0(Σ) such that an arbitrary derivation D in cREG0(Σ) without
assumptions and with conclusion E = F , for some E,F ∈ Reg(Σ), can be trans-
formed into a derivation D′ in REG(Σ) without assumptions and with the same
conclusion as D by successively performing the three steps described in the items
below.

332 Conclusion

(1) Annotation Step: The derivation D in cREG0(Σ) is annotated with the result
of a derivation D̂ in the annotated version ann-cREG0(Σ) of cREG0(Σ)
such that D̂ has conclusion G : E = F , for some G ∈ Reg(Σ), and does not
contain open assumptions.

(2) Extraction Step: From the derivation D̂ in ann-cREG0(Σ) two derivations
(D̂)(1) and (D̂)(2) in REG(Σ) are ‘extracted’ that do not contain assumptions
and that have the respective conclusions E = G and F = G .

(3) Combination Step: The two derivations (D̂)(1) and (D̂)(2) in REG(Σ) are
combined, using one application of each of the rules SYMM and TRANS,
into a derivation D′ in REG(Σ) without assumptions and with the same
conclusion E = F as that of the initial derivation D.

For this transformation an illustration analogous to Figure 8.1 on page 259 can be
given. Some further details of this transformation are available on the slides [Gra04a]
of a recent talk.

As mentioned above, it is very likely that also for most of the other transfor-
mations that we have found between proof systems for recursive types there exist
counterparts in transformations between respective proof systems for regular ex-
pressions. But the case of the transformation that has been outlined here has been
the only one which we have examined so far.

Appendix A

Proofs of Statements in
Chapter 3

In this appendix we collect some of the more technical proofs for statements in
Chapter 3. It contains proofs of statements in the sections about substitution
expressions involving recursive types (Section 3.3), about the variant relation on re-
cursive types (Section 3.4), about the notions of tree unfolding and leading symbol
of a recursive type (Section 3.5), about the relation “weak recursive type equiva-
lence” (Section 3.7), and about the notion of generated subterm of a recursive type
(Section 3.9).

A.1 Proofs of Statements in Section 3.3:
Substitution Expressions

Proof of Lemma 3.3.11. We will treat the assertions (i) and (ii) of the lemma in the
below item (2) and will first consider assertion (iii) in item (1).

(1) The assertion in item (iii) of the lemma is an easy consequence of the one
in item (i). Let τ, σ1, σ2 ∈ µTp and α, β ∈ TVar be such that α 6≡ β and
β /∈ fv(τ). Suppose that the substitution expressions s1 ≡ τ [σ1/α] [σ2/β] and
s2 ≡ τ [σ2/β] [σ1[σ2/β]/α] are both admissible. Then clearly also σ1[σ2/β]
must be admissible. Hence the assertion in item (i) of the lemma is applicable
and it implies that the recursive types denoted by s1 and s2 are syntactically
equal.

(2) Both of the two statements (i) and (ii) of the lemma can be shown, for all
τ, σ1, σ2 ∈ µTp and α, β ∈ TVar such that α 6≡ β and α /∈ fv(σ2), by induc-
tion on the syntactical depth |τ | of τ .

For the base cases |τ | = 0 in both inductive proofs the three possible sub-
cases τ ≡ α , τ ≡ β and τ 6≡ α ∧ τ 6≡ β can be distinguished and treated

334 Appendix A: Proofs of Statements in Chapter 3

separately. In each of these subcases the verification of the base case in the
respective induction is easy. As an example we consider the subcase τ ≡ β :
Let σ1, σ2 ∈ µTp and α, β ∈ TVar be such that α 6≡ β and α /∈ fv(σ2) holds
and let τ ≡ β . We furthermore suppose that σ1[σ2/β] is admissible. Then
we find that

τ [σ1/α] [σ2/β] WV β[σ1/α] [σ2/β] WV β[σ2/β] WV σ2

WV
(I)

σ2[σ1[σ2/β]/α] WV β[σ2/β] [σ1[σ2/β]/α] WV

WV τ [σ2/β] [σ1[σ2/β]/α]

(A.1)

where for “V” in the equality equivalence (I) the admissibility of σ1[σ2/β]
entered and where “W” in (I) is due to the assumption α /∈ fv(σ2). By reading
the above chain of equality equivalences as a sequence of equality implications
from left to right we find a demonstration for the base case |τ | = 0 in its
subcase τ ≡ β for an inductive proof of (i). On the other hand the assump-
tion, that σ1[σ2/β] is admissible, is not needed as justification for any of the
equality implications passed in (A.1) on the way from right to left. Thus (A.1)
is also able to settle the subcase τ ≡ β of the base case in an inductive proof
for assertion (ii) of the lemma.

In the induction step of both inductive proofs the cases τ ≡ τ1 → τ2 for some
τ1, τ2 ∈ µTp and τ ≡ µγ. τ0 for some τ0 ∈ µTp and γ ∈ TVar can be distin-
guished; moreover it is useful to divide the second case again into the three
subcases γ ≡ α , γ ≡ β and γ 6≡ α ∧ γ 6≡ β . Performing the induction step
consists always of detailed though largely similar considerations. We will es-
tablish the induction steps only for the somewhat interesting subcase γ ≡ β ,
i.e. that τ ≡ µβ. τ0 holds for some τ0 ∈ µTp . It will turn out that the induc-
tion hypotheses is not needed in this subcase1 and that therefore the assertions
in (i) and (ii) will be proved directly in this situation.

To show the induction step for an inductive proof of (i) we let τ0, σ1, σ2 ∈ µTp,
α, β ∈ TVar such that α 6≡ β , α /∈ fv(σ2) . We set τ ≡ µβ. τ0 , assume that
σ1[σ2/β] is admissible and we furthermore suppose that s1 ≡ τ [σ1/α] [σ2/β]
is admissible. Then we find that

τ [σ1/α] [σ2/β]
︸ ︷︷ ︸

≡ s1

WV (µβ. τ0) [σ1/α] [σ2/β] V
(I)

V
(I)

(µβ. τ0[σ1/α]) [σ2/β] WV

WV µβ. τ0[σ1/α] V
(II)

(µβ. τ0) [σ1/α] V

V
(III)

(µβ. τ0) [σ1[σ2/β]/α] WV τ [σ2/β] [σ1[σ2/β]/α]
︸ ︷︷ ︸

≡ s2

(A.2)

1It turns out that in the respective inductive proofs the induction hypothesis is only needed for
performing the induction steps in the subcase γ 6≡ α ∧ γ 6≡ β of the case τ ≡ µγ. τ0 (for some
γ ∈ TVar and τ0 ∈ TVar) as well as in the case τ ≡ τ1 → τ2 (for some τ1, τ2 ∈ µTp).

A.1 Proofs of Statements in Section 3.3: Substitution Expressions 335

where the equality implications (I), (II) and (III) can be justified as follows:
(I) and (II) come from applications of Lemma 3.3.10, (i) and (ii), where for
(II) it is also used that α /∈ fv(τ0) ∨ β /∈ fv(σ1) , which is implied by the
admissibility of (µβ. τ0)[σ1/α] as subexpression of s1 which is admissible
by assumption. For (III) it is used that β /∈ fv(σ1) ∨ (α /∈ fv(µβ. τ0) ∧
σ1[σ2/β] is admissible) holds here, which (because σ1[σ2/β] is admissible)
follows if α ∈ fv(µβ. τ0) ⇒ β /∈ fv(σ1) is demonstrated: but this holds due
to the fact that if α ∈ fv(µβ. τ0), then (since (µβ. τ0)[σ1/α] is admissible as a
part of s1, which is admissible by assumption) the variable β cannot occur free
in σ1. – Hence the chain of equality implications from left to right in (A.2)
shows (because we have supposed that s1 is admissible) that s2 is admissible
and that furthermore the recursive types denoted by s1 and s2 are the same.
This is what needed to be shown for the induction step in the here considered
subcase for an inductive proof of (i).

To show the induction step for an inductive proof of (ii), we let τ0, σ1, σ2 ∈
∈ µTp , α, β ∈ TVar such that α 6≡ β , α /∈ fv(σ2) and we set τ ≡ µβ. τ0 . Fur-
thermore we assume that the hypotheses (β /∈ fv(σ1) ∨ τ [β/σ] is admissible)
of the assertion (ii) of the lemma is fulfilled and we let s2 ≡ µβ. τ0[σ1[σ2/β]/α].
Then we find first that

τ [σ2/β] [σ1[σ2/β]/α]
︸ ︷︷ ︸

≡s2

WV (µβ. τ0) [σ1[σ2/β]/α] V
(I)

µβ. τ0[σ1[σ2/β]/α] (A.3)

holds, where (I) follows from Lemma 3.3.10, (i). For the remaining argument
we distinguish—according to our assumption above—the two possible cases
that either β /∈ fv(σ1) holds or that τ [β/σ] is admissible: If β /∈ fv(σ1), then
we observe that

µβ. τ0[σ1[σ2/β]/α] WV µβ. τ0[σ1/α] WV

WV (µβ. τ0[σ1/α]) [σ2/β] V
(II)

τ [σ1/α] [σ2/β]

(A.4)

holds, where (II) follows from Lemma 3.3.10, (ii), and β /∈ fv(σ1), the hypoth-
esis here. If on the other hand τ [β/α] is admissible, then it follows because
of τ ≡ µβ. τ0 that α /∈ fv(τ0) and α /∈ fv(τ) , and we find that

µβ. τ0[σ1[σ2/β]/α] WV µβ. τ0 WV

WV (µβ. τ0) [σ2/β] WV τ [σ1/α] [σ2/β]

}

(A.5)

is the case. Let us now assume that s2 is admissible. Then due to (A.3),
(A.4) and (A.5) and the fact that (A.4) and (A.5) apply to complementary
situations we can conclude that s1 ≡ τ [σ1/α] [σ2/β] is admissible and that
the recursive types denoted by s1 and s2 are the same. – By this argument
we have now successfully performed the induction step for the inductive proof
of (ii) in the subcase τ ≡ µβ. τ0 (for some τ0 ∈ µTp) considered here.

336 Appendix A: Proofs of Statements in Chapter 3

A.2 Proof of a Statement in Section 3.4:
Variant Relation

Proof of statement (3.18) in Lemma 3.4.2. For this, we have to show that, for all
τ, τ ′, σ ∈ µTp and α ∈ TVar ,

τ ≡ren τ
′ =⇒ τ [σ/α] ≡ren τ

′[σ/α] (A.6)

holds. We develop the proof in the three items below.

(i) First it will be shown that the following holds:

(∀τ, τ ′, σ ∈ µTp) (∀α ∈ TVar)
[
τ →ren τ

′ =⇒ τ [σ/α]→ren τ
′[σ/α]

]
.

(A.7)

Perhaps a warning is in order in connection with this statement as well as with
the statement of the lemma: spelling out the implicit side-condition used for
occurrences of substitutions this assertion reads, more explicitly, that only if
σ is substitutible for α in both τ and τ ′ there must exist a reduction step
τ [σ/α]→ren τ

′[σ/α] given that α ∈ TVar and τ, τ ′, σ ∈ µTp such that there
is a reduction step τ →ren τ

′ .

For showing (A.7), we let arbitrary τ, τ ′, σ ∈ µTp and α ∈ TVar be given
with the properties that τ →ren τ

′ holds and that σ is substitutible for α in
both τ and τ ′.

Then τ ≡ χ[µε. ρ/δ] for some χ, ρ ∈ µTp and some ε, δ ∈ TVar , and τ ′ ≡
≡ χ[µε′. ρ[ε′/ε]] for some variable ε′ /∈ fv(ρ) such that ε′ is substitutible in ρ
for ε ; w.l.o.g. here χ can be assumed to have been chosen such that δ /∈ fv(σ).

If α /∈ fv(µε. ρ), then α /∈ fv(µε′. ρ[ε′/ε]) holds. Thus τ [σ/α] ≡ χ[σ/α][µε. ρ/δ]
and τ ′[σ/α] ≡ χ[σ/α][µε′. ρ[ε′/ε]/δ] follow, which shows that τ [σ/α] →ren

τ ′[σ/α] holds.

If α ∈ fv(µε. ρ), then also α ∈ fv(µε′. ρ[ε′/ε]) holds. Then τ [σ/α] is equal to
χ[σ/α][µε. ρ[σ/α]/δ] and because ε, ε′ /∈ fv(σ) (which follows from α ∈ fv(µε. ρ)
as well as from the fact, that σ is substitutible for α in both τ and τ ′) τ ′[σ/α]
≡ χ[σ/α][µε′. ρ[ε′/ε][σ/α]/δ] ≡ χ[σ/α][µε′. ρ[σ/α][ε′/ε]/δ], hence also in this
case τ [σ/α]→ren τ

′[σ/α].

(ii) For given α ∈ TVar and τ, τ ′, σ ∈ µTp with τ ≡ren τ
′ , the assertion (A.6) fol-

lows directly from (i) in case that there exists a finite chain 〈τ0, τ1, . . . , τn〉 (for
some n ∈ ω\{0}) of recursive types, such that τ ≡ τ0 →ren τ1 →ren . . .→ren τn
and τn ≡ τ ′ (such a chain exists because of τ ≡ren τ

′ due to the definition of
≡ren) and σ is substitutible for α in each term τi (0 ≤ i ≤ n): then clearly
τi[σ/α]→ren τi+1[σ/α] for all i = 0, 1, . . . , n− 1 follows from (i), which leads
to the chain τ [σ/α] ≡ τ0[σ/α] →ren τ1[σ/α] →ren . . . →ren τn[σ/α] ≡ τ ′[σ/α]
and thus gives τ [σ/α] ≡ren τ

′[σ/α].

A.2 Proof of a Statement in Section 3.4: Variant Relation 337

However, if σ is substitutible for α in τ and τ ′, this does not automatically also
mean that it is substitutible for α in each type belonging to an arbitrary given
→ren-chain between the variants τ and τ ′. It remains to show, that “good”
→ren-chains do always exist (i.e. such chains, for which the argumentation
here can take place). In the next item it will be shown (a proof for this will be
sketched) that an arbitrary →ren-chain can moreover always be transformed
effectively into a “good” one of the same length.

(iii) If for some n ∈ ω\{0} and τ0, τ1, . . . , τn ∈ µTp in a given →ren-chain τ0 →ren

τ1 →ren . . . →ren τn the recursive type σ is substitutible for α in τ0 and τn,
then there exists also an →ren-chain τ

′
0 →ren τ

′
1 →ren . . .→ren τ

′
n with τ0 ≡ τ ′0

and τn ≡ τ ′n, such that σ is substitutible for α in each τi (0 ≤ i ≤ n). This
can be shown as follows.

For given α and σ this can be shown by induction on the number of terms τi
in a given chain τ0 →ren . . .→ren τn, in which σ is not substitutible for α.

Let α and σ be arbitrary, but fixed in the following.

If this number is zero, nothing remains to be shown. If it is greater then zero,
let us assume that α is not substitutible for σ already in τ1 in a given chain
τ0 →ren τ1 →ren . . . →ren τn, where σ is substitutible for α in τ0 and τn; if
this happens only later in this chain, then it can be argued analogously. The
situation here means that, for χ, ρ ∈ µTp and ε, ε̃ ∈ TVar, τ0 ≡ χ[µε. ρ/δ] ,
α ∈ fv(µε. ρ), τ1 ≡ χ[µε̃. ρ[ε̃/ε]/δ] with ε̃ /∈ fv(ρ), ε̃ is substitutible for ε in ρ
and ε̃ ∈ fv(σ) (since σ is substitutible for α in τ0 but not in τ1).

If it is now set τ ′0 ≡ τ0, τ
′
1 ≡ χ[µ˜̃ε. ρ[˜̃ε/ε]/δ] for a (completely new) variable ˜̃ε,

where ˜̃ε /∈ fv(ρ), ˜̃ε substitutible for α in ρ, ˜̃ε /∈ fv(σ) and ˜̃ε does not occur in any
of the τi (0 ≤ i ≤ n), then σ is substitutible for α in τ ′1 and τ ′0 →ren τ

′
1. This

→ren-reduction can furthermore be extended to a →ren-chain τ0 ≡ τ ′0 →ren

τ ′1 →ren . . .→ren τ
′
n ≡ τn of length n between τ0 and τn: Since ˜̃ε does not occur

in the original chain at all, it is clear that all renamings of bound variables,
that happen in τ1 →ren τ2 →ren τ3 →ren . . . →ren τn can then be carried out
similarly in a→ren-chain starting from τ ′1 (except that when for the first time
after the initial step in the original chain in a variant µε̃. (ρ[ε̃/ε])′ of µε̃. ρ[ε̃/ε]
the variable ε̃ (occurring in one τi at the same position as µε̃. ρ[ε̃/ε] in τ1)
is renamed to some other variable ε̃∗, now the new bound variable ˜̃ε in a
corresponding variant µ˜̃ε. (ρ[˜̃ε/ε])′ of µ˜̃ε. ρ[˜̃ε/ε] will be renamed to ε̃∗).

σ is then substitutible in τ ′1 of the chain τ0 ≡ τ ′0 →ren τ
′
1 →ren . . .→ren τ

′
n ≡ τn

and also in all those τ ′i , for which σ was already substitutible for α in τi
(0 ≤ i ≤ n). Thus the number of recursive types τ ′i in the new chain, in which
σ is not substitutible for α, has decreased at least by one, which allows to
apply the induction hypothesis.

338 Appendix A: Proofs of Statements in Chapter 3

A.3 Proofs of Statements in Section 3.5:
Tree Unfolding and Leading Symbol

Proof of Lemma 3.5.7. We let τ, τ ′ ∈ µTp and α1 ∈ TVar be arbitrary such that
τ ′ ≡ren τ and such that µα1. τ is substitutible for α1 in τ . For showing (3.29), we
have to prove the following three implications:

nlµb(τ ′[µα1. τ/α1]) < nlµb(µα1. τ) =⇒
(I)

(A.8)

=⇒
(I)

¬ (∃n ∈ ω\{0}) (∃α2, . . . , αn ∈ TVar)
[
τ ≡ µα2 . . . αn. α1 & α1 6≡ α2, . . . , αn

]

}

(A.9)

=⇒
(II)

nlµb(τ ′[µα1. τ/α1]) = nlµb(µα1. τ)− 1 (A.10)

=⇒
(III)

nlµb(τ ′[µα1. τ/α1]) < nlµb(µα1. τ) .

We demonstrate these three implications in the three items below.

“⇒
(I)
”: We reason indirectly and assume ¬ (A.9) holds. Then there exist n ∈ ω\{0}

and α2, . . . , αn ∈ TVar such that τ ≡ µα2 . . . αn. α1 and α1 6≡ α2, . . . , αn
holds; we choose n and α2, . . . , αn in this way. Then τ ′ ≡ µα̃2 . . . α̃n. α1 holds
for some α̃2, . . . , α̃n ∈ TVar with α1 6≡ α̃2, . . . , α̃n . But now we find:

nlµb(τ ′[µα1. τ/α1]) = nlµb(µα̃2 . . . α̃nα1 . . . αn. α1) =

= 2n− 1 ≥ n = nlµb(µα1. τ) .

Hence we have inferred ¬ (A.8).

“⇒
(II)

”: We let n = nlµb(µα1. τ) , which entails n ≥ 1, and we assume that (A.9)

holds.

Due to the choice of n, we find that τ ≡ µα2 . . . αn. τ0 for some α2, . . . , αn ∈
∈ TVar and a recursive type τ0 that does not have a leading µ-binding. From
our assumption on α1 and τ we can now conclude that either τ0 ≡ α1 with
α1 ∈ {α2, . . . , αn} or that τ0 ∈ {⊥,>} ∪ (TVar \ {α1}) or that τ0 ≡ ρ1 → ρ2
for some ρ1, ρ2 ∈ µTp is the case. This implies that if the variant τ ′ of τ is
written as τ ′ ≡ µα̃2 . . . α̃n. τ̃0 with appropriate α̃2, . . . , α̃n ∈ TVar and with
some τ̃0 ∈ µTp that does not have a leading µ-binding, then it holds that: Ei-
ther τ̃0 ≡ α̃k for some k ∈ {2, . . . , n} , or τ̃0 ∈ {⊥,>} ∪ (TVar \ {α1}) holds,
or τ̃0 is equal to ρ̃1 → ρ̃2 for some ρ̃1, ρ̃2 ∈ µTp .

In the first two cases we find that α1 /∈ fv(τ ′) and hence

nlµb(τ ′[µα1. τ/α1]) = nlµb(τ ′) = n− 1 = nlµb(µα1. τ)− 1 .

And in the third case we confirm

nlµb(τ ′[µα1. τ/α1]) = nlµb(µα̃2 . . . α̃n. (ρ̃1[µα1. τ/α1]→ ρ̃2[µα1. τ/α1]))

= n− 1 = nlµb(µα1. τ)− 1 .

A.3 Proofs of Statements in Section 3.5: Tree Unfolding 339

In all three cases we have thus shown (A.10).

“⇒
(III)

”: This implication is obvious.

Proof for Lemma 3.5.10. We demonstrate the statements (i) and (ii) of the lemma
in the below two items (a) and (b), respectively.

(a) This can also be shown through a proof by an induction of the same kind as
used for the purpose of Definition 3.5.8, in which for the treatment of case (5)
the assertion is relied on that

µα. τ0 ≡ren µα̃. τ̃0 & τ ′0 ≡ren τ0 & τ̃0
′ ≡ren τ̃0 =⇒

=⇒ τ ′0 [µα. τ0/α] ≡ren τ̃
′
0 [µα̃. τ̃0/α̃]

(A.11)

holds for all τ0, τ
′
0, τ̃0, τ̃

′
0 ∈ µTp and α, α̃ ∈ µTp ; hereby the auxiliary state-

ment (A.11) is an easy consequence of those assertions of Lemma 3.4.2 that
are associated with (3.16), (3.19), and (3.24).

(b) We let α ∈ TVar and τ0, τ
′
0 ∈ µTp be arbitrary such that τ ′0 ≡ren τ0 and

µα. τ0 is substitutible for α in τ0. We distinguish the following three cases:

Case 1: α /∈ fv(τ0) .

It follows that α /∈ fv(τ ′0) . Here we are in case (3) of Definition 3.5.8 and
can readily confirm

Tree(µα. τ0) = Tree(τ0) = Tree(τ ′0 [µα. τ0/α]) .

Case 2: µα. τ0 ≡ µαα2 . . . αn. α for some α2, . . . , αn ∈ TVar such that α 6≡
6≡ α2, . . . , αn .

Then it follows that τ ′0 ≡ µα̃2 . . . α̃n. α for some α̃2, . . . , α̃n ∈ TVar with
the property α 6≡ α̃2, . . . , α̃n . Here we are in case (4) of Definition 3.5.8
and find that

Tree(µα. τ) = Tree(µαα2 . . . αn. α) = . . . =

= Tree(µα̃1 . . . α̃nαα2 . . . αn. α) = Tree(τ ′0 [µα. τ0/α]) .

As justification for the second until (n+ 1)-st equality sign (from left to
right) we have hereby used the definition of Tree in case (3) of Defini-
tion 3.5.8 (because of fv(µαα2 . . . αn. α) = ∅ and the obvious fact that,
for all i ∈ {2, . . . , n} , fv(µα̃i . . . α̃nαα2 . . . αn. α) = ∅ holds).

Case 3: µα. τ0 ≡ µαα2 . . . αn. (ρ1 → ρ2) for some α2, . . . , αn ∈ TVar with the
property α 6≡ α2, . . . , αn and for some ρ1, ρ2 ∈ µTp with α ∈ fv(τ1 → τ2).

Here we are in case (5) of Definition 3.5.8 and find that

Tree(µα. τ0) = Tree(τ ′′0 [µα. τ0/α]) = Tree(τ ′0 [µα. τ0/α]) ,

where τ ′′0 is the appropriate variant of τ0 chosen by (the algorithm under-
lying) case (5) of Definition 3.5.8. In the second equality we have used
Lemma 3.4.2, (3.18).

340 Appendix A: Proofs of Statements in Chapter 3

A.4 Proofs of Statements in Section 3.7:
Weak Recursive Type Equivalence

Proof of Lemma 3.7.5. The statements (i) and (ii) of the proposition are considered
separately in the two items below.

(a) That CTXT is a derivable rule of WEQ can be shown by straightforward
induction on the depth |C| of the involved context C ∈ µTp–Ctxt . That
SUBST is an admissible rule inWEQ follows from the proof 2 of Lemma 7.1.9,
which states that SUBST is admissible in a proper extension of WEQ, the
system AC= defined in Chapter 5.

(b) We first want to exhibit a short proof that relies on a result from [Gra03a],
and then we give a slightly longer proof that uses statements from Chapter 4
(and that gives a hint of how the statement from [Gra03a] used in the first
case can be proved). Both arguments start from the observation that, as a
consequence of assertion (i) of the proposition and of Lemma 4.2.4, (i), the
rules CTXT and SUBST are both admissible in WEQ.

First proof . From this it follows that all axioms and all rules of EQL are
admissible in WEQ (in the notation of [Gra03a], that EQL ¹r/adm WEQ
holds). And this implies, by Theorem 4.12 in [Gra03a, p.23], that WEQ is
an extension of EQL (which there is abbreviated by EQL ¹th WEQ).

Second proof . For showing that WEQ is an extension of EQL, it suffices
to demonstrate that, for every derivation D in EQL without assumptions,
there exists a mimicking derivation D′ in WEQ. To prove this, let D be an
arbitrary derivation in EQL without assumptions; we show the existence of
a mimicking derivation in WEQ. Since all axioms and rules of EQL except
SUBST and CTXT are also axioms and rules of WEQ, it follows that D
is a derivation without assumptions in WEQ+SUBST+CTXT. As an easy
consequence of Theorem 4.2.8, (i), the facts that SUBST and CTXT are ad-
missible inWEQ imply that SUBST-elimination and CTXT-elimination hold
in WEQ+SUBST+CTXT. And from this it follows easily that a derivation
D′ in WEQ without assumptions and with the same conclusion as D exists.3

Proof of Lemma 3.7.9. The axiom systemAC= for =µ due to Amadio and Cardelli,
which is defined in Definition 5.1.1, Chapter 5, is an extension of the system WEQ
(indeed, AC= is an extension by enlargement of WEQ by adding the single rule
UFP). Therefore the soundness ofWEQ with respect to =µ follows from the sound-
ness theorem for AC= with respect to =µ, Theorem 5.1.4, which is proved in
[AmCa93].

2However, it does not follow from the assertion of Lemma 7.1.9 itself.
3It is actually not difficult to define a process for SUBST- and CTXT-elimination for deriva-

tions without assumptions in WEQ+SUBST+CTXT according to which D′ can always be found
effectively from D.

A.5 Proofs of Statements in Section 3.9: Generated Subterms 341

A.5 Proofs of Statements in Section 3.9:
Generated Subterms

In this appendix we gather the proofs for some technical lemmas that we have
formulated, and used, in Section 3.9, Chapter 3, on generated subterms of recursive
types.

We start with giving the proof of Lemma 3.9.9, which asserts in its item (i) that
free variables of a generated subterm of a recursive type σ are also free variables
of σ, and in its item (ii) that all free variables of a recursive type σ are generated
subterms of σ.

Proof of Lemma 3.9.9. The items (i) and (ii) are treated in the respective items (1)
and (2) below.

(1) It is easy to check that for all rule applications
τ v σ0

R
τ v σ1

of gST it holds

that fv(σ0) ⊆ fv(σ1). By using this, the assertion “fv(τ) ⊆ fv(σ) for arbitrary
given τ, σ ∈ µTp such that τ is a generated subterm of σ” can be proved by
straightforward induction on the depth of derivations in gST.

(2) For given α this item can be proved for all σ ∈ µTp by induction on pairs of
the form (mµdα(σ), |σ|) in ω × ω with respect to the lexicographic ordering
on this set; hereby mµdα(σ) denotes the minimal µ-depth of a free occurrence
of α in σ, i.e. the minimal number of µ-operators in the term-structure of σ
above a free occurrence of α in σ. More precisely, for all σ̃ ∈ µTp the positive
integer mµdα(σ̃) is inductively defined as follows:

mµdα(σ̃) =def

=def

0 . . . α /∈ fv(σ̃) or σ̃ ≡ α

min
{
mµdα(σ̃i) | i ∈ {1, 2},

α ∈ fv(σ̃i)
}

. . . α ∈ fv(σ̃) and σ̃ ≡ σ̃1 → σ̃2

mµdα(σ̃0) + 1 . . . α ∈ fv(σ̃) and σ̃ ≡ µβ. σ̃0

In one case in the proof below, we will use the following facts about mµdα(·):
For all σ̃0, σ̃1, σ̃2 ∈ µTp and α, β, β′ ∈ TVar it holds, that

σ̃1 ≡ren σ̃2 =⇒ mµdα(σ̃1) = mµdα(σ̃2) , (A.12)

α ∈ fv(σ̃0), α 6≡ β =⇒ mµdα(σ̃0[µβ. σ̃0/β]) < mµdα(µβ. σ̃0) . (A.13)

Here (A.12) follows by induction on the length of a →ren-chain between σ̃1
and σ̃2 using the following additional properties:

β, β′ 6≡ α =⇒ mµdα(σ̃[β
′/β]) = mµdα(σ̃)

β′ /∈ fv(σ̃0) =⇒ mµdα(µβ. σ̃0) = mµdα(µβ
′. (σ̃0[β

′/β]))

mµdα(σ̃1) = mµdα(σ̃2) =⇒ mµdα(τ̃ [σ̃1/β]) = mµdα(τ̃ [σ̃2/β])

342 Appendix A: Proofs of Statements in Chapter 3

(for all τ̃ , σ̃, σ̃0, σ̃1, σ̃2 ∈ µTp and α, β, β′ ∈ TVar) which can be shown by easy
inductions. On the other hand the reason for (A.13) in somewhat intuitive
argumentation consists in the following: Clearly for each free occurrence of
α in σ̃0[µβ. σ̃0/β] within a subexpression µβ. σ̃0 there exists another free
occurrence of α in σ̃0[µβ. σ̃0/β] , which originates from a free occurrence of
α in σ̃0 and which is in σ̃0[µβ. σ̃0/β] preceded by at least one µ-binding
less (i.e. whose µ-depth is strictly less). Therefore the free occurrences of
α in σ̃0[µβ. σ̃0/β] (if there are any) of minimal µ-depth must have µ-depth
mµdα(σ̃0). Thus

α 6≡ β =⇒ mµdα(σ̃0[µβ. σ̃0/β]) = mµdα(σ̃0) (A.14)

holds for all σ̃0 ∈ µTp and variables α, β. Since by the definition of mµdα(·)

α ∈ fv(σ̃0), α 6≡ β =⇒ mµdα(σ̃0) < 1 + mµdα(σ̃0) = mµdα(µβ. σ̃0)

holds for all variables α, β and σ̃0 ∈ µTp , then (A.13) follows. – A strictly
formal proof of (A.14) could e.g. involve the statement, that for all τ, σ ∈ µTp
and all variables α, β such that α 6≡ β variables α, β it holds, that

mµdα(τ [σ/β]) =def

=def

mµdα(τ) . . . β /∈ fv(τ) ∨ α /∈ fv(σ)

mµdβ(τ) + mµdα(σ) . . . β ∈ fv(τ) ∧ α ∈ fv(σ) \ fv(τ)

min
{
mµdα(τ),

mµdβ (τ) + mµdα(σ)
}

. . . β ∈ fv(τ) ∧ α ∈ fv(σ) ∩ fv(τ)

which can be shown by induction on |τ |.

We proceed now with the induction in the form described above for the state-
ment of item (ii) of the lemma.

For the base case of the induction now let mµdα(σ) = 0 and |σ| = 0. If
α ∈ fv(σ) , then σ ≡ α , hence α ≡ σ ∈ G(σ) follows (due to the fact, that
α v α is an axiom (REFL) of the axiom system gST).

Let now mµdα(σ) > 0. As consequences we have α ∈ fv(σ) and |σ| > 0.

If σ ≡ σ1 → σ2 , then there exists i ∈ {1, 2} such that mµdα(σi) = mµdα(σ)
and hence also mµdα(σi) > 0. It follows that α ∈ fv(σi) and thus by the
induction-hypothesis (which is applicable because of |σi| < |σ|) it follows that
α ∈ G(σi). Since clearly G(σi) ⊆ G(σ) is the case, we find that also α ∈ G(σ).

Now let σ ≡ µβ. σ0 . We choose a variant σ′0 of σ0 such that σ is substitutible
for β in σ′0. Since α ∈ fv(σ) = fv(µβ. σ0) = fv(µβ. σ′0) , it follows with (A.13)
and (A.12) that mµdα(σ

′
0[µβ. σ

′
0/β])<mµdα(µβ. σ

′
0)=mµdα(σ). Since it is

clearly also the case that α ∈ fv(σ′0[µβ. σ
′
0/β]) = fv(µβ. σ0) , we can conclude

from the induction hypothesis that α ∈ G(σ′0[µβ. σ
′
0/β]) . Since σ′0[µβ. σ

′
0/β]

clearly is a generated subterm of σ ≡ µβ. σ0 , we find here again that α ∈ G(σ).

This concludes the induction and thus the proof of this item (ii) of the lemma.

A.5 Proofs of Statements in Section 3.9: Generated Subterms 343

We continue by developing a proof of Lemma 3.9.10. For this purpose, we first
formulate, and then prove, another lemma that consists of a technical statement
about derivations in gST without assumptions and with conclusions of the form
τ v σ[ρ/α] , with some τ, σ, ρ,∈ µTp and α ∈ TVar .

Lemma A.5.1. Let σ, ρ ∈ µTp and α ∈ TVar such that ρ is substitutible for α in
ρ. And furthermore, let σ̃ ∈ µTp be such that σ̃ ≡ren σ[ρ/α] .

Then for every derivation

(REFL)

(τ v τ)

D
τ v σ̃

in gST one of the following two statements is the case:

(I) For all formulas τ v ω in D it holds that ω ≡ren χ[ρ/α] with some χ ∈ G(σ).

(II) D is of the form

(REFL)

(τ v τ)

Dt
(
τ v ρ′

︸ ︷︷ ︸

≡ren ρ≡ α[ρ/α]

)

Db
τ v σ̃

where ρ′ is a variant of ρ (i.e. ρ′ ≡ren ρ holds), where Dt is a gST-derivation,
and where Db is a gST-derivation from the assumption τ v ρ′ for which state-
ment (I) is true, i.e. for all formulas τ v ω in Db it holds that ω ≡ren χ[ρ/α]
with some χ ∈ G(σ) .

Proof. We prove the lemma by induction on the depth |D| of D for all derivations D
in gST without an assumption and with conclusion τ v σ̃ , where τ, σ̃ ∈ µTp such
that σ̃ ≡ren σ[ρ/α] for some σ, ρ ∈ µTp and α ∈ TVar .

For the base case of the induction, where |D| = 0 , clearly assertion (I) of the
lemma holds.

Before turning to the induction step, we observe: The following two assertions
hold for all σ̃ ∈ µTp with σ̃ ≡ren σ[ρ/α] , for some σ, ρ ∈ µTp and α ∈ TVar , and
for all derivations D in gST without assumptions and with conclusion τ v σ̃ :

• If α /∈ fv(σ) , then it follows by Lemma 3.9.9, (i), that α /∈ fv(χ) for all
χ ∈ G(σ) . As a consequence χ[ρ/α] ≡ χ holds for all generated subterms
χ of σ, and therefore assertion (I) in the lemma is fulfilled.

344 Appendix A: Proofs of Statements in Chapter 3

• If σ ≡ α , then σ̃ ≡ren α[ρ/α] ≡ ρ is the case, and hence for D, τ, σ, ρ, α as-
sertion (II) in (i) of the lemma holds; this is because of σ̃ ≡ren ρ the derivation
Db can be chosen as a trivial derivation in gST of depth |Db| = 0 consisting
only of the formula τ v σ̃ as, at the same time, assumption and conclusion.

As a consequence of these two observations, it suffices to carry out the induction
step under the additional requirements α ∈ fv(σ) and σ 6≡ α .

For the induction step, we hence assume σ, σ̃, ρ ∈ µTp and α ∈ TVar to be
given such that σ̃ ≡ren σ[ρ/α] and α ∈ fv(σ) as well as σ 6≡ α holds, and D to be a
gST-derivation without an assumption, with |D| > 0 and with conclusion τ v σ̃ .
We distinguish three cases according to which rule of gST is applied at the bottom
of D.

The cases in which D ends with an application of either the rule RENr or the rule
B→CTXTr are rather straightforward to check and are left out here (the crucial
part of the argumentation for these cases resurfaces in the more complicated one
treated below).

If the last rule application in D is a FOLDr-rule, then D is of the form

(REFL)

(τ v τ)

D0

τ v σ̃0[µβ̃. σ̃0/β̃]
FOLDr

τ v µβ̃. σ̃0

where D0 is again a gST-derivation and with µβ̃. σ̃0 ≡ σ̃ (≡ren σ[ρ/α]) . Since by
assumption σ 6≡ α holds, σ must be of the form µβ. σ0 for some σ0 ∈ µTp and
β ∈ TVar . Due to α ∈ fv(σ), we get that β 6≡ α and that σ[ρ/α]≡ (µβ. σ0)[ρ/α]WV
WVµβ. σ0[ρ/α] .

Let furthermore σ′0 be a variant of σ0 such that ρ is substitutible in σ′0 for α
and β and µβ. σ′0 is substitutible in σ′0 for β. Then Lemma 3.3.13 implies that

σ′0[µβ. σ
′
0/β][ρ/α]WV σ′0[ρ/α][µβ. σ

′
0[ρ/α]/β] (A.15)

holds. And because the substitution expression on the right side ofWV is now admis-
sible, also the substitution expression on the left side follows to be admissible. Be-
cause of σ0 ≡ren σ

′
0 we also get that µβ. σ0[ρ/α]≡ren µβ. σ

′
0[ρ/α] . Since µβ̃. σ̃0 ≡ren

≡ren µβ. σ0[ρ/α] , it follows by using Lemma 3.4.2, (3.24), that σ̃0[µβ̃. σ̃0/β̃]≡ren

≡ren σ
′
0[ρ/α][µβ. σ

′
0[ρ/α]/β] and hence by (A.15) that it is furthermore the case

that σ̃0[µβ̃. σ̃0/β̃]≡ren (σ
′
0[µβ. σ

′
0/β])[ρ/α] .

Thus it is possible to apply the induction hypotheses for D0 and conclude that
one of the following statements (I)0 or (II)0 must hold for D0:

(I)0 All formulas τ v ω in the derivation D0 are of the form ω ≡ren χ0[ρ/α] for
some χ0 ∈ G(σ

′
0[µβ. σ

′
0/β]) .

(II)0 D0 is of the form

A.5 Proofs of Statements in Section 3.9: Generated Subterms 345

(REFL)

(τ v τ)

Dt
(
τ v ρ′

︸ ︷︷ ︸

≡ren ρ≡α[ρ/α]

)

Db

τ v σ̃0[µβ̃. σ̃0/β̃]

where ρ′ is a variant of ρ, Dt is a gST-derivation, and D0 a gST-derivation
from assumption τ v ρ′ and where for all formulas τ v ω of the derivation
Db it holds that ω ≡ren χ0[ρ/α] for some χ0 ∈ G(σ

′
0[µβ. σ

′
0/β]) .

Now since obviously every generated subterm of σ′0[µβ. σ
′
0/β] is a generated subterm

of µβ. σ′0 and hence also of µβ. σ0, it follows that D is of form (I) or (II) dependent
on whether D0 is actually of respective form (I)0 or (II)0.

This concludes the proof of the induction step. Hence we have proved the lemma.

Now we can prove Lemma 3.9.10 by demonstrating that it is an easy consequence
of Lemma A.5.1.

Proof of Lemma 3.9.10. Let σ, ρ ∈ µTp and α ∈ TVar be such that ρ is substi-
tutible for α in ρ. The statement

G(σ[ρ/α]) ⊆
{
τ | τ ∈ µTp, τ ≡ren χ[ρ/α], χ ∈ G(σ)

}
∪ G(ρ)

of Lemma 3.9.10 is now an immediate consequence of the previous lemma: namely,
Lemma A.5.1 implies that every generated subterm of σ[ρ/α] is either a variant
of a recursive type of the form χ[ρ/α] , for some generated subterm χ of σ, or a
generated subterm of ρ.

We set forth by giving a proof for Lemma 3.9.11.

Proof of Lemma 3.9.11. The items (i), (ii) and (iii) of the lemma will respectively
be demonstrated in the items (1), (2) and (3) below.

(1) Item (i) follows from the fact that, for all σ ∈ {⊥,>} ∪ TVar and τ ∈ µTp ,
a formula τ v σ can only be the conclusion of an application of a rule R in
gST, if R is a trivial application of RENr that has the formula τ v σ also as
its premise. Hence for such σ and τ all formulas in a derivation of τ v σ in
D must be the same and hence it follows that τ ≡ σ because there must be
an axiom (REFL) of the form τ v τ at the top of D.

(2) Let σ1, σ2 ∈ µTp.

The set inclusion “⊇” in (ii) is immediate because clearly all variants of
σ1 → σ2 as well as all generated subterms of σ1 and σ2 are also generated
subterms of σ1 → σ2 .

346 Appendix A: Proofs of Statements in Chapter 3

To show the implication “⊆”, let τ be a generated subterm of σ1 → σ2. If
τ ≡ren σ1 → σ2, then τ ∈ [σ1 → σ2]≡ren and the desired set inclusion holds
obviously. We therefore may assume additionally that τ 6≡ren σ1 → σ2 . Since
τ is a generated subterm of σ1 → σ2, there exists a derivation in gST with
conclusion τ v σ1 → σ2 ; let D be such a derivation. Our assumption on τ
implies that D must be of the form

(REFL)

(τ v τ)

D0

τ v σ′j
B→CTXTr

τ v σ′1 → σ′2 RENr
...

RENr
τ v σ1 → σ2

for some j ∈ {1, 2} and for some σ′1, σ
′
2 ∈ µTp with σ′1 ≡ren σ1 and σ′2 ≡ren σ2

, because not all rule applications in D can be applications of RENr and the
only other rule application in gST with a conclusion of the form τ v σ′′1 → σ′′2
(for general σ′′1 , σ

′′
2 ∈ µTp ; but here only respective variants of σ1 and σ2 are

possible) is an B→CTXTr-rule. It follows that τ is a generated subterm of
σ′j , and that therefore also τ is a generated subterm of σj (since variants
of generated subterms always are generated subterms), i.e. τ ∈ G(σj) holds.
Hence τ is also element of the set on the right side of the equation in item (ii) of
the lemma. This concludes the proof of the set inclusion “⊆” in this equation.

(3) For a proof of item (iii), we let a recursive type µβ. σ ∈ µTp, for some σ ∈ µTp
and a type variable β, be given. We also choose a variant σ′ of σ with the prop-
erty that µβ. σ is substitutible for β in σ′. Then also µβ. σ′ is substitutible
for β in σ′, and µβ. σ′ ≡ren µβ. σ .

We assume that an arbitrary derivation D in gST with conclusion τ v µβ. σ ,
for some τ ∈ µTp , is given. We have to show that τ is a member of the set
on the right side of the set inclusion in item (iii) of the lemma.

This is clearly the case if τ ≡ren µβ. σ . Therefore we now assume additionally
that τ 6≡ren µβ. σ . Let τ v µβ̃. σ̃ be the topmost occurrence of a formula in
D with a variant of µβ. σ on the right side of the symbol v (in particular,
we have µβ̃. σ̃ ≡ren µβ. σ), and let D0 be the immediate subderivation in D
of that occurrence. This means, that D is of the form

A.5 Proofs of Statements in Section 3.9: Generated Subterms 347

(REFL)

(τ v τ)

D0

τ v µβ̃. σ̃

Db
τ v µβ. σ

where Db is a gST-derivation from the assumption τ v µβ̃. σ̃ , and where D0

is a derivation in gST that does not contain a variant of µβ. σ in formulas
at the right side of the symbol v except for the recursive type µβ̃. σ̃ in the
conclusion of D0. Since due to our assumption τ 6≡ren µβ. σ the conclusion of
D0 cannot be an axiom, and since due to our choice of D0 there cannot be a
RENr-application the bottom of D0, the last rule application in D0 must be
that of a FOLDr-rule. Thus D0 is of the form

(REFL)

(τ v τ)

D00

τ v σ̃[µβ̃. σ̃/β]
FOLDr

τ v µβ̃. σ̃

where D00 also is a derivation in gST. We now go over from D0 to the
derivation D′

(REFL)

(τ v τ)

D00

τ v σ̃[µβ̃. σ̃/β]
RENr

τ v σ′[µβ. σ′/β]
FOLDr

τ v µβ. σ′
RENr

τ v µβ. σ

which has the same conclusion as D. We have used here that

σ̃[µβ̃. σ̃/β̃] ≡ren σ
′[µβ. σ′/β] (A.16)

holds, which follows from µβ̃. σ̃ ≡ren µβ. σ ≡ren µβ. σ
′ by use of Lemma 3.4.2,

(3.24); this statement is applicable here because we have assumed σ′ such
that µβ. σ′ is substitutible for β in σ′ and because we know that µβ̃. σ̃ is
substitutible for β̃ in σ̃ from the fact that the application of FOLDr at the
bottom of D entails this as the implicit side-condition on the substitution
expression σ̃[µβ̃. σ/β̃] contained in it.

348 Appendix A: Proofs of Statements in Chapter 3

Now let D′01 be the subderivation of D′ that ends at the premise formula
τ v σ′[µβ. σ′/β] of the displayed application of FOLDr. From the way how
D0 was chosen, and from (A.16) we conclude that there does not occur a
variant of µβ. σ at the right side of the symbol v in formulas τ v ω in
D′01. In this situation Lemma A.5.1 implies that D′01 cannot be of respec-
tive shape (II) and hence must be of respective form (I) described in that
lemma, by which we mean more precisely: for every formula τ v ω in D′01 it
holds that ω ≡ren χ[µβ̃. σ̃/β̃] for some χ ∈ G(σ′) . This must then also hold
for the axiom τ v τ at the top of D′01. Hence τ ≡ren χ[µβ. σ

′/β] for some
χ ∈ G(σ′) . Since due to σ′ ≡ren σ also G(σ′) = G(σ) and µβ. σ′ ≡ren µβ. σ
hold, it also follows τ ≡ren χ[µβ. σ/β] for some χ ∈ G(σ) . This entails that

τ ∈ {ω | ω ≡ren χ[µβ. σ/β], χ ∈ G(σ)} .

Hence τ is a member of the right side of the inclusion in item (iii) of the
lemma.

This concludes the proof of item (iii).

We have completed the proof of the lemma.

A necessary technical statement for the proof of Lemma 3.9.16 is the following
lemma.

Lemma A.5.2. Let σ be a recursive type for which the variable convention VC
holds. Let ρ, σ1, . . . , σn ∈ µTp and let β1, . . . , βn ∈ TVar be such that (3.52) holds.
Then the substitution expression

ρ [µβn. σn/βn] . . . [µβ1. σ1/β1] (A.17)

is admissible. If, furthermore, ρ ≡ µβn+1. σn+1 for some βn+1 ∈ TVar and for
some σn+1 ∈ µTp, then there is a reduction step of →out-unf of the form

ρ [µβn. σn/βn] . . . [µβ1. σ1/β1] →out-unf

→out-unf σn+1 [µβn+1. σn+1/βn] . . . [µβ1. σ1/β1]
(A.18)

and in particular, the substitution expression at the right side of (A.18) is admis-
sible.

Proof. Let σ ∈ µTp be such that it fulfills the variable condition VC, and let
ρ, σ1, . . . , σn and β1, . . . , βn be such that (3.52) holds. For showing that (A.17)
is admissible, it suffices to prove, for all i ∈ {0, . . . , n− 1} , that

ρ[µβn. σn/βn] . . . [µβi. σi/βi] (A.19)

is an admissible substitution expression under the assumption that

ρ[µβn. σn/βn] . . . [µβi+1. σi+1/βi+1] (A.20)

A.5 Proofs of Statements in Section 3.9: Generated Subterms 349

is admissible (this is the induction step in a proof by induction with trivial base
case).

For this, we let i ∈ {0, . . . , n− 1} be arbitrary, and we assume that (A.20) is
admissible. Due to the way in which µβ1. σ1, . . . , µβn. σn are fixed via (3.52) as
nested subterms of σ starting with a µ-binding that contain a considered subterm
occurrence of ρ, it follows that

A =def bv(ρ[µβn. σn/βn] . . . [µβi+1. σi+1/βi+1]) ⊆ bv(ρ) ∪ {βi+1, . . . , βn} ,

B =def fv(µβi. σi) ⊆ fv(σ) ∪ {β1, . . . , βi−1} .

Due to the variable condition VC on σ it follows that the type variables β1, . . . , βn
are distinct, that the bound variables of ρ are different from β1, . . . , βn , and that
no bound variable of σ, and hence also none of β1, . . . , βn , can also have a free oc-
currence in σ. Consequently, the sets A and B have empty intersection. Therefore,
replacing µβi. σi in the recursive type denoted by (A.20) cannot lead to the cap-
ture of variables that are free in µβi. σi . Hence the substitution expression (A.19)
is admissible.

We let again σ ∈ µTp be such that it fulfills the variable condition VC, and
let ρ, σ1, . . . , σn and β1, . . . , βn be such that (3.52) holds. For showing (A.18), we
furthermore assume that ρ ≡ µβn+1. σn+1 for some βn+1 ∈ TVar and σn+1 ∈ µTp .
Then we notice the following:

(µβn+1. σn+1)[µβn. σn/βn] . . . [µβ1. σ1/β1]

V
(I)

µβn+1.
(
σn+1[µβn. σn/βn] . . . [µβ1. σ1/β1]

)

→out-unf σn+1[µβn. σn/βn] . . . [µβ1. σ1/β1]
[
µβn+1.

(
σn+1[µβn. σn/βn] . . . [µβ1. σ1/β1]

)
/ βn+1

]

V
(II)

σn+1[µβn. σn/βn] . . . [µβ1. σ2/β2][µβ1. σ1/β1]
[
(µβn+1. σn+1)[µβn. σn/βn] . . .

. . . [µβ2. σ2/β2][µβ1. σ1/β1] / βn+1

]

V
(III)

σn+1[µβn. σn/βn] . . . [µβ2. σ2/β2]
[
(µβn+1. σn+1)[µβn. σn/βn] . . . [µβ2. σ2/β2] / βn+1

]

[µβ1. σ1/β1]

V
(IV)

.

V
(V)

σn+1 [µβn+1. σn+1/βn+1] . . . [µβ1. σ1/β1] .

Hereby the admissibility of all substitution expressions can be seen, similarly as
shown above for the first statement of the lemma, to be a consequence of VC(σ)
and the choice of σ1, . . . , σn+1 and α1, . . . , αn . The equality implication (I) follows
by repeated application of Lemma 3.3.10, (i), the equality implication (II) follows
from Lemma 3.3.10, (ii), and from the admissibility of the substitution expression

350 Appendix A: Proofs of Statements in Chapter 3

at the top. The equality implication (III) follows by Lemma 3.3.11, (ii); equally, all
further n− 2 interchanging steps of substitution operations in (IV) and the one in
(V) can be justified by Lemma 3.3.11, (ii). In this way we have shown (A.18).

Remark A.5.3. Closer analysis of this proof shows that we did not use the ‘full
force’ of the variable condition DB(σ) as part of the assumption VC(σ) on σ. In
fact, Lemma A.5.2 also holds under the weaker assumption wVC(σ), where the
variable condition wVC is defined4, for all σ̃ ∈ µTp , by

wVC(σ̃) ⇐⇒def VC0(σ̃) & wDB(σ̃) ; (A.21)

hereby furthermore the property wDB only demands that µ-binders in nested posi-
tions have to bind different type variables (µ-binders in parallel positions may bind
the same type variable), i.e. wDB(σ̃) is, for all σ̃ ∈ µTp, defined as:

¬ (∃ p1, p2 ∈ Pos(σ̃)) (∃α ∈ TVar) (∃ σ̃1, σ̃2 ∈ µTp)
[
p1 < p2 & σ̃|p1 = µα. σ̃1 & σ̃|p2 = µα. σ̃2

]
. (A.22)

The difference with the definition (3.12) of the property DB is that here the condi-
tion p1 < p2 occurs instead of the condition p1 6= p2 in (3.12).

Furthermore, it can be checked that even Theorem 3.9.14 holds under the weaker
assumption wVC(σ) instead of under the assumption VC(σ).

Relying on Lemma A.5.2, we can now give a proof for Lemma 3.9.16.

Proof of Lemma 3.9.16. Let σ be a recursive type for which the variable condition
VC holds. We have to show the representation

G̃(σ) =
{

ρ [µβn. σn/βn] . . . [µβ1. σ1/β1] | (3.52) holds
}

(A.23)

for the →oud-closure of σ (here we have just copied the assertion (3.56) and given
it a new equation number). We first notice that the substitution expressions in
the set on the right-hand side of the equation in (A.23) are always admissible due
to Lemma A.5.2, which guarantees that this expression does indeed denote a well-
defined set of recursive types. We abbreviate this set on the right hand side of
(A.23) by A, and have to show the two set inclusions “⊆” and “⊇” in (A.23), i.e.
we show G̃(σ) ⊆ A and G̃(σ) ⊇ A .

“⊆”: Since G̃(σ) is the closure of σ under the reduction relation →oud, to show
G̃(σ) ⊆ A it suffices to demonstrate that σ ∈ A , and that A is closed under
→oud. Since σ = σ|ε , it is easy to see that indeed σ ∈ A holds. Hence it
remains to be verified that A is closed under →oud. For this, we let χ1 ∈ A
be arbitrary and assume an arbitrary →oud-step

χ1 →out-unf χ2 (A.24)

4The variable condition wVC is defined analogously here to the condition for calling a λ-term
to be in “weak Barendregt Conventional Form” (wBCF) according to the terminology of a recent
paper by R. Vestergaard.

A.5 Proofs of Statements in Section 3.9: Generated Subterms 351

from χ1, with some χ2 ∈ µTp . We have to show that χ2 ∈ A . Due to χ1 ∈ A
it follows that

χ1 ≡ ρ [µβ1. σ1/βn] . . . [µβn. σn/β1] (A.25)

for some subterm ρ of σ and µβ1. σ1, . . . , µβn. σn ∈ µTp such that (3.52) holds
(µβ1. σ1, . . . , µβn. σn are the nested subterms starting with a µ-expression
above a subterm occurrence of ρ in σ).

We distinguish three cases according to which clause in Grammar 3.1 the
recursive type ρ was formed in the last step of its formation.

Case 1 : |ρ| = 0 .

If ρ ≡ ⊥ , or ρ ≡ > , or ρ ≡ α for some α ∈ TVar such that α 6≡ β1, . . . , βn
holds,

χ1 ≡ ρ[µβn. σn/βn] . . . [µβ1. σ1/β1] ≡ ρ

is the case, and then there is actually no →oud-step χ1 →oud χ2 possible, in
contradiction with our assumption.

However, if ρ ≡ βi for some i ∈ {1, . . . , n} , then

χ1 ≡ ρ[µβn. σn/βn] . . . [µβ1. σ1/β1] ≡

≡ µβi. σi[µβi−1. σi−1/βi−1] . . . [µβ1. σ1/β1]

holds because all of the bound variables β1, . . . , βn of σ are different since
they occur in the different, in fact nested, subterms µβ1. σ1, . . . , µβn. σn of
the recursive type σ that fulfills the variable condition VC by our assumption.
It follows that χ1 ∈ A allows also the representation

ρ̃ [µβ̃ñ. σ̃ñ/β̃ñ] . . . [µβ̃1. σ̃1/β̃1]

with some ρ̃, σ̃1, . . . , σ̃n ∈ µTp and β̃1, . . . , β̃n ∈ TVar such that (3.52) holds
and where |ρ̃| > 0; obviously we can choose

ñ = i− 1, ρ̃ ≡ µβi. σi,

µβ̃1. σ̃1 ≡ µβ1. σ1, . . . , µβ̃ñ. σ̃ñ ≡ µβi. σi .

However, this case will be settled below in Case 3.

Case 2 : |ρ| ≥ 0, and ρ ≡ ρ1 → ρ2 for some ρ1, ρ2 ∈ µTp .

Here it follows

χ1 ≡ ρ[µβn. σn/βn] . . . [µβ1. σ1/β1]

≡ ρ1[µβn. σn/βn] . . . [µβ1. σ1/β1]→ ρ2[µβn. σn/βn] . . . [µβ1. σ1/β1] .

Hence the step χ1 →oud χ2 of (A.24), which we consider, can only be a step
χ1 →out-dec χ2 , which implies that

χ2 ≡ ρi[µβn. σn/βn] . . . [µβ1. σ1/β1]

352 Appendix A: Proofs of Statements in Chapter 3

for some i ∈ {1, 2} . It is easy to check that ρi, σ1, . . . , σn and β1, . . . , βn
again satisfy (3.52). Hence also χ2 ∈ A follows.

Case 3 : |ρ| ≥ 1 , and ρ ≡ µβn+1. σn+1 for some βn+1 ∈ TVar and for some
σn+1 ∈ µTp .

Here χ1, which we assumed to be of the form (A.25) such that (3.52) holds,
is of the form

χ1 ≡ µβn+1. σn+1[µβn. σn/βn] . . . [µβ1. σ1/β1] .

Hence the step χ1 →oud χ2 , which we assumed in (A.24), must be a step of
the form χ1 →out-unf χ2 . Here Lemma A.5.2 implies that such a step is indeed
possible and that it has the reduct

χ2 ≡ σn+1[µβn+1. σn+1/βn+1] . . . [µβ1. σ1/β1]

It is now easy to check that for σn+1 and σ1, . . . , σn, σn+1 and β1, . . . , βn+1

again (3.52) holds. This entails χ2 ∈ A .

Hence we have shown that in all three possible cases χ2 ∈ A holds. Thus we
have demonstrated that A is closed under the relation →oud.

“⊇”: To show this inclusion, i.e. that G̃(σ) ⊇ A holds, it has to be proved that
indeed every element of A can be reached from σ via a →oud-reduction se-
quence. For this, we have to demonstrate that, for all n ∈ ω , σ, ρ, σ1, . . . , σn
and β1, . . . , βn the implication

(3.52) =⇒ σ ³oud ρ[µβn. σn/βn] . . . [µβ1. σ1/β1] (A.26)

holds. This can be shown by induction on |σ| − |ρ| .

For showing the base case of the induction, we let |σ| − |ρ| = 0 and we assume
(3.52) to hold for n, σ, ρ, σ1, . . . , σn and β1, . . . , βn. Hence the right hand side
of the implication (A.26) follows trivially due to reflexivity of the relation
³oud.

For the induction step of the induction, we let |σ| − |ρ| = m+ 1 > 0, for
some m ∈ ω , and we assume that (3.52) holds for some ρ, n, σ1, . . . , σn and
β1, . . . , βn. We will only treat the case in which ρ is the immediate subterm
within σ of a µ-expression µβn. ρ; the cases in which ρ is an immediate sub-
term within σ of a recursive type ρ̃→ ρ or ρ→ ρ̃ , for some ρ̃ ∈ µTp , are
easier to check.

We therefore assume that ρ ≡ σ|p01 and σ|p0 ≡ µβn. σn with σn ≡ ρ , and
for some βn ∈ TVar and p0 ∈ Acc(σ) such that also p01 ∈ Acc(σ) . Then it
follows that

ρ[µβn. σn/βn][µβn−1. σn−1/βn] . . . [µβ1. σn/β1] ∈ A ,

(µβn. σn)[µβn−1. σn−1/βn] . . . [µβ1. σn/β1] ∈ A .

A.5 Proofs of Statements in Section 3.9: Generated Subterms 353

Figure A.1: Illustration of the statement of Lemma A.5.4: Every→roud-reduction
sequence starting from a recursive type that fulfills the variable condition VC0 can
be factorized into a→oud-reduction sequence and a subsequent sequence of renaming
steps.

oud

VC0
roud

ren

Since |σ| − |µβn. σn| = m < m+ 1, it follows by the induction hypothesis that

σ ³oud (µβn. σn
︸︷︷︸

≡ ρ

)[µβn−1. σn−1/βn−1] . . . [µβ1. σn/β1] (A.27)

By Lemma A.5.2 the possibility to perform the following →out-unf-step

(µβn. σn)[µβn−1. σn/βn−1] . . . [µβ1. σ1/β1] →out-unf

→out-unf ρ[µβn. σn/βn] . . . [µβ1. σ1/β1] (A.28)

follows. (A.27) and (A.28) together imply now

σ ³oud ρ[µβn. σn/βn] . . . [µβ1. σ1/β1] ,

which is what we had to confirm for the induction step in this case.

The following lemma will be our main tool in the proof below of Lemma 3.9.17. It
states that every→roud-reduction sequence that starts out from a recursive type that
fulfill the variable condition VC0 can be factorized into a →oud-reduction sequence
that is followed by a reduction sequence consisting entirely of →ren-steps.

Lemma A.5.4. Let σ ∈ µTp be such that VC0(σ) holds. In a →roud-reduction
sequence from σ , →ren-steps can be postponed over →oud-steps, that is, for all
τ ∈ µTp it holds

σ ³roud τ =⇒ (∃χ ∈ µTp)
[
σ ³oud χ³ren τ

]
. (A.29)

(For an illustration of this statement see Figure A.1). Hence every generated sub-
term of σ is a variant of a →oud-generated subterm of σ.

354 Appendix A: Proofs of Statements in Chapter 3

Proof. This lemma is a consequence of Lemma A.5.5, (iv), below which states that
in every →roud-reduction sequence from a recursive type that fulfills the variable
condition VC0 →ren-multisteps can be postponed over →oud-steps. (A.29) can be
shown, for all →roud-reduction sequences Seq from σ to τ , by induction on the sum
of, for each →oud-step s in Seq, the number of →ren-steps to the left of s in Seq,
using Lemma A.5.5, (iv), in the induction step.

With respect to the statement of the following lemma, which is needed to proof
the lemma above, we recall that a recursive type σ satisfies the variable condition
VC0, which is symbolically denoted by VC0(σ), if and only if fv(σ) ∩ bv(σ) = ∅
holds, i.e. iff no variable occurs both free and bound in σ.

Lemma A.5.5. The following four statements hold:

(i) The variable condition VC0 is preserved under →roud-reduction sequences,
that is, for all σ, τ ∈ µTp it holds that

VC0(σ) & σ ³oud τ =⇒ VC0(τ) .

(ii) Let σ ∈ µTp and β ∈ TVar be such that VC0(µβ. σ) holds. Then σ[µβ. σ/β]
is an admissible substitution expression, and hence a →out-unf-step, and hence
a →roud-step

µβ. σ →out-unf σ[µβ. σ/β]

is possible.

(iii) A →ren-multistep from a recursive type σ that fulfills the variable condition
VC0 can be postponed over an arbitrary subsequent →oud-step, i.e. for all
σ, χ, τ ∈ µTp it holds:

VC0(σ) & σ ³ren χ→oud τ =⇒ (∃χ′ ∈ µTp)
[
σ →oud χ

′ ³ren τ
]
.

(iv) The first occurring sequence of→ren-steps in a→roud-reduction sequence from
a recursive type that fulfills the variable condition VC0 can be postponed over
an arbitrary subsequent →oud-step. That is, for all σ, χ1, χ2 ∈ µTp it holds
that

VC0(σ) & σ ³oud χ1 ³ren χ2 →oud τ =⇒

=⇒ (∃χ2 ∈ µTp)
[
σ ³oud χ1 →oud χ

′
2 ³ren τ

]
.

For an illustration of these four statements see Figure A.2.

Sketch of the Proof. (a) (i) follows by induction on the length of→oud-reductions
sequences by using the fact that VC0 is preserved by arbitrary →oud-steps;
this latter fact is easy to verify.

A.5 Proofs of Statements in Section 3.9: Generated Subterms 355

Figure A.2: Illustration of the statements in the items (i), (ii), (iii), and (iv) of
Lemma A.5.5:

oud

ren ren

oud

VC0

oud

oud

ren ren

oud

VC0

(iii) (iv)

oud

VC0

VC0

(i)

out-unf

VC0

µα. τ τ [µα. τ/α]

(ii)

(b) If VC0(µβ. σ) holds, then no free variable of µβ. σ can get bound by replacing
a free occurrence of β in σ by µβ. σ; hence in this case the →out-unf-step

µβ. σ →out-unf σ[µβ. σ/β]

is possible.

(c) That →out-dec-steps can be postponed over →ren-multisteps is easy to see.
That also →out-unf-steps can be postponed over preceding →ren-steps from a
recursive type σ that fulfills VC0 follows from (i) and Lemma 3.4.2, (3.24).

(d) (iv) is a consequence of (iii) and (i).

Using the above two lemmas, we can now give the following short proof for
Lemma 3.9.17, the second lemma needed in a proof of Theorem 3.9.14.

Proof of Lemma 3.9.17. Let σ ∈ µTp be such that VC0(σ). The inclusion G̃(σ) ⊆
⊆ G∗(σ) is an obvious consequence of the fact that the reduction relation →oud is
contained in →roud and that hence also ³oud⊆³roud holds.

356 Appendix A: Proofs of Statements in Chapter 3

The inclusion G∗(σ) ⊆ G̃(σ) follows from Lemma A.5.4 above (that is applicable
due to VC0(σ)), which implies that every variant of a generated subterm of σ is a
variant of a →oud-generated subterm of σ.

And finally, we give the somewhat technical proof for Lemma 3.9.25, which gives
a bound for the number of leading µ-bindings of a generated subterm of a recursive
type.

Proof of Lemma 3.9.25. For the use in this proof, we define three auxiliary notions:
Firstly, we denote, for all τ ∈ µTp , by mnsµb(τ) the maximum number of successive
µ-bindings in τ that is defined by

mnsµb(τ) =def

=def

{
n | n ∈ ω, (∃ (µα1 . . . αn. ρ) ∈ µTp)

[
µα1 . . . αn. ρ E τ

]}
.

(A.30)

Secondly, we let, for all τ ∈ µTp and α ∈ TVar ,

mµdfo(α, τ) =def max {n | n ∈ ω, (A.32) holds} (A.31)

be the maximum µ-depth of a free occurrence of α in τ , where

(∃ p1, . . . , pn, p ∈ Pos(τ))
[
p1 < p2 < . . . < pn < p & τ |p = α &

& µPos(τ) ∩ Pref(p) = {p1, . . . , pn, p} &

& (∀i ∈ {1, . . . , n}) (∀ρ ∈ µTp) [τ |p 6= µα. ρ]
]
.

(A.32)

And thirdly, we define, for all τ ∈ µTp , by

mµbd(τ) =def

0 if τ has no subterm of the form µα. ρ

1 + max {mµdfo(α, ρ) | α ∈ TVar, ρ ∈ µTp, µα. ρ E τ }

. else

(A.33)

the maximal µ-binding depth of τ .
Before we show the statement of the lemma, we gather some obvious properties

of the three notions defined above. For all τ ∈ µTp and α ∈ fv(τ) , the following
four statements holds:

nlµb(τ) ≤ mnsµb(τ) , (A.34)

mnsµb(τ) ≤ |τ | , (A.35)

mµbd(τ) ≤ |τ | , (A.36)

α ∈ fv(τ) =⇒ nlµb(µα. τ) ≤ mµdfo(α, τ) + 1 ≤ mµbd(µα. τ) . (A.37)

τ E σ =⇒ mnsµb(τ) ≤ mnsµb(σ) & mµbd(τ) ≤ mµbd(σ) (A.38)

All of these four assertions are easy to verify.

A.5 Proofs of Statements in Section 3.9: Generated Subterms 357

We will prove the statement of the lemma by showing

(∀τ, σ ∈ µTp)
[
σ ³roud⊥ τ =⇒ mnsµb(τ) ≤ 2|σ|

]
, (A.39)

which is slightly stronger and which implies the lemma because of the assertion
connected with (A.34).

We start by observing that the ‘measure’ mnsµb(·) is non-increasing during
³roud⊥-reduction sequences: that is, for all σ, τ ∈ µTp ,

σ ³roud⊥ τ =⇒ mµbd(τ) ≤ mµbd(σ) (A.40)

holds. This can be shown by induction on the length of→roud⊥-reduction sequences
using the statements that, for all τ1, τ2 ∈ µTp ,

(τ1 →ren τ2) ∨ (τ1 →out-dec τ2) ∨ (τ1 →out-(µ−⊥)′ τ2) =⇒

=⇒ mµbd(τ2) ≤ mµbd(τ1)
(A.41)

holds, which can verified in a straightforward way, and that, for all τ1, τ2 ∈ µTp ,

τ1 →out-unf τ2 =⇒ mµbd(τ2) ≤ mµbd(τ1) (A.42)

holds. The latter statement can be restated as the assertion that for all α ∈ TVar
and ρ ∈ µTp

µα. ρ→out-unf ρ[µα. ρ/α] =⇒ mµbd(ρ[µα. ρ/α]) ≤ mµbd(µα. ρ) (A.43)

holds. This statement, however, can be justified, in a slightly informal way here, as
follows: if a reduction step µα. ρ→out-unf ρ[µα. ρ/α] is assumed, for some α ∈ TVar
and ρ ∈ TVar , then due to the admissibility of the substitution expression ρ[µα. ρ/α]
it cannot be the case that some µ-binding µβ in ρ at a position in Pos(ρ) ‘catches’
an additional bound occurrence of β in ρ[µα. ρ/α] at a position in Pos(ρ[µα. ρ/α])\
\Pos(ρ) . Therefore the maximal µ-binding depth does not increase in reduction
steps of →out-unf .

Furthermore we need the following statement: for all τ1, τ2 ∈ µTp ,

τ1 →out-unf τ2 =⇒ mnsµb(τ2) ≤ max{mnsµb(τ1), 2.mµbd(τ1)} (A.44)

holds. If τ1 ≡ µα. ρ for some ρ ∈ µTp and α ∈ TVar such that α /∈ fv(τ), then the
bound on the right-hand side of (A.44) follows, since in this case τ2 ≡ ρ holds, as a
consequence of (A.38). In the other case, where τ1 ≡ µα. ρ for some ρ ∈ µTp and
α ∈ TVar such that α ∈ fv(ρ), and where τ1 →out-unf τ2 holds for some τ2 ∈ µTp ,
the bound in (A.44) can be justified in the following way:

mnsµb(τ2) = mnsµb(ρ[µα. ρ/α])

≤ max
{
mnsµb(µα. ρ), mµdfo(α, ρ)

︸ ︷︷ ︸

≤mµbd(µα. ρ)−1

+ nlµb(µα. τ)
︸ ︷︷ ︸

≤
(A.34)

mµbd(µα. τ)

}

≤ max
{
mnsµb(µα. ρ), 2.mµbd(µα. ρ)

}

= max
{
mnsµb(τ1), 2.mµbd(τ1)

}
.

358 Appendix A: Proofs of Statements in Chapter 3

Together with the easily verifiable statement that

(τ1 →ren τ2) ∨ (τ1 →out-dec τ2) ∨ (τ1 →out-(µ−⊥)′ τ2) =⇒

=⇒ mnsµb(τ2) ≤ mnsµb(τ1) (A.45)

holds for all τ1, τ2 ∈ µTp , the statement connected with (A.44) can now be used to
show

σ ³roud⊥ τ =⇒ mnsµb(τ) ≤ max
{
mnsµb(σ), 2|σ|

}
, (A.46)

for all σ, τ ∈ µTp , by induction on the length of a →roud⊥-reduction sequence from
σ to τ . In the induction step concerning a reduction step of →out-unf at the end of
a →roud⊥-reductions sequence, where we have

σ ³roud⊥ τ1 →out-unf τ2

for some σ, τ1, τ2 ∈ µTp , we can now reason as follows:

mnsµb(τ2) ≤
(A.44)

max
{
mnsµb(τ1), 2. mµbd(τ1)

︸ ︷︷ ︸

≤
(A.40)

mµbd(σ) ≤
(A.35)

|σ|

}

≤
(I.H.)

max{mnsµb(σ), 2.|σ|} .

Now the strengthening (A.39) of the assertion of the lemma follows from the
statement connected with (A.46) by using the mentioned fact that (A.35) holds for
all τ ∈ µTp . In this way we have shown the lemma.

Appendix B

Abstract Proof Systems

The purpose of this appendix is to formally underpin the results concerning deriv-
ability and admissibility of inference rules that are reported in Chapter 4. For this
purpose, we introduce the notions “abstract pure Hilbert system” (APHS) and “ab-
stract natural deduction system” (ANDS) in Section B.1 and Section B.2 below,
respectively. We respectively adapt the notions of derivability, admissibility, and
correctness of inference rules to APHS’s and ANDS’s, and subsequently gather basic
facts about these notions and their relationship towards each other. Eventually the
focus of our interest is, in each kind of proof systems, on statements that clarify
the relationship between derivability or admissibility of a rule R in a system S and
the possibility to eliminate applications of R from derivations in extensions of S by
adding R as a new rule.

The concept of APHS defined in Section B.1 is a slight reformulation of the
concept of n-AHS (“abstract Hilbert system with names for axioms and rules”) that
we have introduced and investigated earlier in [Gra03a] (see also the short overview
[Gra04b]). In Section B.1 only a small part of the results developed in the mentioned
report is treated, with the statements presented here being generally straightforward
adaptations to APHS’s of statements given there. The concept of ANDS and the
investigation of rule derivability and admissibility in ANDS’s, the topics treated in
Section B.2, are a more recent extension to natural-deduction systems of the study,
in the report referred to above, of rule derivability and admissibility in “abstract
Hilbert systems”.

Only a very small fraction of the statements given here will be proved. As a
consequence, this appendix has to be read as of a brief outline of results that we
have obtained for concepts that we define here precisely. In the case of APHS’s we
may however refer to the mentioned report [Gra03a]: there, for practically all of the
results given here, closely corresponding statements1 can be found, together with
detailed proofs.

1We mean statements that correspond to statements given here within the concepts developed
there of “abstract Hilbert system” (AHS) and of “abstract Hilbert system with names” (n-AHS).

360 Appendix B: Abstract Proof Systems

B.1 Abstract Pure Hilbert Systems

For the purpose of collecting general results about the notions or derivability and
admissibility of inference rules in pure Hilbert systems, we introduce the framework
of “abstract pure Hilbert system”. In such systems, which are defined by analogy
with abstract rewrite systems, it is abstracted away from the syntax of the formula
language in a pure Hilbert system, and consequently also from the specific ways
how rules can be defined syntactically. In an abstract pure Hilbert system a rule is
a set of instances that is endowed with a premise and a conclusion function, which
respectively assign a finite sequence of premises and a conclusion to every instance.
After defining the notion of APHS-rule with respect to a given set (of formulas),
abstract pure Hilbert systems are then defined as consisting of a set of formulas,
a set of named axioms (which are named formulas), and a set of named rules that
‘operate’ on the set of formulas of the system.

The notion of “abstract pure Hilbert system” is analogous to, and in fact has
been motivated by, the notion of “abstract rewriting system” in the formulation of
van Oostrom and de Vrijer in [vOdV02] and in [Ter03, p. 317]. There, an ARS A
is defined as a quadruple 〈A,Φ, src, tgt〉 in which A and Φ are sets whose members
are respectively called objects and steps, and src, tgt : Φ→ A are the source and
the target functions of A.

We start by defining the abstract notion of rule that underlies the notion of
“abstract pure Hilbert system”, which will be defined subsequently.

Definition B.1.1. (An abstract notion of rule). Let Fo be a set. An APHS-rule
(a rule for an “abstract pure Hilbert system”)2 on (formulas of) Fo is a triple of the
form 〈Insts, prem, concl〉 , where

• Insts is a set, the members of which are called the instances or applications
of R,

• and prem : Insts→ Seqcsf(Fo) and concl : Insts→ Fo are the premise and
conclusion functions of R.

We will use the symbolic denotations InstsR, premR and conclR, whenever we want
to refer directly to the instance set, the premise and conclusion functions of a rule
R, respectively. And we will use ι as a syntactical variable for instances.

For all sets Fo, we furthermore denote by R(Fo) the class of APHS-rules on Fo.
£

In addition to the functions prem and concl associated with a rule, we define for
auxiliary purposes the functions arity and prem(i): for every set Fo of formulas and
for every rule R = 〈Insts, prem, concl〉 on Fo , we introduce

the function arity : Insts→ ω
ι 7→ arity(ι) =def lg(prem(ι)) ,

2The concept of “abstract pure Hilbert system” is defined below in Definition B.1.2.

B.1 Abstract Pure Hilbert Systems 361

Figure B.1: Visualization as ‘hypergraph hyperedges’ of two kinds of applications
of APHS-rules: of a zero premise application ι of a rule R1 and of an application ι′

of a rule R2 such that ι′ has n = arity(ι′) ∈ ω\{0} premises.

ι

conclR1(ι)

n1

prem
(n)
R2
(ι′)prem

(1)
R2
(ι′)

conclR2(ι
′)

ι′

and, for all i ∈ ω\{0} ,

the partial functions prem(i) : Insts ⇀ Fo

ι 7→ prem(i)(ι) =def proji(prem(ι)) .

arity assigns to every instance ι of R the number of its premises. And for all
i ∈ ω\{0} , prem(i)(ι) assigns to every instance ι of R its i-th premise, whenever
this exists; otherwise prem(i)(ι) is undefined. We will use the denotations arityR
and prem

(i)
R , whenever we want to make the dependence of arity and prem(i) upon

R explicit. Using these definitions, a visualization as ‘hyperedges’ of a ‘hypergraph’
(see [Plu93, p.12]) of two kinds of applications of APHS-rules (applications without
premises and with a finite, nonzero number of premises) is given in Figure B.1.

Now we introduce “abstract pure Hilbert systems” as structures consisting of a
set of formulas, a set of names, a set of named axioms, and a set of named rules.

Definition B.1.2. (Abstract pure Hilbert Systems). An abstract pure Hilbert
system (an APHS) H is a quadruple 〈Fo,Na, nAx, nR〉 where

• Fo, Na, nAx and nR are sets whose elements are respectively called the
formulas of H, the names (for axioms and rules) in H, the named axioms of
H, and the named rules of H; we demand Fo 6= ∅ , i.e. that the formula set
be nonempty;

• nAx ⊆ Fo×Na , i.e. the named axioms of H are tuples with formulas of H
as first and names in H as second components;

• nR ⊆ R(Fo)×Na , i.e. the named rules ofH are tuples that have APHS-rules
on Fo in their first and names in H in their second components;

362 Appendix B: Abstract Proof Systems

Figure B.2: Visualization as labeled hyperedges (in a concept of ‘hypergraph’) of
two kinds of rule applications in an APHSH with set nR of named rules: illustration
of a zero premise application ι of a named rule R1 = 〈R1, name(R1)〉 ∈ nR , and
of an application ι′ of a named rule R2 = 〈R2, name(R2)〉 ∈ nR such that ι′ has
n = arity(ι′) ∈ ω\{0} premises.

conclR1(ι)

ιname(R1)

n1

prem
(n)
R2
(ι′)

name(R2) ι′

prem
(1)
R2
(ι′)

conclR2(ι
′)

(we will use the boldface symbol R, possibly with subscripts, superscripts or
accents attached to it, as syntactical variable for named rules; for a named
rule R we denote by rule(R), and by name(R), the first, and respectively
the second component of R (the rule and the name of R); furthermore we
will frequently write, for example, R = 〈R, name(R)〉 and use hereby (and in
other situations) the non-boldface symbol R for the rule component rule(R)
of a named rule R);

• for the named axioms and the named rules of H furthermore the following
holds:

(∀〈A,name〉 ∈ nAx) (∀R ∈ nR)
[
name 6= name(R)

]
,

i.e. names of named axioms are different from names of named rules, and

(∀R1,R2 ∈ nR)
[
R1 6= R2 =⇒ name(R1) 6= name(R2)

]
.

i.e. different rules are differently named in nR (but it is not excluded that the
same rule may occur with different names in nR).

We denote by H the class of all abstract pure Hilbert systems. If, for a some
abstract pure Hilbert system H, we want to refer to its set of formulas, its set of
names, its set of named axioms, or its set of named rules, then we will use the
symbolic denotations FoH, NaH nAxH or nRH, respectively.

£

B.1 Abstract Pure Hilbert Systems 363

A visualization of labeled hyperedges of a hypergraph (see [Plu93, p.12]) of two
kinds of rule applications in an APHS (applications without premises, and with
a finite nonzero number of premises) is given in Figure B.2. This illustration of
rule applications is oriented at the way3 how labeled hyperedges of hypergraphs are
drawn in [Plu93].

Now we introduce derivations in an APHS H as prooftrees in the sense of [TS00],
and explained in Chapter 2: as trees in which the nodes are labeled by formulas and
in which the edges make part of rule applications and are not drawn, but are replaced
by horizontal lines that represent applications. Axioms and assumptions appear
as top nodes and lower nodes are formed by applications of rules. Furthermore,
occurrences of axioms and of inferences that correspond to rule applications will
furthermore be labeled by the names of the respective axioms or rules. Still, the
usual notation for prooftrees will also be applied for derivations in APHS’s.

Definition B.1.3. (Derivations in abstract pure Hilbert systems). Let an
APHS H = 〈Fo,Na, nAx, nR〉 be given.

The set Der(H) of derivations in H is defined as the smallest set that is closed
under the three generation steps (i), (ii), and (iii) which are detailed below. Simul-
taneously with this definition also the three functions

assm : Der(H)→Mf(Fo) concl : Der(H)→ Fo | · | : Der(H)→ ω

are defined that assign to a derivation D in H the multiset assm(D) of assumptions
of D, the conclusion concl(D) of D, and the (rule application) depth |D| of D,
respectively.

(i) For every named axiom 〈A,name〉 ∈ nAx , the prooftree D of the form

(name)

A

is a derivation in H with conclusion A, without assumptions, and with depth
zero, i.e. D ∈ Der(H) holds, and it is stipulated here that concl(D) =def A ,
assm(D) =def mset(∅) , and |D| =def 0.

(ii) For all formulas A ∈ Fo , the prooftree D consisting only of the assumption

A

is a derivation in H with conclusion A, with precisely one assumption (the
formula A), and with depth zero, that is, D ∈ Der(H) holds, and the formal
stipulations concl(D) =def A , assm(D) =def mset({A}) , and |D| =def 0 are
agreed.

3This is described in [Plu93] on p. 12 as follows: “In pictures of hypergraphs, nodes are drawn
as circles or ovals, and hyperedges as boxes, in both cases with inscribed labels. Lines connect
a hyperedge with its source nodes, while arrows point to the target nodes. Lines and arrows are
numbered corresponding to the order of nodes in source and target strings.” – In our illustration
of rule applications in an APHS, however, we have labeled the nodes (formulas) by themselves (if
two or more premises of a rule application coincide, then the respective source nodes coincide as
well).

364 Appendix B: Abstract Proof Systems

(iii) Let R ∈ nR (i.e. let R be a named rule of H), let its rule component rule(R)
be designated by R = 〈InstsR, premR, conclR〉 , and let ι be an instance of R
(i.e. let ι ∈ InstsR). Depending on the arity of ι, we distinguish two cases:

Case 1. arityR(ι) = 0.

Given that conclR(ι) = A , where A is a formula of H, the prooftree

name(R)
A

is a derivation D in H with conclusion A, without assumptions, and with
depth zero, i.e. here D ∈ Der(H) holds, and the settings concl(D) =def A,
assm(D) =def mset(∅) , and |D| =def 0 are stipulated.

Case 2. arityR(ι) = n ∈ ω\{0} .

Assuming that premR(ι) = 〈A1, . . . , An〉 and that conclR(ι) = A , for
some formulas A,A1, . . . , An of H, and assuming further that D1, . . . ,Dn
are derivations in H with respective conclusions A1, . . . , An (in partic-
ular this means that concl(Di) = Ai holds for all i ∈ {1, . . . , n}), the
prooftree of the form

D1

A1 . . .

Dn
An name(R)

A

is a derivation D in H with conclusion concl(D) =def A and with its
multiset of assumptions and its depth defined according to

assm(D) =def

n⊎

i=1

assm(Di) ,

|D| =def 1 + max {|Di| | i ∈ ω, 1 ≤ i ≤ n} .

Furthermore we define by

Der∅(H) =def {D ∈ Der(H) | set(assm(D)) = ∅}

the set of all derivations in H without assumptions. £

Having defined a precise notion of derivation in APHS’s, together with assump-
tion and conclusion functions on the set of derivations, we can now introduce a
‘usual’, or ‘standard’, notion of consequence relation on an arbitrary APHSH, which
can be used to succinctly express propositions such as “a formula A is derivable in
H from assumptions contained in the set Σ of formulas (thereby being allowed to
use each of these assumptions an arbitrary number of times).”

Definition B.1.4 (The ‘standard’ consequence relation on an APHS). Let
H be an APHS with set Fo of formulas. We define the consequence relation `H,
where `H ⊆ P(Fo)× Fo , by stipulating for all A ∈ Fo and sets Σ ∈ P(Fo)

Σ `H A ⇐⇒def (∃D∈Der(H))
[
set(assm(D)) ⊆ Σ & concl(D) = A

]
;

B.1 Abstract Pure Hilbert Systems 365

if, for some A ∈ Fo and Σ ∈ P(Fo) , Σ `H A holds, then we say that A can be
derived in H from assumptions in Σ. £

Quite obviously, other ‘natural’ consequence relations that correspond to differ-
ent forms of ‘resource-consciousness’ when considering derivations could be defined
similarly as well: for instance, a consequence relation `(m)⊆Mf(FoH)× FoH with

respect to which a statement Γ `
(m)
H A holds, for arbitrary Γ ∈Mf(FoH) and

A ∈ FoH , if and only if there exists a derivation D in H with Γ as its multiset of
assumptions and with conclusion A. We do not introduce this notion here, but refer
to [Gra03a] instead, where `(m) is introduced together with the usual consequence
relation ` and a further one `(s), and where also alternative notions of derivability
induced by the consequence relations `(s) and `(m) are studied.

Based on the introduced notion of consequence relation in an APHS, we now
define the notions of “theorem” in an APHS, of the “theory” of an APHS, and of
two APHS’s being “equivalent” in the obvious ways.

Definition B.1.5. (Theorems, theory of an APHS, equivalent APHS’s).
Let H be an APHS. A formula A ∈ FoH is a theorem of H if and only if ∅ `H A ,
i.e. iff there exists a derivation D in H from the empty set of assumptions and with
conclusion A ; in this case we write `H A for ∅ `H A . The theory of H is the set
Th(H) = {A ∈ FoH | `H A} of theorems of H.

Let H1 and H2 be APHS’s. We say that H1 and H2 are equivalent (which we
denote by H1 ∼th H2) if and only if Th(H1) = Th(H2) holds. £

Extensions of systems of formal logic are often defined in the following way (see,
for example, the special case of “first-order theories” treated in [Shoe67, p. 41]): A
formal system S ′ is called an “extension” of a formal system S if the language of S ′

is an extension of the language of S and if every theorem of S is also a theorem of
S ′. Furthermore, an extensions of a theory S that arises from S in the special way
of adding new function and/or predicate symbols, together with defining axioms, to
the non-logical symbols and respectively to the axioms of S is called an “extension
by definitions” of S in [Shoe67]. In the following definition we introduce a similar
term, and some useful notation, for the following kind of extensions of APHS’s which
arise naturally in the study of rule admissibility: extensions of an APHS that arise
by adding new formulas, new axioms, and/or new rules to the sets of formulas, the
set of axioms, and to the set of rules of the system, respectively.

Definition B.1.6 (Extensions by enlargement of APHS’s). For the stipula-
tions in the following three items, let H = 〈Fo,Na, nAx, nR〉 be an APHS.

(i) An extension by enlargement of H is an APHS H′ = 〈Fo′, Na′, nAx′, nR′〉
that results from H by extending the sets of formulas, of names, of named
axioms and/or of named rules of H, i.e. for which the following holds:

Fo ⊆ Fo′ & Na ⊆ Na′ & nAx ⊆ nAx′ & nR ⊆ nR′ .

366 Appendix B: Abstract Proof Systems

(ii) Let R be an APHS-rule on Fo. An extension of H by adding R as a new rule
(or shorter, an extension of H by adding the new rule R) is an extension by
enlargement of the form

H′ = 〈Fo,Na′, nAx, nR∪ {〈R,name〉}〉

for some name ∈ Na′ such that 〈R,name〉 /∈ nR holds. An extension of H
by adding R as a new rule will generally be denoted by H(+R) .

(iii) Let Σ ⊆ Fo be arbitrary. An extension of H by adding the formulas of Σ as
new axioms (or shorter, an extension of H by adding the new axioms Σ) is an
extension by enlargement of the form

H′ = 〈Fo,Na′, nAx ∪ Σ̃, nR〉

for some set Σ̃ ⊆ Σ×Na′ such that

proj1(Σ̃) = Σ′ & proj2(Σ̃) ∩ proj2(nAx) = ∅

holds (this means that the set of axioms of H is extended, for all A ∈ Σ, by
a pair 〈A,name〉 where name ∈ Na′ is a name in H′ that does not occur as
a name in an named axiom4 of H). An extension of an APHS H by adding
the new axioms Σ will generally be denoted by the expression H(+Σ) .

£

The following proposition contains the assertion that in an extension S (+R) of
an APHS S by adding a new rule R the specific name chosen for the named version
of R added in S(+R) does not matter for the consequence relation `S(+R) on S

(+R) ;
and a similar assertion holds for extensions of an APHS by adding new axioms.

Proposition B.1.7. Let H be an APHS, let R be an APHS-rule on FoH, and let
Σ ⊆ FoH . Then the following two statements hold:

(
∀H1,H2, extensions of H

by adding the new rule R
) [

(`H1 = `H2) & (H1 ∼th H2)
]
, (B.1)

(
∀H1,H2, extensions of H

by adding the new axioms Σ
) [

(`H1 = `H2) & (H1 ∼th H2)
]
. (B.2)

That is, all extensions H(+R) of H by adding R as a new rule have the same con-
sequence relation (as defined by Definition B.1.4) and they are equivalent, and fur-
thermore, an analogous assertion holds for all extensions by adding new axioms.

Reference to a Proof. For (B.1) we refer to the Sketch of Proof of Proposition B.2.12
where a proof for a similar statement for analogous extensions of “abstract natural-
deduction systems” is outlined. And for (B.2) it can be argued similarly.

4Due to the definition of APHS’s, name cannot be the name component of a named rule of H′,
neither.

B.1 Abstract Pure Hilbert Systems 367

An easy, later important relationship between the consequence relation `H in
an APHS H and the consequence relation `H(+Σ) in the extension of H by adding
the new axioms Σ is formulated in the lemma below.

Lemma B.1.8. Let H be an APHS with set Fo of formulas. Then for all A ∈ Fo ,
∆,Σ ∈ P(Fo) , and for all extensions H(+Σ) of H by adding the new axioms Σ, the
following holds:

∆ `H(+Σ) A ⇐⇒ ∆ ∪ Σ `H A . (B.3)

Proof. Let H be an arbitrary APHS with set Fo of formulas. Furthermore, let
A ∈ Fo and Σ,∆ ∈ P(Fo) be arbitrary, and let H(+Σ) be an arbitrary extension
of H by adding the new axioms Σ. The equivalence (B.3) is a consequence of the
two following observations about a correspondence between derivations D in H(+Σ)

and derivations D′ in H :

• Every derivation D in H(+Σ) with concl(D) = A and set(assm(D)) ⊆ ∆ can
be modified into a derivation D′ inH with concl(D′) = A and set(assm(D′)) ⊆
⊆ ∆∪Σ by simply replacing each occurrence at the top of the prooftree D of
an axiom C with C ∈ Σ by an occurrence of the assumption C.

• Every derivation D′ in H with concl(D) = A and set(assm(D)) ⊆ ∆ ∪ Σ can
be transformed into a derivation D in H(+Σ) with concl(D) = A and with
set(assm(D)) ⊆ ∆ by simply changing occurrences of assumptions C with
C ∈ Σ at the top of D′ into occurrences of axioms C of H(+Σ) .

Now we are able to adapt the notions of rule admissiblity and derivability to
APHS’s. More precisely, we define three formally different notions: rule correctness,
rule admissibility, and rule derivability in an APHS.

Definition B.1.9 (Rule correctness, admissibility, derivability in APHS’s).
Let H be an APHS, and let R = 〈InstsR, prem, concl〉 be an APHS-rule on FoH.

(i) The rule R is correct for H (R is a correct rule for H) if and only if

(∀ι ∈ InstsR)
[
(∀A ∈ set(prem(ι))) [`H A] =⇒ `H concl(ι)

]
(B.4)

holds, i.e. iff the theory of H is closed under applications of R.

(ii) Let H(+R) be an arbitrary extension of H be adding R as a new rule. Then
the rule R is admissible in H (R is an admissible rule of H) if and only if

H(+R) ∼th H (B.5)

holds, i.e. iff extending H by adding the new rule R with the result H(+R)

does not lead to more theorems in H(+R) .

(iii) The rule R is derivable in H (R is a derivable rule of H) if and only if

(∀ι ∈ InstsR)
[
set(prem(ι)) `H concl(ι)

]
(B.6)

holds, i.e. iff for every application ι of R the conclusion of ι is derivable in H
from the set of premises of ι.

368 Appendix B: Abstract Proof Systems

And furthermore, we expand these definitions also to named rules in such APHS’s
whose sets of formulas are contained in FoH. For this, let H′ be an APHS with
FoH′ ⊆ FoH, and let R be a named rule of H′. Then R is called correct for H,
admissible in H, or derivable in H if and only if the rule rule(R) of R is correct for
H, admissible in H, or derivable in H, respectively.

£

The stipulation in Definition B.1.9, (ii) for admissibility of a rule R in an APHS
formally depends on the choice of an extension H(+R) of H by adding the new rule
R; the proposition below asserts that this dependency is inessential.

Proposition B.1.10. Let H be an APHS, and let R be an APHS. The stipulation
for “R is admissible in H” in (the second sentence of) Proposition B.1.9, (ii) does
not depend on the particular choice, made according to the first sentence there, of
an extension H(+R) by adding the new rule R.

Proof. This is an immediate consequence of statement (B.1) of Proposition B.1.7.

Some easy observations about the notions defined in Definition B.1.9 are gath-
ered in the following lemma that is an adaptation to the framework of APHS and
a slight reformulation5 of Lemma 6.14 on p. 70 in the book [HS86] by Hindley and
Seldin.

Lemma B.1.11 (Reformulation of a lemma by Hindley and Seldin). Let
H be an APHS and let R be an APHS-rule on the set of formulas of H. Then the
following three statements hold:

(i) R is correct for H if and only if R is admissible in H.

(ii) If R is derivable in H, then R is also admissible in H. The implication in the
opposite direction does not hold in general.

(iii) If R is derivable in H, then R is derivable in every extension by enlargement
of H.

It is a consequence of the statements (ii) and (iii) of Lemma B.1.11 that if a rule
R is derivable in an APHSH, then R is admissible in all extensions by enlargement of
H. In addition to this fact, the following theorem also states the reverse implication;
it thereby provides a characterization of derivability of a rule R in an APHS H in
terms of admissibility of R in extensions by enlargement of H.

Theorem B.1.12. Let H be an APHS with Fo as its set of formulas, and let R be
an APHS-rule on Fo. Then the following three statements are equivalent:

5The differences concern items (i) and (iii) of Lemma B.1.11. Item (i) is an immediate refor-
mulation of Lemma 6.14, (i), in [HS86] with respect to our definitions of rule admissibility and
correctness. The difference between Lemma B.1.9, (iii), and Lemma 6.14, (iii), in [HS86] is the
following: Hindley and Seldin do not consider extensions of formal systems that arise by extending
the respective set of formulas (however, they consider extensions that result by introducing new
axioms and/or new rules).

B.1 Abstract Pure Hilbert Systems 369

(i) R is derivable in H.

(ii) R is admissible in all extensions of H by adding new axioms, i.e. for all sets
Σ ⊆ Fo , R is admissible in every extension H(+Σ) of H by adding the new
axioms Σ.

(iii) R is admissible in every extension by enlargement of H.

Proof. Let H be an APHS with formula set Fo and let R be an APHS-rule on Fo.
We show the equivalence of the statements (i), (ii) and (iii) in the proposition by
showing the three implications (i)⇒ (iii) , (iii)⇒ (ii) , and (ii)⇒ (i) . in the three
items below, respectively.

(a) The implication (i)⇒ (iii) is an immediate consequence of items (ii) and (iii)
in Lemma B.1.11.

(b) The implication (iii)⇒ (ii) is obvious because every AHS of the form H(+Σ) ,
where Σ ∈ P(Fo) , is also an extension by enlargement of H.

(c) To prove (ii)⇒ (i) , suppose that R is admissible in all extensions H(+Σ) by
adding the new axioms Σ, for some set Σ ∈ P(Fo). Let ι be an arbitrary appli-
cation of R, let Σ = set(prem(ι)), and letH(+Σ) be an arbitrary extension ofH
by adding the new axioms Σ. Clearly, `H(+Σ) A holds for all A ∈ set(prem(ι)),

and hence, since R is admissible in H(+Σ), it follows that `H(+Σ) concl(ι) .
From this we conclude by Lemma B.1.8 that set(prem(ι)) `H concl(ι) . Since
ι was an arbitrary application of R in this argument, we have proved that
set(prem(ι)) `H concl(ι) holds for all applications of R, which shows (B.6)
and hence that R is derivable in H.

Theorem B.1.12, whose main assertion (the implications from (ii) and (iii) to
(i)) we did not find stated in the literature, is able to provide an explanation for
why derivability of a rule R in an APHS H is a stronger property than admissibility
of R in H: derivability of R in H is preserved under going over to extensions by
enlargements of H; “pure admissibility” of R in H (admissibility of R in H without
R being derivable in H) is not.

For the introduction below of two notions of rule elimination in (derivations
of) APHS’s, we need a stipulation for the precise circumstances under which a
derivation D′ without applications of a certain rule R can be said to ‘demonstrate
the same logical assertion’ as another derivation D containing R-applications; or
more abstractly, an agreement about situations in which it is reasonable to say that
a derivation D′ is ‘models’, ‘simulates’, or as we rather will say, “mimics” another
derivation D. An obvious possibility for such a stipulation is formulated in the
following definition.

Definition B.1.13 (Mimicking derivations). Let H1 and H2 be APHS’s, and
let D1 and D2 be derivations in H1 and H2, respectively.

370 Appendix B: Abstract Proof Systems

We say that D1 mimics D2 (or that D1 is a mimicking derivation for D2, or
that D2 is mimicked by D1), which assertion we denote by D1 - D2 , if and only if
D1 and D2 have the same conclusion and if the set of assumptions of D1 is a subset
of the set of assumptions of D2; more formally,

D1 - D2 ⇐⇒def concl(D1) = concl(D2) &

& set(assm(D1)) ⊆ set(assm(D2))
(B.7)

is stipulated. £

Two other possibilities of ‘mimicking relations’, the relations '(s) and '(m) on
the class of derivations in APHS’s, which demand that, apart from having the same
conclusion, derivations have the same set, or respectively multiset, of assumptions,
are introduced in [Gra03a]. There, also correspondences between any of these three
notions of “mimics” with respective variant notions of rule derivability are estab-
lished.

Apart from the notation for extensions of APHS’s by adding new axioms or
rules, in some statements below we will also use the following notation for APHS’s
that result from an APHS H by removing one of its named rules: for all APHS’s
H = 〈Fo,Na, nAx, nR〉 and for all named rules R ∈ nR , we denote by H−R the
APHS 〈Fo,Na, nAx, nR\{R}〉 .

Now we define two ‘natural’ abstract notions of rule elimination in APHS’s.

Definition B.1.14 (Two notions of rule elimination). Let H be an APHS,
and let R be a named rule of H. In the two items below, we define two notions of
“rule elimination”.

(i) We say that R-elimination holds in H if and only if

(∀D ∈ Der∅(H)) (∃D
′ ∈ Der(H−R))

[
D′ - D

]
(B.8)

holds, i.e. iff for every derivation in H without assumptions there exists a
mimicking derivation in H that does not contain applications of R.

(ii) We say that R-elimination holds for Der(H) if and only if

(∀D ∈ Der(H)) (∃D′ ∈ Der(H−R))
[
D′ - D

]
(B.9)

holds, i.e. iff for every derivation in H there exists a mimicking derivation in
H without applications of R.

The following theorem gives a characterization of the two notions of rule elimi-
nation defined above in terms of rule admissibility and rule derivability, respectively.

Theorem B.1.15 (Rule elimination versus rule admissibility and deriv-
ability). Let H be an APHS, and let R be a named rule of H. Then the following
statements hold:

(i) R-elimination holds in H ⇐⇒ R is admissible in H−R.

(ii) R-elimination holds for Der(H) ⇐⇒ R is derivable in H−R.

B.2 Abstract Natural-Deduction Systems 371

B.2 Abstract Natural-Deduction Systems

For the purpose of collecting general results about the notions of derivability and
admissibility of inference rules in natural-deduction systems, we generalize and
adapt the ideas that have lead to the construction of abstract pure Hilbert systems,
and we thereby introduce the framework of “abstract natural-deduction system”.
In such systems a rule is a set of instances that is endowed with respective con-
clusion, premise, present-marked-assumptions and discharged-marked-assumptions
functions; these functions respectively assign to an instance its conclusion, its se-
quence of premises, the sequence of open marked assumptions that have to be
present for each premise apart, and the set of marked assumptions that get dis-
charged by the instance. After defining this notion of ANDS-rule with respect to
given sets of formulas and markers, we define abstract natural-deduction systems
as structures that consist of a set of formulas, a set of assumption markers, a set of
names, and a set of named rules (with names from the set of names) that ‘operate’
on the set of formulas of the system and use assumption markers from its set of
assumption markers.

For describing our formalization of abstract natural-deduction systems in precise
terms, we will need, relative to arbitrary given sets of formulas and assumption
markers, the dependent notions of marked formulas, environments and assumption
marker renamings. These will be defined below.

Given a set Fo of formulas and a set Mk of assumption markers, we define the
set mFo(Fo,Mk) of marked formulas over Fo and Mk, and the set Env(Fo,Mk)
of environments over Fo and Mk respectively by

mFo(Fo,Mk) =def {A
u |A ∈ Fo, u ∈Mk} , and by

Env(Fo,Mk) =def

{

Σ̃ ∈ Pf(mFo(Fo,Mk))
∣
∣

(∀Au1 , Bu2 ∈ Σ̃) [u1 = u2 ⇒ A = B]
}

.

Marked formulas are thus formulas with an attached assumption marker and en-
vironments are finite sets of marked formulas, in which all occurring assumption
markers are different.

Let again Fo be a set of formulas, Mk a set of assumption markers, and let now
mFo denote the set mFo(Fo,Mk) . We call every bijective function r :Mk →Mk
an assumption marker renaming (or shorter, a marker renaming) on Mk. Further-
more we define, for all marker renamings r, extensions of r to marked formulas and
to sets of marked formulas, that is, we define the three functions r̄1, r̄2, and r̄3 from
r as follows:

r̄1 : mFo→ mFo, Au 7→ r̄1(A
u) =def A

r(u) , (B.10)

r̄2 : P(mFo)→ P(mFo), Σ̃ 7→ r̄2(Σ̃) =def

{
Ar(u) |Au ∈ Σ̃

}
, (B.11)

r̄3 : Seqcsf(P(mFo))→ Seqcsf(P(mFo))

〈Σ̃1, . . . Σ̃n〉 7→ r̄3(〈Σ̃1, . . . Σ̃n〉) =def 〈r̄2(Σ̃1), . . . , r̄2(Σ̃n)〉 .

}

(B.12)

372 Appendix B: Abstract Proof Systems

However, below we will drop the subscripts from the extensions r̄1, r̄2, and r̄3
of a marker renaming r and abbreviate both extensions of r by r̄ because it will
always be clear from the object to which such a function is applied whether the
assumption markers are renamed according to r in a marked formula, in a set of
marked formulas, or in a finite sequence of sets of marked formulas.

Definition B.2.1 (Rules for abstract natural-deduction systems). Let Fo
and Mk be sets. An ANDS-rule R (a rule R for an “abstract natural-deduction
system”)6 on (formulas of) Fo and (with assumption markers of) Mk is a quintuple
of the form 〈Insts, prem, concl, pmassm, dmassm〉 where

• Insts is a set whose elements are called the instances of R, and

prem : Insts→ Seqcsf(Fo) concl : Insts→ Fo

pmassm : Insts→ Seqcsf(Env(Mk,Fo)) dmassm : Insts→ Env(Fo,Mk)

are functions, which, for every instance ι of R, specify the sequence of premises
of ι, the conclusion of ι, the sequence of sets of present marked assumptions
for ι (which sequence declares for each premise apart the set of assumptions
on which it may depend) and the set of discharged marked assumptions of
ι (which assumptions are discharged by the application of ι from the set of
all present marked assumptions on which any of the premises of ι depends);
these functions furthermore satisfy the properties explained in the following
two items, namely,

• for all instances ι ∈ Insts , the assertions

lg(prem(ι)) = lg(pmassm(ι)) , and (B.13)

dmassm(ι) ⊆

lg(pmassm(ι))
⋃

i=1

proji(pmassm(ι)) ∈ Env(Fo,Mk) (B.14)

hold, i.e. the sequence of premises of ι and the sequence of present marked
assumptions of ι have equal length, the union over all premises of ι of the
present marked assumptions belonging to the respective premise is an en-
vironment over Fo and Mk that furthermore contains the present marked
assumptions of ι ; and

• the set Insts of instances of R is closed under renamings of the assumption
markers in the present and discharged assumptions of an instance, that is, it
holds:

(∀ι ∈ Insts) (∀r marker renaming on Mk)

(∃ι′ ∈ Insts)
[
prem(ι′) = prem(ι) & concl(ι′) = concl(ι) &

& pmassm(ι′) = r̄(pmassm(ι)) &

& dmassm(ι′) = r̄(dmassm(ι))
]
. (B.15)

6The concept of “abstract natural-deduction system” will be defined below in Definition B.2.3.

B.2 Abstract Natural-Deduction Systems 373

We will use the symbolic denotations InstsR, premR, conclR, pmassmR and dmassmR

whenever we want to refer directly to the instance set, the premise, conclusion,
present marked assumptions, and discharged marked assumptions functions of an
ANDS-rule R, respectively. And we will use ι also as a syntactical variable for
instances of ANDS-rules.

For all sets Fo and Mk, we furthermore denote by R(Fo,Mk) the class of
ANDS-rules on Fo and Mk.

£

Similarly as we did so earlier in the case of APHS-rules, we define, in addition to
the functions prem, concl, pmassm and dmassm associated with every ANDS-rule,
a function arity and partial functions prem(i) and pmassm(i). For every set Fo of
formulas and for every rule R = 〈Insts, prem, concl, pmassm, dmassm〉 on Fo, we
introduce the function

arity : Insts→ ω
ι 7→ arity(ι) =def lg(prem(ι)) ,

and, for all i ∈ ω\{0}, the partial functions

prem(i) : Insts ⇀ Fo

ι 7→ prem(i)(ι) =def proji(prem(ι)) ,

pmassm(i) : Insts ⇀ Env(Fo,Mk)

ι 7→ pmassm(i)(ι) =def proji(pmassm(ι)) .

The function arity assigns to every instance ι of R the number of its premises. For
all i ∈ ω\{0} , the partial function prem(i) assigns to every instance ι of R its i-th
premise whenever this exists; otherwise prem(i)(ι) is undefined. And similarly, the
function pmassm(i) assigns to every instance ι of R the environment of open marked
assumptions on which the i-th premise of ι depends. We will use the denotations

arityR, prem
(i)
R , and pmassm

(i)
R whenever we want to make explicit the dependence

of arity, prem(i), and pmassm(i) upon the particular rule R to which these functions
belong.

A visualization of a application (with one or more premises) of an ANDS-rule
as a more generalized form of ‘hyperedge’ is given in Figure B.3. Below we give an
example of the formalization as an ANDS-rule of a rule from a well-known natural-
deduction-style proof systems for minimal, intuitionistic, and classical predicate
logic.

Example B.2.2. The exists-elimination rule ∃E of one of the systemsN[mic] from
[TS00] with applications of the following form

D1

∃xA

[
A[y/x]

]u

D2

C ∃E, u (if side-condition (B.16))
C

374 Appendix B: Abstract Proof Systems

Figure B.3: Visualization of an instance ι of an ANDS-rule R with a non-zero
arity n = arity(ι) ∈ ω\{0} as a generalized form of ‘hyperedge’ with two kinds of
‘sources’ (the premises and the respective sets of present marked assumptions of
ι), and with a further feature (the set of assumptions discharged by (applications
of) ι); the broken line is intended to allude to the fact that the discharged marked
assumptions of ι are contained among the present marked assumptions of ι.

1 n

conclR(ι)

prem
(n)
R (ι)

pmassm
(n)
R (ι)

prem
(1)
R (ι)

pmassm
(1)
R (ι)

1 n

ι dmassmR(ι)

where the side-condition (B.16) is defined as

(x ≡ y ∨ y /∈ fv(A)) & y /∈ fv(C) &

&
(
u is not the marker of an open
marked assumption in D1

)

. (B.16)

This rule can be represented as an ANDS-rule on the set Fo of formulas of
first-order predicate logic such that R = 〈Insts, prem, concl, pmassm, dmassm〉 with
its set of instances defined according to

Insts =def

〈x, y,A,C, u, Σ̃1, Σ̃2〉

∣
∣
∣
∣
∣

x, y ∈ Var, A,C ∈ Fo,
u ∈Mk, Σ̃1, Σ̃2 ∈ Env(Fo,Mk)
with Σ̃1 ∪ Σ̃2 ∈ Env(Fo,Mk),
such that furthermore (B.18) holds

(B.17)

B.2 Abstract Natural-Deduction Systems 375

where the condition (B.18) is defined by

(x ≡ y ∨ y /∈ fv(A)) & y is substitutible for x in A & y /∈ fv(C) &

& {(A[y/x])u} ⊆ Σ̃2 &
[
(A[y/x])u ∈ Σ̃2 ⇒ (∀Dv ∈ Σ̃1)[v 6= u]

]
, (B.18)

and with premise, conclusion, present marked assumption and discharged marked
assumption functions of R respectively defined by

prem(〈x, y,A,C, u, Σ̃1, Σ̃2〉) =def 〈∃xA, C〉 ,

concl(〈x, y,A,C, u, Σ̃1, Σ̃2〉) =def C ,

pmassm(〈x, y,A,C, u, Σ̃1, Σ̃2〉) =def 〈Σ̃1, Σ̃2〉 ,

dmassm(〈x, y,A,C, u, Σ̃1, Σ̃2〉) =def

{{[
A[y/x]

]u}
. . . (A[y/x])u ∈ Σ̃2

∅ . . . else ,

for all 〈x, y,A,C, u, Σ̃1, Σ̃2〉 ∈ Insts .

Now we proceed to give the definition of “abstract natural-deduction systems”.

Definition B.2.3 (Abstract natural-deduction systems). An abstract natural-
deduction system (an ANDS) S is a quadruple 〈Fo,Mk,Na, nR〉 where

• Fo, Mk, Na and nR are sets whose elements are respectively called formulas
of S, assumption markers of S (mostly just called the markers of S), names
(for rules) in S, and named rules of S ; we demand the set Fo to be nonempty
and the set Mk to be a countably infinite set;

• nR ⊆ R(Fo,Mk)×Na , i.e. the named rules of S are tuples with ANDS-rules
on Fo and Mk as their first, and names in S as their second components;

(as done so previously for named APHS-rules, we will again use the boldface
symbol R, possibly with subscripts, superscripts or accents attached to it, as
syntactical variable for named rules; for a named rule R we denote by rule(R),
and by name(R), the first, and respectively the second component of R (the
rule and the name of R); furthermore we will frequently write, for example,
R = 〈R, name(R)〉 and use hereby (and in other situations) the non-boldface
symbol R for the rule component rule(R) of a named rule R);

• different named rules have different names, more precisely it holds:

(∀R1,R2 ∈ nR)
[
R1 6= R2 =⇒ name(R1) 6= name(R2)

]
.

We denote by ND the class of all abstract natural-deduction systems. If, for a
some abstract natural-deduction system S, we want to refer to its set of formulas,
its set of axioms, its set of names or its set of rules, then we will use the symbolic
denotations FoS , NaS , AxS or RS , respectively. And furthermore, for all ANDS’s
S, we will respectively denote by mFoS and by EnvS the set mFo(FoS ,MkS) of
marked formulas of S and the set Env(FoS ,MkS) of environments of S.

£

376 Appendix B: Abstract Proof Systems

Remark B.2.4. Let S be an ANDS, and let R = 〈R, name(R)〉 be a named rule
of S.

The operational behaviour of an instance ι ∈ InstsR with arity(ι) = n ∈ ω\{0}
can be expressed in a sequent-style formalism as an inference of the following kind:

pmassm
(1)
R (ι) ⇒ prem

(1)
R (ι) . . . pmassm

(n)
R (ι) ⇒ prem

(n)
R (ι)

name(R)
(⋃n

i=1 pmassm
(i)
R (ι)

)
\ dmassmR(ι) ⇒ conclR(ι)

And in a natural-deduction-style formalization of derivations, an instance i ∈ InstsR
with arity(ι) = n ∈ ω\{0} gives rise to inferences like the one at the bottom of the
derivation D that is indicated as the symbolic prooftree

{[pmassm
(1)
R (ι)]}

D1

prem
(1)
R (ι) . . .

{[pmassm
(n)
R (ι)]}

Dn

prem
(n)
R (ι)

name(R), u1, . . . , um
conclR(ι)

where u1, . . . , um are such that dmassm(ι) = {Du1
1 , . . . , Dum

m } for some m ∈ ω and
marked formulas Du1

1 , . . . , Dum
m ∈ mFoS , and where at the top the designations of

the form {[pmassm
(1)
R (ι)]} , . . . , {[pmassm

(n)
R (ι)]} stand for the sets pmassm

(1)
R (ι) ,

. . . , pmassm
(n)
R (ι) of open assumption classes in D1, . . . ,Dn , respectively.

We continue by introducing the notion of “derivation” in an ANDS, in a straight-
forward, albeit formally involved, way.

Definition B.2.5 (Derivations in ANDS’s). Let S = 〈Fo,Mk,Na, nR〉 be an
ANDS.

The set Der(S) of the derivations in S is the set of prooftrees that are gen-
erated by carrying out a finite number of construction steps of the kinds (i) and
(ii) described below7. Simultaneously with this inductive definition also the three
functions

omassm : Der(S)→ P(mFo) concl : Der(S)→ Fo | · | : Der(S)→ ω

are defined that respectively assign to a derivation D in S the set omassm(D) of open
(marked) assumptions of D, the conclusion concl(D) of D, and the (rule application)
depth |D| of D.

(i) For all formulas A ∈ Fo and markers u ∈Mk , the prooftree D consisting only
of the marked formula

Au (B.19)

is a derivation in S with open marked assumptions omassm(D) =def {A
u} ,

with conclusion concl(D) =def A , and with depth |D| =def 0.

7Equivalently, Der(S) is the smallest set that is closed under these generation steps (i) and (ii).

B.2 Abstract Natural-Deduction Systems 377

(ii) Let a named rule R = 〈R, name(R)〉 ∈ nR and an instance ι ∈ InstsR be
given. We distinguish two cases concerning the arity of ι:

Case 1. arityR(ι) = 0.

Given that conclR(ι) = A , the prooftree

name(R)
A (B.20)

is a derivation D in S with conclusion concl(D) =def A and without
open assumptions, i.e. with omassm(D) =def ∅ ; its depth is |D| =def 1.
In this situation we say that D results by an application of ι from the
empty sequence of derivations in S.

Case 2. arityR(ι) = n ∈ ω\{0} .

For all derivations D1, . . . ,Dn ∈ Der(S) , m ∈ ω, markers u1, . . . , um ∈
∈ Mk , and formulas A,A1, . . . , An, D1, . . . , Dm ∈ Fo such that the con-
ditions

premR(ι) = 〈A1, . . . , An〉 , conclR(ι) = A ,

pmassm
(i)
R (ι) = omassm(Di) (for all 1 ≤ i ≤ n) ,

dmassmR(ι) = {D
u1
1 , . . . , Dum

m } , and

concl(Di) = Ai (for all 1 ≤ i ≤ n)

are fulfilled, the prooftree of the form

D1

A1 . . .

Dn
An name(R), u1, . . . , um

A

(B.21)

is a derivation D in S with marked open assumptions, conclusion and
depth that are respectively defined by

concl(D) =def conclR(ι) = A ,

omassm(D) =def

(n⋃

i=1

omassm(Di)
)

\ dmassmR(ι) ,

|D| =def 1 + max {|Di| | i ∈ ω, 1 ≤ i ≤ n} .

In this case we say that D results from the sequence 〈D1, . . . ,Dn〉 of
derivations in S by an application of ι.

Furthermore we define by

Der∅(S) =def {D ∈ Der(S) | omassm(D) = ∅} .

the set of all derivations in S without open assumptions. £

378 Appendix B: Abstract Proof Systems

The following lemma formulates the easy observation about the definition above
that the open marked assumptions of derivations in an ANDS are in fact environ-
ments.

Proposition B.2.6. Let S be an ANDS. Then it holds:

(∀D ∈ Der(S))
[
omassm(D) ∈ EnvS

]
.

Sketch of Proof. This can be shown by straightforward induction on the depth |D|
of derivations D in S. In the induction step the condition (B.14) on the union of the
present marked assumptions of a rule application in S (to be an environment of S)
is used as well as the simple fact that subsets of environments are environments.

The next lemma formulates an easy consequence that condition (B.15) in the
definition of ANDS-rules has for the set of derivations in an ANDS. While (B.15)
demands of the set of instances of an ANDS-rule to be closed under renamings
of markers in the present and discharged marked assumptions of an instance, the
lemma below states that the set of derivations in S is closed under renamings of
assumption markers in derivations.

For its formulation, we define applications of assumption marker renamings to
derivations: Let S be an ANDS, and let r be a marker renaming on MkS . Then
we define, next to the extensions r̄1 and r̄2 of r as introduced in (B.10) and (B.11),
the extension

r̄4 : Der(S)→ Der(S), D 7→ r̄4(D) ,

of r to derivations of S by specifying, for all D ∈ Der(S) , the renaming r̄4(D) of D
with respect to r as the prooftree that is the result of simultaneously renaming all
occurrences of an assumption marker u in D (where u ∈Mk) by r(u), respectively.
Similarly as in the case of the two other extensions of marker renamings, we will drop
the subscript from extensions r̄4 of marker renamings r and just write r̄ instead since
it will always be clear from the surrounding (for example, textual) context which
sort of extensions of marker renamings is meant.

The following proposition states that the role of assumption markers in deriva-
tions of an ANDS is indeed restricted to that of an auxiliary feature (of binding open
assumptions to rule applications and of providing names for different assumption
classes). It states that the set of derivations in an ANDS is closed under marker
renamings, and that the application of a marker renaming r to a derivation D in an
ANDS S results in a derivation r̄(D) in S with the same conclusion as D and with
open assumption classes that respectively arise by renaming the assumption classes
of D according to r.

Proposition B.2.7 (Renaming of assm. markers in ANDS-derivations).
Let S be an ANDS. And furthermore, let D be a derivation in S, and r a marker
renaming on MkS . The following two assertions hold for the renaming r̄(D) of D
with respect to r:

(i) r̄(D) ∈ Der(S) .

B.2 Abstract Natural-Deduction Systems 379

(ii) omassm(r̄(D)) = r̄(omassm(D)) and concl(r̄(D)) = concl(D) .

Sketch of Proof. For every ANDS S and every marker renaming r on MkS , the
fulfilledness, for all D ∈ Der(S) , of assertions (i) and (ii) of the lemma can be
shown by a straightforward proof using induction on |D| ; this proof relies on the
property (B.15) of ANDS-rules in an essential way.

Lemma B.2.7 obviously implies the following: For every derivation D in an
ANDS S and for every marker renaming r on MkS there exists a derivation D′ in S
with the same conclusion as D and such that the set of open marked assumptions of
D′ results from the set of open marked assumptions of D by renaming assumption
markers according to r. More formally, for all ANDS’s S it holds:

(∀D ∈ Der(S)) (∀r marker renaming on MkS)

(∃D′ ∈ Der(S))
[
omassm(D′) = r̄(omassm(D)) &

& concl(D′) = concl(D)
]
. (B.22)

In the next definition we introduce a general notion of consequence relation in
an ANDS which relates sets of marked assumptions with single formulas. For an
ANDS S, the consequence relation `S is defined such that, for all sets Σ̃ of marked
formulas and all formulas A, Σ̃ `S A holds if and only if there is a derivation D in
S with open marked assumptions Σ̃ and with conclusion A.

We note that, compared with the ‘standard’ consequence relation in APHS’s (see
Definition B.1.4), the consequence relation defined here in ANDS’s is stricter in the
sense that, for a considered ANDS S, Σ̃ `S A holds only if there exists a deduc-
tion of A in S that uses all of the (marked) assumptions in Σ̃ at least once. This
form of consequence relation is more appropriate for ANDS’s owing to the following
fact: contrary to the situation in APHS’s, for a rule R of an ANDS S to be appli-
cable to a sequence 〈D1, . . . ,Dn〉 of subderivations in S with resulting derivation
D it is typically necessary to have full knowledge of the open marked assumptions
omassm(D1), . . . , omassm(Dn) in the immediate subderivations D1, . . . ,Dn of D.

Definition B.2.8 (A consequence relation on ANDS’s). Let S be an ANDS
with set Fo of formulas and with set mFo of marked formulas. We define the
consequence relation `S on S, where `S ⊆ P(mFo)× Fo , by stipulating for all
A ∈ Fo and sets Σ̃ ∈ P(mFo)

Σ̃ `S A ⇐⇒def (∃D ∈ Der(S))
[
omassm(D) = Σ̃ & concl(D) = A

]
; (B.23)

if, for some A ∈ Fo and Σ̃ ∈ P(mFo) , Σ̃ `S A holds, then we say that A can be
derived in S from the marked assumptions in Σ̃. £

The next proposition formulates the obvious consequence of (B.22) that the
consequence relation `S is not ‘sensitive’ to the particular assumption markers used
in marked assumptions. This statement can be read as a further confirmation that
the role of assumption markers as part of the concept of ANDS is indeed only that of
auxiliary devices for bookkeeping purposes (concerning the assumption-discharging
feature of ANDS-rules).

380 Appendix B: Abstract Proof Systems

Proposition B.2.9. Let S be an ANDS with set Fo of formulas and with set
mFo of marked formulas. The consequence relation `S is invariant under marker
renamings applied to marked assumptions, that is,

Σ̃ `S A ⇐⇒ r̄(Σ̃) `S A

holds for all Σ̃ ∈ P(S) and A ∈ Fo .

We carry on by giving definitions for the notions of “theorem” in an ANDS,
of the “theory” of an ANDS, and of two ANDS’s being equivalent. And in the
subsequent definition we adapt the notion “extension by enlargement” to ANDS’s.

Definition B.2.10. (Theorems, theory of an ANDS; equivalent ANDS’s).
Let S be an ANDS. A formula A ∈ FoS is a theorem of S if and only if ∅ `S A ,
i.e. iff there exists a derivation D in S from the empty set of open assumptions and
with conclusion A ; in this case we write `S A for ∅ `S A . The theory of S is the
set Th(S) = {A ∈ FoS | `S A} of theorems of S.

Let S1 and S2 be ANDS’s. We say that S1 and S2 are equivalent (which is
denoted by S1 ∼th S2) if and only if Th(S1) = Th(S2) holds. £

Definition B.2.11 (Extensions by enlargement of ANDS’s). For the follow-
ing stipulations, let S = 〈Fo,Mk,Na, nR〉 be an ANDS.

(i) An extension by enlargement of S is an ANDS S ′ = 〈Fo′,Mk′, Na′, nR′〉 that
results from S by extending the sets of formulas, of names, of named axioms
and/or of named rules of S, i.e. iff the following holds:

Fo ⊆ Fo′ & Mk ⊆Mk′ & Na ⊆ Na′ & nR ⊆ nR′ .

(ii) Let R be an ANDS-rule on Fo on Mk. An extension of S by adding R as
a new rule (or shorter, an extension of S by adding the new rule R) is an
extension by enlargement of the form

S ′ = 〈Fo,Mk,Na′, nR∪ {〈R,name〉}〉

for some name ∈ Na′ such that 〈R,name〉 /∈ nR holds. An extension of S
by adding R as a new rule will generally be denoted by S (+R) .

£

In analogy with Proposition B.1.7 concerning APHS’s, the following proposition
contains the assertion that, for all ANDS’s S and rules R on FoS and MkS , the
specific chosen name of an added named version of R in an extension S (+R) of S
by adding the new rule R does not matter for the consequence relation `S(+R) on

S(+R).

Proposition B.2.12. Let S be an ANDS, and let R be an ANDS-rule on FoS .
Then the two statements

(
∀S1,S2, extensions of S by adding the new rule R

) [
S1 ∼th S2

]
, (B.24)

(
∀S1,S2, extensions of S by adding the new rule R

) [
`S1 = `S2

]
(B.25)

B.2 Abstract Natural-Deduction Systems 381

hold, i.e. all extensions S(+R) of S by adding R as a new rule are equivalent, and
the consequence relations that are respectively defined in S1 and in S2 according to
Definition B.2.8 are equal.

Sketch of Proof. Obviously, (B.24) follows directly from (B.25). (B.24) can be
shown, by letting S1 and S2 be arbitrary extensions of S by adding R as a new
rule, and by showing that for every derivation D1 in S1 there exists a derivation D2

in S2 with the same conclusion and with the same open assumptions, and vice versa.
Now we let R1 and R2 be those named versions of R that are respectively added
to S in S1 and in S2. To show the first half of the mentioned statement, structural
induction on derivations in S1 can be applied to prove that, for every derivation D1

in S1, the result D
[R2/R1]
1 of replacing in D1 each inference induced by an applica-

tion of R1 by an inference induced by R2 (by merely changing the rule name labels
of all inferences induced by R1 from name(R1) to name(R2)) is a derivation in S2
with the same conclusion and with the same set of open assumptions as D1.

For the definition later of rule derivability in an ANDS, we will need the auxiliary
notions “pseudo-derivation” and “pseudo-derivation context” in an ANDS, which
are defined next. Intuitively, a “pseudo-derivation” in an ANDS S is a prooftree PD
formed with formulas of S and with names of rules of S as application labels, where
the ‘inference steps’ in PD do not necessarily correspond (in the way described in
clause (ii) of Definition B.2.5) to applications of rules of S; yet, the condition is
retained that the open assumptions of pseudo-derivations are environments (like
this is the case for derivations, cf. Proposition B.2.6). And a “pseudo-derivation
context” in an ANDS S can be viewed as the result of respectively replacing some
sub-prooftrees in a pseudo-derivation in S by context-holes []i that carry numbers
i ∈ ω\{0} (a hole []i , for i ∈ ω\{0}, may respectively occur in a “pseudo-derivation
context” an arbitrary (finite) number of times).

In the definition below, however, pseudo-derivation contexts are defined first,
and then pseudo-derivations are introduced as pseudo-derivation contexts that do
not contain context holes and that fulfill an additional requirement about their open
assumptions.

Definition B.2.13 (Pseudo-derivation contexts, and pseudo-derivations
in ANDS’s). Let S = 〈Fo,Mk,Na, nR〉 be an ANDS, and let k ∈ ω .

The set PDerCtxtk(S) of k-ary pseudo-derivation contexts in S is defined as the
smallest set (eventually consisting of prooftrees) that is closed under the four gen-
eration steps (i), (ii), (iii), and (iv) that are given below. Simultaneously with this
definition also the three functions

omassm : PDerCtxtk(S)→Mf(Fo) | · | : PDerCtxtk(S)→ ω

concl : PDerCtxtk(S)→ Fo ∪ { []i | i ∈ ω, 1 ≤ i ≤ k}

are defined that respectively assign to a k-ary pseudo-derivation context PC in S
the set omassm(PC) of open marked assumptions of PC, the conclusion concl(PC)
of PC, and the (rule application) depth |PC|. As done so here already, we will use
the concatenated letters PC for syntactical variables of pseudo-derivation contexts.

382 Appendix B: Abstract Proof Systems

(i) For every i ∈ {1, . . . , k} , the prooftree (consisting only of the i-th hole []i)

[]i (B.26)

is a k-ary pseudo-derivation context PC in S without open assumptions, i.e.
with omassm(PC) =def ∅ , with conclusion concl(PC) =def []i , and with depth
|PC| =def 0.

(ii) For all formulas A ∈ Fo and markers u ∈Mk , the prooftree PC of the form

Au (B.27)

is a k-ary pseudo-derivation context in S with conclusion concl(PC) =def A ,
with open assumptions omassm(PC)=def {A

u}, and with depth |PC| =def 0.

(iii) For all named rules R ∈ nR , and for all formulas A ∈ Fo , the prooftree

name(R)
A

(B.28)

is a k-ary derivation context in S with omassm(PC) =def ∅ (i.e. without open
assumptions), with conclusion concl(PC) =def A , and with |PC| =def 1.

(iv) For all named rules R ∈ nR , natural numbers n ∈ ω\{0} , k-ary pseudo-
derivation contexts PC1, . . . ,PCn in S, formulas A ∈ Fo , and for all m ∈ ω
assumption markers u1, . . . , um ∈Mk , the prooftree of the form

PC1 . . . PCn name(R), u1, . . . , um
A

(B.29)

is a pseudo-derivation context PC in S with conclusion concl(PC) =def A , and
with open assumptions and depth defined according to

omassm(PC) =def

(n⋃

i=1

omassm(PCi)
)

\ {Aui | 1 ≤ i ≤ m, A ∈ Fo} ,

|PC| =def 1 + max {|PCi| | i ∈ ω, 1 ≤ i ≤ n} .

By PDerCtxt(S) we designate the set of all pseudo-derivation contexts, i.e. the
union of the sets PDerCtxtk(S), over all k ∈ ω .

By a pseudo-derivation in S we understand a 0-ary pseudo-derivation context
PC in S (i.e. PC ∈ PDerCtxt0(S)) with omassm(PC) ∈ Env(FoS ,MkS) , i.e. with
the additional property that its set of open marked assumptions is an environment.
We designate by PDer(S) the set of pseudo-derivations in S, and we will use the
connected letters PD for syntactical variables referring to pseudo-derivations.

£

B.2 Abstract Natural-Deduction Systems 383

Remark B.2.14. Our definition of “pseudo-derivation context” was chosen in such
a way that this notion is closed under an operation of “hole-filling” (see Defini-
tion B.2.17 below).

The condition we have imposed on pseudo-derivations that their sets of open
marked assumptions be environments is not strictly necessary for the following
definitions and results. However, it is surely a sensible restriction to demand that
for every pseudo-derivation PD in an ANDS S there exists a derivation D in some,
possibly different, ANDS S ′ such that D and PD have the same conclusion and
the same open assumptions; this would clearly not be the case in general if the
set of open assumptions of pseudo-derivations did not have to be environments (cf.
Proposition B.2.6).

For other purposes it might perhaps also be reasonable to demand that also
all sub-prooftrees of pseudo-derivations have environments as their sets of open
assumptions; although it is easy to give a definition for such a stronger notion of
“pseudo-derivation” along the lines of the definition of pseudo-derivation contexts
in Definition B.2.13, we have not introduced such a stronger notion because we do
not need it here.

An obviously desirable property of the notion “pseudo-derivation” in an ANDS is
formulated by following proposition, which is an easy consequence of the definitions
of derivations and of pseudo-derivations in an ANDS.

Proposition B.2.15. Let S be an ANDS. Every derivation in S is also a pseudo-
derivation in S, and consequently Der(S) ⊆ PDer(S) is the case.

We carry on by defining the later important notion of a pseudo-derivation re-
sulting from a sequence of pseudo-derivations by the application of a named rule
from an ANDS.

Definition B.2.16 (Pseudo-derivations resulting by rule applications). Let
S = 〈Fo,Mk,Na, nR〉 be an ANDS. And furthermore, let R be a named rule of S,
n ∈ ω , and let PD,PD1, . . . ,PDn be pseudo-derivations in S.

Let ι ∈ InstsR , where R = rule(R) . We say that the pseudo-derivation PD
results from (the sequence) 〈PD1, . . . ,PDn〉 (of pseudo-derivations) by the appli-
cation ι of R (or just that PD results from 〈PD1, . . . ,PDn〉 by applying ι) if and
only if PD is of the form

PD1 . . . PDn name(R)
A

(in the case n = 0 this prooftree is of the form (B.28)) and if the inference at the
bottom of PD is performed according to ι, more precisely, if the conditions

〈concl(PD1), . . . , concl(PDn)〉 = premR(ι) ,

〈omassm(PD1), . . . , omassm(PDn)〉 = pmassmR(ι) ,

omassm(PD) =
(n⋃

i=1

pmassmR(ι)
)

\ dmassmR(ι) ,

384 Appendix B: Abstract Proof Systems

concl(PD) = A = conclR(ι)

are met.
And we consequently we also say that the pseudo-derivation PD results from

(the sequence) 〈PD1, . . . ,PDn〉 (of pseudo-derivations) by an application of R if
and only if there exists an instance ι ∈ InstsR with n = arity(ι), where R = rule(R),
such that PD results from 〈PD1, . . . ,PDn〉 by applying ι. £

Next, we define hole-filling in pseudo-derivation contexts of an ANDS: we give an
inductive definition of the result PC[P̃C1, . . . , P̃Ck] of substituting pseudo-derivation
contexts P̃C1, . . . , P̃Ck for the respective occurrences of the holes []1, . . . , []k in a
k-ary pseudo-derivation context PC.

Definition B.2.17 (Hole-Filling in pseudo-derivation contexts). Let S be
an ANDS of the form 〈Fo,Mk,Na, nR〉 .

For all k ∈ ω , and for all l1, . . . , lk ∈ ω and l = max1≤i≤k li , we define, for every
pseudo-derivation context PC ∈ PDerCtxtk(S), the hole-filling operation on PC as
the function

PC[·, . . . , ·
︸ ︷︷ ︸

k

] : PDerCtxtl1(S)× . . .× PDerCtxtlk(S) → PDerCtxtl(S) (B.30)

〈P̃C1, . . . , P̃Ck〉 7→ PC[P̃C1, . . . , P̃Ck]

by structural induction on PC. For this purpose we let k ∈ ω and l1, . . . , lk ∈ ω
be arbitrary, we let l =def max1≤i≤k li , and then we give, for all pseudo-derivation

contexts P̃Ci ∈ PDerCtxtli(S) with 1 ≤ i ≤ k , the following defining clauses (i)′–
(iv)′ for the result PC[P̃C1, . . . , P̃Ck] of hole-filling of P̃C1, . . . , P̃Ck into the context-
holes []1, . . . , []k occurring in PC; these four clauses are formed in accordance with
the defining clauses (i)–(iv) in Definition B.2.13:

(i)′ If PC is []i, for some i ∈ {1, . . . , k} , then PC[P̃C1, . . . , P̃Ck] is defined as P̃Ci.

(ii)′ If PC is the marked assumption Au, for some formula A ∈ Fo and a marker
u ∈Mk , then PC[P̃C1, . . . , P̃Ck] is defined to be PC itself.

(iii)′ If PC is of the form (B.28), for some A ∈ Fo and R ∈ nR , then the hole-filling
result PC[P̃C1, . . . , P̃Ck] is also defined to be PC itself.

(iv)′ If PC is a pseudo-derivation that is of the form

PC1 . . . PCn name(R), u1, . . . , um
A

for some A ∈ Fo , R ∈ nR , n ∈ ω\{0} and m ∈ ω , and for some pseudo-
derivations PC1, . . . ,PCn ∈ PDerCtxtk(S) and for some assumption markers
u1, . . . , um ∈Mk , then PC[P̃C1, . . . , P̃Ck] is defined as

PC1[P̃C1, . . . , P̃Ck] . . . PCn[P̃C1, . . . , P̃Ck]
name(R), u1, . . . , um

A

B.2 Abstract Natural-Deduction Systems 385

(for the construction of this prooftree the hole-filling operation has been ap-
plied, using the induction hypothesis of this definition, to the immediate sub-
pseudo-derivation-contexts PC1, . . . ,PCn of PC).

It is easy to verify that in this way the hole-filling function (B.30) is well-defined:
the prooftree PC[P̃C1, . . . , P̃Ck] , which is formed according to this inductive defi-
nition for some PC ∈ PDerCtxtk(S) and P̃C1, . . . , P̃Ck ∈ PDerCtxt(S) is indeed a
pseudo-derivation in S that contains only holes that occur in one of P̃C1, . . . , P̃Ck .

£

For the definition of rule derivability in an ANDS S, we need to be able state
precisely that the operation of hole-filling in a k-ary derivation context PC of an
ANDS S with pseudo-derivations P̃D1, . . . , P̃Dk makes the inference steps within
PC “correct”. In other words, we want a rigidly defined expression that allows us
to formulate, for a k-ary pseudo-derivation context PC and for pseudo-derivations
PD1, . . . ,PDk in an ANDS S, that in the result PC[P̃D1, . . . , P̃Dk] of hole-filling
the part corresponding to PC is a correct ‘derivation-end’ in S: by this we mean more
precisely that each inference figure in PC[P̃D1, . . . , P̃Dk] with rule label rule(R),
for some R ∈ nRS , which originates from an inference figure in PC is a correct
inference step according to an instance of R. For this purpose we introduce, in
the definition below, the notion of “derivation context” in an ANDS, which will
allow us to express the described situation by saying that a k-ary pseudo-derivation
context PC is a “derivation context” with respect to a sequence 〈PD1, . . . ,PDk〉
of pseudo-derivations in S.

Definition B.2.18 (Derivation contexts in ANDS’s). Let S = 〈Fo,Mk,Na,R〉
be an ANDS. In item (I) below we define a notion of “derivation context in S rel-
ative to a sequence of pseudo-derivations in S”. And in item (II), we stipulate a
not relativized version of this notion that does not explicitly refer to a sequence of
pseudo-derivations.

(I) Let k ∈ ω , and let P̃D1, . . . , P̃Dk ∈ PDer(S) be pseudo-derivations.

In the inductive clauses (i)′′–(iv)′′ below, we define, for all pseudo-derivations
contexts PC ∈ PDerCtxtk(S) , the property that “PC is a (k-ary) deriva-
tion context in S with respect to (the sequence) 〈P̃D1, . . . , P̃Dk〉 (of pseudo-
derivations)” by induction on the generation process of pseudo-derivation con-
texts according to the clauses (i)–(iv) in Definition B.2.13.

(i)′′ If PC is []i , for some i ∈ {1, . . . , k} , then PC is a derivation context with
respect to 〈P̃D1, . . . , P̃Dk〉 .

(ii)′′ If PC is a marked formula Au, for all A ∈ Fo and u ∈Mk , then PC is
a derivation context with respect to 〈P̃D1, . . . , P̃Dk〉 .

(iii)′′ If PC is of the form (B.28), for some A ∈ Fo and R ∈ nR , then PC is a
derivation context with respect to 〈P̃D1, . . . , P̃Dk〉 if and only PC is a
derivation in S that results from the empty sequence of derivations in S
by an application of R.

386 Appendix B: Abstract Proof Systems

(iv)′′ If PC is of the form (B.29), for some named rule R ∈ nR , a natural num-
ber n ∈ ω\{0} , k-ary pseudo-derivation contexts PC1, . . . ,PCn in S, for
some formula A ∈ Fo and for some assumption markers u1, . . . , um ∈Mk ,
then PC is a derivation context with respect to 〈P̃D1, . . . , P̃Dk〉 if and
only if the pseudo-derivation PC[P̃D1, . . . , P̃Dk] of the form

PC1[P̃D1, . . . , P̃Dk] . . . PCn[P̃D1, . . . , P̃Dk]
name(R), u1, . . . , um

A

results from 〈PC1[P̃D1, . . . , P̃Dk], . . . ,PCn[P̃D1, . . . , P̃Dk]〉 by an ap-
plication of R, and if furthermore each of PC1, . . . ,PCn is a derivation
context in S with respect to 〈P̃D1, . . . , P̃Dk〉 .

(II) Let k ∈ ω , and let PC ∈ PDerCtxtk(S), i.e. let PC be a k-ary pseudo-derivation
context in S. We say that PC is a k-ary derivation context in S if and only
if there exist pseudo-derivations P̃D1, . . . , P̃Dk ∈ PDer(S) such that PC is
a (k-ary) a derivation context in S with respect to 〈P̃D1, . . . , P̃Dk〉 . We
designate by DerCtxtk(S) the set of all k-ary derivation contexts in S, and
by DerCtxt(S) the set of all derivation contexts in S, i.e. the union, over all
k ∈ ω , of the sets DerCtxtk(S) . The concatenated symbols DC will be used
as syntactical variables for derivation contexts.

£

As the last prerequisite for the definitions of notions of rule derivability and
admissibility in ANDS’s, we introduce a “mimicking relation” between derivations
in an ANDS. We introduce a ‘strict’ form of mimicking relation that relates two
derivations if and only if they have the same conclusion and the same sets of open
assumptions.

Definition B.2.19 (Mimicking (pseudo-)derivations in ANDS’s). Let S1
and S2 be ANDS’s, and let D1 and D2 be (pseudo-)derivations in S1 and in S2,
respectively.

We say that D1 mimics D2 (or that D1 is a mimicking derivation for D2, or
that D2 is mimicked by D1), which assertion we denote by D1 ' D2 , if and only if

D1 ' D2 ⇐⇒def concl(D1) = concl(D2) & omassm(D1) = omassm(D2) (B.31)

holds, i.e. iff D1 and D2 have the same conclusion and the same set of open marked
assumptions. £

Lemma B.2.20. Let S be an ANDS. Let k ∈ ω , and let DC ∈ PDerCtxtk(S) be
a derivation context in S with respect to a sequence 〈PD1, . . . ,PDn〉 of pseudo-
derivations in S. And furthermore let D1, . . . ,Dk be derivations in S that mimic
PD1, . . . ,PDk , respectively.

Then DC[D1, . . . ,Dk] is a derivation in S, which furthermore mimics the pseudo-
derivation DC[PD1, . . . ,PDk] .

B.2 Abstract Natural-Deduction Systems 387

At last we are now in a position to give such definitions for the notions of rule
derivability, “rule cr-correctness”, “rule cr-admissibility”, and rule admissibility, for
which we will then see that for them much carries over from what is known about
the relationships between rule derivability and admissibility in pure Hilbert systems
(as in particular in APHS’s).

Definition B.2.21 (Rule (cr-)admissibility, cr-correctness, and derivabil-
ity in an ANDS). Let S be an ANDS, and let R be an ANDS-rule on FoS

and MkS such that R = 〈Insts, prem, concl, pmassm, dmassm〉 . And let furthermore
S(+R) be an arbitrary extension of S by adding R as a new rule.

(i) The rule R is admissible in S (R is an admissible rule of S) if and only if

S(+R) ∼th S (B.32)

holds, i.e. iff extending S by the new rule R with the result S (+R) does not
lead to more theorems in S(+R) .

(ii) The rule R is cr-correct in S (R is a cr-correct rule for S, or R is a correct
rule for S with respect to the consequence relation `S) if and only if

(∀ι ∈ Insts)
[

(∀i ∈ {1, . . . , arity(ι)})
[
pmassm(i)(ι) `S prem(i)(ι)

]
=⇒

=⇒
((

arity(ι)
⋃

i=1

pmassm(i)(ι)
)
\ dmassm(ι)

)

`S concl(ι)
]

(B.33)

holds, which condition can be paraphrased by saying that the consequence
relation `S on S is invariant under applications of instances of R.

(iii) The rule R is cr-admissible in S (R is a cr-admissible rule of S, or R is
admissible with respect to the consequence relation `S) if and only if

`S(+R) = `S (B.34)

holds, i.e. iff the consequence relations `S(+R) on S(+R) and `S on S (both
defined according to Definition B.2.8) coincide, that is more explicitly, iff

(∀Σ̃ ∈ Pf(mFoS))(∀A ∈ FoS)
[
Σ̃ `S(+R) A ⇐⇒ Σ̃ `S A

]

holds.

(iv) The rule R is derivable in S (R is a derivable rule of S) if and only if

(∀ι ∈ InstsR) (∀n ∈ ω, n = arity(ι))

(∃DC′ ∈ DerCtxtn(S))
(
∀PD ∈ Der(S(+R)))

(
∀PD1, . . . ,PDn ∈ PDer(S)

)

[

PD results from 〈PD1, . . . ,PDn〉 by applying ι

=⇒ DC′ is a derivation context w.r.t. 〈PD1, . . . ,PDn〉

& DC′[PD1, . . . ,PDn] ' PD
]

. (B.35)

388 Appendix B: Abstract Proof Systems

holds, i.e. if and only if every pseudo-derivation PD that results from a fi-
nite sequence 〈PD1, . . . ,PDn〉 of pseudo-derivations in S by applying an
instance of R can be mimicked by a pseudo-derivation in S of the form
DC′[PD1, . . . ,PDn] where DC′ is an n-ary derivation-context in S with re-
spect to 〈PD1, . . . ,PDn〉 . For an illustration of this defining clause see Fig-
ure B.4.

£

Proposition B.2.22. Let S be an ANDS; let R be an ANDS-rule on FoS , MkS .
The stipulations for “R is admissible in S”, “R is cr-admissible in S”, and

“R is derivable in S” in Definition B.2.21 do not depend on the particular choice,
underlying these clauses, of an extension S (+R) of S by adding the new rule R (this
holds trivially for the stipulation of “R is correct for S” because such extensions do
not figure there).

Proof. For the stipulation of rule derivability this is easy to see: only one application
of a named version R of the rule R comes into play in this clause, the application
of R at the bottom of PD, and the name label of this application does not matter
for the condition formulated by this clause.

For the stipulations of rule admissibility and rule cr-admissibility, the statement
of the proposition follows from Proposition B.2.12.

Remark B.2.23. (a) There exists a similarity between the definitions of rule
cr-correctness and rule derivability in ANDS’s that is not immediately appar-
ent from the defining clauses (B.33) and (B.35). It only becomes evident if
the definition of rule cr-correctness is reformulated appropriately.

In order to do so, we let S, R, and S(+R) be as assumed in Definition B.2.21.
Then by expanding (B.33) using the definition of the consequence relation `S
of S in (B.23) and the stipulation for “D results from the sequence 〈. . .〉 of
derivations in S by an application ι of R” in Definition B.2.5 it follows easily:
R is cr-correct for S if and only if every derivation in S (+R) that results from
a finite sequence of derivations in S by applying an instance of R can be
mimicked by a derivation in S. Or more formally, R is cr-correct for S iff the
following holds:

(∀ι ∈ InstsR) (∀n ∈ ω, n = arity(ι))

(∃D′ ∈ Der(S))

(∀D ∈ Der(S(+R))) (∀D1, . . . ,Dn ∈ Der(S))
[
D results from 〈D1, . . . ,Dn〉 by an applying ι =⇒

=⇒ D′ ' D
]
. (B.36)

(For an illustration of this condition see Figure B.5). Assuming that the rule
R is indeed of the form R = 〈Insts, prem, concl, pmassm, dmassm〉 , as presup-
posed in Definition B.2.21, it hence is the case that the clauses (B.33) and

B
.2

A
b
st
ra
c
t
N
a
tu
ra
l-
D
e
d
u
c
ti
o
n
S
y
st
e
m
s

3
8
9

F
ig
u
re

B
.4
:

Il
lu
st
ra
ti
on

of
th
e
d
efi

n
in
g
cl
au

se
(B

.3
5)

fo
r
d
er
iv
ab

il
it
y
of

an
A
N
D
S
-

ru
le
R

w
it
h
re
sp
ec
t
to

an
A
N
D
S
S
:
“m

im
ic
k
in
g”

R
-a
p
p
li
ca
ti
on

s
b
y
ap

p
ro
p
ri
at
e

d
er
iv
at
io
n
co
n
te
x
ts

in
S
.

dmassmR(ι)

concl(PD1)

1

dmassmR(ι)
name(R), u1, . . . , um

1 n

ι

1 n
pmassm

(n)
R (ι) = omassm(PDn)

concl(PDn) =

= prem
(n)
R (ι)

PDn

omassm(PD1) = pmassm
(1)
R (ι)

PD1

= prem
(1)
R (ι)

concl(PD1) =

conclR(ι) =

= concl(PD)

'

PDnPD1

omassm(PD1) omassm(PDn)

n

concl(PDn)

1 n

DC ′

pseudo-derivation DC ′[PD1, . . . ,PDn] in S (+R)

name(. . .)

name(. . .)

name(. . .)

concl(DC ′)

DC ′ is an n-ary pseudo-derivation-context in S

〈PD1, . . . ,PDn〉 of pseudo-derivations in S

with respect to 〈PD1, . . . ,PDn〉

that is also a derivation-context in S

PD results from the sequence

pseudo-derivation PD in S (+R)

by an application of the instance ι of R

(R is the named version of R added to S in S (+R))

390 Appendix B: Abstract Proof Systems

Figure B.5: Illustration of the alternative defining clause (B.36) for cr-correctness
of an ANDS-rule R with respect to an ANDS S: for every derivation D in a system
S(+R) (which is an extension of S by adding a new named version R of the rule R)
that results from a sequence 〈D1, . . . ,Dn〉 of derivations in S by an application of
an instance ι of R, there exists a mimicking derivation D′ in S.

dmassmR(ι)

pmassm
(n)
R (ι) = omassm(Dn)

concl(D1) =

= prem
(1)
R (ι)

name(R), u1, . . . , um

1 n

ι

1 n

= prem
(n)
R (ι)

concl(Dn) =

omassm(D1) = pmassm
(1)
R (ι)

DnD1

'

omassm(D′)

= concl(D)

conclR(ι) =

concl(D′)

D′

D

(B.36) are equivalent; this holds irrespective of which particular extension
S(+R) of S by adding the new rule R has actually been chosen for the clause
(B.36) (this is easy to see, by an analogous argumentation as the one used for
rule derivability in the proof of Proposition B.2.22).

Now, (B.36) and (B.35) are clearly statements of a similar form. And fur-
thermore, it follows easily from Proposition B.2.22 that (B.35) implies (B.36).
That is, derivability of a rule R in an ANDS S implies cr-correctness of R
for S. (In this way we have proved the first sentence of Lemma B.2.24, (ii),
below.)

(b) Because the defining clauses (B.33) and (B.35) for rule cr-correctness and rule
derivability (as well as the alternative one (B.36) for rule cr-correctness) in
ANDS’s are not yet quite illustrative, we want to expand them to reach more
explicit ‘practical usable formulations’ of these clauses. For this, we let S, R,
and S(+R) be given arbitrarily such that the assumption of Definition B.2.21

B.2 Abstract Natural-Deduction Systems 391

is fulfilled; we assume that the named version of R that is added to S in S (+R)

is the named rule R.

For rule cr-correctness we find that R is cr-correct in S if and only if the
following two conditions are fulfilled:

• For every application ι ∈ InstsR with arity(ι) = 0 there exists a deriva-
tion D′ ∈ Der(S) with conclusion concl(ι) and without open assump-
tions.

• For every application ι ∈ InstsR with arity(ι) = n ≥ 1, and for every
derivation D ∈ Der(S(+R)) of the form

D1

prem
(1)
R (ι) . . .

Dn

prem
(n)
R (ι)

name(R), u1, . . . , um
conclR(ι)

(B.37)

that results from the sequence 〈D1, . . . ,Dn〉 of derivations in S by an
application of ι there exists a derivation D′ ∈ Der(S) of the form

D′

conclR(ι)

such that omassm(D′) = omassm(D) .

And concerning rule derivability we find that R is derivable in S if and only
if the following two conditions are satisfied:

• For every application ι ∈ InstsR with arity(ι) = 0 there exists a deriva-
tion D′ ∈ Der(S) with conclusion concl(ι) and without open assump-
tions.

• For every application ι ∈ InstsR with arity(ι) = n ≥ 1, and for every
pseudo-derivation PD ∈ Der(S(+R))

PD1

prem
(1)
R (ι) . . .

PDn

prem
(n)
R (ι)

name(R), u1, . . . , um
conclR(ι)

that results from the sequence 〈PD1, . . . ,PDn〉 of pseudo-derivations in
S by an application of ι there exists a pseudo-derivation PD′ ∈ Der(S)
of the form

PD1

[prem
(1)
R (ι)]1 . . .

PDn

[prem
(n)
R (ι)]n

DC
conclR(ι)

392 Appendix B: Abstract Proof Systems

where DC is an n-ary derivation context in S with respect to the sequence
〈PD1, . . . ,PDn〉 such that omassm(PD′) = omassm(PD) holds, i.e. such
that PD and PD′ have the same open assumptions (and hence PD and
PD′ mimic each other, since they also have the same conclusion).

Now the following lemma is a counterpart in ANDS’s of Lemma B.1.11 with
respect to the four notions “admissible”, “cr-correct”, “cr-admissible”, and “deriv-
able” concerning ANDS-rules. Rule derivability turns out to be similarly behaved
as in APHS’s. Rule admissibility is a weaker notion than any of “derivability”,
“cr-correctness” and “cr-admissibility”; and the latter two notions coincide.

The following lemma contains the useful statement that hole-filling in derivation-
contexts of an ANDS S with derivations of S results in a derivation in S.

Lemma B.2.24. Let S be an ANDS and let R be an ANDS-rule on FoS and MkS .
Then the following statements holds:

(i) R is cr-correct for S ⇐⇒ R is cr-admissible in S .

(ii) If R is derivable in S, then R is also cr-admissible in S. If R is cr-admissible
in S, then R is also admissible in S. Neither implication in the opposite
direction holds in general.

(iii) If R is derivable in S, then R is derivable in every extension by enlargement
of S.

Eventually we turn to the question of what precise consequences the respec-
tive property of a rule R to be either admissible, cr-admissible, or derivable in an
ANDS S has for the possibility to eliminate applications of a named version R of
R from derivations in an extension S(+R) of S by adding the new rule R (in the
form of the named rule R). For this purpose, we define now three abstract notions
of “rule elimination” in an ANDS S, which respectively formulate the conditions
that applications of a named rule R of S “can be eliminated” (i) from arbitrary
derivations in S without open assumptions, (ii) from arbitrary derivations in S, or
(iii) from arbitrary derivation contexts in S ; hereby the expression “can be elimi-
nated” is to be understood as the assertion of the existence of respective mimicking
derivations (that, in case (iii), must be of a certain form).

For the sake of convenience in the formulation of the definition below (as well as
of the subsequent theorem), we reformulate this question as the problem of deter-
mining, for arbitrary ANDS’s S and named rulesR of S, the respective consequences
that admissibility, cr-admissibility and derivability of rule(R) in the ANDS S−R
have for the possibility of eliminating applications of R from derivations in S;
hereby S−R stands for the ANDS 〈Fo,Mk,Na, nR\{R}〉 that results by remov-
ing a named rule R ∈ nR from the set of rules of the ANDS H = 〈Fo,Mk,Na, nR〉
(we will use this notation also in similar situations).

Definition B.2.25 (Three notions of rule elimination). Let S be an ANDS,
and let R be a named rule of S. In the three items below, we respectively define
three notions of “rule elimination”.

B.2 Abstract Natural-Deduction Systems 393

(i) We say thatR-elimination holds in S (or thatR-elimination holds in Der∅(S))
if and only if

(∀D ∈ Der∅(S)) (∃D
′ ∈ Der(S−R))

[
D′ ' D

]
(B.38)

holds, i.e. iff every derivation in S without open assumptions can be mimicked
by a derivation in S that does not contain applications of R.

(ii) We stipulate that R-elimination holds for Der(S) if and only if

(∀D ∈ Der(S)) (∃D′ ∈ Der(S−R))
[
D′ ' D

]
(B.39)

holds, i.e. iff for every derivation in S there exists a mimicking derivation in
S without applications of R.

(iii) We define that R-elimination holds for DerCtxt(S) if and only if

(∀n ∈ ω) (∀DC ∈ PDerCtxtn(S))
(
∀PD1, . . . ,PDn ∈ PDer(S)

)

(∃DC′ ∈ PDerCtxtn(S−R))
[

DC is derivation context w.r.t. 〈PD1, . . . ,PDn〉

=⇒ DC′ is a derivation context w.r.t. 〈PD1, . . . ,PDn〉

& DC′[PD1, . . . ,PDn] ' DC[PD1, . . . ,PDn]
]

(B.40)

holds, i.e. iff, for every pseudo-derivation context DC in S that is a derivation
context with respect to the sequence 〈PD1, . . . ,PDn〉 of pseudo-derivations
in S, the applications of R can be eliminated with the result of a derivation
context DC′ with respect to 〈PD1, . . . ,PDn〉 in S−R such that the respective
results of hole-filling with PD1, . . . ,PDn in DC and in DC′ are mimicking
pseudo-derivations of each other. £

The notions of rule elimination defined in items (i) and (ii) of the definition
above are clearly natural choices for such notions, whereas this is, perhaps, less
obvious for the notion in item (iii). However, it is easy to see the similarity of
the formal condition (B.40) with the defining clause (B.35) for rule derivability
in an ANDS. The relevance of this third notion is furthermore underscored by
the following theorem, which characterizes the three notions of rule elimination in
terms of a respective one from the notions of rule admissibility, cr-admissibility, and
derivability.

Eventually the following theorem establishes respective correspondences between
the three notions of rule elimination defined above with the notions of rule admis-
sibility, cr-admissibility, and derivability in ANDS’s..

Theorem B.2.26 (Rule elimination vs. rule (cr-)admissibility and deriv-
ability). Let S be an ANDS, and let R be a named rule of S. The following three
statements hold:

394 Appendix B: Abstract Proof Systems

(i) R-elimination holds in S ⇐⇒ R is admissible in S−R .

(ii) R-elimination holds in Der(S) ⇐⇒ R is cr-admissible in S−R .

(iii) R-elimination holds in DerCtxt(S) ⇐⇒ R is derivable in S−R .

Appendix C

Derivations in HB=
0

Without Redundancies

In this appendix we are concerned with the depth of derivations inHB=
0 . Our main

theorem here is a bounding function on the depth of derivations inHB=
0 that do not

contain certain kinds of redundancies. Other results provide conditions under which
redundancies of respective kind can effectively be eliminated fromHB=

0 -derivations.
Furthermore, we show two corollaries to the main theorem in this appendix. The
first one states that every derivation D′ in HB=

0 without open assumptions can be
transformed into a derivation D′ in HB=

0 that mimics D and for which its depth
|D′| can be bounded using the assertion of the main theorem. And the second
corollary states that if a derivation D without the mentioned kind of redundancies
contains open assumptions only above a certain limit-height (which depends on the
sizes and syntactical depths of the recursive types in the conclusion of D), then the
open assumptions of D can be eliminated with the result of a derivation D′ in HB=

0

without open assumptions that mimics D.
The results in this appendix are designed to be used as tools for showing termi-

nation of procedures that build up derivations inHB=
0 in a stepwise and systematic

manner. For instance, they can be used to reconstruct the completeness proof that
[BrHe98] have given for the system HB= with respect to recursive type equality
=µ into a completeness proof with respect to =µ of the ‘analytic’ version HB=

0 of
HB= with respect to =µ. In particular, the results here can be applied to show
termination of a procedure analogous to one1 given by [BrHe98] that is able to
build up a derivation D in HB=

0 from an arbitrary given conclusion τ = σ with
τ, σ ∈ µTp such that τ =µ σ .

In the context of the investigations here, results of this appendix are used in
two other situations: namely, for showing termination of the procedures in the

1We refer to Algorithm S in Figure 5 on p.11 in [BrHe98], which is used there to show com-
pleteness of the axiomatization given by Brandt and Henglein of the recursive subtyping relation
≤µ, and we mean a straightforward modification of this algorithm that can be used to show
completeness with respect to =µ of the proof system HB=.

396 Appendix C: Derivations in HB=
0 Without Redundancies

proofs of Lemma 7.2.9 in Section 7.2, and of Theorem 8.2.2 in Section 8.2. In
both of these proofs, sequences SD = 〈D(n)〉n∈I of derivations in HB=

0 of a certain
regular and redundancy-free kind, where I = ω or I = {0, 1, . . . , nmax} for some
nmax ∈ ω , are effectively generated by respective procedures such that the minimal
heights hn of open marked assumptions in HB=

0 are strictly increasing and, if SD
is an infinite sequence, tend to infinity.2 In reasoning about such sequences SD,
respective statements proved in this appendix are then used to show that either
SD cannot be infinite (in the case of the proof for Lemma 7.2.9), or that, if SD is
infinite, then a derivation D′ in HB=

0 with the same conclusion as all derivations in
SD and without open assumptions can effectively be ‘extracted’ from a derivation
D(n) in SD with n “sufficiently large” (in the case of the proof of Theorem 8.2.2).

The main theorem of this appendix, Theorem C.11, states the following: every
derivation D inHB=

0 with or without open assumption classes that does not contain
certain specific kinds of redundancies is bounded in its depth by an easy function
dependent on the sizes and the syntactical depths of the recursive types in the
conclusion of D. Hereby the following three kinds of redundancies will be excluded
from occurring in a derivation D to which the bound stated by this theorem applies:

(Rdcy1) the occurrence in D of two or more successive applications of the bound-
variable renaming rule REN,

(Rdcy2) the occurrence in D of “detours” that are caused by certain applications
of rules FOLDl/r for which there exist applications of rules (µ−⊥)⊥derl/r with
the same conclusion and which will be called “nlµb-decreasing” applications
of FOLDl/r, and

(Rdcy3) the occurrence in D of “detours” of the sort described in the following
remark that arise if the power of the rule ARROW/FIX of HB=

0 to discharge
open assumptions is not used thoroughly enough in D.

Redundancies of kind (Rdcy1) in HB=
0 are the most obvious ones: due to the

transitivity of the variant relation ≡ren on recursive types, successive applications
of REN in a HB=

0 -derivation D can always be replaced by a single application of
REN without affecting the conclusion or the open assumptions of D. Redundancies
of kind (Rdcy2) will be described and treated later (on pages 402–405). We start,
however, by explaining redundancies of kind (Rdcy3), which are related to the use
of the rule ARROW/FIX in a HB=

0 -derivation D for discharging marked formulas
that have been encountered earlier in D.

Remark C.1 (Redundancies of kind (Rdcy3) in HB=
0 -derivations). Sup-

pose that a derivation D in HB=
0 is given that possibly contains open assumption

2In the case of the proof of Theorem 8.2.2 such a sequence is only encountered indirectly as the

sequence 〈dD(n)e
{ui}i
HB

=

0

〉n∈I of HB=

0
-end-derivations of some sequence 〈D(n)〉n∈I of derivations

with the same conclusions in the extension of HB=

0
with SYMM and the generalized transitivity

rules {TRANSk}k.

397

classes and that is of the form

D3

(τ ′1 → τ ′2 = σ′1 → σ′2)

DC1
τ1 = σ1

D2

τ2 = σ2 ARROW
or ARROW/FIX, u(τ1 → τ2 = σ1 → σ2)

DC0
τ = σ

(C.1)

with some τ1, τ2, σ1, σ2, τ
′
1, τ

′
2, σ

′
1, σ

′
2 ∈ µTp such that, for each i ∈ {1, 2} , τ ′i ≡ren τi

and σ′i ≡ren σi is the case, with derivation contexts DC0 and DC1, subderivations
D2 and D3, and with conclusion τ = σ , for some τ, σ ∈ µTp .

In this situation we observe the following: if the subderivation D3 of D consists
of anything else but of a single marked assumption (τ1 → τ2 = σ1 → σ2)

u that is
followed, down to the conclusion τ ′1 → τ ′2 = σ′1 → σ′2 of D3, by zero, one or more
applications of REN, and that is, as a marked assumption in D, discharged at
precisely the displayed application of ARROW/FIX (in which case the displayed
application can therefore not be an application of ARROW), then the subderivation
D3 of D can be looked upon as an unnecessary detour of D (we will later also speak
of D3 of a detour subderivation of D) This is because in this case the derivation
D can be shortened by replacing D3 through a single application of REN whose
premise is a marked assumption that is discharged in the resulting derivation D′:
More precisely, D can be transformed into the derivation D′ of the simpler form

(τ1 → τ2 = σ1 → σ2)
v

REN
(τ ′1 → τ ′2 = σ′1 → σ′2)

DC1
τ1 = σ1

D
([v/u])
2

τ2 = σ2 ARROW/FIX, v
(τ1 → τ2 = σ1 → σ2)

DC0
τ = σ

(C.2)

where v is a fresh assumption marker not present in D, and D
([v/u])
2 is either D2,

if the displayed rule application in (C.1) is an application of ARROW, or, if the
displayed rule application in (C.1) is an application of ARROW/FIX at which as-
sumptions (τ1 → τ2 = σ1 → σ2)

u are discharged, it results from D2 by replacing
the open marked assumptions (τ1 → τ2 = σ1 → σ2)

u by the open marked assump-
tions (τ1 → τ2 = σ1 → σ2)

v . Hence the marked assumption (τ1 → τ2 = σ1 → σ2)
v

in (C.2) is discharged at the displayed application of ARROW/FIX. The derivation
D′ has the same conclusion as D and possibly fewer open assumptions, that is, D′

mimics D.
Obviously, an analogous situation as (C.1) arises if there is an occurrence of the

formula τ ′1 → τ ′2 = σ′1 → σ′2 with a similar property at the top of the subderivation

398 Appendix C: Derivations in HB=
0 Without Redundancies

D2 of D instead of at the top of the subderivation DC1 as is the case in the symbolic
prooftree (C.1).

With respect to notions introduced in two definitions below, we will say, for
a derivation D of the form (C.1) and with the properties supposed above on the
occurring subderivations and recursive types, that the displayed formula occurrence
τ ′1 → τ ′2 = σ′1 → σ′2 is not “associated with an assumption of D” nor “associated
with a discharged assumption of D”, and that due to this “D does not fulfill the
condition ADA”. And in the special situation that the subderivation D3 in a
derivation D of the form (C.1) consists only of a sequence of REN-applications with
an open marked assumption of D at its top, we will say that “D does not fulfill the
condition AA”.

In the following definition we introduce two designations for such formula occur-
rences in HB=

0 -derivations that are not the conclusion of a ‘detour’ derivation as
described in Remark C.1. We stipulate an occurrence of a formula in aHB=

0 -deriva-
tion to be “associated with an assumption” if and only if there are only REN-appli-
cations and a marked assumption above this formula occurrence; and we define in
a similar way when a formula occurrence in a HB=

0 -derivation is “associated with
a discharged assumption”.

Definition C.2. (Formula-occurrences in HB=
0 -derivations that are asso-

ciated with assumptions). Let D be a derivation in HB=
0 with possibly

open assumptions. Furthermore, let an occurrence of a formula χ1 = χ2 , for some
χ1, χ2 ∈ µTp , in D be considered.

(i) We say that the considered formula occurrence of χ1 = χ2 in D is associated
with an assumption of D if and only if it is reachable from a marked assump-
tion at the top of D by a thread in D which only passes applications of rules
REN (in particular this is the case if the considered formula occurrence takes
place within a marked assumption of D).

(ii) We say that the considered formula occurrence of χ1 = χ2 in D is associated
with a discharged assumption of D if and only if it is reachable by a thread
in D which passes only applications of rules REN from an assumption of D
at the top that is discharged in D (again, this is the case in particular if the
considered formula occurrence takes place within a marked assumption of D
that is discharged in D).

£

Now we define two properties of HB=
0 -derivations, fulfilledness of the condition

AA, and fulfilledness of the condition ADA. Hereby condition ADA is designed
for the purpose of excluding detours in HB=

0 -derivations of the kind described in
Remark C.1; and condition AA is a weakening of condition ADA.

Definition C.3 (The conditions AA and ADA for HB=
0 -derivations). Let

D be a derivation in HB=
0 that possibly contains open assumption classes.

399

(i) We say that D satisfies, or fulfills, the condition AA (“association with as-
sumptions”) if and only if the following holds: Each formula occurrence o in
D of a formula τ ′1 → τ ′2 = σ′1 → σ′2 , for some τ ′1, τ

′
2, σ

′
1, σ

′
2 ∈ µTp, for which

the assertion

“On the thread downwards from the formula occurrence o to
the conclusion of D, after passing at least one application of a
rule that is different from REN, a formula τ1 → τ2 = σ1 → σ2
is encountered, where τ1, τ2, σ1, σ2 ∈ µTp such that τi ≡ren τ

′
i

and σi ≡ren σ
′
i for each i ∈ {1, 2} .”

(C.3)

holds, is associated with an assumption of D.

(ii) We say that D satisfies, or fulfills, the condition ADA (“association with
discharged assumptions”) if and only if the following holds: Each formula
occurrence in D of a formula τ ′1 → τ ′2 = σ′1 → σ′2 , for some τ ′1, τ

′
2, σ

′
1, σ

′
2 ∈ µTp,

for which (C.3) holds, is associated with a discharged assumption of D.

£

Obviously, the condition ADA is stronger than the condition AA, i.e. every
derivation in HB=

0 that fulfills ADA fulfills AA as well; and it is easy to give
examples showing that the reverse implication is not the case. Furthermore, we
observe the following consequence of the fact that the only two rules of HB=

0

apart from the rule REN that have applications with formulas τ1 → τ2 = σ1 → σ2
as conclusions, are the rules ARROW and ARROW/FIX: The assertion (C.3) in
Definition C.3 can be replaced by the assertion

“On the thread downwards from the formula occurrence o to the
conclusion of D, after passing at least one application of ARROW or
ARROW/FIX, a formula τ1 → τ2 = σ1 → σ2 is encountered, where
τ1, τ2, σ1, σ2 ∈ µTp such that τi ≡ren τ

′
i and σi ≡ren σ

′
i for each

i ∈ {1, 2} .”

(C.4)

without changing the respective definitions of the conditions AA and ADA. This
observation implies the following proposition.

Proposition C.4. Let D be a derivation in HB=
0 that possibly contains open as-

sumption classes. Then the following two statements holds:

(i) D does not fulfill the condition AA if and only if D can be represented by a
symbolic prooftree of the form

D2

(τ ′1 → τ ′2 = σ′1 → σ′2)

DC1. ARROW or ARROW/FIX
(τ1 → τ2 = σ1 → σ2)

DC0

(C.5)

400 Appendix C: Derivations in HB=
0 Without Redundancies

with τ1, τ2, τ
′
1, τ

′
2, σ1, σ2, σ

′
1, σ

′
2 ∈ µTp such that τ1 → τ2 ≡ren τ

′
1 → τ ′2 and also

σ1 → σ2 ≡ren σ
′
1 → σ′2 holds, with derivation contexts DC0 and DC1, and with

a subderivation D2 that contains at least one application of a rule different
from REN.

(ii) If D does not fulfill the condition ADA if and only if D can be represented by
a symbolic prooftree of the form (C.5) with τ1, τ2, τ

′
1, τ

′
2, σ1, σ2, σ

′
1, σ

′
2 ∈ µTp

such that τ1 → τ2 ≡ren τ ′1 → τ ′2 and σ1 → σ2 ≡ren σ′1 → σ′2 holds, with
derivation contexts DC0 and DC1, and with a subderivation D2 such that

• D2 contains at least one rule application different from REN, or

• D2 consists of a (possibly empty) sequence of REN-applications below a
marked assumption that in D corresponds to an open marked assumption.

Proof. The proposition is an obvious consequence of Definition C.3 and the fact
mentioned previous to its statement that the assertion (C.3) in Definition C.3 can
be replaced by the assertion (C.4) without changing this definition.

It is easy to conclude from Proposition C.4, (ii), that a HB=
0 -derivation D

contains a detour in the sense of Remark C.1 if and only if D does not fulfill
the condition ADA. Now we define a “violation of the condition ADA” in a
HB=

0 -derivation D to be such a formula occurrences in D that is the conclusion
of a detour subderivation in the sense of Remark C.1. And similarly, we define
“violations of the condition AA”.

Definition C.5 (Violations of the conditions AA and ADA). Let D be a
derivation in HB=

0 .

(i) Let D be a derivation inHB=
0 that can be represented as a symbolic prooftree

of the form (C.5) with τ1, τ2, τ
′
1, τ

′
2, σ1, σ2, σ

′
1, σ

′
2 ∈ µTp such that τ1 → τ2 ≡ren

≡ren τ
′
1 → τ ′2 and σ1 → σ2 ≡ren σ′1 → σ′2 holds, with derivation contexts DC0

and DC1, and with a subderivation D2 that contains at least one application
of a rule different from REN (due to Proposition C.4 this means that D does
not fulfill the condition AA). Then we say that the occurrence of the formula
τ ′1 → τ ′2 = σ′1 → σ′2 in (C.5) is a violation of the condition AA in D.

(ii) Let D be a derivation inHB=
0 that can be represented by a symbolic prooftree

of the form (C.5) with τ1, τ2, τ
′
1, τ

′
2, σ1, σ2, σ

′
1, σ

′
2 ∈ µTp such that τ1 → τ2 ≡ren

≡ren τ ′1 → τ ′2 and σ1 → σ2 ≡ren σ′1 → σ′2 holds, with derivation contexts
DC0 and DC1, and with a subderivation D2 that contains at least one rule
application different from REN or that consists of a (possibly empty) sequence
of REN-applications below a marked assumption that in D corresponds to an
open marked assumption (due to Proposition C.4 this means that D does not
fulfill the condition ADA). Then we say that the occurrence of the formula
τ ′1 → τ ′2 = σ′1 → σ′2 in (C.5) is a violation of the condition ADA in D.

£

401

The following proposition formalizes the following easy observation: In the sys-
tem HB=

0 every derivation D that does not violate the binding condition AA or
equivalently, that satisfies AA, is actually very near to a derivation D′ that satisfies
ADA and that can be easily reached from D. Transforming D to such a derivation
D′ involves hereby only the operations of extending D above some of its leaves by
additional applications of REN and of binding back such additionally arising as-
sumptions to existing applications of ARROW/FIX or of ARROW in D, which in
the case of existing applications of ARROW however means to change these into
applications of ARROW/FIX.

Proposition C.6. (Removing violations of ADA from HB=
0 -derivations

that fulfill AA). Every derivation D in HB=
0 with possibly open assumption

classes that fulfills the condition AA can effectively be transformed into a derivation
D′ that mimics D and that satisfies ADA.

Sketch of Proof. Since this proposition follows from Proposition C.7 below, we only
sketch the proof here, which proceeds by induction on the number #VADA(D) of
violations of the condition ADA in a derivation D in HB=

0 .
Let D be a derivation in HB=

0 that fulfills AA, but not ADA. Then D contains
violations of ADA that are not violations of ADA. These violations can succes-
sively be eliminated. By displaying an arbitrary violation of ADA in D (that hence
is not also a violation of AA), an occurrence of the formula τ ′1 → τ ′2 = σ′1 → σ′2 ,
the derivation D can be represented as a prooftree of the form (C.5) with the
recursive types, derivation contexts and derivations as in Proposition C.4, (ii);
in particular, D2 contains only applications of REN below a marked assumption
of the form τ ′′1 → τ ′′2 = σ′′1 → σ′′2 , for some τ ′′1 , τ

′′
2 , σ

′′
1 , σ

′′
2 ∈ µTp such such that

τ ′′1 → τ ′′2 ≡ren τ1 → τ2 and σ′′1 → σ′′2 ≡ren σ1 → σ2 .
By extending D2 within D by an additional REN-application with the marked

assumption (τ1 → τ2 = σ1 → σ2)
u as assumption, by changing the bottommost

rule application in DC1 into an application of ARROW/FIX at which assumptions
marked by u are discharged, and by some necessary marker renaming in DC1, D
can be transformed into a derivation D(1) that still fulfills AA, but that has one vi-
olation of ADA less than D. All other violations of ADA in D(1) can subsequently
be eliminated in a similar way.

It is also possible to transform effectively every given HB=
0 -derivation D with

possibly open assumption classes into a derivation D′ in HB=
0 with the same con-

clusion and the same or fewer open assumption classes as D, such that D′ satisfies
ADA. In this case, however, discharging open assumptions appropriately is not
sufficient. Here also all detours of the form as described in Remark C.1 have to be
“axed out” successively in the manner as explained in this remark.

Proposition C.7 (Removing violations of ADA from HB=
0 -derivations).

Every derivation D in HB=
0 , which possibly contains open assumption classes, can

effectively be transformed into a derivation D′ that mimics D and that fulfills the
condition ADA.

402 Appendix C: Derivations in HB=
0 Without Redundancies

Proof. This can be shown by induction on the number #VADA(D) of violations of
the condition ADA in a HB=

0 -derivation D.
In the base case of the induction, where #VADA(D) = 0, nothing has to be

shown.
For treatment of the induction step, let nowD be an arbitrary derivation inHB=

0

with #VADA(D) = n > 0. Then D can be represented by a symbolic prooftree of the
form (C.4) with τ1, τ2, τ

′
1, τ

′
2, σ1, σ2, σ

′
1, σ

′
2 ∈ µTp such that τ1 → τ2 ≡ren τ ′1 → τ ′2

and σ1 → σ2 ≡ren σ′1 → σ′2 holds, with derivation contexts DC0 and DC1, and
with a subderivation D2 such that the displayed occurrence of τ ′1 → τ ′2 = σ′1 → σ′2
is a violation of the condition ADA in D. By applying the kind of simplification
explained in Remark C.1, D can be transformed into a derivation D(1) in HB=

0 of
the form

(τ1 → τ2 = σ1 → σ2)
u

VAR
(τ ′1 → τ ′2 = σ′1 → σ′2)

DC′1. ARROW/FIX, u
(τ1 → τ2 = σ1 → σ2)

DC0

for some assumption marker u and for a derivation context DC ′1 that results from
DC1 by renaming the assumption markers of the assumptions (possibly) discharged
at the bottommost rule application in DC1 to u, such that D(1) mimics D (since it
has the same conclusion as D, but equally many or less open assumption classes)
and such that #VADA(D(1)) < #VADA(D) holds. By applying the induction hy-
pothesis, D(1) can be transformed into a derivation D′ in HB=

0 that mimics D(1),
that hence also mimics D, and that fulfills the condition ADA.

In the following remark we describe what we mean by redundancies of the kind
(Rdcy2) mentioned earlier.

Remark C.8 (Redundancies of kind (Rdcy2) in HB=
0 -derivations). It fol-

lows from Lemma 7.1.1, (ii), that for all τ0 ∈ µTp and α ∈ TVar the following
holds:

α ↓ τ0 ⇐⇒ nlµb(τ0[µα. τ0/α]) < nlµb(µα. τ0)

⇐⇒ nlµb(τ0[µα. τ0/α]) = nlµb(µα. τ0)− 1 .

}

(C.6)

Due to this, applications of the rule FOLDl of the particular kind

τ0[µα. τ0/α] = σ
FOLDl (where α 6 ↓ τ0),

µα. τ0 = σ
(C.7)

where τ0, σ ∈ µTp and α ∈ TVar , are precisely those applications of FOLDl in
which the number nlµb(·) of leading µ-bindings either stays the same or actually
decreases in the recursive type that gets folded, i.e. from nlµb(τ0[µα. τ0/α]) to
nlµb(µα. τ0) . An analogous assertion holds clearly also for applications of the rule
FOLDr. We will call applications of FOLDl of the form (C.7) as well as similar
applications of FOLDr “nlµb-decreasing” (see Definition C.9 below).

403

Such applications of FOLDl or FOLDr are the cause of redundancies inHB
=
0 -deri-

vations because they enable detour-loops like in a derivation of the form

...
µαα1. α = σ

FOLDlµα1αα1. α = σ
FOLDl (*)

µαα1. α = σ

as well as in similar derivations. It is hereby just the application of FOLDl labeled by
(*) that is of the form (C.7), due to α 6 ↓ µα1. α; the previous application of FOLDl is
of a different kind because α1 ↓ µαα1. α holds as a consequence of α1 /∈ fv(µαα1. α).

Applications of FOLDl of the form (C.7), and analogous applications of FOLDr

will be excluded from appearing in such HB=
0 -derivations D for which of the main

theorem in this appendix, Theorem C.11, states a bound on its depth |D|. How-
ever, we will see first that as a consequence of Lemma C.10 below, nlµb-decreasing
applications of FOLDl/r can always be removed from derivations in HB=

0 without
open assumptions in a very easy way.

The explanations in Remark C.8 above justify the following definition.

Definition C.9 (nlµb-decreasing FOLDl/r-applications). Let τ0, σ ∈ µTp ,
α ∈ TVar , and let an application of FOLDl or of FOLDr of the respective form

τ0[µα. τ0/α] = σ
FOLDlµα. τ0 = σ

or
σ = τ0[µα. τ0/α]

FOLDrσ = µα. τ0
(C.8)

be given. We call this application nlµb-decreasing if and only if α 6 ↓ τ0 holds. £

The statement of the following lemma is slightly more general than the asser-
tion mentioned at the end of Remark C.8. It states that redundancies of the kind
(Rdcy2) can always be removed from derivations without assumptions in the ex-
tension of HB=

0 with the rules SYMM, TRANS, and {TRANSk}k (the generalized
transitivity rules introduced in Definition 8.2.8, Section 8.2) with the result of re-
spective mimicking derivations. For use in this lemma, we define the set

BOT =def

{
µα1 . . . αn.⊥ | n ∈ ω, α1, . . . , αn ∈ TVar

}
∪

∪
{
µα1, . . . , αn. αi | n ∈ ω, α1, . . . , αn ∈ TVar, i ∈ {1, . . . , n}

}
.

It is easy to prove that BOT is the set of all recursive types that have ⊥ as their
leading symbol.

Lemma C.10. The following three assertions hold:

(i) For all ρ, χ ∈ BOT, a derivation D(ρ=χ) in HB=
0 with conclusion ρ = χ and

without open assumptions can effectively be constructed such that D(ρ=χ) con-
tains neither nlµb-decreasing applications of rules FOLDl/r nor applications
of REN.

404 Appendix C: Derivations in HB=
0 Without Redundancies

(ii) Let D be a derivation in HB=
0 +SYMM+TRANS+ {TRANSk}k of the form

Da
(ρ = χ)

DC0
τ = σ

(C.9)

with conclusion τ = σ , for some τ, σ ∈ µTp , without open assumptions and
where ρ = χ is an occurrence of an equation between recursive types such that
ρ ∈ BOT or χ ∈ BOT is the case.

Then it follows that the subderivation Da of D does not contain open assump-
tions and that both ρ ∈ BOT and χ ∈ BOT is the case.

(iii) Every derivation D in HB=
0 +SYMM+TRANS+ {TRANSk}k without open

assumptions can effectively be transformed into a derivation D′ in HB=
0 +

+SYMM+TRANS+ {TRANSk}k that mimics D and that does not contain
nlµb-decreasing applications of FOLDl/r.

Proof. We demonstrate the assertions (i), (ii), and (iii) of the lemma in the three
items (a), (b), and (c) below, respectively.

(a) Instead of proving the assertion in item (i) of the lemma formally, we only
give a typical example for a derivation D(ρ=χ) in HB

=
0 ; it is easy to convert

the idea exhibited in this example into a formal proof. For the two recursive
types µα2α1α2. α1 and µβγ.⊥ in BOT the following is a desired deriva-
tion D(µα2α1α2. α1=µβγ.⊥) in HB=

0 without open assumptions and without
nlµb-decreasing applications of FOLDl/r :

(REFL)

⊥ = ⊥
(µ−⊥)⊥derl

µα1α2. α1 = ⊥
FOLDl

µα2α1α2. α1 = ⊥
FOLDr

µα2α1α2. α1 = µγ.⊥
FOLDr

µα2α1α2. α1 = µβγ.⊥

(b) Assertion (ii) of the lemma can be shown in a straightforward way by induc-
tion on the depth |Da| of the subderivation Da in a derivation D in HB=

0 +
+SYMM+TRANS+ {TRANSk}k without open assumption classes that is
of the form (C.9) such that ρ ∈ BOT or χ ∈ BOT. In the induction step the
easy verifiable fact is used that the set BOT is closed under conversions with
respect to the reduction relation →r/o-u(µ⊥)′ from Definition 5.3.5.

(c) Assertion (iii) of the lemma can be shown by induction on the number of
nlµb-decreasing applications of FOLDl/r in a derivationD inHB=

0 +SYMM+
+TRANS+ {TRANSk}k.

405

The base case of the induction is obvious.

For the induction step, let D be a derivation in the system HB=
0 +SYMM+

+TRANS+ {TRANSk}k without open assumptions that contains at least one
nlµb-decreasing application of FOLDl/r. Then, with respect to a particular
nlµb-decreasing application of FOLDl that is exhibited, D can be represented
as of the form

Da
ρ0[µα. ρ0/α] = χ
. FOLDl

(µα. ρ0 = χ)

DC0
τ = σ

(C.10)

for some τ, σ, µα. ρ0, χ ∈ µTp such that α ↓ ρ0 holds, and for a subderivation
Da and a derivation context DC0 ; in case that D contains only nlµb-decreas-
ing applications of FOLDr, it can be argued analogously as below. Since
α 6 ↓ ρ0 holds, it follows by Lemma 7.1.1, (i), that ρ0 ≡ µα1 . . . αn. α for
some α1, . . . , αn ∈ TVar and α 6≡ α1, . . . , αn . This entails µα. ρ0 ∈ BOT.
Assertion (ii) of the lemma now implies that also χ ∈ BOT holds. Hence by
assertion (i) of the lemma, a derivation D(µα. ρ0=χ) inHB

=
0 exists that mimics

Da. Therefore Da can be replaced within D by D(µα. ρ0=χ), with the result of

a derivation D̃′ of the form

D(µα. ρ0=χ)

(µα. ρ0 = χ)

DC0
τ = σ

that mimics D and that contains at least one nlµb-decreasing application of
FOLDl/r less than D. Now it follows by the induction hypothesis that D̃′ can
effectively be transformed into a derivation D′ in HB=

0 +SYMM+TRANS+
+ {TRANSk}k that mimics D̃′, and hence that also mimics D, such that D′

does not contain any nlµb-decreasing applications of FOLDl/r.

Now we formulate, and then we prove, the main theorem of this appendix. It
states that, for a derivation D in HB=

0 without redundancies of the kinds (Rdcy1),
(Rdcy2), and (Rdcy3), the depth |D| of D is essentially bounded by a multiple of
the product of the sizes of the recursive types τ and σ in the conclusion τ = σ of
D.

Theorem C.11 (An upper bound for ‘not redundant’ HB=
0 -derivations).

Let D be a derivation in HB=
0 with possibly open assumption classes such that the

following three conditions hold:

(i) D does not contain two successive applications of the rule REN.

406 Appendix C: Derivations in HB=
0 Without Redundancies

(ii) D does not contain nlµb-decreasing applications of FOLDl/r.

(iii) D fulfills the condition AA.

Then the depth of D can be bounded by

|D| < 2
(
(s(τ) + 1)(s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
. (C.11)

This theorem will be proved below on p. 406 after stating and proving the
following lemma, which asserts that at least every HB=

0 -derivation D without open
assumptions can be transformed into a mimicking derivation D′ for D that fulfills
the hypotheses of Theorem C.11.

Lemma C.12. Every derivation D in HB=
0 without open assumptions can effec-

tively be transformed into a derivation D′ in HB=
0 without open assumptions and

with the same conclusion as D such that D′ fulfills the conditions (i), (ii) and (iii)
in Theorem C.11, and such that D′ furthermore satisfies the condition ADA.

Proof. Let D be an arbitrary derivation in HB=
0 without open assumptions.

In a first step, D can effectively be transformed, due to Lemma C.10, (iii), and
more precisely, due to the transformation described in the proof of this statement,
into a derivation D(1) in HB=

0 that fulfills condition (ii) in Theorem C.11 and that
mimics D.

In a second step, D(1) can effectively be transformed, due to Proposition C.7,
into a derivation D(2) in HB=

0 that mimics D(1) as well as D, and that fulfills the
condition ADA. Since in the transformation described in the proof of Proposi-
tion C.7 no applications of rules FOLDl/r are introduced, D

(2) fulfills, as does D(1),
the condition (ii) in Theorem C.11.

By ‘contracting’, in a third step, each sequence of two or more successive ap-
plications of REN into a single application of REN, a derivation D′ in HB=

0 that
mimics D(2), that hence also mimics D, and that fulfills the conditions (i), (ii), and
(iii) in Theorem C.11 can effectively be found (none of the properties (ii) and (iii)
in Theorem C.11 are affected by ‘contracting’ REN-applications); furthermore D′

obviously still fulfills the condition ADA.
In this way we have effectively produced from D a derivation D′ in HB=

0 with-
out open assumptions and with the same conclusion as D such that D′ fulfills the
hypotheses of Theorem C.11 and such that D′ even satisfies the condition ADA.

Proof of Theorem C.11. We will prove the theorem by showing the following log-
ically equivalent statement: For every derivation D in HB=

0 with possibly open
assumption classes that satisfies the conditions (i) and (ii) in the theorem and that
has a depth greater or equal to the expression on the right-hand side of (C.11), it
is the case that the condition AA is violated, i.e. the condition (iii) in the theorem
does not hold for D.

For showing this, we let τ, σ ∈ µTp be arbitrary and we let D be an arbitrary
derivation in HB=

0 with conclusion τ = σ , with possibly open assumption classes,

407

and with the properties that D does not contain two successive applications of
REN nor any applications of FOLDl/r of the form excluded by condition (ii) in the
theorem, and that

n =def |D| ≥ 2
(
(s(τ) + 1)(s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
. (C.12)

holds. We will show that D violates the condition AA.
Assumption (C.12) means that there exists a thread from one of the leaves of D

downwards to its conclusion of D that is of length n. We choose such a thread Θ
and write it as

τn = σn. Rn
τn−1 = σn−1

...

τ1 = σ1. R0
τ0 = σ0

Θ (C.13)

with some τ0, . . . , τn, σ0, . . . , σn ∈ µTp such that τ0 ≡ τ and σ0 ≡ σ and where
the dotted lines in Θ indicate the respective rule applications that are passed on
Θ in D. In (C.13) we have also labeled these dotted lines with the names of the
corresponding rules Ri, where i ∈ {0, . . . , n} , respective applications of which are
passed on Θ in D.

We define the function f : {0, 1, . . . , n} → ω inductively by the clauses

f(0) =def 0 ,

and for all i ∈ {0, . . . , n− 1} :

f(i+ 1) =def

{

f(i) . . . if Ri = REN

f(i) + 1 . . . else .

(C.14)

Now we set
ñ =def f(n) . (C.15)

By this definition f is monotonously increasing and has range ran(f) = {0, 1, . . . , ñ}.
Its definition can be understood as follows: The value f(i) of f , for an arbitrary ar-
gument i ∈ {0, 1, . . . , n} , is precisely the number of rule applications different from
REN that are passed on Θ in D below the occurrence of the equation τi = σi in Θ.
Hence ñ is the total number of all applications of non-REN-rules that are passed
on the thread Θ in D. Since D does not contain any two successive applications of
REN by assumption, it follows that:

(∀ i ∈ {0, . . . , n})
[
i ≤ 2f(i) + 1

]
. (C.16)

We also define the following function

g : {0, 1, . . . , ñ} −→ {0, 1, . . . , n}

i∗ 7−→ max(f−1({i∗})) ,
(C.17)

408 Appendix C: Derivations in HB=
0 Without Redundancies

which is well-defined since ran(f) = {0, 1, . . . , ñ} . As an aside, we note that, for
all i∗ ∈ {0, . . . , ñ} , |f−1({i∗})| ≤ 2 holds, since by assumption (condition (i) of
the theorem holds for D) there are no two successive applications of REN in D.
It follows from the definition of g that this function ‘inverts’ f in the sense that
f ◦ g = id{0,...,ñ} holds. And furthermore, g is strictly increasing as a consequence
of its definition together with the fact that f is non-decreasing.

We now let
ñ0 =def (s(τ) + 1)(s(σ) + 1) . (C.18)

Since by the definition of n in (C.12) 2 ñ0 + 1 < n follows, we find from (C.16) that

2 ñ0 + 1 ≤ 2 f(2 ñ0 + 1) + 1 and from this3 ñ0 ≤ f(2 ñ0 + 1) ≤ f(n) = ñ .

Because this entails ñ0 ∈ dom(g) , we are able to define

n0 =def g(ñ0) . (C.19)

Another application of (C.16), and the fact that g inverts f leads us to:

n0 = g(ñ0) ≤ 2 f(g(ñ0)) + 1 = 2 ñ0 + 1 . (C.20)

By Proposition 5.1.17, the fact that the proof system HB=
0 obeys the subformula

property SP1, it follows that the derivation D fulfills SP1 (cf. Definition 5.1.16).
This implies

(∀i ∈ {0, 1, . . . , n})
[
τi v

′ τ0 & σi v
′ σ0

]
,

i.e. that, for every equation τi = σi in the thread Θ, τi is a →roud⊥-generated
subterm of τ0 and σi is a →roud⊥-generated subterm of σ0. Due to this, we find the
following, using Corollary 3.9.24:

∣
∣
{
([τg(i∗)]≡ren , [σg(i∗)]≡ren) | i

∗ ∈ {0, 1, . . . , ñ0}
}∣
∣ ≤

≤ |{ ([τi]≡ren , [σi]≡ren) | i ∈ {0, 1, . . . , n0} }| ≤

≤ |G′∗(τ)× G
′
∗(σ)| ≤ (s(τ) + 1) (s(σ) + 1) = ñ0 .

(C.21)

Now due to the pidgin-hole principle it follows from (C.21) that

(∃ 0 ≤ i∗ < j∗ ≤ ñ0)
[
τg(i∗) ≡ren τg(j∗) & σg(i∗) ≡ren σg(j∗)

]
. (C.22)

Via a translation i∗ 7→ g(i∗) , this implies the assertion

(∃ 0 ≤ i < j ≤ n0)
[
f(i) 6= f(j) & τi ≡ren τj & σi ≡ren σj

]
(C.23)

because g is strictly increasing. Due to this, we are entitled to choose i and j as
follows: Let (i, j) ∈ {0, 1, . . . , n0} × {0, 1, . . . , n0} be the minimal possible pair with
the property

i < j and f(i) < f(j) and (C.24)

τi ≡ren τj and σi ≡ren σj . (C.25)

3By taking a closer look it is possible to conclude that also ñ0 < ñ holds. This stronger
statement is not necessary at this stage, but it will be shown and used below (cf. (C.30)).

409

Since f(i) < f(j) , there is at least one application of a rule 6= REN passed on Θ
in D between the occurrences of τj = σj and of τi = σi ; the thread Θ can thus be
written as of the form

τn = σn. Rn
τn−1 = σn−1

...

τj = σj
. at least one rule 6= REN is passed
τi = σi

...

τ1 = σ1. R0
τ = σ

Θ (C.26)

where we know (C.25) about τi, τj and σi, σj .

It is not possible that on the thread Θ an application of (µ−⊥)⊥derl/r would be
passed in D between the equalities τj = σj and τi = σi : if namely, for example,
an application of (µ−⊥)⊥derl were passed in D on this section of Θ, then by the
fulfilledness of the subformula property SP1 for D it would follow ⊥³roud⊥ τj and
τi ³roud⊥ µαα1 . . . αn. α , for some α, α1, . . . , αn ∈ TVar . This implies τj ≡ ⊥ and
τi 6≡ ⊥ , and hence τi 6≡ren τj in contradiction with (C.25).

Furthermore it is also not possible that all applications of rules different from
REN that are passed in this part of the thread Θ are applications of FOLDl/r. This
is a consequence of the fact that D does not contain such applications of FOLDl/r

in which the number nlµb(·) of leading µ-bindings stayed the same or decreased in
the recursive type that gets folded (this holds, in view of cf. Remark C.8 and in
particular in view of (C.6), because condition (ii) of Theorem C.11 is true for D) and
that therefore each application of FOLDl/r in D strictly increases by 1 the number
of leading µ-bindings in the recursive type that gets folded. Suppose namely that
all applications of rules different from REN in the part of Θ in D between τj = σj
and τi = σi are applications of rules FOLDl/r. Since by what we already know
about Θ, there is at least one application of a rule different from REN passed in
D on this section of the thread Θ, it would follow that nlµb(τi) > nlµb(τj) or
nlµb(σi) > nlµb(σj) true in contradiction with (C.25) in view of Proposition 3.5.6.

From this we conclude that there must exist at least one application of a
HB=

0 -rule different from (µ−⊥)⊥derl/r , FOLDl/r and REN in the part between the
occurrences of the formulas τi = σi and τj = σj in the thread Θ. This part must
therefore contain a rule ARROW or ARROW/FIX and can hence be represented

410 Appendix C: Derivations in HB=
0 Without Redundancies

as of the form

τj = σj

...

τk+1 = σk+1. ARROW or ARROW/FIX
τk = σk
. (REN∗; FOLDl/r; REN

∗)m

τi = σi

Θ (C.27)

where k ∈ {i, i+ 1, . . . , j}

m = nlµb(τi) + nlµb(σi) (C.28)

(that m is precisely the number of applications of FOLDl/r in the sequence of rules
Ri, . . . , Rl+1 follows from the fact that the number nlµb(·) is exactly decreased by 1
in the recursive type that gets folded in each application of FOLDl/r in D and from
nlµb(τk) + nlµb(σk) = 0). Since τi, σi 6≡ ⊥ holds (both τi and σi must now at least
contain one occurrence of the symbol→ because this is true for the types τk and σk
in the conclusion of an application of ARROW or ARROW/FIX in D), it follows
by the fulfilledness of the subformula property SP1 for D (Proposition 5.1.17) that
τi v

′ τ0 ≡ τ and σi v
′ σ0 ≡ σ . By Lemma 3.9.25 (from Chapter 3, Section 3.1)

we find that

m = nlµb(τi) + nlµb(σi) ≤ 2(|τ |+ |σ|) . (C.29)

From (C.12), (C.20) and (C.29) we can conclude that

n− n0 ≥ 2
(
(s(τ) + 1) (s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
−

−
(
2 (s(τ) + 1) (s(σ) + 1) + 1

)

= 2 (2|τ |+ 2|σ|+ 2)− 1

≥ 2 (m+ 1) + 1 .

(C.30)

But this implies now that there are at least m+1 further applications different from
REN passed in D on Θ before (i.e. above) the occurrence of τj = σj . Due to (C.25)
and Proposition 3.5.6 we have also nlµb(τj) + nlµb(σj) = m. It follows that the first
m applications of non-REN-rules passed inD on the thread Θ when going in upwards
direction are applications of FOLDl/r, in which the sum nlµb(τ̃) + nlµb(σ̃) for the
occurring formulas τ̃ = σ̃ respectively decreases by precisely one (since D fulfills
assumption (ii) of the theorem, D does not contain nlµb-decreasing applications of

411

FOLDl/r). Thus the thread Θ must actually be of the form

τn = σn. Rn
τn−1 = σn−1

...

τl+1 = σl+1. ARROW or ARROW/FIX
τl = σl
. REN∗, (FOLDl/r)

m

τj = σj

...

τk+1 = σk+1. ARROW or ARROW/FIX
τk = σk
. (REN∗; FOLDl/r; REN

∗)m

τi = σi
...

τ1 = σ1. R0
(τ ≡) τ0 = σ0 (≡σ)

Θ (C.31)

from which we can also read that τj ³ren/out-unf τl and σj ³ren/out-unf σl . From
this and from (C.25) as well as from τi ³ren/out-unf τk and σi ³ren/out-unf σk we
read that furthermore τl ³́ren/out-unf τk and σl ³́ren/out-unf σk . Since both of
τk = σk and τl = σl are the conclusions of applications of ARROW or of ARROW/
FIX in D, we get that nlµb(τk) = nlµb(τl) = nlµb(σk) = nlµb(σl) = 0 holds. Now
because of ³́ren/out-unf ⊆ ³́r/o-u(µ⊥)′ , Lemma 5.3.6, (iii), implies that

τk ≡ren τl and σk ≡ren σl . (C.32)

But the fulfilledness of (C.32) with respect to the thread Θ, which we could depict as
in (C.31), implies that D violates the condition AA. This is because the occurrence
of τl = σl on Θ in D is a violation of AA: There is an occurrence of a formula
τk = σk with respective variants τk and σk of τl and of σl deeper down in D that is
separated from the occurrence of τl = σl by certainly one application of ARROW
or ARROW/FIX; and the occurrence of τl = σl on Θ in D is not associated with
an assumption of D because it is the conclusion of an application of ARROW or
ARROW/FIX in D.

Thus we have eventually shown that D violates the condition AA.

In the following theorem we formulate a statement that is slightly stronger than
Theorem C.11 and that we have actually shown by our proof above for Theo-
rem C.11.

Theorem C.13 (Strengthening of Theorem C.11). Let D be a derivation in
HB=

0 with conclusion τ = σ and with possibly open assumption classes. Further-
more let D be such that it fulfills the properties (i) and (ii) of Theorem C.11.

412 Appendix C: Derivations in HB=
0 Without Redundancies

Then for all threads Θ in the prooftree D from a formula in one of its leaves
downwards to its conclusion that are of length

|Θ| ≥ 2
(
(s(τ) + 1)(s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
, (C.33)

the following holds: There occurs a violation of the condition ADA in D on Θ.

Proof. We have shown this theorem implicitly in our proof of Theorem C.11.

In view of Lemma C.12, the fact that every derivation D in HB=
0 without open

assumptions can effectively be transformed into a derivation D′ that mimics D and
that fulfills the hypotheses (i)–(iii) of Theorem C.11 and fulfills the conditionADA,
Theorem C.11 has the following obvious corollary.

Corollary C.14. Every derivation D in HB=
0 without open assumptions and with

conclusion τ = σ , for some τ, σ ∈ µTp, can effectively be transformed into a deriva-
tion D′ in HB=

0 without open assumptions and with the same conclusion as D such
that D′ fulfills the condition ADA and such that its depth |D′| is bounded by

|D′| < 2
(
(s(τ) + 1)(s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
. (C.34)

Proof. The corollary is an immediate consequence of Lemma C.12 and Theorem C.11.

The height of a formula occurrence in a derivation D means the number of
rule applications in D below this occurrence, i.e. the number of rule applications
passed on the thread in D from the considered formula occurrence downwards to
the conclusion of D.

Corollary C.15. (Elimination of open assumptions located “high enough”
in HB=

0 -derivations). Let D be a derivation in HB=
0 with conclusion τ = σ ,

for some τ, σ ∈ µTp, and with the properties that

– D fulfills the conditions (i) and (ii) in Theorem C.11, and that

– D contains occurrences of open marked assumptions only at heights greater
than or equal to h(τ,σ) which is defined as

h(τ,σ) =def 2
(
(s(τ) + 1)(s(σ) + 1) + 2|τ |+ 2|σ|+ 2

)
. (C.35)

Then D can effectively be transformed into a derivation D′ in HB=
0 without

open assumptions that mimics D and that has depth |D′| < h(τ,σ) .

Proof. We show the corollary by induction on the number #VAA(D) of violations
of the condition AA in HB=

0 -derivations for which the assumption of the corollary
is true.

For the base case of the induction, let D be a derivation in HB=
0 with conclu-

sion τ = σ , for some τ, σ ∈ µTp , such that D fulfills the conditions (i) and (ii) in
Theorem C.11, such that all open assumptions of D (if any) are located at heights

413

≥ h(τ,σ) with h(τ,σ) as in (C.35), and such that #VAA(D) = 0. Then Theorem C.11
can be applied and it gives |D| < h(τ,σ) . Hence, by what we have supposed about
its open marked assumptions, D cannot have open assumptions.

For the induction step, let D be a derivation in HB=
0 with conclusion τ = σ , for

some τ, σ ∈ µTp , such that D fulfills the conditions (i) and (ii) in Theorem C.11,
such that all open assumptions of D (if there are any) are located at heights ≥ h(τ,σ)
with h(τ,σ) as in (C.35), and such that #VAA(D) = n + 1 for some n ∈ ω . Then
there is at least one violation of the condition AA in D, i.e. an occurrence of a
formula τ1 → τ2 = σ1 → σ2 in D, for some τ1, τ2, σ1, σ2 ∈ µTp , with respect to
which D can be represented as a symbolic prooftree of the form

D2

(τ1 → τ2 = σ1 → σ2)

DC1. ARROW or ARROW/FIX, u
(τ ′1 → τ ′2 = σ′1 → σ′2)

DC0

τ = σ

with τ ′1, τ
′
2, σ

′
1, σ

′
2 ∈ µTp such that τ ′i ≡ren τi and σ′i ≡ren σi for i ∈ {1, 2} , with

derivation contexts DC0 and DC1, and with a subderivation D2 of D that contains
at least one application of a rule different from REN.

By a simplification as explained in already Remark C.1, D can be transformed
into a derivation D̃ of the form

(τ ′1 → τ ′2 = σ′1 → σ′2)
v

REN
(τ1 → τ2 = σ1 → σ2)

DC
[[v/u]]
1. ARROW/FIX, v

(τ ′1 → τ ′2 = σ′1 → σ′2)

DC0
τ = σ

where v is a new assumption marker (i.e. it does not occur in D) and where DC
[[v/u]]
1

is the result of changing the bottommost rule application into an application of
ARROW/FIX at which assumptions marked by v are discharged, and by chang-
ing, if the bottommost rule application in D is an application of ARROW/FIX
at which assumptions marked by u are discharged, all open marked assumption
(τ ′1 → τ ′2 = σ′1 → σ′2)

u inDC1 into open marked assumptions (τ ′1 → τ ′2 = σ′1 → σ′2)
v .

Then D̃ mimics D, and it has again the property that open marked assumptions
in D̃ occur only at heights > h(τ,σ) . Furthermore #VAA(D̃) < #VAA(D) holds
because at least one violation of AA has been eliminated and no other violations
have been introduced. Therefore the induction hypothesis can be applied to D̃ and
it guarantees that D̃ can effectively be transformed into a derivation D′ in HB=

0

without open assumptions that mimics D̃ and that has depth |D′| ≤ h(τ,σ) . Since
the mimicking relation - is transitive, D′ also mimics D and hence we have shown

414 Appendix C: Derivations in HB=
0 Without Redundancies

that D can be transformed into a derivation D′ inHB=
0 with the desired properties.

Bibliography

[AmCa93] Amadio, R.M., Cardelli, L.: “Subtyping Recursive Types”, ACM Trans-
actions on Programming Languages and Systems 15 (4), pp. 575–631,
1993; we refer to page numbers of the version that is available at
http://research.microsoft.com/Users/luca/Papers/SRT.pdf .

[And65] Anderaa, S.: “On the algebra of regular expressions”, Applied Mathe-
matics, Harvard University, Cambridge, January 1965, pp. 1–18.

[ArKl95] Ariola, Z.M., Klop, J.W.: “Equational Term Graph Rewriting”, Funda-
menta Informaticae 26 (3,4), pp. 207–240, June 1996; extended version
as University of Oregon Technical Report CIS–TR–95–16, 1995, and as
Vrije Universiteit Amsterdam Technical Report IR–391, September 1995.

[Avr91] Avron, A.: “Simple Consequence Relations”, Information and Compu-
tation 92 (1), pp. 105–139, 1991.

[Ba81] Barendregt, H.P.: The Lambda Calculus, Elsevier, 1981, revised edition
1984.

[Br97] Brandt, M.: “Recursive Subtyping: Axiomatizations and Computational
Interpretations”, Master’s Thesis, DIKU, Department of Computer Sci-
ence, University of Copenhagen, August 1997; available as TOPPS Tech-
nical Report D-352 at ftp://ftp.diku.dk/diku/semantics/papers/

D-352.ps.gz .

[BrHe98] Brandt, M., Henglein, F.: “Coinductive Axiomatization of Recursive
Type Equality and Subtyping”, Fundamenta Informaticae 33 , pp. 1–30,
1998.

[CaCo91] Cardone, F., Coppo, M.: “Type Inference with Recursive Types: Syntax
and Semantics”, Information and Computation 92 , pp. 48–80, 1991.

[Con71] Conway, J.H.: Regular Algebra and Finite Machines, Chapman and Hall,
London, 1971.

[Cur63] Curry, H.B.: Foundations of Mathematical Logic, McGraw-Hill Book
Company, New York San Francisco Toronto London, 1963.

416 Bibliography

[Fit90] Fitting, M.: First-Order Logic and Automated Theorem Proving ,
Springer-Verlag New York, Berlin, Heidelberg, 1990.

[Gen35] Gentzen, G.: “Untersuchungen über das logische Schließen I, II”, Math-
ematische Zeitschrift 39, S. 176–210, 405–431.

[Gra01] Grabmayer, C.: “Proof-Theoretic Interconnections between Known
Inference- and Axiom-Systems for the Equality and Subtype Rela-
tions on Recursive Types”, slides for a talk given at the KUN
Lambda Seminar , Nijmegen, January 12, 2001; presently available from
http://www.cs.vu.nl/~clemens/ Nijmegen.ps.gz .

[Gra02a] Grabmayer, C.: “Proving Equality for Recursive Types – A Dual-
ity between ‘syntactic-matching’ tableaux and Brandt-Henglein deriva-
tions”, slides for a talk given at the Process Algebra Meeting
(PAM), CWI Amsterdam, May 8, 2002; presently available from
http://www.cs.vu.nl/~clemens/PAM.ps.gz .

[Gra02b] Grabmayer, C.: “A Duality in Proof Systems for Recursive Type Equal-
ity and Bisimulation Equivalence on Cyclic Term Graphs”, Proceedings
of the Workshop TERMGRAPH 2002, Barcelona, October 2002, Elec-
tronic Notes in Computer Science, Vol. 72 No. 1, to become available at
http://www.sciencedirect.com/science/journal/15710661 .

[Gra02c] Grabmayer, C.: “A Duality in Proof Systems for Recursive Type Equal-
ity and for Bisimulation Equivalence on Cyclic Term Graphs”, Vrije
Universiteit Amsterdam Rapport , Divisie Wiskunde& Informatica, Fac-
ulteit der Exacte Wetenschappen, Rapportnr IR-499, juli 2002.

[Gra03a] Grabmayer, C.: “Derivability and Admissibility of Inference Rules in
Abstract Hilbert systems”, VU Amsterdam report , July 2003; presently
available from http://www.cs.vu.nl/~clemens/dairahs.ps .

[Gra03b] Grabmayer, C.: “Derivability and Admissibility of Inference Rules in
Abstract Hilbert systems”, Selected Poster presented at the conference
Computer Science Logic and 8th Kurt Gödel Colloquium 2003, 25–30th
August 2003, Vienna, Austria.

[Gra04a] Grabmayer, C.: “Transforming proofs by coinduction into ‘traditional’
proofs”, slides for a talk given in the Seminar Theoretical Computer
Science, Vrije Universiteit Amsterdam, 23 January 2004, available from
http://www.cs.vu.nl/~clemens/seminar230104 slides.pdf .

[Gra04b] Grabmayer, C.: “Derivability and Admissibility of Inference Rules
in Abstract Hilbert Systems”, Extended Poster (overview article of
the poster [Gra03b]), Collegium Logicum – Volume VIII , Kurt Gödel
Society, Vienna, 2004; available at http://www.cs.vu.nl/~clemens/

dairahs extposter.ps .

Bibliography 417

[HS86] Hindley, J.R., Seldin, J.P.: Introduction to Combinators and Lambda-
calculus, Cambridge University Press, 1986.

[Iem01] Iemhoff, R.: Provability Logic and Admissible Rules, PhD-thesis, Uni-
versiteit van Amsterdam, 2001; available at http://www.logic.at/

people/iemhoff/proeve.ps .

[Klee52] Kleene, S.C.: Introduction to Metamathematics, North-Holland Publish-
ing Co., Amsterdam, Groningen, 1952.

[Koz94] Kozen, D.: “A completeness theorem for Kleene algebras and the algebra
of regular events”, Information and Computation 110 (2), pp. 366-390,
May 1993.

[KPS95] Kozen, D., Palsberg, J., Schwartzbach, M.I.: “Efficient Recursive Sub-
typing”, Mathematical Structures in Computer Science 5 , pp. 113-125,
1995.

[Len99] Lenisa, M.: “A Complete Coinductive Logical System for Bisimula-
tion Equivalence of Circular Objects”, FoSSaCS’99 (ETAPS) Confer-
ence Proceedings, W. Thomas ed., Springer LNCS vol. 1578, 1999.

[Lor69] Lorenzen, P.: Einführung in die operative Logik und Mathematik , (Erste
Auflage 1955), Zweite Auflage, Springer-Verlag, Berlin Heidelberg New
York, 1969.

[Me64] Mendelson, E.: Introduction to Mathematical Logic, Van Nostrand&Co,
1964; the references are to the Third Edition, Wadsworth&Brooks/Cole
Advanced Books&Software, Pacific Grove, California, 1987.

[Men86] Mendler, N.P.: “First and second-order lambda calculi with recursive
types”, Cornell University, unpublished .

[Mil84] Milner, R.: “A Complete Inference System for a Class of Regular Be-
haviours”, Journal of Computer and System Sciences 28 , pp. 439–466,
1984.

[MPS86] MacQueen, D., Plotkin, G.D., Sethi, R.: “An ideal model for recursive
polymorphic types”, Information and Control 71 , pp. 95–130, 1986.

[Plu93] Plump, D.: Evaluation of Functional Expressions by Hypergraph Rewrit-
ing , PhD-Thesis, Universität Bremen, 1993.

[Pra65] Prawitz, D.: Natural Deduction (A Proof-Theoretical Study), Almqvist
& Wiksell, Stockholm, Göteborg, Uppsala, 1965.

[Rut98] Rutten, J.J.M.M.: “Automata and Coinduction (an Exercise in Coin-
duction)”, Technical Report SEN-R9803, CWI, Amsterdam, 1998; also
in: Proceedings of CONCUR ’98, D. Sangiorigi and R. de Simone (eds.),
LNCS 1466, Springer, 1998, pp. 194–218.

418 Bibliography

[Sal66] Salomaa, A.: “Two complete axiom systems for the algebra of regular
events”, Journal of the Association for Computing Machinery (JACM)
13 (1), pp. 158–169, 1966.

[Schm60] Schmidt, H.A.: Mathematische Gesetze der Logik , Vorlesungen über
Aussagenlogik I, Springer Verlag, Berlin Göttingen Heidelberg, 1960.

[Schu60] Schütte, K.: Beweistheorie, Springer Verlag, Berlin Göttingen Heidel-
berg, 1960.

[Sco74] Scott, D.: “Rules and Derived Rules”, in Stenlund, S.: Logical The-
ory and Semantic Analysis, 147–161, D. Reidel Publishing Company,
Dordrecht–Holland, 1974.

[Shoe67] Shoenfield, J.R.: Mathematical Logic, Addison-Wesley Publishing Com-
pany, Reading, Mass. – Menlo Park, Cal. – London – Don Mills, Ont.,
1967, 1973.

[Sm68] Smullyan, R.M.: First Order Logic, Springer Verlag, Berlin Heidelberg
New York, 1968. Unabridged, corrected republication by: Dover Publi-
cations Inc., New York, 1995.

[Ter03] Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Com-
puter Science 55, Cambridge University Press, 2003.

[Tr73] Troelstra, A.S. (ed.): Metamathematical Investigations of Intuitionistic
Arithmetic and Analysis, Lecture-notes in Mathematics 344, Springer
Verlag, Berlin, 1973.

[TS00] Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory , Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press,
1996; 2nd, revised edition, 2000 (specific references are directed to this
edition).

[VB01] Vestergaard, R., Brotherston, J.: “A Formalised First-Order Confluence
Proof for the λ-Calculus Using One-Sorted Variable Names (Barendregt
was right after all . . . almost)”, pp. 306–321 in Middeldorp, A. (ed.):
“Rewriting Techniques and Applications”, Proceedings of RTA 2001 ,
LNCS 2051, Springer-Verlag, Berlin Heidelberg New York, 2001.

[vOdV02] van Oostrom, V., de Vrijer, R.C.: “Four equivalent equivalences of re-
ductions”, Artificial Intelligence Preprint Series, Preprint nr. 035, On-
derwijsinstituut CKI, Utrecht University, December 2002; this report
can be found via http://preprints.phil.uu.nl/aips/ .

Index of Notations

Axioms
(FOLD/UNFOLD), 48, 98, 101,

107, 119, 216
(µ−⊥), 48, 98
(µ−⊥)′, 101, 107, 119, 217
(µ−⊥)′′, 220
(µµ−µ), 53
(REFL), 47, 48, 60, 61, 98, 101, 107,

110, 119, 216, 261
(REN), 48, 98, 101, 107, 119, 216

Classes
H, 362
ND, 375
R(·), 360
R(·, ·), 373

Conditions for HB=
0 -Derivations

AA, 399
ADA, 399

End-of-Textitem Symbols
£, 9
, 9
, 9

Equality Implications/Equivalences
W, 27–28
V, 27–28
WV, 27–28

Extending/Restricting Proof Sys-
tems

H−R, 370
H+R, 80
H+Σ, 80
H(+R), 366
H(+Σ), 366
S−R, 392
S(+R), 380

Functions
arity, 360, 373

assm, 363–364
(·)c, 52
C, 179–180
concl, 88, 360, 363–364, 372, 376–

377
D, 179–180
J·K, 25–26
| · |, 19, 363–364, 376–377
(·)a, 329
dmassm, 372
d·eHB=

0
, 285

d·e{ui}iHB=

0

, 298

d·e{[]i}iHB=

0

, 298

hHB=

0
(·), 298

L, 40
L, 329
lg, 11
L′, 40
min-dp·, 249
mµbd, 356
mµd·, 341
mµdfo(·, ·), 356
mnsµb, 356
mset, 11
µPos, 23
µSubt, 23
name, 362, 375
nlµb, 36
omassm, 88, 376–377
pmassm, 372
Pos, 21–22
prem, 360, 372
prem(·), 360, 373
proj·, 11
rule, 362, 375
set, 11
s, 19
·|·, 22
Tree, 37

420 Index of Notations

General Mathematical Symbols
=def, 9
::= , 9
⇔def, 9
↓, 10
ε, 11
≡, 9
↑, 10
], 10–11

Inference Rules, 261
ApplAxREG, 331
ApprAxREG, 331
ARROW, 48, 98, 101, 110, 217, 261
ARROW/FIX, 2, 107, 110, 261
B→CTXTr, 60, 61
BµCTXTr, 61
COMP, 331
COMP/FIX, 331
CONTRACT, 101, 217, 330
CONTRACT−(nd), 228
CTXT, 47
DECOMP, 119, 125
DECOMP(nd), 133

DECOMP−(nd), 133

∃E, 373–374
FIX, 105, 154, 262–263, 324
FOLDl, 261
FOLDr, 261
FOLDl , 110
FOLDl/FIX, 158
FOLDr , 60, 110
FOLDr/FIX, 158
∀I, 90
(∀I)−, 90
G, 84
G−, 83
(µ−⊥)⊥derl , 110, 261
(µ−⊥)⊥derr , 110, 261
∗(µ−⊥)⊥derl , 290
∗(µ−⊥)⊥derr , 290
(µ−⊥)der⊥l , 125
(µ−⊥)der⊥r , 125
µ-COMPAT, 48, 98
µ-INTRO, 327

REN, 110, 125, 261
REN/FIX, 158
RENl, 99
RENr, 99
RENr , 60
SUBST, 47
SUBST(.)′[σ/α], 205
SUBSTτ [./α], 205
SUBST(τ)′[./α], 206
SUBST(.)′[./α], 205
SYMM, 47, 48, 98, 101, 107, 119,

217
TRANS, 47, 48, 98, 101, 107, 119,

217
TRANS/FIX, 325
TRANS1, 290
TRANSk, 295
UFP, 98, 217
UFP−(nd), 227
UG, 78
UNFOLDl , 125
UNFOLDr , 125

Proof Systems
AC=, 98
AC=

−, 216
AC=

∗ , 101
AC=

∗−, 217
AK↔ , 121
AK=, 119
AK=

0 , 125
ann-e-HB=

0 , 263, 282
ann-HB=

0 , 261
e-HB=

0 , 158
EQL, 47
gST, 60
gST′, 69
HB=, 107
HB=

0 , 110
SUBT, 61
WEQ, 48
WEQ′, 49

Property of f.t.o.c.’s with
b.l.o.m.f.’s

property D, 191

Index of Notations 421

Reduction Relations
→fold , 46, 49
→(µ−⊥) , 49
→oud , 66
→out-dec , 55
→out-(µ−⊥)′ , 68, 138
→out-unf , 55, 138
→ren , 33, 49
→ren/out-unf , 138
→r/o-u(µ⊥)′ , 138
→roud , 55
→roud⊥ , 68
→unfold , 46, 49
→(unf/ren) , 49
→(unf/ren/µ⊥) , 49

Reduction Relations (General)
→ , 11
← , 12
³ , 12
´ , 12
→+ , 12
←+ , 12
³́ , 12
←→ , 12

Relations
=L, 329
ConsAK= , 120
ConsAK=

0
, 128

`H, 79, 365
`H, 79, 365
`S , 89, 379
=µ, 41
=wµ, 48
≤µ, 325
-, 80, 369–370
', 386
6=µ, 123
≡ren , 33
E, 22
∼th, 80, 365, 380

Sets
Acc(·), 35
BOT, 403
bv(·), 18

can-µTp, 18
Ctrd=µ

, 117
CU(AK=

0), 172
CUD(AK=

0), 191
Der(·), 363–364, 376–378
DerCtxt(·), 386
DerCtxt·(·), 91, 386
Der∅(·), 364, 377
dom(·), 10
Env(·, ·), 371
fv(·), 18
G(·), 56
G′(·), 69
G′∗(·), 69
G∗(·), 56
G̃(·), 67
G̃∗(·), 67
Insts, 360, 372
mFo(·, ·), 371
Mf(·), 10
µPos(·), 23
µSubt(·), 23
µTp, 18
µTp–Ctxt, 20
ω, 9
ω\{0}, 9
pCU(AK=

0), 172
pCUD(AK=

0), 191
PDer(·), 382
PDerCtxt(·), 382
PDerCtxt·(·), 381–382
Pos(·), 21–22
P(·), 9
Pf(·), 9
Pref(·), 11
ran(·), 10
Reg(Σ), 329
Seqcsf(·), 10
SubstExpr, 24
Subt(·), 22
Th(·), 79

Side-Conditions for Inference Rules
α ↓ τ , 98
side-condition I, 109, 262
side-condition S, 260–262

422 Index of Notations

Subformula Properties
SP1, 112
SP2, 125

Variable Conditions
DB(·) , 32
VC(·) , 32
VC0(·) , 32
wDB(·) , 350
wVC(·) , 350

Subject Index

abstract natural-deduction system, see
ANDS

abstract pure Hilbert system, see APHS
AC=

definition, 98
soundness, completeness w.r.t. =µ,

100
AC=

−

definition, 216–217
equivalent with AC=

∗−, 217
AC=

∗

definition, 101
equivalent with AC=, 101–102
soundness, completeness w.r.t. =µ,

104
AC=

∗−

definition, 216–217
equivalent with AC=

−, 217
admissible

rule, in a natural-deduction system,
91

rule, in a pure Hilbert system, 81
rule, in an ANDS, 387
rule, in an APHS, 367

AK=

correspondence between AK=-con-
sistency and =µ, 120–121

definition, 118
AK=

0

consistency-unfolding in, 172
correspondence between AK=

0 -con-
sistency and =µ, 128–129

definition, 124–125
f.t.o.c. in, 163
f.t.o.c. with b.l.o.m.f. in, 166
f.t.o.c. with m.f. in, 165
partial consistency-unfolding in, 172
subformula property in, 126

amalgamation steps

{TRANSk}k-amalgamation steps,
296

ANDS
definition, 375–376
rule for an, 372–373

ANDS-rule, see ANDS, rule for an
ann-HB=

0

definition, 260–262
side-condition I in derivations, 262
side-condition S in derivations, 260–

262
annotation step

in the transformation from HB=
0 to

AC=, 259, 267–271
APHS

definition, 361–363
rule for an, 360

APHS-rule, see APHS, rule for an
associated

with assumptions
formula occurrences in deriva-

tions in the system HB=
0 , 398

with discharged assumptions
formula occurrences in deriva-

tions in the system HB=
0 , 398

assumption marker renaming, see
marker renaming

‘asymmetric’ substitution
of recursive types in a HB=

0 -
derivation

leads to a HB=
0 -derivation, 252–

253
of recursive types in a HB=

0 -deriva-
tion

definition, 251–252

branching, see DECOMP-branching

calculable, see positively calculable
coercions, 2, 108

424 Subject Index

comb, 44
combination step

in the transformation from HB=
0 to

AC=, 259, 271–272
composition rules

ARROW and ARROW/FIX, see
the proof systems WEQ,
AC=, AC=

∗ , HB
=, and HB=

0

consistency-check
by loop checking, 145

consistency-unfolding in AK=
0 , 172

partial, see partial consistency-
unfolding in AK=

0

consistent, see consistent w.r.t. =µ

consistent w.r.t. =µ

definition for a proof system, 118
relative to a proof system

definition for a set of equations
between recursive types, 118

definition for an equation between
recursive types, 118

with a proof system, see consistent
w.r.t. a =µ, relative to a proof
system

context
for a recursive type, 20–21

depth of, 20
size of, 20

contractive
recursive type w.r.t. a type variable

definition, 98
reformulations, 200
some properties, 201–202

contractive derivation, 154–155
contractiveness

of a recursive type w.r.t. a type vari-
able, see contractive recursive
type w.r.t. a type variable

contradiction with respect to =µ

definition, 116–117
examples, 117

conversion, see convertibility relation
convertibility relation, 12
correct

rule, for a pure Hilbert system, 81

rule, for an APHS, 367
cr-admissible

rule, in a natural-deduction system,
92

rule, in an ANDS, 387
cr-correct

rule, in a natural-deduction system,
91–92

rule, in an ANDS, 387

DECOMP-branching, 164
decomposition rule

DECOMP, 118
depth

of a recursive type, 19
of context for a recursive type, 20

derivable
rule, in a natural-deduction system,

92
rule, in a pure Hilbert system, 81
rule, in an ANDS, 387–388
rule, in an APHS, 367

derivation context
in a natural-deduction system, 16,

91
in an ANDS, 385–386

derivative
of a formal language, 330
of a regular expression, 329

distinctly bound
recursive type, 32

duality
between consistency-unfoldings

in AK=
0 and derivations in

e-HB=
0 , 183–190

example, 189–190
between consistency-unfoldings in

AK=
0 with property D and

derivations in e-HB=
0 , 192–195

example, 193–195
betweenHB=

0 - andAK=
0 -rules, 179

main duality theorem, 184
specialized duality theorem, 192

e-HB=
0

Subject Index 425

definition, 158
equivalent with HB=

0 , 160
pseudo-derivation in, 179
side-condition C in derivations, 158
side-condition I in derivations, 158

empty word property, 329
environment, 371
EQL

definition, 47
equality equivalence between substitu-

tion expressions, 27–28
equality implication between substitu-

tion expressions, 27–28
equivalent

ANDS’s, 380
APHS’s, 365
pure Hilbert systems, 80

extension
of a formal system, 365

extension by enlargement
of a natural-deduction system, 89
of a pure Hilbert system, 84
of an ANDS, 380
of an APHS, 365–366

extraction step
in the transformation from HB=

0 to
AC=, 259, 271–272

f.t.o.c. in AK=
0 , 163

f.t.o.c. with b.l.o.m.f. in AK=
0 , 166

alternative definition, 170
f.t.o.c. with m.f. in AK=

0 , 165
finite tree of consequences, see f.t.o.c. in

AK=
0

with back-bound leaf-occurrences of
marked formulas, see f.t.o.c.
with b.l.o.m.f. in AK=

0

with marked formulas, see f.t.o.c.
with m.f. in AK=

0

FIX-rule, 154
cr-admissible in HB=

0 , 155
fixed-point rule, 2, 101

unique fixed-point rule, 1, 99
folding operation, 46

generated subterm
of a recursive type

characterization by derivability in
gST, 59

definition, 56
main theorem, 62
≡ren-equivalence classes of, 56

→roud-generated subterm
of a recursive type, see generated

subterm, of a recursive type
→roud⊥-generated subterm

of a recursive type
characterization by derivability in
gST′, 69

definition, 69
main theorem, 70
≡ren-equivalence classes of, 69

gST
definition, 59

gST′

definition, 69

HB=

definition, 106–107
soundness, completeness w.r.t. =µ,

108–109
HB=

0

alternative soundness proof, 195–
197

definition, 109–110
side-condition I in derivations, 109–

110
soundness, completeness w.r.t. =µ,

115–116
subformula property in, 113

HB=
0 + ∗(µ−⊥)⊥derl/r -end-derivation-

context
of a derivation in HB=

0 +
+ ∗(µ−⊥)⊥derl/r +SYMM+

+TRANS+ {TRANSk}k, 298
HB=

0 -end-derivation
of a derivation in HB=

0 +
+ ∗(µ−⊥)⊥derl/r +SYMM+

+TRANS+ {TRANSk}k,
297–298

426 Subject Index

HB=
0 -end-derivation-context
of a derivation in HB=

0 +
+ ∗(µ−⊥)⊥derl/r +SYMM+

+TRANS+ {TRANSk}k,
297–298

HB=
0 -end-part
of a derivation in HB=

0 +SYMM+
+TRANS, 285

HB=
0 -height
of a derivation in HB=

0 +
+ ∗(µ−⊥)⊥derl/r +SYMM+

+TRANS+ {TRANSk}k, 298
hole-filling

in pseudo-derivation contexts, 384–
385

inconsistent, see inconsistent w.r.t. =µ

inconsistent w.r.t. =µ

definition for a proof system, 118
relative to a proof system

definition for a set of equations
between recursive types, 118

definition for an equation between
recursive types, 118

with a proof system, see inconsis-
tent w.r.t. a =µ, relative to a
proof system

inhabited assumption class, 109
interpretational proof theory, 4

leading symbol
of a recursive type

definition, 39–40
length

of a recursive type, see size of a re-
cursive type

loop checking, see consistency-check, by
loop checking

marked formula, 371
marker renaming, 371
mimicking steps

(∗(µ−⊥)⊥derl/r Ã

(µ−⊥)⊥derl/r , FOLDl/r)-mimick-
ing step, 291

({TRANSk}k Ã TRANS1)-mim-
icking steps, 295–296

minimal µ-depth
of a recursive type, 341

µ-COMPAT
admissibility in AC=

− and AC=
∗−,

218–219
not derivable in AC=

− and AC=
∗−,

222–223
µ-COMPAT-elimination step

in the transformation from AC= to
HB=, 224, 230

nlµb-decreasing
FOLDl/r-application, 403

notation
for simple symbolic prooftrees in

HB=, HB=
0 and ann-HB=

0 ,
263–264

partial consistency-unfolding in AK=
0 ,

172
positively calculable, 122
proof system, 13
proof-transformation

from AC= to HB=, 227
illustration of the main steps, 224

from AC=
∗ to HB=, 227

example, 253–256
illustration of the main steps, 226

from ann-HB=
0 to AC=, 271–272

from ann-HB=
0 to AC=

∗−, 272–277
from ann-HB=

0 to HB=
0 , 267, 271

from HB= to HB=
0 , 284–285

flow-chart illustration, 288
overview of the three steps in the

existence proof, 287
simplified overview, 285–286
three steps in the existence proof,

318–319
from HB=

0 to AC=, 277
example, 277–282
illustration of the main steps, 259

from HB=
0 to ann-HB=

0 , 267–271
property D, 191

Subject Index 427

pseudo-derivation
in an ANDS, 382
in e-HB=

0 , 179
difference from pseudo-deriva-

tions in the general sense, 179
pseudo-derivation context

in an ANDS, 381–382
pure Hilbert system, 78–79

rule, in an, see pure Hilbert-system
rule

pure Hilbert-system rule, 76

recursive type
definition, 18
(syntactical) depth, 19
distinctly bound, 32
in canonical form

definition, 18
number of leading µ-bindings, 36
positions, 21–22
positions of µ-bindings, 23
size, 19
subterms, 22

recursive type equality, see strong recur-
sive type equivalence

redundancies in HB=
0 -derivations, 396

(Rdcy1), 396
(Rdcy2), 396, 402–403
(Rdcy3), 396–398

reflection functions, 179–180
well-definedness, 179–183

roud-closure
of a recursive type, 56

roud⊥-closure
of a recursive type, 69

roud⊥∗-closure
of a recursive type, 69

roud∗-closure
of a recursive type, 56

rule elimination
in ANDS’s

definition of three notions, 392–
393

versus rule (cr-) admissibility and
derivability, 393–394

in APHS’s
definition of two notions, 370
versus rule admissibility and

derivability, 370
in pure Hilbert systems, 86–87

rule elimination method
for finding proof-transformations,

72
rule translation method

for finding proof-transformations,
72

side-condition C
in e-HB=

0 -derivations, 158
side-condition I

in ann-HB=
0 -derivations, 262

in e-HB=
0 -derivations, 158

in HB=
0 -derivations, 109–110

side-condition S
in ann-HB=

0 -derivations, 260–262
size

of a recursive type, 19
of context for a recursive type, 20

special form
of HB=-derivations, 257n

strong equivalence, see strong recursive
type equivalence

strong recursive type equivalence
definition, 41–42
example, 42–46

structural proof theory, 4
‘subformula’

of an equation between recursive
types, 112

subformula property
SP1, 112

not obeyed by HB=, AC=,
AC=

∗ , WEQ, 113
obeyed by HB=

0 , 113
SP2, 125

obeyed by AK=
0 , 126

substitutible
recursive type that is substitutible

for a type variable in a recur-
sive type, 24

428 Subject Index

substitution expression
admissible, 25–26
convention on occurrences, 27
definition, 24–25
denoted recursive type, 25–26
equality equivalence between substi-

tution expressions, 27–28
equality implication between substi-

tution expressions, 27–28
implicit side-condition, 27

substitution rules
admissibility in AC=, 207–216
admissibility in AC=

−, 221–222
definition, 205
derivability of one kind in AC=,

207, 213–215
derivability of one kind in HB=

0 ,
233

SYMM
not derivable in HB=

0 , 284
syntactic-matching system, 116, 118,

124–125
syntactical depth

of a recursive type, see depth of a
recursive type

syntactical length
of a recursive type, see size of a re-

cursive type

TRANS
not derivable in HB=

0 , 284
transformation

of a recursive type into canonical
form

definition, 52
well-definedness, 53

transformation, proof-theoretical, see
proof-transformation

tree unfolding
of a recursive type

definition, 37–38
example, 42–46

UFP/UFP−(nd)-renaming step

in the transformation from AC= to
HB=, 225, 231

UFP−(nd)-elimination step

in the transformation from AC= to
HB=, 225, 231

unfolding operation, 46
unique fixed-point rule, see fixed-point

rule, unique fixed-point rule

variant
of a recursive type, 20, 33

weak equivalence, see weak recursive
type equivalence

weak recursive type equivalence
characterization, 50
definition, 48
incompleteness w.r.t. =µ, 51
soundness w.r.t. =µ, 50–51

WEQ
definition, 48

WEQ′, 49

Samenvatting

De titel van dit proefschrift luidt, in het Nederlands vertaald: “Het Relateren van
Bewijssystemen voor Recursieve Types.” Het hierdoor aangeduide onderwerp kan
als volgt nader worden omschreven: er wordt de vraagstelling onderzocht op wel-
ke manier verschillende, uit de literatuur bekende, bewijssystemen voor de relatie
“gelijkheid van recursieve types” door effectieve, bewijstheoretische transformaties
met elkaar in verband gebracht kunnen worden.

Als “types” worden in de informatica gewoonlijk zodanige collecties van waarden
beschouwd die met elkaar een bepaalde structuur of vorm gemeen hebben. Zo
komen in de meeste computertalen “fundamentele types” als Int , Real , en Boolean
voor, die respectievelijk voor de gehele getallen, voor de reële getallen, en voor de
twee waarheidswaarden “true” en “false” staan. Dat geldt ook voor “samengestelde
types” als bijvoorbeeld Int× Int , Real→ Boolean , en Int + (Real× Real) , die de
verzamelingen van paren van gehele getallen, van functies op de reële getallen met
waarden in Boolean (Boolean functions), en van de disjuncte vereniging van de
gehele getallen en van paren van reële getallen symboliseren. Hierbij zijn ×, →, en
+ zogeheten “type-constructoren”, dat wil zeggen operatoren die geschikt zijn om
nieuwe types met gebruik van al bestaande types te vormen.

Ook “recursieve types” worden in vele computertalen gebruikt. Ze voldoen aan
recursieve vergelijkingen; zo voldoet bijvoorbeeld het type List van eindige of onein-
dige lijsten van gehele getallen aan de vergelijking

List = Unit + (Int× List) (1)

waarbij Unit een fundamenteel type is met maar één waarde. Onder bepaalde om-
standigheden is het mogelijk dat een recursieve type door één vergelijking op een-
duidige wijze is gedefinieerd. Het ligt dan voor de hand om de oplossing van een
vergelijking door een speciale term aan te duiden. In het geval van (1) zou dat de
term µα. (Unit + (Int× α)) kunnen zijn; in deze “µ-term” wordt het vrije voorko-
men van α in Unit + (Int× α) door de µ-binder aan het begin gebonden. In het
algemeen kan de µ-term µα. τ(α) voor de oplossing van een recursieve vergelijking
σ = τ(σ) worden gebruikt, als deze inderdaad uniek oplosbaar is (met gebruikma-
king van een expliciete substitutie-operatie kan de vergelijking σ = τ(σ) ook als
σ = τ [σ/α] worden geschreven).

Om formeel te kunnen rekenen met µ-termen die oplossingen van recursieve

430 Samenvatting (Summary in Dutch)

vergelijkingen symboliseren, zijn de axioma’s

µα. τ = τ [µα. τ/α] (waarbij τ een µ-term, α en type-variabele) (2)

noodzakelijk. In een stap vanuit een term µα. τ naar een term τ [µα. τ/α] (de
uitkomst van de substitutie van µα. τ voor alle vrije voorkomens van α in τ) wordt
µα. τ “ontvouwen”, terwijl in een overgang in de andere richting τ [µα. τ/α] “ge-
vouwen” wordt met de uitkomst µα. τ . Omdat het mogelijk is te laten zien dat (1)
een unieke oplossing heeft, is er reden om de oplossing van (1) inderdaad door een
µ-term aan te geven: we laten τ1 gedefinieerd door

τ1 ≡def µα. (Unit + (Int× α)) .

Door gebruik van een geschikt axioma uit het schema (2) is het nu mogelijk om ook
formeel aan te tonen dat de µ-term τ1 aan de vergelijking (1) voldoet als hij daar
voor List wordt gesubstitueerd:

τ1 ≡ µα. (Unit + (Int× α)) = (Unit + (Int× α))[τ1/α] ≡ Unit + (Int× τ1) .

Types die aan recursieve vergelijkingen voldoen, vervullen meestal oneindig veel
vergelijkingen. Daarom kan het gebeuren dat twee niet-identieke µ-termen dezelfde
recursieve typen symboliseren. Het recursieve type List voldoet bijvoorbeeld ook
aan de vergelijking

List = Unit + (Int× (Unit + (Int× List))) .

Omdat deze vergelijking wederom eenduidig oplosbaar is, staat ook de µ-term

τ2 ≡def µα. (Unit + (Int× (Unit + (Int× α))))

voor het type List, evenzo als τ1. Voorbeelden als dit leiden tot het begrip “gelijkheid
van recursieve types” (recursive type equality): dat is een binaire equivalentierelatie
die twee µ-term-beschrijvingen σ1 en σ2 van recursieve types RType1 en RType2
relateert dan en slechts dan als ze hetzelfde type symboliseren (en dat betekent als
RType1 = RType2). De benaming van deze relatie, die strict genomen “gelijkheid
van gesymboliseerde recursieve typen” moest zijn, komt voort uit het feit dat in de
literatuur ook µ-termen die voor recursieve types staan, “recursieve types” worden
genoemd; dat gebeurt in het volgende hier ook.

In dit proefschrift worden bewijssystemen bestudeerd die correct en volledig zijn
voor de relatie “gelijkheid van recursieve types”. Maar er wordt alleen een beperkte
klasse van recursieve types4 bekeken: types die door een grammatica als

τ : : = ⊥ | > | α | τ → τ | µα. τ

4De hier gedefinieerde recursieve types zijn eigenlijk µ-term-beschrijvingen van recursieve types
(en dus beschrijvingen van types die verzamelingen van waarden zijn welke aan recursieve vergelij-
kingen voldoen). Maar, zoals eerder opgemerkt, de naam “recursieve type” wordt in de literatuur
overwegend ook voor µ-term-beschrijvingen van recursieve types gebruikt.

Samenvatting (Summary in Dutch) 431

(waarbij ⊥, > type-constanten, en α type-variabelen) worden gegenereerd. Hierbij
horen dus precies alle recursieve types die uit twee type-constanten ⊥ en >, en
een gegeven verzameling van type-variabelen met behulp van → als de enige type-
constructor gevormd kunnen worden.

Er worden drie bewijssystemen (en een aantal van nieuw gëıntroduceerde variant-
systemen) voor de relatie “gelijkheid van recursieve types” bestudeerd: twee axi-
omatische afleidingssystemen in gebruikelijke zin, en een bewijssysteem dat strict
genomen geen axiomatisch afleidingssysteem is: het is bedacht om tests te kunnen
uitvoeren naar de consistentie met het systeem van gegeven vergelijkingen tus-
sen recursieve types. De axiomatische afleidingssystemen zijn gëıntroduceerd door
Amadio and Cardelli (1993), en door Brandt en Henglein (1998). Het eerste systeem
is van een “traditionele” soort, aangezien het in een rij van reeds eerder bekende,
vergelijkbare bewijssystemen voor andere doeleinden geplaatst kan worden. Daar-
entegen is het tweede systeem van nieuwere vorm; het kan door methodes uit de
coalgebra gefundeerd worden. Het derde systeem is afkomstig uit werk van Ariola
en Klop (1995).

Het systeem van Amadio en Cardelli wordt vooral gekenmerkt door de aanwe-
zigheid van een regel UFP (unique fixed-point rule):

τ1 = τ [τ1/α] τ2 = τ [τ2/α]
UFP (if α is guarded in τ)

τ1 = τ2

Met deze regel kunnen twee recursieve types gelijk worden bewezen als ze dezelfde
guarded recursieve vergelijking vervullen.

Het bewijssysteem van Brandt en Henglein bevat een, op het eerste gezicht,
paradoxale afleidingsregel die circulair lijkt. Dit is de regel ARROW/FIX die, in een
formalisering die geschikt is voor een systeem van natuurlijke deductie, toepassingen
van de vorm

[τ1 → τ2 = σ1 → σ2]
u

D1

τ1 = σ1

[τ1 → τ2 = σ1 → σ2]
u

D2

τ2 = σ2 ARROW/FIX, u
τ1 → τ2 = σ1 → σ2

heeft. Deze regel staat toe, dat in een afleiding D, zoals boven afgebeeld, van een
vergelijking τ1 → τ2 = σ1 → σ2 dezelfde vergelijking ook een of meerdere keren als
assumptie mag worden gebruikt, zonder dat de afleidingD in haar geheel uiteindelijk
nog van de gebruikte assumpties van de vorm τ1 → τ2 = σ1 → σ2 afhankelijk blijft;
deze assumpties worden namelijk door de toepassing van ARROW/FIX beneden in
D “ingetrokken”. Deze afleidingsregel houdt verband met de coalgebräısche moti-
vatie voor het bewijssysteem van Brandt en Henglein. Dat heeft het gevolg dat de
correctheid van het system van Brandt en Henglein ten opzichte van de relatie “ge-
lijkheid van recursieve types” niet vanzelfsprekend is; meestal wordt de correctheid
van het systeem dan ook door een technisch ingewikkeld argument bewezen.

De regel ARROW/FIX in het systeem van Brandt en Henglein kan als een
bijzondere vorm van een “compositie-regel” ARROW worden beschouwd omdat de

432 Samenvatting (Summary in Dutch)

conclusie τ1 → τ2 = σ1 → σ2 van een toepassing van deze regel uit de premissen
τ1 = σ1 en τ2 = σ2 wordt “gecomponeerd”. Daarentegen bevat het systeem van
Ariola en Klop (preciezer gezegd, de hier bekeken adaptie voor recursieve types van
dat systeem) een “decompositie-regel” met toepassingen van de vorm

τ1 → τ2 = σ1 → σ2 (voor elke i ∈ {1, 2})
τi = σi

die een vergelijking tussen twee samengestelde recursieve type op twee mogelijke
manieren uit elkaar halen, oftewel “decomponeren”, kan.

Het uitgangspunt voor dit proefschrift was een door Klop gedane observatie
die het aannemelijk maakte dat er een direct verband bestaat tussen de volgende
twee activiteiten: (a) het aantonen dat een vergelijking τ = σ tussen recursieve
types τ en σ consistent is met het bewijssysteem van Ariola en Klop; en (b) het
afleiden van de vergelijking τ = σ in het systeem van Brandt en Henglein. Het
streven om deze observatie formeel aan te tonen, werd ook daardoor gemotiveerd
dat ze een nieuwe mogelijkheid suggereerde om de correctheid van het systeem
van Brandt en Henglein te bewijzen. Hiernaast deden zich daarenboven nog een
aantal verband houdende vragen voor: Zouden misschien nog andere opmerkelijke
bewijstheoretische connecties bestaan tussen de systemen van Amadio en Cardelli,
Brandt en Henglein, en Ariola en Klop? Zou het bijvoorbeeld mogelijk zijn, om een
“circulaire”, cöınductive redenering, geformaliseerd als een afleiding in het systeem
van Brandt en Henglein, om te zetten naar een derivatie, een formeel bewijs, in het
systeem van Amadio en Cardelli? En zou ook andersom een afleiding in het systeem
van Amadio en Cardelli altijd op effectieve manier getransformeerd kunnen worden
naar een afleiding in het systeem van Brandt en Henglein?

Deze vragen zijn in het proefschrift onderzocht en hebben uiteindelijk direct
tot de Hoofdstukken 6–8 daarvan geleid. In elk van deze drie hoofdstukken wordt
een effectieve bewijstheoretische transformatie beschreven die in staat is om een
willekeurige afleiding D2 van een theorema A in een systeem S1 op een stapsgewijze
manier te kunnen omvormen tot een afleiding D2 in S2 die aantoont dat A ook een
theorema van S2 is; hierbij zijn S1 en S2 telkens bewijssystemen van een van de
boven besproken drie soorten. In Hoofdstuk 6 wordt de eerder genoemde observatie
van Klop concreet gemaakt door het definiëren van twee transformaties die het
bestaan van een “dualiteit” laten zien tussen het systeem van Ariola en Klop en
van het systeem van Brandt en Henglein. In Hoofdstuk 7 wordt een transformatie
aangegeven van afleidingen in het systeem van Amadio en Cardelli naar afleidingen
in het systeem van Brandt en Henglein; en uiteindelijk wordt in Hoofdstuk 8 ook een
transformatie in de andere richting ontwikkeld en uitgelegd: een van afleidingen in
het systeem van Brandt en Henglein naar afleidingen in het systeem van Amadio en
Cardelli. Deze transformaties vormen, samen met sommigen van hun onderdelen,
het voornaamste resultaat: een “netwerk” van transformaties dat alle behandelde
systemen met elkaar verbindt. Dit netwerk wordt in Sectie 9.1 van Hoofdstuk 9 in
de vorm van een afbeelding aanschouwelijk gemaakt, en vervolgens besproken.

Hieronder wordt de inhoud van de belangrijkste hoofdstukken van het proef-

Samenvatting (Summary in Dutch) 433

schrift in meer detail beschreven.

In Hoofdstuk 3 worden de meest fundamentele begrippen in verband met de hier
behandelde klasse van recursieve types gëıntroduceerd. Hierbij horen eerst de sub-
klasse van recursieve types in canonical form, de notie van “substitutie expressies”
voor recursieve types, en een formele definitie van toelaatbare herbenoemingen van
gebonden variabelen in een recursieve type (de variant relation tussen recursieve
types, in analogie met α-conversie in λ-calculus). En verder het belangrijke begrip
van de “boom-ontvouwing” (tree unfolding) van een recursieve type, waardoor aan
recursieve types uit de gedefinieerde klasse een semantiek wordt toegekend: ieder
recursief type τ kan als eindige beschrijving van zijn “boom-ontvouwing” Tree(τ),
een oneindige binaire boom, worden opgevat. Deze notie leidt vervolgens recht-
streeks naar de hier centraal staande binaire relatie =µ, genoemd “gelijkheid van
recursieve types”, die als volgt is gedefinieerd: voor twee recursieve types τ en σ
geldt τ =µ σ dan en slechts dan als Tree(τ) = Tree(σ), en dus dan en slechts dan
als τ en σ dezelfde boom-ontvouwing bezitten.

In Hoofdstuk 4 worden de noties “afleidbaarheid” en “toelaatbaarheid” van de-
ductieregels in formele bewijssystemen behandeld. Als motivatie van dit hoofdstuk
binnen dit proefschrift wordt in Sectie 4.1 eerst uitgelegd waarom deze noties be-
langrijk zijn voor het vinden van bewijstheoretische transformaties in het algemeen.
In Sectie 4.2 en in Sectie 4.3 worden de noties afleidbaarheid en toelaatbaarheid van
deductieregels gëıntroduceerd. Dat gebeurd apart in de twee klassen van bewijssys-
temen waarbij alle systemen horen die in latere hoofdstukken voorkomen: in “pu-
re” Hilbert-stijl afleidingssystemen, en in natuurlijke-deductie systemen. De noties
“afleidbaarheid” en “toelaatbaarheid” van deductieregels worden in Appendix B
in abstracte versies van bewijssystemen preciezer uitgewerkt. Hiervoor worden de
concepten abstract pure Hilbert systems en abstract natural-deduction systems ge-
definieerd.

In Hoofdstuk 5 worden de drie reeds eerder genoemde bewijssystemen voor “ge-
lijkheid van recursieve types” op een precieze en formele manier gëıntroduceerd:
enerzijds, in Sectie 5.1, de axiomatische systemen AC= van Amadio en Cardelli, en
HB= van Brandt en Henglein, en anderzijds, in Sectie 5.2, het uit werk van Ariola
en Klop voortkomende bewijssysteem AK=. Voor deze systemen worden verder
nog bepaalde varianten gedefinieerd die later van pas zullen komen. Hierbij horen
de versies HB=

0 van HB= en AK=
0 van AK=, die sterkere bewijstheoretische ei-

genschappen hebben dan de oorspronkelijke systemen. In tegenstelling met HB=

en AK= zijn de systemen HB=
0 en AK=

0 namelijk “analytisch”: deducties in HB=
0

en in AK=
0 voldoen aan een passend bij het respectievelijke systeem geformuleerde

“deelformule-eigenschap”.5 De variant-systemen HB=
0 en AK=

0 tonen zich in de

5Gewoonlijk wordt in de bewijstheorie over een bewijssysteem S gezegd dat S de “deelformule-
eigenschap” (subformula property) heeft, of dat het “deelformule-principe” (subformula principle)
in S geldig is, als alle afleidingen D in S de “deelformule-eigenschap” hebben: alle in D voorkomen-
de formules zijn ook in de conclusie van D als deelformules bevat. Het geldig zijn van dit principe
is een zeer wenselijk attribuut van een bewijssysteem S, omdat daardoor enerzijds het zoeken naar
concrete deducties in S, en anderzijds het bewijzen van meta-resultaten over bewijsbaarheid in S
beduidend wordt vergemakkelijkt.

434 Samenvatting (Summary in Dutch)

Hoofdstukken 6–8 zeer geschikte hulpmiddelen voor het vinden van bewijstheoreti-
sche transformaties tussen de systemen AC=, HB=, en AK=. Uiteindelijk worden
in Sectie 5.3 van Hoofdstuk 5 ook een aantal fundamentele verschillen bewezen tus-
sen de bewijstheoretische eigenschappen van de hier gedefinieerde axiomatische en
de “syntactic-matching” systemen.

Het onderwerp in Hoofdstuk 6 is het door de observatie van Klop aannemelijk
gemaakte verband tussen het vinden van een afleiding in het systeem HB= van
Brandt en Henglein en het bewijzen van consistentie in het system AK= van Ario-
la en Klop. Hier wordt aangetoond dat deze twee activiteiten in feite duaal zijn als
ze op de analytische versies HB=

0 en AK=
0 van HB= en AK= worden betrokken

(voor de systemen HB= en AK= bestaat een vergelijkbaar direct verband name-
lijk niet in volle algemeenheid). De belangrijkste drie stappen op de weg naar het
bewijs hiervan zijn de volgende: (1) De introductie van een conservatieve extensie
e-HB=

0 van het systeem e-HB=
0 die meer cöınductieve regels bevat; (2) de defini-

tie van een special soort afleidingsbomen in AK=
0 die “naar beneden groeien”, en

daarop gebaseerd, de definitie van consistency-unfoldings in AK=
0 als afleidingsbo-

men in AK=
0 die als “getuigen” kunnen fungeren voor de consistentie met AK=

0

van de formule aan hun respectievelijke wortel; (3) de definitie van een paar van
geometrische gemotiveerde “spiegelingsfuncties” tussen derivaties in e-HB=

0 en de
eerder gedefinieerde afleidingsbomen inAK=

0 . De voornaamste stelling in dit hoofd-
stuk formuleert vervolgens het bestaan van, inderdaad, een dualiteit tussen e-HB=

0

en AK=
0 : de spiegelingsfuncties zijn bijektief tussen de verzameling van deriva-

ties in e-HB=
0 zonder assumpties en de verzameling van consistency-unfoldings in

AK=
0 . In het bijzonder kunnen derivaties in e-HB=

0 zonder assumpties op een bij-
na uitsluitend geometrische manier worden “gespiegeld” met de uitkomst van een
consistency-unfolding in AK=

0 ; en andersom.
In de Hoofstukken 7 en 8 worden de systemen AC= van Amadio/Cardelli en

HB= van Brandt en Henglein door middel van twee effectieve bewijstheoretische
transformaties aan elkaar gerelateerd. Eerst wordt in Hoofdstuk 7 beschreven hoe
een willekeurige derivatie D(ac) in AC= zonder assumpties stapsgewijs kan worden
omgevormd met als uitkomst een derivatie D(hb) in HB= zonder open assumpties
zodat D(hb) dezelfde conclusie als D(ac) heeft. En later wordt in Hoofdstuk 8 aan-
getoond dat ook andersom elke derivatie D(hb) in HB= zonder open assumpties
op een effectieve manier getransformeerd kan worden in een derivatie D(ac) zonder
assumpties en met dezelfde conclusie als D(hb).

De transformatie tussen derivaties in AC= en derivaties in HB= die in Hoofd-
stuk 7 wordt ontwikkeld en uitgelegd, bestaat in het kort uit drie stappen, die in het
volgende worden beschreven. In de eerste stap worden van een gegeven derivatie D
in AC= zonder assumpties alle toepassingen van de zogeheten µ-compatibiliteitsre-
gel in AC= geëlimineerd met als resultaat een derivatie D(1) zonder assumpties en
met dezelfde conclusie als D. Deze transformatiestap is gebaseerd op de voornaams-
te stelling in Sectie 7.1: deze zegt dat de µ-compatibiliteitsregel in AC= overbodig
wordt zodra aan het systeem AC= axioma’s van de vorm µαα1 . . . αn. α = ⊥ wor-
den toegevoegd. In de tweede stap van de transformatie wordt de derivatie D(1)

omgezet naar een derivatie D(2) in een extensie van HB= met als bijkomende re-

Samenvatting (Summary in Dutch) 435

gel een zodanige versie UFP−(nd) van de regel UFP in AC= die geschikt is voor

natuurlijke-deductie systemen; verder gebeurt dat zo dat D(2) geen open assump-
ties bevat en dezelfde conclusie als D(1) en als D heeft. In de derde en laatste stap
van de transformatie worden uit de derivatie D(2) alle voorkomens van UFP−(nd)
geeliminieerd. Deze stap wordt gerechtvaardigd door een stelling in Sectie 7.2: de
regel UFP−(nd) is afleidbaar in HB=. De uitkomst van stap drie, en dus van de

transformatie in haar geheel, is uiteindelijk een derivatie D′ in HB= zonder open
assumpties en met dezelfde conclusie als D.

De in Hoofdstuk 8 ontwikkelde transformatie van derivaties in HB= naar de-
rivaties in AC= bestaat uit twee componenten. Ten eerste uit een transformatie
van derivaties zonder open assumpties in het variant-systeem HB=

0 van HB= naar
derivaties met respectievelijk dezelfde conclusie en zonder assumpties in AC=; dit
onderdeel wordt in Sectie 8.1 beschreven en kan als de “kern” van de gehele trans-
formatie beschouwd worden. En ten tweede bestaat de transformatie tussen HB=

en AC= nog uit een effectieve procedure die een derivatie zonder assumpties in het
systeem HB= van Brandt en Henglein naar een derivatie met dezelfde conclusie
en zonder assumpties in het variant-systeem HB=

0 kan omvormen; de werkwijze
van deze component wordt in Sectie 8.2 uitgelegd. De in Sectie 8.1 ontwikkel-
de transformatie van HB=

0 -derivaties naar AC=-derivaties gebruikt als hulpmiddel
een geannoteerde versie ann-HB=

0 van het bewijssysteem HB=
0 : een derivatie D in

HB=
0 zonder assumpties wordt namelijk eerst, door het vinden van passende anno-

taties (deze zijn ook recursieve types), tot een derivatie D̂ geannoteerd, voordat uit
D̂ twee AC=-derivaties kunnen worden geëxtraheerd die uiteindelijk op eenvoudige
manier verbonden kunnen worden tot een derivatie (D̂)′ in AC= zonder assumpties
en met dezelfde conclusie als D. De in Sectie 8.2 beschreven procedure kan als
een manier voor het “normaliseren” van HB=-derivaties worden beschouwd: deze
transformatie vormt een gegeven derivatie D zonder assumpties in HB= eerst om
naar een derivatie D̃ zonder assumpties in het systeem HB=

0 +SYMM+TRANS, en
elimineert vervolgens alle toepassingen van de regels SYMM en TRANS uit D̃ met
als uitkomst een derivatie D′ in HB=

0 zonder assumpties en met dezelfde conclu-
sie als D. De hierin gebruikte effectieve manier om toepassingen van SYMM en
TRANS uit een derivatie te verwijderen, vertoond een analogie met in de bewijs-
theorie gebruikelijke procedures voor het elimineren van toepassingen van de regel
“Cut” uit derivaties in sequenten-stijl bewijssystemen (cut-elimination procedures).

Het laatste hoofdstuk, Hoofdstuk 9, bestaat uit twee delen. In Sectie 9.1 wordt
de samenwerking van de gevonden transformaties door een afbeelding aanschouwe-
lijk gemaakt die de vorm van een “netwerk” heeft; ook worden frappante onderlinge
relaties besproken die in deze afbeelding zichtbaar naar voren komen. En in Sec-
tie 9.2 worden mogelijkheden geschetst hoe de bereikte resultaten veralgemeend
oftewel voor soortgelijke bewijssystemen toegepast kunnen worden.

