Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions

Clemens Grabmayer (Department of Computer Science, Gran Sasso Science Institute, Viale F. Crispi, 7, 67100 L'Aquila AQ, Italy)

Abstract

We report on a lengthy completeness proof for Robin Milner's proof system Mil (1984) for bisimilarity of regular expressions in the process semantics. Central for our proof are the recognitions: 1. Process graphs with 1 -transitions (1-charts) and the loop existence/elimination property LLEE are not closed under bisimilation collapse, 2. Such process graphs can be 'crystallized' to 'near-collapsed' 1-charts with some strongly connected components of 'twin-crystal' form.

The Process Semantics of Regular Expressions

Milner (1984) introduced a process semantics for regular expressions: the interpretation of 0 is deadlock, of 1 is an empty step to termination, letters a are atomic actions, the operators + and \cdot stand for choice and concatenation of processes, and unary Kleene star $(\cdot)^{*}$ represents (unbounded) iteration. Formally, Milner defined chart (finite process graph) interpretations $\mathcal{C}(e)$ of regular expressions e

Milner's Proof System
As axiomatization of the relation $e_{1}={ }_{P} e_{2}$ on regular expressions e_{1} and e_{2} defined by $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$ (as bisimilarity \leftrightarrow of chart interpretations), Milner asked whether the following system Mil is complete
(A1) $e+(f+g)=(e+f)+g$
(A7) $e=1 \cdot e$
(A2) $\quad e+0=e \quad$ (A8) $e=e \cdot 1$
(A3) $\quad e+f=f+e \quad$ (A9) $0=0 \cdot e$
(A4) $\quad e+e=e \quad(\mathrm{~A} 10) e^{*}=1+e \cdot e^{*}$
(A5) $e \cdot(f \cdot g)=(e \cdot f) \cdot g \quad(\mathrm{~A} 11) e^{*}=(1+e)^{*}$ (A6) $(e+f) \cdot g=e \cdot g+f \cdot g$
$\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*}$ (if f does not terminate immediately)

This system is a variation of Salomaa's complete axiom system (1966) for language equality of regular expressions, missing left-distributivity $e \cdot(f+g)=$ $e \cdot f+e \cdot g$ and $e \cdot 0=0$, which are unsound here.

Loop Existence and Elimination

The process semantics is incomplete: not every finite process graph is expressible by (=bisimilar to the interpretation of) a regular expression. A sufficient condition for expressibility is the (layered) loop existence and elimination property LLEE. It is defined via elimination of 'loops' (loop subcharts)

LLEE holds if a graph without infinite behavior can be obtained. Important features of LLEE
(US) Every guarded LLEE-1-chart (chart, maybe 1-transitions, with LLEE) is uniquely Mil-provably solvable modulo provability in Mil (CALCO 2021). (IV) The chart interpretation $\mathcal{C}(e)$ of a regular expression e can always be expanded under bisimilarity to a LLEE-1-chart $\mathcal{C}(e)$ (TERMGRAPH 2020). $\left(\mathrm{C}_{4}\right)$ LLEE-charts (without 1-transitions) are preserved by bisimulation collapse (G/Fokkink, LICS'20).

LLEE-preserving Collapse Fails

LLEE-1-charts with 1-transitions, however, are not preserved under bisimulation collapse. A counterexample is provided by the following LLEE-1-chart \mathcal{C} :

Identifying the bisimilar vertices w_{1} and w_{2} yields a chart for which LLEE fails. Also, the subcharts of \mathcal{C} that are rooted at w_{1} and w_{2} are not LLEE-preservingly jointly minimizable under bisimilarity.

Twin-Crystals

The counterexample to LLEE-preserving collapse is symmetric, and its structure can be abstracted as:

It is a LLEE-1-chart with a single scc (strongly connected component) P that consists of a pivot part P_{1} below pivot vertex piv, and a top part P_{2} below top vertex top. P_{1} and P_{2} are connected only via transitions from piv and from top. While both P_{1} and P_{2} are collapsed, P contains bisimilarity redundancies ($=$ distinct bisimilar vertices) such as $\left\{w_{1}, w_{2}\right\}$ that are linked by a self-inverse counterpart function $c p_{P}$. We call such an scc a twin-crystal. We have:
(CC) Every Mil-provable solution of a twin-crystal gives rise to a Mil-provable solution of its bisimulation collapse (which often is not a LLEE-1-chart).

Crystallization of LLEE-1-charts
By crystallization of a LLEE-1-chart \mathcal{C} we mean: > a process of minimization of \mathcal{C} under bisimilarity by steps that eliminate most (all but crystalline) bisimilarity redundancies $\left\{w_{1}, w_{2}\right\}$, roughly by redirecting transitions that target w_{1} over to w_{2} hereby only 'reduced' bisimilarity redundancies can be eliminated LLEE-preservingly, which exist whenever a LLEE-1-chart is not collapsed; the result is a crystallized LLEE-1-chart that is bisimilar to \mathcal{C}, and collapsed apart from within some its scc's that are twin-crystals.
The crystallization process facilitates to show: (CR) From every LLEE-1-chart a bisimilar crystallized LLEE-1-chart can be obtained.

Completeness Proof
Let $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$ be bisimilar chart interpretations of regular expressions e_{1} and e_{2}. To secure LLEE, $\mathcal{C}\left(e_{1}\right)$ and $\mathcal{C}\left(e_{2}\right)$ are expanded to their 1 -chart interpretations $\mathcal{C}\left(e_{1}\right)$ and $\mathcal{C}\left(e_{2}\right)$. One of them, say $\mathcal{C}\left(e_{1}\right)$, is crystallized to \mathcal{C}_{10}. All (1-)charts are linked by (1-)bisimulations to their bisimulation collapse \mathcal{C}_{0}.

From \mathcal{C}_{10} a provable solution e_{10} can be extracted due to LLEE, transferred (T) to the collapse \mathcal{C}_{0}, and then to $\mathcal{C}\left(e_{1}\right)$ and $\mathcal{C}\left(e_{2}\right)$. On the LLEE-1-charts $\mathcal{C}\left(e_{1}\right)$ and $\mathcal{C}\left(e_{2}\right), e_{10}$ can be proved equal to the solutions e_{1} and e_{2} there, respectively. By transitivity, $e_{1}=\mathrm{Mil} e_{2}$ (provability of $e_{1}=e_{2}$ in Mil) follows.
Theorem. Milner's system Mil is complete: $e_{1}={ }_{P} e_{2}$ implies $e_{1}={ }_{\mathrm{Mil}} e_{2}$, for reg. expr's e_{1}, e_{2}.

Next Steps and Projects
\triangleright Monograph project: proof in fine-grained details. \triangleright Build an animation tool for crystallization.
\triangleright Apply crystallization to find an efficient algorithm for expressibility of finite process graphs by a regular expression modulo bisimilarity.

Contact
clemens.grabmayer@gssi.it

