Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete **Crystallization:** Near-Collapsing Process Graph Interpretations of Regular Expressions

Clemens Grabmayer (Department of Computer Science, Gran Sasso Science Institute, Viale F. Crispi, 7, 67100 L'Aquila AQ, Italy)

Abstract

We report on a lengthy completeness proof for Robin Milner's proof system Mil (1984) for bisimilarity of regular expressions in the process semantics. Central for our proof are the recognitions:

- . Process graphs with 1-transitions (1-charts) and the loop existence/elimination property LLEE are **not** closed under bisimilation collapse,
- 2. Such process graphs can be 'crystallized' to 'near-collapsed' 1-charts with some strongly connected components of 'twin-crystal' form.

The Process Semantics of **Regular Expressions**

Milner (1984) introduced a process semantics for regular expressions: the interpretation of 0 is *dead*lock, of 1 is an empty step to termination, letters aare *atomic actions*, the operators + and \cdot stand for choice and concatenation of processes, and unary Kleene star $(\cdot)^*$ represents *(unbounded) iteration.* Formally, Milner defined chart (finite process graph) interpretations $\mathcal{C}(e)$ of regular expressions e.

Milner's Proof System

As axiomatization of the relation $e_1 = \mathbf{P} e_2$ on regular expressions e_1 and e_2 defined by $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$ (as bisimilarity \leftrightarrow of chart interpretations), Milner asked whether the following system Mil is complete:

(A1) e + (f + g) = (e + f) + g(A7) $e = 1 \cdot e$ $e + 0 = e \qquad (A8) \ e = e \cdot 1$ (A2)e + f = f + e(A3)(A9) $0 = 0 \cdot e$ (A10) $e^* = 1 + e \cdot e^*$ (A4)e + e = e(A5) $e \cdot (f \cdot g) = (e \cdot f) \cdot g$ (A11) $e^* = (1+e)^*$ (A6) $(e+f) \cdot g = e \cdot g + f \cdot g$ $\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* \text{ (if } f \text{ does not terminate immediately)}$ This system is a variation of Salomaa's complete axiom system (1966) for language equality of regular expressions, missing left-distributivity $e \cdot (f+g) =$ $e \cdot f + e \cdot g$ and $e \cdot 0 = 0$, which are unsound here.

Loop Existence and Elimination

The process semantics is incomplete: not every finite process graph is *expressible by* (=bisimilar to the interpretation of) a regular expression. A sufficient condition for expressibility is the *(layered)* loop existence and elimination property LLEE. It is defined via elimination of 'loops' (loop subcharts):

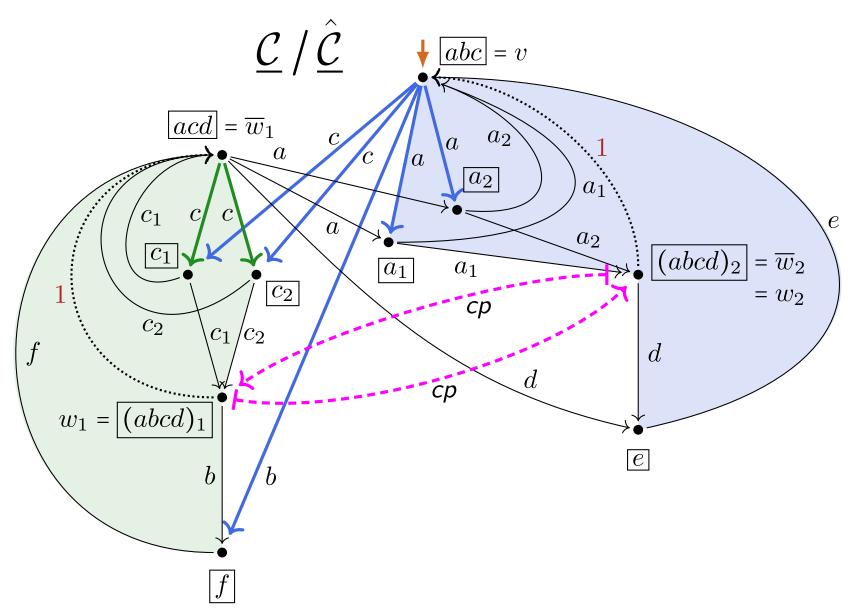
v elim velim $\downarrow v$ elim 🗡 🕴 🕴

LLEE holds if a graph without infinite behavior can be obtained. Important features of LLEE:

(US) Every guarded LLEE-1-chart (chart, maybe 1-transitions, with LLEE) is uniquely Mil-provably solvable modulo provability in Mil (CALCO 2021). (IV) The chart interpretation $\mathcal{C}(e)$ of a regular expression e can always be expanded under bisimilarity to a LLEE-1-chart $\mathcal{C}(e)$ (TERMGRAPH 2020). (C_1) LLEE-charts (without 1-transitions) are preserved by bisimulation collapse (G/Fokkink, LICS'20).

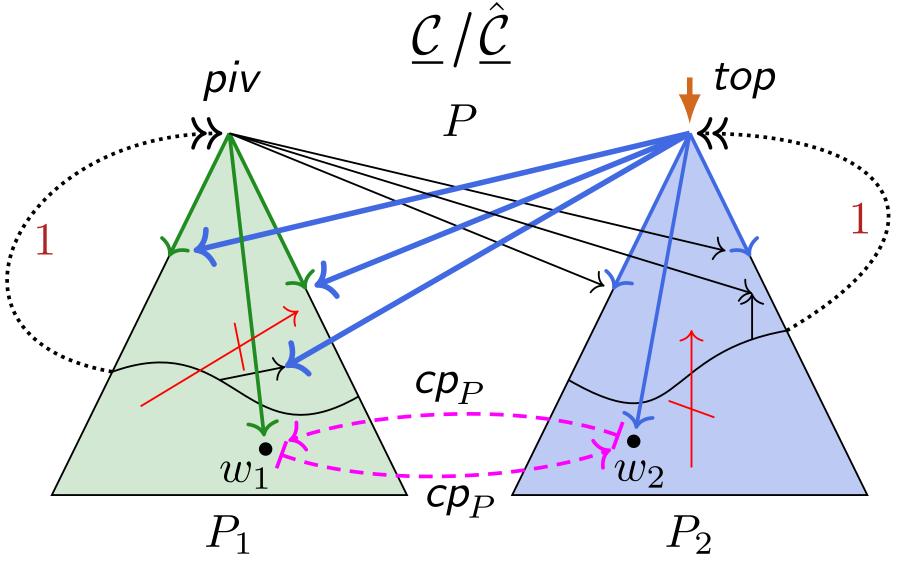
LLEE-preserving Collapse Fails

LLEE-1-charts with 1-transitions, however, are **not** preserved under bisimulation collapse. A counterexample is provided by the following LLEE-1-chart \mathcal{C} :



Identifying the bisimilar vertices w_1 and w_2 yields a chart for which LLEE fails. Also, the subcharts of \mathcal{C} that are rooted at w_1 and w_2 are **not** *LLEE-preser*vingly jointly minimizable under bisimilarity.

The counterexample to LLEE-preserving collapse is symmetric, and its structure can be abstracted as:



It is a LLEE-1-chart with a single scc (strongly connected component) P that consists of a pivot part P_1 below *pivot vertex* **piv**, and a *top part* P_2 below *top vertex top.* P_1 and P_2 are connected only via transitions from *piv* and from *top*. While both P_1 and P_2 are collapsed, P contains bisimilarity redundancies (= distinct bisimilar vertices) such as $\{w_1, w_2\}$ that are linked by a self-inverse counterpart function cp_P . We call such an scc a *twin-crystal*. We have: (CC) Every Mil-provable solution of a twin-crystal gives rise to a Mil-provable solution of its bisimulation collapse (which often is not a LLEE-1-chart).

Twin-Crystals

Crystallization of LLEE-1-charts

By *crystallization* of a LLEE-1-chart \mathcal{C} we mean: \triangleright a process of minimization of \mathcal{C} under bisimilarity by steps that **eliminate most** (all but crystalline) bisimilarity redundancies $\{w_1, w_2\}$, roughly by

redirecting transitions that target w_1 over to w_2 ; > hereby only '**reduced**' bisimilarity redundancies can be eliminated LLEE-preservingly, which exist whenever a LLEE-1-chart is **not** collapsed;

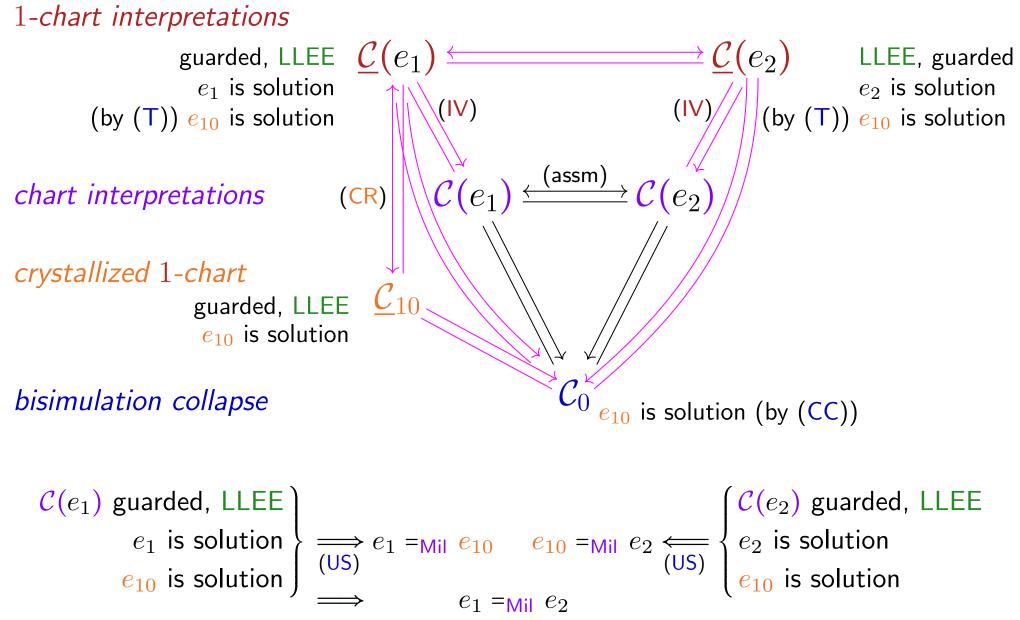
⊳ the result is a *crystallized* LLEE-1-chart that is bisimilar to \mathcal{C} , and collapsed **apart from** within some its scc's that are twin-crystals.

The crystallization process facilitates to show: (CR) From every LLEE-1-chart a bisimilar crystallized LLEE-1-chart can be obtained.

Let $\mathcal{C}(e_1) \leftrightarrow \mathcal{C}(e_2)$ be bisimilar chart interpretations of regular expressions e_1 and e_2 . To secure LLEE, $\mathcal{C}(e_1)$ and $\mathcal{C}(e_2)$ are expanded to their 1-chart interpretations $\mathcal{C}(e_1)$ and $\mathcal{C}(e_2)$. One of them, say $\mathcal{C}(e_1)$, is crystallized to \mathcal{C}_{10} . All (1-)charts are linked by (1-)bisimulations to their bisimulation collapse \mathcal{C}_0 .

From \mathcal{C}_{10} a provable solution e_{10} can be extracted due to LLEE, transferred (T) to the collapse \mathcal{C}_0 , and then to $\mathcal{C}(e_1)$ and $\mathcal{C}(e_2)$. On the LLEE-1-charts $\mathcal{C}(e_1)$ and $\mathcal{C}(e_2)$, e_{10} can be proved equal to the solutions e_1 and e_2 there, respectively. By transitivity, $e_1 = \operatorname{Mil} e_2$ (provability of $e_1 = e_2$ in Mil) follows. **Theorem.** Milner's system Mil is complete: $e_1 = \mathbf{p} \ e_2 \ implies \ e_1 = \mathbf{Mil} \ e_2, \ for \ reg. \ expr's \ e_1, e_2.$

Completeness Proof



Next Steps and Projects

▷ Monograph project: proof in fine-grained details. ▶ Build an animation tool for crystallization.

▶ Apply crystallization to find an efficient algorithm for expressibility of finite process graphs by a regular expression modulo bisimilarity.

Contact

