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Abstract Loop Existence and Elimination Twin-Crystals Completeness Proof
We report on a lengthy completeness proof for The process semantics is incomplete: not every fi- The counterexample to LLEE-preserving collapse is Let C(e1) <= C(es) be bisimilar chart interpretations
Robin Milner’s proof system Mil (1984) for bisimi- nite process graph is expressible by (=bisimilar to symmetric, and its structure can be abstracted as: of regular expressions e; and ey. To secure LLEL,
larity of regular expressions in the process seman- the interpretation of) a regular expression. A suf- C /é C(eq) and C(es) are expanded to their 1-chart inter-
tics. Central for our proof are the recognitions: ficient condition for expressibility is the (layered) piv b V top pretations C(eq) and C(es). One of them, say C(e;),
1. Process graphs with 1-transitions (1-charts) and ,lOOp exz'ste@ce .cm.d el'z'mz'natz'on property LLEE. 16 » s / N s cryspallizec?l to Cro .AH .(1.—)char.t  are [inked by
the loop existence /elimination property LLE is defined via elimination of ‘loops’ (loop subcharts): 1 == £ 1 (1-)bisimulations to their bisimulation collapse Cj.
are not closed under bisimilation collapse, i I-chart interpretations / \
| AN A N W guarded, LLEE C(eq) ¢ 'C(ez)  LLEE, guarded
2.Such process graphs can be ‘crystallized’ to s cpp A by (T ten 4 \\'“ "% oy (T) o e
near-collapsed’ 1-charts with some strongly 8 7P \ 15 ~7NC A= 7N \**~ /7 P5IZA------ -V T (asm)
e 7 ‘ i i : o/ _Ye chart interpretations (cr)[|\\C(e1)
connected components of ‘twin-crystal” form. Wi Trm ey s W2
Pl P P2 crystallized 1-chart C \ /
S . . ) ) . uarded, LLEE Y10
. LLEE hplds if a graph without infinite _b_ehamor can It is a LLEE-1-chart with a single scc (strongly con- " is solutior \
The Process Semantics of be obtained. Important features of LLEL: nected component) P that consists of a pivot part P, bisimulation collapse Co™ s sonation (by (CO)
Regular EXpI'eSSiOIlS (US) Every guarded LLEE-1-chart (chart, maybe below pivot vertex piv, and a top part P, below top
. . . e1) guarded, LLEE ) (C(es) guarded, LLEE
I-transitions, with LLEE) is uniquely Mil-provably vertex top. Py and P are connected only via transi- : )g61 s solution { — €3 =ui 10 C10 =il €2 = SQ( is)si;lution
Milner (1984) introduced a process semantics for solvable modulo provability in Mil (CALCO 2021). tions from piv and from top. While both P, and P, 1y is solution | N 51 ey s solution
regular expressions: the interpretation of 0 is dead- T - - are collapsed, P contains bisimilarity redundancies
l gk (1 P P o] (IV) The chart interpretation C(e) of a regular ex- 1 EOTEDRE, 7 .1n e h Y b From C;, a provable solution ¢, can be extracted
ock, of 1 is an empty step to termination, letters a pression e can always be expanded under bisimilar- (= distinct bisimilar vertices) such as {wy, wy} that due to LLEE, transferred (T) to the collapse Co
are atomic actions, the operators + and - stand for - min 9 are linked by a selt-inverse counterpart tunction cpp. o . o
P ity to a LLEE-1-chart C(e) (TERMGRAPH 2020). ’ : P £P and then to C(ey) and C(es). On the LLEE-1-charts

We call such an scc a twin-crystal. We have:

choice and concatenation of processes, and unary (C,) LLE

+ F-charts (without 1-transitions) are preser- _
Kleene star (-)* represents (unbounded) iteration. | ) are p C(e1) and C(ez), 1 can be proved equal to the so

| | ved by bisimulation collapse (G/Fokkink, LICS20). (CC) Every Mil-provable solution of a twin-crystal lutions e; and ey there, respectively. By transitivity,
Formally, Milner defined chart (finite process graph) es Tise to 4 Milorovable solution of its hisimula. B . T
. . . g p I er =)/i| €2 (provability of e; = ey in Mil) follows.
interpretations C(e) of regular expressions e. tion collapse (which often is not a LLEE-1-chart).

Theorem. Milner’s system Mil 1s complete:
L. ,
e1 =p ey tmplies ey =\ €2, for reg. expr’s ey, €.

LLEE-preserving Collapse Fails

Milner’s Proof System .
" LLERE-1-charts with I-transitions, however, are not Crystallization of LLEE-1-charts

preserved under bisimulation collapse. A counterex-

ample is provided by the following LLEE-1-chart C: By crystallization of a LLIEI-1-chart € we mean:

Next Steps and Projects

As axiomatization of the relation e; =p es on regu-
lar expressions e; and e defined by C(ey) <> C(es)
(as bisimilarity <> of chart interpretations), Milner C/C  {fabd=-v
asked whether the following system Mil is complete:

> a process of minimization of C under bisimilarity
by steps that eliminate most (all but crystalline)
bisimilarity redundancies {w-, w>}, roughly by

> Monograph project: proot in fine-grained details.

> Build an animation tool for crystallization.

Al)e+(f+g)=(e+f)+g (A7) e=1-¢ redirecting transitions that target wy over to wy: > Apply crystallization to find an efficient algorithm
(0 et U9
(A4) oo (Al0)e" = 14¢- ¢ can be eliminated LL. F-preservingly, which ex- Y
(A5) e-(f-gl=(c-f)-g (All)e=(1+e) ist whenever a LLEI-1-chart is not collapsed; Contact
(AG) (e+f)-g=e-g+f-g >the result is a crystallized LLEE-1-chart that is

bisimilar to C, and collapsed apart from within
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" (if | does not terminate immediately)

some its scc’s that are twin-crystals.
This system is a variation of Salomaa’s complete ax- [dentitying the bisimilar vertices w; and w, yields a The crystallization process facilitates to show: G S gCRI'?\ENN géslﬁg NTUTE
lom system (1966) for language equality of regular chart for which LLEE fails. Also, the subcharts of C (CR) From every LLEE-1-chart a bisimilar crys-
expressions, mising leftdistributivity ¢ - (/ +g) —  thataxe ooted at wy and wp ave w0t LLEE-preser | guliped 1L E hast can bo obtained. | oo e

e- f4+e-gande-0=0, which are unsound here. vingly jointly minimizable under bistmilarity.
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