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Overview

▸ Motivation for fixed-parameter intractability

▸ Fixed parameter reductions

▸ The classes para-NP and XP

▸ The class W[P]

▸ Logic preliminaries (continued)

▸ W-hierarchy
▸ definitions

▸ with Boolean circuits
▸ as parameterized weighted Fagin definability problems

▸ A-hierarchy
▸ definition as parameterized model-checking problems

▸ picture overview of these classes
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Two classical problems

QUERIES

Instance: a relational database D, a conjunctive query α.
Compute: answer to query α from database D.

▸ QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ
Parameter: size ∣φ∣ of formula φ
Question: Does K ⊧ φ hold?

▸ LTL-MODEL-CHECKING ∈ PSPACE-complete.
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Comparing their parameterizations

QUERIES

Instance: a relational database D, a conjunctive query α.
Parameter: size k = ∣α∣ of query α
Compute: answer to query α from database D.

▸ QUERIES ∈ NP-complete.

▸ QUERIES ∈ O(nk) for n = ∥D∥, which does not give an FPT result.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ
Parameter: size k = ∣φ∣ of formula φ
Question: Does K ⊧ φ hold?

▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,

▸ LTL-MODEL-CHECKING ∈ O(k ⋅ 22k ⋅ n) ∈ FPT for n = ∥K∥.
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Fixed-parameter intractability

‘The purpose [. . . ] is to give evidence that certain prob-
lems are not fixed-parameter tractable (just as the main pur-
pose of the theory of NP-completeness is to give evidence
that certain problems are not polynomial time computable.)

In classical theory, the notion of NP-completeness is cen-
tral to a nice, simple, and far-reaching theory for intractable
problems.

Unfortunately, the world of parameterized intractability is
more complex: There is a big variety of seemingly different
classes of intractable parameterized problems.’

(Flum, Grohe [2])
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Fixed-Parameter tractable

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is fixed-parameter tractable
(is in FPT) if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗

∀x ∈ Σ∗[A decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣) ]
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Slices of parameterized problems

The ℓ-th slice, for ℓ ∈ N, of a parameterized problem ⟨Q,κ⟩ is:

⟨Q,κ⟩ℓ ∶= {x ∈ Q ∣ κ(x) = ℓ} .

Proposition (slices of FPT problems are in PTIME)

Let ⟨Q,κ⟩ be a parameterized problem, and ℓ ∈ N.
If ⟨Q,κ⟩ ∈ FPT, then ⟨Q,κ⟩ℓ ∈ PTIME.

Proof
Let ℓ be fixed. Then for all x ∈ Σ∗:
Decide x ∈ Q, κ(x) = ℓ in time ≤ f(κ(x)) ⋅ p(∣x∣)= f(ℓ) ⋅ p(∣x∣)∈ PTIME.
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A problem not in FPT

The ℓ-th slice, for ℓ ∈ N, of a parameterized problem ⟨Q,κ⟩ is:

⟨Q,κ⟩ℓ ∶= {x ∈ Q ∣ κ(x) = ℓ} .

Slices of FPT problems are in PTIME

If ⟨Q,κ⟩ ∈ FPT, then ⟨Q,κ⟩ℓ ∈ PTIME.

p-COLORABILITY

Instance: A graph G, and ℓ ∈ N.
Parameter: ℓ.
Problem: Decide whether G is ℓ-colorable.

Consequence: p-COLORABILITY ∉ FPT (unless P = NP).

It is well-known: 3-COLORABILITY ∈ NP-complete. Now since
3-COLORABILITY is the third slice of p-COLORABILITY, the proposition
entails p-COLORABILITY ∉ FPT unless P = NP.
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Polynomial reductions / hardness / completeness

Definition

Let ⟨Q1,Σ1⟩, ⟨Q2,Σ2⟩ be classical problems.
An polynomial-time reduction from ⟨Q1,Σ1⟩ to ⟨Q2,Σ2⟩ is a mapping
R ∶ Σ∗1 → Σ∗2:
R1. (x ∈ Q1 ⇐⇒ R(x) ∈ Q2) for all x ∈ Σ∗1.
R2. R is computable by a polynomial-time algorithm: there is a

polynomial p(X) such that R is computable in time p(∣x∣).

⟨Q1,Σ1⟩ ≤pol ⟨Q2,Σ2⟩ ∶=
there is a polynomial-time reduction from ⟨Q1,Σ1⟩ to ⟨Q2,Σ2⟩.

Proposition

If ⟨Q1,Σ1⟩ ≤pol ⟨Q2,Σ2⟩, then: ⟨Q1,Σ1⟩ ∈ P ⇐Ô ⟨Q2,Σ2⟩ ∈ P.
⟨Q1,Σ1⟩ ∉ P Ô⇒ ⟨Q2,Σ2⟩ ∉ P.

Let C be class of classical problems.

▸ ⟨Q,Σ⟩ is C-hard: if, for all ⟨Q′,Σ′⟩ ∈ C, ⟨Q′,Σ′⟩ ≤pol ⟨Q,Σ⟩.
▸ ⟨Q,Σ⟩ is C-complete: if ⟨Q,Σ⟩ is C-hard, and ⟨Q,Σ⟩ ∈ C.
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Fixed-parameter tractable reductions

Definition

Let ⟨Q1,Σ1, κ⟩, ⟨Q2,Σ2, κ2⟩ be parameterized problems.
An fpt-reduction from ⟨Q1, κ1⟩ to ⟨Q2, κ2⟩ is a mapping
R ∶ Σ∗1 → (Σ2)∗:
R1. (x ∈ Q1 ⇐⇒ R(x) ∈ Q2) for all x ∈ Σ∗1.
R2. R is computable by a fpt-algorithm (with respect to κ): there are

f computable and p(X) polynomial such that R is computable in
time f(κ1(x)) ⋅ p(∣x∣).

R3. κ2(R(x)) ≤ g(κ1(x)) for all x ∈ Σ∗1, for some computable function
g ∶ N→ N.

⟨Q1, κ1⟩ ≤fpt ⟨Q2, κ2⟩ ∶= there is an fpt-red. from ⟨Q1, κ1⟩ to ⟨Q2, κ2⟩.

Proposition

If ⟨Q1, κ1⟩ ≤fpt ⟨Q2, κ2⟩, then: ⟨Q1, κ1⟩ ∈ FPT ⇐Ô ⟨Q2, κ2⟩ ∈ FPT.
⟨Q1, κ1⟩ ∉ FPT Ô⇒ ⟨Q2, κ2⟩ ∉ FPT.
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Comparing parameterizations (revisited)
Definition (computably bounded below)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[ g(κ1(x)) ≥ κ2(x) ] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .
▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with κ1 ⪰ κ2:
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Fixed-parameter tractable reductions

Examples

▸ p-CLIQUE ≡fpt p-INDEPENDENT-SET.
▸ p-DOMINATING-SET ≡fpt p-HITTING-SET.

Non-Example

▸ For graphs G = ⟨V,E⟩, and sets X ⊆ V :
X is independent set of G ⇐⇒ V ∖X is a vertex cover of G

yields a polynomial reduction between p-INDEPENDENT-SET and
p-VERTEX-COVER, but does not yield an fpt-reduction.
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Fpt-reduction closure / hardness / reducibility

Let C be a class of parameterized problems.

We define for all parameterized problems ⟨Q,κ⟩:

▸ [⟨Q,κ⟩]fpt ∶= {⟨Q′, κ′⟩ ∣ ⟨Q′, κ′⟩ ≤fpt ⟨Q,κ⟩}.

▸ [C]fpt ∶= ⋃⟨Q,κ⟩∈C[⟨Q,κ⟩]
fpt

is the closure of C under fpt-reductions.

▸ ⟨Q,κ⟩ is C-hard under fpt-reductions
if every problem in C is fpt-reducible to ⟨Q,κ⟩

that is: C ⊆ [⟨Q,κ⟩]fpt
, and hence [C]fpt ⊆ [⟨Q,κ⟩]fpt

.

▸ ⟨Q,κ⟩ is C-complete under fpt-reductions
if ⟨Q,κ⟩ ∈ C and ⟨Q,κ⟩ is C-hard under fpt-reductions,

and then: [C]fpt = [⟨Q,κ⟩]fpt
.
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para-NP and XP

XPpara-NP

FPT
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para-NP

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is in para-NP if there is a
computable function f ∶ N→ N, and a polynomial p ∈ N[X] such that
there is a non-deterministic algorithm A such that:
▸ A decides, for all x ∈ Σ∗, whether x ∈ Q in ≤ f(κ(x)) ⋅ p(∣x∣) steps.

▸ para-NP is closed under fpt-reductions.
▸ NP ⊆ para-NP.

Example

▸ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET,
p-HITTING-SET, p-COLORABILITY ∈ para-NP.

▸ FPT = para-NP if and only if PTIME = NP.

▸ A non-trivial problem ⟨Q,κ⟩ is para-NP-complete for fpt-reductions if
and only if the union of finitely many slices of ⟨Q,κ⟩ is NP-complete.
Hence a non-trivial problem with at least one NP-complete slice is
para-NP-complete.
▸ p-COLORABILITY ∈ para-NP-complete.
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XP (slicewise polynomial problems)

Recall: slices of FPT-problems are in PTIME. This suggests a class:

XPnu, non-uniform XP : the class of parameterized problems ⟨Q,κ⟩,
whose slices ⟨Q,κ⟩k are all in PTIME.

▸ But: XPnu contains undecidable problems:
▸ Let Q ⊆ {1}∗ be an undecidable set. Let κ ∶ {1}∗ → N,

x↦ κ(x) ∶=max{1, ∣x∣}. Then ⟨Q,κ⟩ ∈ XPnu.

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is in XP if there is a computable
function f ∶ N→ N such that there is an algorithm A such that:

▸ A decides x ∈ Q, for all x ∈ Σ∗, in ≤ f(κ(x)) ⋅ ∣x∣f(κ(x)) steps;
equivalently, if in addition to computable f ∶ N→ N there are
polynomials pk ∈ N[X] for all k ∈ N such that:
▸ A decides x ∈ Q, for all x ∈ Σ∗, in ≤ f(κ(x)) ⋅ pκ(x)(∣x∣) steps.
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equivalently, if in addition to computable f ∶ N→ N there are
polynomials pk ∈ N[X] for all k ∈ N such that:
▸ A decides x ∈ Q, for all x ∈ Σ∗, in ≤ f(κ(x)) ⋅ pκ(x)(∣x∣) steps.

Clemens Grabmayer Lecture 4: Fixed-Parameter Intractability



ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

XP (slicewise polynomial problems)

Example

▸ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET,
p-HITTING-SET ∈ XP.

▸ p-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME ≠ NP, then para-NP /⊆ XP.

Proof.
If para-NP ⊆ XP, then p-COLORABILITY ∈ XP. But then it follows that
3-COLORABILITY ∈ PTIME, and as 3-COLORABILITY is NP-complete,
that PTIME = NP.

Proposition

FPT ⫋ XP .

Clemens Grabmayer Lecture 4: Fixed-Parameter Intractability



ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

XP (slicewise polynomial problems)

Example

▸ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET,
p-HITTING-SET ∈ XP.

▸ p-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME ≠ NP, then para-NP /⊆ XP.

Proof.
If para-NP ⊆ XP, then p-COLORABILITY ∈ XP. But then it follows that
3-COLORABILITY ∈ PTIME, and as 3-COLORABILITY is NP-complete,
that PTIME = NP.

Proposition

FPT ⫋ XP .

Clemens Grabmayer Lecture 4: Fixed-Parameter Intractability



ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

XP (slicewise polynomial problems)

Example

▸ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET,
p-HITTING-SET ∈ XP.

▸ p-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME ≠ NP, then para-NP /⊆ XP.

Proof.
If para-NP ⊆ XP, then p-COLORABILITY ∈ XP. But then it follows that
3-COLORABILITY ∈ PTIME, and as 3-COLORABILITY is NP-complete,
that PTIME = NP.

Proposition

FPT ⫋ XP .

Clemens Grabmayer Lecture 4: Fixed-Parameter Intractability



ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

Model checking
The model checking problem for a class Φ of first-order formulas:

MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Problem: Decide whether A ⊧ φ (that is, φ(A) ≠ ∅).

Theorem

MC(FO) can be solved in time O(∣φ∣ ⋅ ∣A∣w ⋅w), where w is the width
of the input formula φ (max. no. of free variables in a subformula of φ).

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ).
Instance: A structure A and a formula φ ∈ Φ.
Parameter: ∣φ∣.
Problem: Decide whether A ⊧ φ.

Theorem

p-MC(Φ) ∈ XP.
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FPT versus para-NP and XP

XPpara-NP

FPT

Proposition

▸ FPT ⊆ para-NP, and:
FPT = para-NP if and only if PTIME = NP.

▸ para-NP /⊆ XP if PTIME ≠ NP.
▸ FPT ⫋ XP .
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W[P]

‘There is no definite single class that can be viewed as
“the parameterized NP”. Rather, there is a whole hierarchy of
classes playing this role.

The class W[P] can be placed on top of this hierarchy. It is
one of the most important parameterized complexity classes.’

(Flum, Grohe [2])

XPpara-NP

W[P]

FPT
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W[P] and limited non-determinism

⟨Q,Σ⟩ ∈ NP[f] means:

⇐⇒ ∃p(X) polynomial ∃M non-deterministic Turingmachine
(∀x ∈ Σ∗( (x ∈ Q ⇐⇒ M accepts x)

∧ on input x, M halts in ≤ p(∣x∣) steps, of which
at most ≤ f(∣x∣) are non-deterministic)

NP[F] ∶= ⋃f∈F NP[f] for class of functions F .

Fact

NP[logn] = P , NP[nO(1)] = NP .
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W[P]

Definition
▸ Let Σ be an alphabet, and κ ∶ Σ∗ → N a parameterization.

A nondeterministic Turing machine M with input alphabet Σ is
κ-restricted

if there are computable functions f, h ∶ N→ N and a
polynomial p ∈ N0[x] such that on every run with input x ∈ Σ∗ the
machine M performs

▷ at most f(κ(x)) ⋅ p(∣x∣) steps,
▷ at most h(κ(x)) ⋅ log ∣x∣ of them being nondeterministic,

▸ W[P] contains all problems ⟨Q,κ⟩ that can be decided by a
κ-restricted nondeterministic Turing machine.
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W[P] (properties)

Theorems

T1. FPT ⊆W[P] ⊆ XP ∩ para-NP
T2. W[P] is closed under fpt-reductions.
T3. p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, and

p-HITTING-SET are in W[P].
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The W-hierarchy – Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:
▸ nodes of in-degree > 1 as and-node or as or-node,
▸ nodes of in-degree = 1 as negation nodes,

▸ nodes of in-degree = 0 as Boolean constants 0 or 1, or input
node (we assume input nodes to be numbered 1,. . . ,n),

▸ one node of out-degree 0 is labeled as output node.
A circuit C with n input nodes defines a function C(⋅) ∶ {0,1}n → {0,1}
(a Boolean function) in the natural way.

▸ If C(x) = 1, for x ∈ {0,1}n, we say that x satisfies C.
▸ The weight of a tuple x = ⟨x1, . . . , xn⟩ ∈ {0,1}∗ is ∑n

i=1 xi.

Definition
We say that C is k-satisfiable if C is satisfied by a tuple of weight k.
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W[P] complete problems

p-WSAT(CIRC)
Instance: A circuit C and k ∈ N
Parameter: k.
Problem: Decide whether C is k-satisfiable.

Theorem

p-WSAT(CIRC) is W[P]-complete under fpt-reductions.

Definition
The depth of the circuit is the max. length of a path from an input node
to the output node. Small nodes have indegree at most 2 while large
nodes have indegree > 2. The weft of a circuit is the max. number of
large nodes on a path from an input node to the output node. We
denote by CIRCt,d the class of circuits with weft ≤ t and depth ≤ d.

Application

p-DOMINATING-SET ∈W[P], since it reduces to p-WSAT(CIRC2,3).
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Limited non-determinism (classically)

⟨Q,Σ⟩ ∈ NP[f] means:
⇐⇒ ∃p(X) polynomial ∃M non-deterministic Turingmachine

(∀x ∈ Σ∗( (x ∈ Q ⇐⇒ M accepts x)
∧ on input x, M halts in ≤ p(∣x∣) steps, of which

at most ≤ f(∣x∣) are non-deterministic)

NP[F] ∶= ⋃f∈F NP[f] for class of functions F .

Fact

NP[logn] = P , NP[nO(1)] = NP .

Theorem (Cai, Chen, 1997)

The following are equivalent:
(i) FPT =W[P].
(ii) There is a computable, nondecreasing, unbounded function

ι ∶ N→ N such that P = NP[ι(n) ⋅ logn].
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FPT and W[P] versus para-NP and XP

XPpara-NP

W[P]

FPT

Proposition

FPT ⊆W[P] ⊆ XP ∩ para-NP .
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Why is the theory of W[P]/W/A-hardness important?

▸ Prevents from wasting hours tackling a problem which is
fundamentally difficult;

▸ Finding results on a problem is always a ping-pong game
between trying to design a hardness/FPT result;

▸ There is a hierarchy on parameters and it is worth knowing which
is the smallest one such that the problem remains FPT;

▸ There is a hierarchy on complexity classes and it is worth noting
to which extent a problem is hard.
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Logic preliminaries (continued)

▸ atomic formulas/atoms: a formula x = y or Rx1 . . . xn
▸ literal: an atom or a negated atom
▸ quantifier-free formula: a formula without quantifiers
▸ formula in negation-normal form:

negations only occur in front of atoms
▸ formula in prenex normal form: formula of the form

Q1x1 . . .Qkxk ψ, where ψ is quantifier-free
and Q1, . . . ,Qk ∈ {∃,∀}

▸ Σ0 and Π0 : the class of quantifier-free formulas
▸ Σt+1 : class of all formulas ∃x1 . . .∃xkφ where φ ∈ Πt

▸ Πt+1 : class of all formulas ∀x1 . . .∀xkφ where φ ∈ Σt

Clemens Grabmayer Lecture 4: Fixed-Parameter Intractability



ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

Logic preliminaries (continued)

▸ atomic formulas/atoms: a formula x = y or Rx1 . . . xn
▸ literal: an atom or a negated atom
▸ quantifier-free formula: a formula without quantifiers
▸ formula in negation-normal form:

negations only occur in front of atoms
▸ formula in prenex normal form: formula of the form

Q1x1 . . .Qkxk ψ, where ψ is quantifier-free
and Q1, . . . ,Qk ∈ {∃,∀}

▸ Σ0 and Π0 : the class of quantifier-free formulas
▸ Σt+1 : class of all formulas ∃x1 . . .∃xkφ where φ ∈ Πt

▸ Πt+1 : class of all formulas ∀x1 . . .∀xkφ where φ ∈ Σt

Clemens Grabmayer Lecture 4: Fixed-Parameter Intractability



ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W- vs. A-hierarchy summ course ex-sugg

Weighted Fagin definability

Let φ(X) be a f-o formula with a free relation variable X with arity s.
Let τ be a vocabulary for φ, plus a relation symbol R of arity s.
A solution for φ in a τ -structure A is a relation S ⊆ As such that
A ⊧ φ(S).
The weighted Fagin definability problem for φ(X) is:

WDφ

Instance: A structure A and k ∈ N.
Problem: Decide whether there is a solution S ⊆ As for φ

of cardinality ∣S∣ = k.

WDΦ: the class of all problems WDφ with φ ∈ Φ, where Φ is a class of
first-order formulas with free relation variable X.
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W-Hierarchy
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W-Hierarchy

p-WDφ (φ a fo-formula with free relation variable X of arity s)
Instance: A structure A and k ∈ N.
Parameter: k.
Problem: Is there a relation S ⊆ As of cardinality ∣S∣ = k

with A ⊧ φ(S).

p-WD-Φ: the class of all problems p-WD-φ with φ ∈ Φ, Φ is a class of
first-order formulas.

Definition (Downey–Fellows, 1995)

W [t] ∶= [p-WD-Πt]
fpt

, for t ≥ 1, form the W-hierarchy.

Examples

▸ p-CLIQUE ∈W[1].

▸ p-DOMINATING-SET ∈W[2].
▸ p-HITTING-SET ∈W[2].
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W-hierarchy

Definition

(W-hierarchy) For t ≥ 1, a parameterized problem ⟨Q,κ⟩ belongs to
the class W[t] if there is a parameterized reduction from ⟨Q,κ⟩ to
p-WSAT(CIRCt,d) (with parameter t) for some d ≥ 1.

FPT ⊆W[1] ⊆W[2] . . .

▸ p-CLIQUE, p-INDEPENDENT-SET are W[1]-Complete.

▸ p-DOMINATING-SET, p-HITTING-SET are W[2]-Complete.

Hypothesis: W[1] ≠ FPT

Proposition

This definition of the W-hierarchy is equivalent to the one here before.
That is, it holds, for all t ≥ 1 :

W[t] = [{p-WSAT(CIRCt,d) ∣ d ≥ 1}]
fpt
.
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W-Hierarchy (properties)

Immediate from definition follows: [p-WD-FO]fpt = ⋃∞i=1 W[i].

Theorems

T1. p-WD-FO ⊆W[P], and hence W[t] ⊆W[P] for all t ≥ 1.

T2. p-WD-Σ1 ⊆ FPT.

T3. p-WD-Σt+1 ⊆ p-WD-Πt, for all t ≥ 1.

T4. W[t] = [p-WD-Σt+1]
fpt

for all t ≥ 1.
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W-Hierarchy versus para-NP and XP

XPpara-NP

W[P]
⋮

W[2]

W[1]

FPT
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A-Hierarchy
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W[P]

W[3] A[3]

W[2] A[2]

W[1] = A[1]

FPT
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A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Parameter: ∣φ∣.
Problem: Decide whether φ(A) ≠ ∅.

Definition (Flum, Grohe, 2001)

A[t] ∶= [p-MC(Σt)]
fpt

, for t ≥ 1, form the A-hierarchy.

Examples

▸ p-CLIQUE ∈ A[1].
▸ p-DOMINATING-SET ∈ A[2].
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A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Parameter: ∣φ∣.
Problem: Decide whether φ(A) ≠ ∅.

Definition (Flum, Grohe, 2001)

A[t] ∶= [p-MC(Σt)]
fpt

, for t ≥ 1, form the A-hierarchy.

Examples

▸ p-HITTING-SET ∈ A[2].
▸ p-SUBGRAPH-ISOMORPHISM ∈ A[1].
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A-Hierarchy (example 5)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Parameter: ∣φ∣.
Problem: Decide whether φ(A) ≠ ∅.

Definition (Flum, Grohe, 2001)

A[t] ∶= [p-MC(Σt)]
fpt

, for t ≥ 1, form the A-hierarchy.

Examples

▸ p-SUBGRAPH-ISOMORPHISM ∈ A[1].
p-SUBGRAPH-ISOMORPHISM

Instance: Graphs G and H.
Parameter: The number of vertices of H.
Problem: Does G have a subgraph isomorphic to H.
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A-Hierarchy (example 6)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Parameter: ∣φ∣.
Problem: Decide whether φ(A) ≠ ∅.

Definition (Flum, Grohe, 2001)

A[t] ∶= [p-MC(Σt)]
fpt

, for t ≥ 1, form the A-hierarchy.

Examples

▸ p-VERTEX-DELETION ∈ A[2].
p-VERTEX-DELETION

Instance: Graphs G and H, and k ∈ N.
Parameter: k + ℓ, where ℓ the number of vertices of H.
Problem: Is it possible to delete at most k vertices from G such

that the resulting graph has no subgraph isomorphic to H?
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A-Hierarchy (example 7)

The parameterized model checking problem for a class Φ of formulas:

p-MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Parameter: ∣φ∣.
Problem: Decide whether φ(A) ≠ ∅.

Definition (Flum, Grohe, 2001)

A[t] ∶= [p-MC(Σt)]
fpt

, for t ≥ 1, form the A-hierarchy.

Examples

▸ p-CLIQUE-DOMINATING-SET ∈ A[2].
p-CLIQUE-DOMINATING-SET

Instance: Graphs G, and k, ℓ ∈ N.
Parameter: k + ℓ, where ℓ the number of vertices of H.
Problem: Decide whether G contains a set of k vertices from G

that dominates every clique of ℓ elements.
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A-Hierarchy (properties)

Theorems

T1. A[1] ⊆W[P].
T2. W[t] ⊆ A[t], for all t ∈ N.

▸ Unlikely: A[t] ⊆W[t], for t > 1.
Reason:
▸ the A-hierarchy are parameterizations of problems that are

complete for the levels of the polynomial hierarchy
▸ the W-hierarchy is a refinement of NP in parameterized complexity

▸ Unlikely: [p-MC(FO)]fpt = ⋃∞i=1 A[i],
contrasting with: [p-WD-FO]fpt = ⋃∞i=1 W[i].
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W-Hierarchy and A-Hierarchy versus para-NP and XP

para-NP XP

W[P]

W[3] A[3]

W[2] A[2]

W[1] = A[1]

FPT
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Revisiting the two problems at start today

QUERIES

Instance: a relational database D, a conjunctive query α.
Parameter: size k = ∣α∣ of query α
Compute: answer to query α from database D.

▸ QUERIES ∈ NP-complete.
▸ QUERIES ∈ O(nk) for n = ∥D∥, which does not give an FPT result.

▸ QUERIES ∈W[1] (= strong evidence for it likely not to be in FPT).

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ
Parameter: size k = ∣φ∣ of formula φ
Question: Does K ⊧ φ hold?

▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,
▸ LTL-MODEL-CHECKING ∈ O(k ⋅ 22k ⋅ n) ∈ FPT for n = ∥K∥.
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Summary

▸ Motivation for fixed-parameter intractability

▸ Fixed parameter reductions

▸ The classes para-NP and XP

▸ The class W[P]

▸ Logic preliminaries (continued)

▸ W-hierarchy
▸ definitions

▸ with Boolean circuits
▸ as parameterized weighted Fagin definability problems

▸ A-hierarchy
▸ definition as parameterized model-checking problems

▸ picture overview of these classes
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Course overview

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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Example suggestions

Examples

1. FPT results transfer backwards over fpt-reductions:
If ⟨Q1, κ1⟩ ≤fpt ⟨Q2, κ2⟩, then Q2 ∈ FPT implies Q1 ∈ FPT.

2. Find the idea for:
p-DOMINATING-SET ≡fpt p-HITTING-SET.

3.
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