Lecture 4: Fixed-Parameter Intractability (A Short Introduction to Parameterized Complexity)

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

June 14, 2024

Course overview

Overview

- ▸ Motivation for fixed-parameter intractability
- ▸ Fixed parameter reductions
- ▶ The classes para-NP and XP
- ▶ The class W[P]
- ▶ Logic preliminaries (continued)
- ▸ W-hierarchy
	- ▸ definitions
		- ▸ with Boolean circuits
		- ▸ as parameterized weighted Fagin definability problems
- ▸ A-hierarchy
	- ▸ definition as parameterized model-checking problems
- ▸ picture overview of these classes

QUERIES

Instance: a relational database D, a conjunctive query α . **Compute:** answer to query α from database D .

QUERIES

Instance: a relational database D, a conjunctive query α . **Compute:** answer to query α from database D .

▸ QUERIES ∈ NP-complete.

QUERIES

Instance: a relational database D , a conjunctive query α . **Compute:** answer to query α from database D .

▸ QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K , an LTL formula φ **Parameter:** size | φ of formula φ **Question:** Does $K \models \varphi$ hold?

QUERIES

Instance: a relational database D , a conjunctive query α . **Compute:** answer to query α from database D .

▸ QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K , an LTL formula φ **Parameter:** size | φ of formula φ **Question:** Does $K \models \varphi$ hold?

▸ LTL-MODEL-CHECKING ∈ PSPACE-complete.

Comparing their parameterizations

```
QUERIES
  Instance: a relational database D, a conjunctive query \alpha.
  Parameter: size k = |\alpha| of query \alphaCompute: answer to query \alpha from database D.
```
▸ QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $K \models \varphi$ hold?

▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,

Comparing their parameterizations

```
QUERIES
  Instance: a relational database D, a conjunctive query \alpha.
  Parameter: size k = |\alpha| of query \alphaCompute: answer to query \alpha from database D.
```
- ▸ QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for $n = ||D||$, which does not give an FPT result.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $K \models \varphi$ hold?

▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,

Comparing their parameterizations

```
QUERIES
  Instance: a relational database D, a conjunctive query \alpha.
  Parameter: size k = |\alpha| of query \alphaCompute: answer to query \alpha from database D.
```
- ▸ QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for $n = ||D||$, which does not give an FPT result.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K , an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $K \models \varphi$ hold?

- ▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ► LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \text{FPT}$ for $n = ||\mathcal{K}||$.

Fixed-parameter intractability

'The purpose [. . .] is to give evidence that certain problems are not fixed-parameter tractable (just as the main purpose of the theory of NP*-completeness is to give evidence that certain problems are not polynomial time computable.)*

In classical theory, the notion of NP*-completeness is central to a nice, simple, and far-reaching theory for intractable problems.*

Unfortunately, the world of parameterized intractability is more complex: There is a big variety of seemingly different classes of intractable parameterized problems.'

(Flum, Grohe [\[2\]](#page-103-1))

Fixed-Parameter tractable

Definition

```
A parameterized problem ⟨Q, Σ, κ⟩ is fixed-parameter tractable
(is in FPT) if:
```

```
\exists f : \mathbb{N} \to \mathbb{N} computable \exists p \in \mathbb{N}[X] polynomial
```
 $\exists \mathbb{A}$ algorithm, takes inputs in Σ^*

 $\forall x \in \Sigma^*$ A decides whether $x \in Q$ holds in time $\leq f(\kappa(x)) \cdot p(|x|)$

Slices of parameterized problems

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

 $\langle Q, \kappa \rangle_{\ell} \coloneqq \{x \in Q \mid \kappa(x) = \ell\}.$

Proposition (slices of FPT problems are in PTIME)

Let $\langle Q, \kappa \rangle$ be a parameterized problem, and $\ell \in \mathbb{N}$. If $\langle Q, \kappa \rangle \in \text{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \text{PTIME}$.

Proof

Let ℓ be fixed. Then for all $x \in \Sigma^*$: Decide $x \in Q$, $\kappa(x) = \ell$ in time $\leq f(\kappa(x)) \cdot p(|x|) = f(\ell) \cdot p(|x|) \in \textsf{PTIME}$.

A problem not in FPT

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$
\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \} .
$$

Slices of FPT problems are in PTIME If $\langle Q, \kappa \rangle \in \text{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \text{PTIME}$.

```
p-COLORABILITY
   Instance: A graph \mathcal{G}, and \ell \in \mathbb{N}.
   Parameter: ℓ.
   Problem: Decide whether \mathcal G is \ell-colorable.
```
Consequence: p -COLORABILITY \notin FPT (unless P = NP).

It is well-known: 3-COLORABILITY ∈ NP-complete. Now since 3-COLORABILITY is the third slice of p -COLORABILITY, the proposition entails p -COLORABILITY ∉ FPT unless P = NP.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \rightarrow \Sigma_2^*$.

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial $p(X)$ such that R is computable in time $p(|x|)$.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \rightarrow \Sigma_2^*$.

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial $p(X)$ such that R is computable in time $p(|x|)$.
- $\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle :=$

there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \rightarrow \Sigma_2^*$.

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial $p(X)$ such that R is computable in time $p(|x|)$.

 $\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle :=$ there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Proposition

If
$$
\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle
$$
, then $\langle Q_1, \Sigma_1 \rangle \in \mathbf{P} \iff \langle Q_2, \Sigma_2 \rangle \in \mathbf{P}$.
\n $\langle Q_1, \Sigma_1 \rangle \notin \mathbf{P} \implies \langle Q_2, \Sigma_2 \rangle \notin \mathbf{P}$.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \rightarrow \Sigma_2^*$.

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial $p(X)$ such that R is computable in time $p(|x|)$.

 $\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle :=$ there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Proposition

If $\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle$, then: $\langle Q_1, \Sigma_1 \rangle \in \mathsf{P} \iff \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}$. $\langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} \implies \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}.$

Let C be class of classical problems.

 $\blacktriangleright \langle Q, \Sigma \rangle$ is C-hard: if, for all $\langle Q', \Sigma' \rangle \in \mathsf{C}, \langle Q', \Sigma' \rangle \leq_{\mathsf{pol}} \langle Q, \Sigma \rangle$.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems. An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \rightarrow \Sigma_2^*$.

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial $p(X)$ such that R is computable in time $p(|x|)$.

 $\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle :=$ there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Proposition

$$
\begin{array}{lll} \text{If } \langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle \text{, then } & \langle Q_1, \Sigma_1 \rangle \in \mathsf{P} & \Longleftarrow & \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}. \\ & \langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} & \Longrightarrow & \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}. \end{array}
$$

Let C be class of classical problems.

- $\blacktriangleright \langle Q, \Sigma \rangle$ is C-hard: if, for all $\langle Q', \Sigma' \rangle \in \mathsf{C}, \langle Q', \Sigma' \rangle \leq_{\mathsf{pol}} \langle Q, \Sigma \rangle$.
- \blacktriangleright $\langle Q, \Sigma \rangle$ is C-complete: if $\langle Q, \Sigma \rangle$ is C-hard, and $\langle Q, \Sigma \rangle \in \mathbb{C}$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R:\Sigma_1^*\to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and $p(X)$ polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R:\Sigma_1^*\to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and $p(X)$ polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \leq g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $q : \mathbb{N} \to \mathbb{N}$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R:\Sigma_1^*\to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and $p(X)$ polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \leq g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $q : \mathbb{N} \to \mathbb{N}$.

 $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle$:= there is an fpt-red. from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$.

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems. An *fpt-reduction* from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$ is a mapping $R:\Sigma_1^*\to (\Sigma_2)^*$:

R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.

- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and $p(X)$ polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \leq g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $q : \mathbb{N} \to \mathbb{N}$.

 $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle$:= there is an fpt-red. from $\langle Q_1, \kappa_1 \rangle$ to $\langle Q_2, \kappa_2 \rangle$.

Proposition

If $\langle Q_1, \kappa_1 \rangle \leq_{\text{fot}} \langle Q_2, \kappa_2 \rangle$, then: $\langle Q_1, \kappa_1 \rangle \in \text{FPT} \iff \langle Q_2, \kappa_2 \rangle \in \text{FPT}$. $\langle Q_1, \kappa_1 \rangle \notin \text{FPT} \implies \langle Q_2, \kappa_2 \rangle \notin \text{FPT}.$

Comparing parameterizations (revisited)

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ► $\kappa_1 \geq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* \big[g(\kappa_1(x)) \geq \kappa_2(x) \big].$
- \triangleright $\kappa_1 \approx \kappa_2$; \Longleftrightarrow $\kappa_1 \geq \kappa_2$ ∧ $\kappa_2 \geq \kappa_1$.
- \triangleright $\kappa_1 > \kappa_2 : \iff \kappa_1 \geq \kappa_2 \land \neg(\kappa_2 \geq \kappa_1).$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with $\kappa_1 \geq \kappa_2$:

$$
\langle Q, \kappa_1 \rangle \in \text{FPT} \iff \langle Q, \kappa_2 \rangle \in \text{FPT},
$$

$$
\langle Q, \kappa_1 \rangle \notin \text{FPT} \implies \langle Q, \kappa_2 \rangle \notin \text{FPT}.
$$

Comparing parameterizations (revisited)

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ► $\kappa_1 \geq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* \big[g(\kappa_1(x)) \geq \kappa_2(x) \big].$
- \triangleright $\kappa_1 \approx \kappa_2$; \Longleftrightarrow $\kappa_1 \geq \kappa_2$ ∧ $\kappa_2 \geq \kappa_1$.
- \triangleright $\kappa_1 > \kappa_2 : \iff \kappa_1 \geq \kappa_2 \land \neg(\kappa_2 \geq \kappa_1).$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with $\kappa_1 \geq \kappa_2$:

$$
\langle Q, \kappa_1 \rangle \in \text{FPT} \iff \langle Q, \kappa_2 \rangle \in \text{FPT}, \langle Q, \kappa_1 \rangle \notin \text{FPT} \implies \langle Q, \kappa_2 \rangle \notin \text{FPT}.
$$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with $Q \subseteq \Sigma^*$:

$$
\kappa_1 \geq \kappa_2 \iff \langle Q, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q, \kappa_2 \rangle \text{ via } R : \Sigma^* \to \Sigma^*, x \mapsto x.
$$

Examples

- ▶ p-CLIQUE $\equiv_{\text{fot}} p$ -INDEPENDENT-SET.
- ▶ p-DOMINATING-SET $\equiv_{\text{fot}} p$ -HITTING-SET.

Examples

- ► p-CLIQUE $\equiv_{\text{fot}} p$ -INDEPENDENT-SET.
- ▶ p-DOMINATING-SET $\equiv_{\text{fot}} p$ -HITTING-SET.

Non-Example

► For graphs $G = (V, E)$, and sets $X \subseteq V$:

X is independent set of $G \iff V \setminus X$ is a vertex cover of G

yields a polynomial reduction between p -INDEPENDENT-SET and p -VERTEX-COVER, but does not yield an fpt-reduction.

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

▸ ⟨Q, κ⟩ is C*-hard under fpt-reductions* if every problem in C is fpt-reducible to $\langle Q, \kappa \rangle$

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

- ▸ ⟨Q, κ⟩ is C*-hard under fpt-reductions* if every problem in C is fpt-reducible to $\langle Q, \kappa \rangle$
- ▸ ⟨Q, κ⟩ is C*-complete under fpt-reductions* if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions,

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

- $\blacktriangleright \left[\langle Q, \kappa \rangle \right]^{ \mathsf{fpt} } \coloneqq \big\{ \langle Q', \kappa' \rangle \mid \langle Q', \kappa' \rangle \leq_{ \mathsf{fpt} } \langle Q, \kappa \rangle \big\}.$
- $\blacktriangleright \left[\mathsf{C}\right]^{\mathsf{fpt}} \coloneqq \bigcup_{(Q,\kappa)\in \mathsf{C}} \left[\langle Q, \kappa \rangle\right]^{\mathsf{fpt}}$ is the *closure of* C *under fpt-reductions.*
- ▸ ⟨Q, κ⟩ is C*-hard under fpt-reductions* if every problem in C is fpt-reducible to $\langle Q, \kappa \rangle$
- ▸ ⟨Q, κ⟩ is C*-complete under fpt-reductions* if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions,

Let C be a class of parameterized problems.

We define for all parameterized problems $\langle Q, \kappa \rangle$:

- $\blacktriangleright \left[\langle Q, \kappa \rangle \right]^{ \mathsf{fpt} } \coloneqq \big\{ \langle Q', \kappa' \rangle \mid \langle Q', \kappa' \rangle \leq_{ \mathsf{fpt} } \langle Q, \kappa \rangle \big\}.$
- $\blacktriangleright \left[\mathsf{C}\right]^{\mathsf{fpt}} \coloneqq \bigcup_{(Q,\kappa)\in \mathsf{C}} \left[\langle Q, \kappa \rangle\right]^{\mathsf{fpt}}$ is the *closure of* C *under fpt-reductions.*
- ▸ ⟨Q, κ⟩ is C*-hard under fpt-reductions* if every problem in C is fpt-reducible to $\langle Q, \kappa \rangle$ that is: C $\subseteq \bigl[\langle Q, \kappa \rangle \bigr]^{\mathsf{fpt}}$, and hence $\bigl[\texttt{C} \bigr]^{\mathsf{fpt}} \subseteq \bigl[\langle Q, \kappa \rangle \bigr]^{\mathsf{fpt}}.$
- ▸ ⟨Q, κ⟩ is C*-complete under fpt-reductions* if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions, and then: $\left[\mathbf{C}\right]^\text{fpt}=\left[\left\langle Q,\kappa\right\rangle \right]^\text{fpt}.$

[ov](#page-1-0) [motiv](#page-3-0) [fpt-reductions](#page-14-0) [para-NP](#page-32-0) [XP](#page-40-0) [W\[P\]](#page-52-0) *[why hierarchies](#page-72-0) [logic prelims +](#page-73-0)* W*[-hierarchy](#page-76-0)* A*[-hierarchy](#page-87-0)* W*- vs.* A*[-hierarchy](#page-96-0) [summ](#page-100-0) [course](#page-101-0) [ex-sugg](#page-102-0)*

para-NP and XP

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

▶ para-NP is closed under fpt-reductions.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- ▸ para-NP is closed under fpt-reductions.
- ▸ NP ⊆ para-NP.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- ▸ para-NP is closed under fpt-reductions.
- ▸ NP ⊆ para-NP.

Example

 \triangleright p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p -HITTING-SET, p -COLORABILITY ϵ para-NP.
Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- ▸ para-NP is closed under fpt-reductions.
- ▸ NP ⊆ para-NP.

Example

 \triangleright p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p -HITTING-SET, p -COLORABILITY ϵ para-NP.

 \triangleright FPT = para-NP if and only if PTIME = NP.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- ▸ para-NP is closed under fpt-reductions.
- ▸ NP ⊆ para-NP.

Example

 \triangleright p-Clique, p-Independent-Set, p-Dominating-Set, p -HITTING-SET, p -COLORABILITY ϵ para-NP.

- \triangleright FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem $\langle Q, \kappa \rangle$ is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of $\langle Q, \kappa \rangle$ is NP-complete.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- ▶ para-NP is closed under fpt-reductions.
- ▸ NP ⊆ para-NP.

Example

 \triangleright p-Clique, p-Independent-Set, p-Dominating-Set, p -HITTING-SET, p -COLORABILITY ϵ para-NP.

- \triangleright FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem $\langle Q, \kappa \rangle$ is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of $\langle Q, \kappa \rangle$ is NP-complete. Hence a non-trivial problem with at least one NP-complete slice is para-NP-complete.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm A such that:

► A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

- ▶ para-NP is closed under fpt-reductions.
- ▸ NP ⊆ para-NP.

Example

 \triangleright p-Clique, p-Independent-Set, p-Dominating-Set, p -HITTING-SET, p -COLORABILITY ϵ para-NP.

- \triangleright FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem $\langle Q, \kappa \rangle$ is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of $\langle Q, \kappa \rangle$ is NP-complete. Hence a non-trivial problem with at least one NP-complete slice is para-NP-complete.
	- ▸ p-COLORABILITY ∈ para-NP-complete.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP : the class of parameterized problems (Q, κ) , whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP : the class of parameterized problems (Q, κ) , whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP : the class of parameterized problems (Q, κ) , whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

- \triangleright But: XP_{nu} contains undecidable problems:
	- ► Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa: \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) := \max\{1, |x|\}.$ Then $\langle Q, \kappa \rangle \in \mathsf{XP}_{\mathsf{nu}}.$

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems (Q, κ) , whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

- \triangleright But: XP_{nu} contains undecidable problems:
	- ► Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa: \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) := \max\{1, |x|\}.$ Then $\langle Q, \kappa \rangle \in \mathsf{XP}_{\mathsf{nu}}.$

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in XP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that there is an algorithm A such that:

A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) + |x|^{f(\kappa(x))}$ steps;

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems (Q, κ) , whose slices $\langle Q, \kappa \rangle_k$ are all in PTIME.

- \triangleright But: XP_{nu} contains undecidable problems:
	- ► Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa: \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) := \max\{1, |x|\}.$ Then $\langle Q, \kappa \rangle \in \mathsf{XP}_{\mathsf{nu}}.$

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in XP if there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that there is an algorithm A such that:

A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) + |x|^{f(\kappa(x))}$ steps; equivalently, if in addition to computable $f : \mathbb{N} \to \mathbb{N}$ there are polynomials $p_k \in \mathbb{N}[X]$ for all $k \in \mathbb{N}$ such that:

► A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) \cdot p_{\kappa(x)}(|x|)$ steps.

Example

- \triangleright p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.
- ▸ p-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME \neq NP, then para-NP \notin XP.

Example

 \triangleright p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.

▸ p-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME \neq NP, then para-NP \notin XP.

Proof.

If para-NP \subseteq XP, then p-COLORABILITY \in XP. But then it follows that 3-COLORABILITY ∈ PTIME, and as 3-COLORABILITY is NP-complete, that $PTIME = NP$.

Example

 \triangleright p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.

▸ p-COLORABILITY ∉ XP, because 3-COLORABILITY ∈ NP-complete.

Proposition

If PTIME \neq NP, then para-NP \notin XP.

Proof.

If para-NP \subseteq XP, then p-COLORABILITY \in XP. But then it follows that 3-COLORABILITY ∈ PTIME, and as 3-COLORABILITY is NP-complete, that $PTIME = NP$.

Proposition

FPT \subsetneq XP.

Model checking

The *model checking problem* for a class Φ of first-order formulas:

 $MC(Φ)$

Instance: A structure A and a formula $\varphi \in \Phi$. **Problem:** Decide whether $A \models \varphi$ (that is, $\varphi(A) \neq \varnothing$).

Theorem

 $\mathsf{MC}(\mathsf{FO})$ can be solved in time $O(|\varphi|\cdot {|A|}^w\cdot w),$ where w is the width *of the input formula* φ *(max. no. of free variables in a subformula of* φ*).*

Model checking

The *model checking problem* for a class Φ of first-order formulas:

 $MC(Φ)$

```
Instance: A structure A and a formula \varphi \in \Phi.
Problem: Decide whether A \models \varphi (that is, \varphi(A) \neq \varnothing).
```
Theorem

 $\mathsf{MC}(\mathsf{FO})$ can be solved in time $O(|\varphi|\cdot {|A|}^w\cdot w),$ where w is the width *of the input formula* φ *(max. no. of free variables in a subformula of* φ*).*

The *parameterized model checking problem* for a class Φ of formulas:

 $p\text{-MC}(\Phi)$. **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $A \models \varphi$.

Theorem

 p -MC(Φ) \in XP.

[ov](#page-1-0) [motiv](#page-3-0) [fpt-reductions](#page-14-0) [para-NP](#page-32-0) [XP](#page-40-0) [W\[P\]](#page-52-0) *[why hierarchies](#page-72-0) [logic prelims +](#page-73-0)* W*[-hierarchy](#page-76-0)* A*[-hierarchy](#page-87-0)* W*- vs.* A*[-hierarchy](#page-96-0) [summ](#page-100-0) [course](#page-101-0) [ex-sugg](#page-102-0)*

FPT versus para-NP and XP

Proposition

- \blacktriangleright FPT \subseteq para-NP, and: $FPT = para-NP$ if and only if $PTIME = NP$.
- ▶ para-NP \notin XP if PTIME \neq NP.
- \blacktriangleright FPT \subsetneq XP.

'There is no definite single class that can be viewed as "the parameterized NP*". Rather, there is a whole hierarchy of classes playing this role.*

The class W[P] *can be placed on top of this hierarchy. It is one of the most important parameterized complexity classes.'*

(Flum, Grohe [\[2\]](#page-103-0))

W[P] and limited non-determinism

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

$\iff \exists p(X)$ polynomial $\exists M$ non-deterministic Turingmachine $(\forall x \in \Sigma^* (x \in Q \iff M \text{ accepts } x))$ ∧ on input x, M halts in $\leq p(|x|)$ steps, of which at most ≤ $f(|x|)$ are non-deterministic)

W[P] and limited non-determinism

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X)$ polynomial $\exists M$ non-deterministic Turingmachine $(\forall x \in \Sigma^* (x \in Q \iff M \text{ accepts } x))$ ∧ on input x, M halts in $\leq p(|x|)$ steps, of which at most ≤ $f(|x|)$ are non-deterministic)

 $\mathsf{NP}[\mathcal{F}] := \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f]$ for class of functions \mathcal{F} .

W[P] and limited non-determinism

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X)$ polynomial $\exists M$ non-deterministic Turingmachine $(\forall x \in \Sigma^* (x \in Q \iff M \text{ accepts } x))$ ∧ on input x, M halts in $\leq p(|x|)$ steps, of which at most ≤ $f(|x|)$ are non-deterministic)

 $\mathsf{NP}[\mathcal{F}] := \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f]$ for class of functions \mathcal{F} .

Fact

$$
NP[\log n] = P, \qquad NP[n^{O(1)}] = NP.
$$

Definition

► Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization. A nondeterministic Turing machine M with input alphabet Σ is κ*-restricted*

Definition

► Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.

A nondeterministic Turing machine M with input alphabet Σ is κ -restricted if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a polynomial $p\in\mathbb{N}_0[\hspace{-1.5pt}[x]\hspace{-1.5pt}]$ such that on every run with input $x\in\Sigma^*$ the machine M performs

 \triangleright at most $f(\kappa(x)) \cdot p(|x|)$ steps,

Definition

► Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.

A nondeterministic Turing machine M with input alphabet Σ is κ -restricted if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a polynomial $p\in\mathbb{N}_0[\hspace{-1.5pt}[x]\hspace{-1.5pt}]$ such that on every run with input $x\in\Sigma^*$ the machine M performs

- \rhd at most $f(\kappa(x)) \cdot p(|x|)$ steps,
- \triangleright at most $h(\kappa(x)) \cdot \log |x|$ of them being nondeterministic,

Definition

► Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.

A nondeterministic Turing machine M with input alphabet Σ is κ -restricted if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a polynomial $p\in\mathbb{N}_0[\hspace{-1.5pt}[x]\hspace{-1.5pt}]$ such that on every run with input $x\in\Sigma^*$ the machine M performs

- \triangleright at most $f(\kappa(x)) \cdot p(|x|)$ steps,
- \triangleright at most $h(\kappa(x)) \cdot \log |x|$ of them being nondeterministic,
- \triangleright W[P] contains all problems $\langle Q, \kappa \rangle$ that can be decided by a κ -restricted nondeterministic Turing machine.

W[P] (properties)

Theorems

- T1. FPT \subseteq W[P] \subseteq XP ∩ para-NP
- T2. W[P] is closed under fpt-reductions.
- T3. p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, and p-HITTING-SET are in W[P].

- A *(Boolean) circuit* is a DAG in which nodes are labeled:
	- ▸ nodes of in-degree > 1 as *and-node* or as *or-node*,
	- ▸ nodes of in-degree = 1 as *negation nodes*,

A *(Boolean) circuit* is a DAG in which nodes are labeled:

- ▸ nodes of in-degree > 1 as *and-node* or as *or-node*,
- ▸ nodes of in-degree = 1 as *negation nodes*,
- ▸ nodes of in-degree = 0 as *Boolean constants* 0 or 1, or *input node* (we assume input nodes to be numbered 1,. . . ,n),

A *(Boolean) circuit* is a DAG in which nodes are labeled:

- ▸ nodes of in-degree > 1 as *and-node* or as *or-node*,
- ▸ nodes of in-degree = 1 as *negation nodes*,
- ▸ nodes of in-degree = 0 as *Boolean constants* 0 or 1, or *input node* (we assume input nodes to be numbered 1,. . . ,n),
- ▸ one node of out-degree 0 is labeled as *output node*.

A *(Boolean) circuit* is a DAG in which nodes are labeled:

- ▸ nodes of in-degree > 1 as *and-node* or as *or-node*,
- ▸ nodes of in-degree = 1 as *negation nodes*,
- ▸ nodes of in-degree = 0 as *Boolean constants* 0 or 1, or *input node* (we assume input nodes to be numbered 1,. . . ,n),
- ▸ one node of out-degree 0 is labeled as *output node*.

A circuit $\mathcal C$ with n input nodes defines a function $\mathcal C(\cdot): \left\{0,1\right\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

Definition

We say that C is k-satisfiable if C is satisfied by a tuple of weight k.

A *(Boolean) circuit* is a DAG in which nodes are labeled:

- ▸ nodes of in-degree > 1 as *and-node* or as *or-node*,
- ▸ nodes of in-degree = 1 as *negation nodes*,
- ▸ nodes of in-degree = 0 as *Boolean constants* 0 or 1, or *input node* (we assume input nodes to be numbered 1,. . . ,n),
- ▸ one node of out-degree 0 is labeled as *output node*.

A circuit $\mathcal C$ with n input nodes defines a function $\mathcal C(\cdot): \left\{0,1\right\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

► If $C(x) = 1$, for $x \in \{0, 1\}^n$, we say that x *satisfies* C .

Definition

We say that C is k-satisfiable if C is satisfied by a tuple of weight k.

A *(Boolean) circuit* is a DAG in which nodes are labeled:

- ▸ nodes of in-degree > 1 as *and-node* or as *or-node*,
- ▸ nodes of in-degree = 1 as *negation nodes*,
- ▸ nodes of in-degree = 0 as *Boolean constants* 0 or 1, or *input node* (we assume input nodes to be numbered 1,. . . ,n),
- ▸ one node of out-degree 0 is labeled as *output node*.

A circuit $\mathcal C$ with n input nodes defines a function $\mathcal C(\cdot): \left\{0,1\right\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

- ► If $C(x) = 1$, for $x \in \{0, 1\}^n$, we say that x *satisfies* C .
- ► The *weight* of a tuple $x = \langle x_1, \ldots, x_n \rangle \in \{0, 1\}^*$ is $\sum_{i=1}^n x_i$.

Definition

We say that C is k-satisfiable if C is satisfied by a tuple of weight k.

W[P] complete problems

```
p-WSAT(CIRC)
  Instance: A circuit C and k \in \mathbb{N}Parameter: k.
  Problem: Decide whether C is k-satisfiable.
```
Theorem

p*-*WSAT(CIRC) *is* W[P]*-complete under fpt-reductions.*

Definition

The depth of the circuit is the max. length of a path from an input node to the output node. Small nodes have indegree at most 2 while large nodes have indegree > 2 . The weft of a circuit is the max. number of large nodes on a path from an input node to the output node. We denote by CIRC_{t,d} the class of circuits with weft $\leq t$ and depth $\leq d$.

Application

p-DOMINATING-SET \in W[P], since it reduces to p-WSAT(CIRC_{2,3}).

Limited non-determinism (classically)

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means: $\iff \exists p(X)$ polynomial $\exists M$ non-deterministic Turingmachine $(\forall x \in \Sigma^* (x \in Q \iff M \text{ accepts } x))$ ∧ on input x, M halts in $\leq p(|x|)$ steps, of which at most ≤ $f(|x|)$ are non-deterministic)

Limited non-determinism (classically)

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means:

 $\iff \exists p(X)$ polynomial $\exists M$ non-deterministic Turingmachine

 $(\forall x \in \Sigma^* (x \in Q \iff M \text{ accepts } x))$

∧ on input x, M halts in $\leq p(|x|)$ steps, of which

at most $\leq f(|x|)$ are non-deterministic)

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f]$ for class of functions \mathcal{F} .

Limited non-determinism (classically)

 $\langle Q, \Sigma \rangle \in \mathsf{NP}[f]$ means: $\iff \exists p(X)$ polynomial $\exists M$ non-deterministic Turingmachine $(\forall x \in \Sigma^* (x \in Q \iff M \text{ accepts } x))$ ∧ on input x, M halts in $\leq p(|x|)$ steps, of which at most $\leq f(|x|)$ are non-deterministic)

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f]$ for class of functions \mathcal{F} .

Fact

$$
NP[\log n] = P, \qquad NP[n^{O(1)}] = NP.
$$

Theorem (Cai, Chen, 1997)

The following are equivalent:

(i) FPT = W[P]*.*

(ii) *There is a computable, nondecreasing, unbounded function* $\iota : \mathbb{N} \to \mathbb{N}$ *such that* $P = NP[\iota(n) \cdot \log n]$ *.*

[ov](#page-1-0) [motiv](#page-3-0) [fpt-reductions](#page-14-0) [para-NP](#page-32-0) [XP](#page-40-0) [W\[P\]](#page-52-0) *[why hierarchies](#page-72-0) [logic prelims +](#page-73-0)* W*[-hierarchy](#page-76-0)* A*[-hierarchy](#page-87-0)* W*- vs.* A*[-hierarchy](#page-96-0) [summ](#page-100-0) [course](#page-101-0) [ex-sugg](#page-102-0)*

FPT and W[P] versus para-NP and XP

Proposition $FPT \subseteq W[P] \subseteq XP \cap para-NP$.
Why is the theory of W[P]/W/A-hardness important?

- ▶ Prevents from wasting hours tackling a problem which is fundamentally difficult;
- ▶ Finding results on a problem is always a ping-pong game between trying to design a hardness/FPT result;
- \triangleright There is a hierarchy on parameters and it is worth knowing which is the smallest one such that the problem remains FPT;
- ► There is a hierarchy on complexity classes and it is worth noting to which extent a problem is hard.

Logic preliminaries (continued)

- \blacktriangleright *atomic formulas/atoms:* a formula $x = y$ or $Rx_1 \dots x_n$
- ▸ *literal*: an atom or a negated atom
- ▸ *quantifier-free formula*: a formula without quantifiers
- ▸ formula in *negation-normal form*: negations only occur in front of atoms
- ▸ formula in *prenex normal form*: formula of the form $Q_1x_1 \ldots Q_kx_k \psi$, where ψ is quantifier-free and $Q_1, \ldots, Q_k \in \{\exists, \forall\}$

Logic preliminaries (continued)

- \blacktriangleright *atomic formulas/atoms:* a formula $x = y$ or $Rx_1 \dots x_n$
- ▸ *literal*: an atom or a negated atom
- ▸ *quantifier-free formula*: a formula without quantifiers
- ▸ formula in *negation-normal form*: negations only occur in front of atoms
- ▸ formula in *prenex normal form*: formula of the form $Q_1x_1 \ldots Q_kx_k \psi$, where ψ is quantifier-free and $Q_1, \ldots, Q_k \in \{\exists, \forall\}$
- \blacktriangleright Σ_0 and Π_0 : the class of quantifier-free formulas
- $\blacktriangleright \Sigma_{t+1}$: class of all formulas $\exists x_1 \dots \exists x_k \varphi$ where $\varphi \in \Pi_t$
- $\blacktriangleright \Pi_{t+1}$: class of all formulas $\forall x_1 \dots \forall x_k \varphi$ where $\varphi \in \Sigma_t$

Weighted Fagin definability

Let $\varphi(X)$ be a f-o formula with a free relation variable X with arity s. Let τ be a vocabulary for φ , plus a relation symbol R of arity s.

A *solution for* φ *in a* τ *-structure* ${\mathcal A}$ *is a relation* $S\subseteq A^s$ *such that* $\mathcal{A} \models \varphi(\overline{S}).$

The *weighted Fagin definability problem* for $\varphi(X)$ is:

 WD_{ω} **Instance:** A structure A and $k \in \mathbb{N}$. **Problem:** Decide whether there is a solution $S \subseteq A^s$ for φ of cardinality $|S| = k$.

WD_Φ: the class of all problems WD_φ with $\varphi \in \Phi$, where Φ is a class of first-order formulas with free relation variable X .

 p -WD_φ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure $\mathcal A$ and $k \in \mathbb N$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality $|S| = k$ with $A \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$. Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995) $W[t]$:= $[p$ -WD- $\Pi_t]$ ^{fpt}, for $t \ge 1$, form the *W-hierarchy*.

 p -WD_φ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure $\mathcal A$ and $k \in \mathbb N$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality $|S| = k$ with $A \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$. Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995)

```
W[t] := [p-WD-\Pi_t]<sup>fpt</sup>, for t \ge 1, form the W-hierarchy.
```
- \triangleright p-CLIQUE \in W[1].
- ▸ p-DOMINATING-SET ∈ W[2].
- \triangleright p-HITTING-SET $\in W[2]$.

 p -WD_φ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure $\mathcal A$ and $k \in \mathbb N$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality $|S| = k$ with $A \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$. Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995)

```
W[t] := [p-WD-\Pi_t]<sup>fpt</sup>, for t \ge 1, form the W-hierarchy.
```

$$
\quad \blacktriangleright \ p\text{-}\text{CHQUE} \in \mathsf{W}[1].
$$

 p -WD_φ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure $\mathcal A$ and $k \in \mathbb N$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality $|S| = k$ with $A \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$. Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995)

```
W[t] := [p-WD-\Pi_t]<sup>fpt</sup>, for t \ge 1, form the W-hierarchy.
```


 p -WD_φ (φ a fo-formula with free relation variable X of arity s) **Instance:** A structure $\mathcal A$ and $k \in \mathbb N$. **Parameter:** k. **Problem:** Is there a relation $S \subseteq A^s$ of cardinality $|S| = k$ with $A \models \varphi(S)$.

p-WD- Φ : the class of all problems p-WD- φ with $\varphi \in \Phi$. Φ is a class of first-order formulas.

Definition (Downey–Fellows, 1995)

```
W[t] := [p-WD-\Pi_t]<sup>fpt</sup>, for t \ge 1, form the W-hierarchy.
```
Examples

\triangleright p-HITTING-SET $\in W[2]$.

Definition

```
(W-hierarchy) For t \geq 1, a parameterized problem \langle Q, \kappa \rangle belongs to
the class W[t] if there is a parameterized reduction from \langle Q, \kappa \rangle to
p-WSAT(CIRC<sub>t,d</sub>) (with parameter t) for some d \geq 1.
```
$FPT \subseteq W[1] \subseteq W[2] \ldots$

- \triangleright p-CLIQUE, p-INDEPENDENT-SET are W[1]-Complete.
- \triangleright p-DOMINATING-SET, p-HITTING-SET are W[2]-Complete.

Hypothesis: $W[1] \neq FPT$

Definition

```
(W-hierarchy) For t \geq 1, a parameterized problem \langle Q, \kappa \rangle belongs to
the class W[t] if there is a parameterized reduction from \langle Q, \kappa \rangle to
p-WSAT(CIRC<sub>t,d</sub>) (with parameter t) for some d \geq 1.
```
 $FPT \subseteq W[1] \subseteq W[2] \ldots$

- \triangleright p-CLIQUE, p-INDEPENDENT-SET are W[1]-Complete.
- \triangleright p-DOMINATING-SET, p-HITTING-SET are W[2]-Complete.

Hypothesis: $W[1] \neq FPT$

Proposition

This definition of the W-hierarchy is equivalent to the one here before. That is, it holds, for all $t > 1$:

$$
\mathsf{W}[t] = \big[\{p\text{-}\mathsf{WSAT}(\mathsf{CIRC}_{t,d}) \mid d \ge 1\}\big]^{\mathsf{fpt}}
$$

.

W-Hierarchy (properties)

Immediate from definition follows: $\left[p\text{-}\text{WD-FO}\right]^\text{fpt} = \bigcup_{i=1}^{\infty} \text{W}[i].$

Theorems

- T1. p-WD-FO \subseteq W[P], and hence W[t] \subseteq W[P] for all $t \ge 1$.
- T2. p -WD- $\Sigma_1 \subseteq$ FPT.
- T3. *p*-WD- $\Sigma_{t+1} \subseteq p$ -WD- Π_t , for all $t \geq 1$.
- T4. $W[t] = [p-WD-\Sigma_{t+1}]^{opt}$ for all $t \ge 1$.

W-Hierarchy versus para-NP and XP

A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{pt}}$, for $t \geq 1$, form the *A-hierarchy*.

A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

 p -MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

```
A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{pt}}, for t \geq 1, form the A-hierarchy.
```
- ► p-CLIQUE \in A[1].
- \blacktriangleright p-DOMINATING-SET \in A[2].

A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{pt}}$, for $t \geq 1$, form the *A-hierarchy*.

A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{pt}}$, for $t \geq 1$, form the *A-hierarchy*.

- \blacktriangleright p-HITTING-SET \in A[2].
- \blacktriangleright p-SUBGRAPH-ISOMORPHISM \in A[1].

A-Hierarchy (example 5)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{fpt}}$, for $t \geq 1$, form the *A-hierarchy*.

Examples

▸ p-SUBGRAPH-ISOMORPHISM ∈ A[1].

p-SUBGRAPH-ISOMORPHISM **Instance:** Graphs $\mathcal G$ and $\mathcal H$. **Parameter:** The number of vertices of H. **Problem:** Does G have a subgraph isomorphic to H .

A-Hierarchy (example 6)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{fpt}}$, for $t \geq 1$, form the *A-hierarchy*.

Examples

 \triangleright p-VERTEX-DELETION \in A[2].

p-VERTEX-DELETION **Instance:** Graphs $\mathcal G$ and $\mathcal H$, and $k \in \mathbb N$. **Parameter:** $k + \ell$, where ℓ the number of vertices of \mathcal{H} . **Problem:** Is it possible to delete at most k vertices from \mathcal{G} such that the resulting graph has no subgraph isomorphic to H ?

A-Hierarchy (example 7)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Parameter:** ∣φ∣. **Problem:** Decide whether $\varphi(A) \neq \varnothing$.

Definition (Flum, Grohe, 2001)

 $A[t] \coloneqq [p\text{-}MC(\Sigma_t)]^{\text{fpt}}$, for $t \geq 1$, form the *A-hierarchy*.

Examples

 \triangleright p-Clique-Dominating-Set \in A[2].

p-CLIQUE-DOMINATING-SET **Instance:** Graphs \mathcal{G} , and $k, \ell \in \mathbb{N}$. **Parameter:** $k + \ell$, where ℓ the number of vertices of \mathcal{H} . **Problem:** Decide whether G contains a set of k vertices from G that dominates every clique of ℓ elements.

A-Hierarchy (properties)

Theorems

```
T1. A[1] ⊆ W[P].
```
T2. $W[t] \subseteq A[t]$, for all $t \in \mathbb{N}$.

```
► Unlikely: A[t] \subseteq W[t], for t > 1.
```
Reason:

- ▸ the A-hierarchy are parameterizations of problems that are complete for the levels of the polynomial hierarchy
- \rightarrow the W-hierarchy is a refinement of NP in parameterized complexity

► Unlikely:
$$
[p\text{-MC}(\text{FO})]^{\text{fpt}} = \bigcup_{i=1}^{\infty} A[i],
$$

contrasting with: $[p\text{-WD-FO}]^{\text{fpt}} = \bigcup_{i=1}^{\infty} W[i].$

W-Hierarchy and A-Hierarchy versus para-NP and XP

W-Hierarchy and A-Hierarchy versus para-NP and XP

Revisiting the two problems at start today

QUERIES Instance: a relational database D , a conjunctive query α . **Parameter:** size $k = |\alpha|$ of query α **Compute:** answer to query α from database D .

- ▸ QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for $n = ||D||$, which does not give an FPT result.

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K, an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $K \models \varphi$ hold?

- ▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ► LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \text{FPT}$ for $n = ||\mathcal{K}||$.

Revisiting the two problems at start today

QUERIES Instance: a relational database D , a conjunctive query α . **Parameter:** size $k = |\alpha|$ of query α **Compute:** answer to query α from database D .

- ▸ QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for $n = ||D||$, which does not give an FPT result.
- ► QUERIES \in W[1] (= strong evidence for it likely not to be in FPT).

LTL-MODEL-CHECKING **Instance:** a Kripke structure (state space) K, an LTL formula φ **Parameter:** size $k = |\varphi|$ of formula φ **Question:** Does $K \models \varphi$ hold?

- ▸ LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ► LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \text{FPT}$ for $n = ||\mathcal{K}||$.

Summary

- ▸ Motivation for fixed-parameter intractability
- ▸ Fixed parameter reductions
- ▶ The classes para-NP and XP
- ▶ The class W[P]
- ▶ Logic preliminaries (continued)
- ▸ W-hierarchy
	- ▸ definitions
		- ▸ with Boolean circuits
		- ▸ as parameterized weighted Fagin definability problems
- ▸ A-hierarchy
	- ▸ definition as parameterized model-checking problems
- ▸ picture overview of these classes

Course overview

Example suggestions

Examples

1. FPT results transfer backwards over fpt-reductions: If $\langle Q_1, \kappa_1 \rangle \leq_{\text{fot}} \langle Q_2, \kappa_2 \rangle$, then $Q_2 \in \text{FPT}$ implies $Q_1 \in \text{FPT}$.

2. Find the idea for:

```
p-DOMINATING-SET \equiv_{\text{fot}} p-HITTING-SET.
```
3.

References

- Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel 暈 Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*.
	- Springer, 1st edition, 2015.
- Jörg Flum and Martin Grohe. 螶 *Parameterized Complexity Theory*. Springer, 2006.