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Overview

▸ logic preliminaries
▸ first-order logic

▸ expressing graph problems by f-o formulas
▸ monadic second-order logic (MSO)

▸ expressing graph problems by MSO formulas

▸ complexity of evaluation and model checking problems

▸ Courcelle’s theorem
▸ FPT-results by model-checking MSO-formulas

▸ for graphs / structures with bounded tree-width
▸ for maximization problems over graphs of bounded tree-width
▸ for graphs of bounded clique-width

▸ applications to concrete problems

▸ graph minors

▸ meta-theorems for first-order model-checking: an example
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Meta-theorems: idea, benefits and limitations
idea:
▸ express a problem P by a logical formula φP (of ‘short’ size)
▸ use model checking of φP

on logical structures of bounded width k (tree-, clique-width, . . . )
▸ is time bounded depending on k, size of φP , size of the structure
▸ this often facilitates FPT-results

benefits:
▸ a quick and easy way to show

that [some problems] are fixed-parameter tractable,
▸ without working out the tedious details

of a dynamic programming algorithm.
limitations:
▸ algorithms obtained by meta-theorems

cannot be expected to be optimal.
▸ a careful analysis of a specific problem at hand

will usually yield more efficient fpt-algorithms
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Logical preliminaries
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First-order logic (formula example)

φ3 ∶= ∃x1∃x2∃x3(¬(x1 = x2) ∧ ¬E(x1, x2)
∧ ¬(x1 = x3) ∧ ¬E(x1, x3)
∧ ¬(x2 = x3) ∧ ¬E(x2, x3) )

A(G) ⊧ φ3 ⇐⇒ G has a 3-element independent set .

φk ∶= ∃x1 . . .∃xk( ⋀
1≤i<j≤k

(¬(xi = xj) ∧ ¬E(xi, xj) ) )

A(G) ⊧ φk ⇐⇒ G has a k-element independent set .

S ⊆ V is independent set in G = ⟨V,E⟩ ∶⇐⇒ ∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S) )
⇐⇒ ∀u, v ∈ S(u ≠ v⇒ {u, v} ∉ E )
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First-order logic: syntax (language)

▸ language based on:
▸ a vocabulary τ = {R1, . . . ,Rn} of predicate symbols Ri together

with arity ar(Ri) ∈ N
▸ the binary equality predication =
▸ (first-order) variable symbols: x, y, z,w, x1, y1, z1,w1, x2, . . .
▸ propositional connectives: ∧,∨,¬,→,↔
▸ existential quantifier ∃, universal quantifier ∀

▸ atomic formulas (atoms): a formula x = y or R(x1 . . .xn) for R ∈ τ
▸ quantifier-free formula: atoms, literals (= negated atoms),

formulas built up from atoms by using propositional connectives
▸ quantifications over (first-order variables):

▸ existential quantifications ∃x and universal quantifications ∀x

▸ formulas:
φ ∶∶= x = y ∣R(x1, . . . ,xar(R)) (where R ∈ τ)

∣ ¬φ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ φ1 → φ2 ∣ φ1 ↔ φ2

∣ ∃xφ ∣ ∀xφ
▸ sentences: formulas without free variables.
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First-order logic: semantics (structures)
Definition

Let τ = {R1, . . . ,Rn} be a vocabulary.
A τ -structure is a tuple A = ⟨A;RA1 , . . .RAn ⟩ consisting of:
▸ the universe A,

▸ interpretations Ri
A ⊆ Aar(Ri) =

ar(Ri)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
A × . . . ×A for each of the relation

symbols Ri in τ , where i ∈ {1, . . . , n}.

Examples

Let τG = {E/2} vocabulary with binary edge relation.
The standard structure for a graph G = ⟨V,E⟩:

AτG(G) ∶= ⟨V ;Esymm⟩ .

Example

Let τHG = {VERT/1,EDGE/1, INC/2} vocabulary (for hypergraphs).
The hypergraph structure for a graph G = ⟨V,E⟩:

AτHG(G) ∶= ⟨V ∪E; V, E, {⟨v, e⟩ ∣ v ∈ V, e ∈ E,v ∈ e}⟩ .
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Interpretation of first-order formulas in structures

Let A = ⟨A; {RA}
R∈τ
⟩ be a τ -structure. For a τ -formula φ(x1, . . . ,xk) its

interpretation φ(A) ⊆ Ak in A is defined by:

▸ If φ(x1, . . . ,xk) ≡ R(xi1 , . . . ,xir) with i1, . . . , ir ∈ [k], then:

φ(A) ∶= {⟨a1, . . . , ak⟩ ∈ Ak ∣ ⟨ai1 , . . . , aik⟩ ∈ RA}

▸ If φ(x1, . . . ,xk) ≡ φ1(xi1 , . . . ,xil) ∧ φ2(xj1 , . . . ,xjm) with
i1, . . . , il, j1, . . . , jm ∈ [k], then:

φ(A) ∶= {⟨a1, . . . , ak⟩ ∈ Ak ∣ ⟨ai1 , . . . , ail⟩ ∈ φ1(A)}
∩ {⟨a1, . . . , ak⟩ ∈ Ak ∣ ⟨aj1 , . . . , ajm⟩ ∈ φ2(A)}

▸ If φ(x1, . . . ,xk) ≡ ∃xk+1φ0(xi1 , . . . ,xiℓ) with i1, . . . , iℓ ∈ [k + 1], then:

φ(A) ∶= {⟨a1, . . . , ak⟩ ∈ Ak∣ there exists ak+1 ∈ A
such that ⟨ai1 , . . . , aiℓ⟩ ∈ φ0(A)}

▸ A ⊧ φ(a1, . . . , ak) will mean: ⟨a1, . . . , ak⟩ ∈ φ(A).

▸ For a sentence φ, A ⊧ φ will mean φ(A) ≠ ∅ (then φ(A) = {⟨⟩}).
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Expressing graph properties by first-order formulas

Exercise

For given formulas φ(x) and for all k ∈ N, k ≥ 1 define formulas
∃≥kxφ(x), ∃<kxφ(x), ∃=kxφ(x), such that in a given τ -structure
A = ⟨A; {RA}

R∈τ
⟩:

A ⊧ ∃≥kxφ(x) ⇐⇒ ∣{a ∈ A ∣ A ⊧ φ(a)}∣ ≥ k
A ⊧ ∃<kxφ(x) ⇐⇒ ∣{a ∈ A ∣ A ⊧ φ(a)}∣ < k
A ⊧ ∃=kxφ(x) ⇐⇒ ∣{a ∈ A ∣ A ⊧ φ(a)}∣ = k
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Expressing graph properties by first-order formulas

Exercise

Express by a first-order formula with the vocabulary τG = {E/2} for
graphs that:

(i) a graph G contains a clique with precisely k elements,
(ii) a graph G has a dominating set with less or equal to k elements,
(iii) a graph G has a dominating set with precisely k elements,

Recall:

φk ∶= ∃x1 . . .∃xk( ⋀
1≤i<j≤k

(¬(xi = yi) ∧ ¬E(xi, xj) ) )

AτG(G) ⊧ φk ⇐⇒ G has a k-element independent set .
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Expressing graph properties by first-order formulas

Exercise
Express by a first-order formula with the vocabulary with vocabulary
τHG = {VERT/1,EDGE/1, INC/2} for hypergraphs that:

(i) a graph G contains a clique with precisely k elements,
(ii) a graph G has a dominating set with less or equal to k elements,
(iii) a graph G has a dominating set with precisely k elements.
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Evaluation and model checking (first-order logic)
Let Φ be a class of first-order formulas.
The evaluation problem for Φ:

EVAL(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Problem: Compute φ(A).

The model checking problem for Φ:

MC(Φ)
Instance: A structure A and a formula φ ∈ Φ.
Problem: Decide whether A ⊧ φ (that is, φ(A) ≠ ∅).

Width of formula φ: maximal number of free variables
in a subformula of φ.

Theorem

EVAL(FO) and MC(FO) can be solved in time O(∣φ∣ ⋅ ∣A∣w ⋅w), where
w is the width of the input formula φ.
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Monadic second-order logic (formula example)

ψ3 ∶= ∃C1∃C2∃C3( (∀x(
3

⋁
i=1

Ci(x))) ∧ ∀x( ⋀
1≤i<j≤3

¬(Ci(x) ∧ Cj(x) ))

∧ ∀x∀y(E(x, y)→
3

⋀
i=1

¬(Ci(x) ∧ Ci(y))) )

≡ ∃C1∃C2∃C3(∀x(C1(x) ∨ C2(x) ∨ C3(x))
∧ ∀x(¬(C1(x) ∧ C2(x)) ∧ ¬(C1(x) ∧ C3(x))

∧ ¬(C2(x) ∧ C3(x)))
∧ ∀x∀y(E(x, y)→ ¬(C1(x) ∧ C1(y))

∧ ¬(C2(x) ∧ C2(y))
∧ ¬(C3(x) ∧ C3(y))) )

A(G) ⊧ ψ3 ⇐⇒ G has is 3-colorable .
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Monadic second-order logic

▸ language based on:
▸ a vocabulary τ = {R1, . . . ,Rn} of predicate symbols Ri together

with arity ar(Ri) ∈ N
▸ the binary equality predication =
▸ first-order variable symbols: x, y, z,w, x1, y1, z1,w1, x2, . . .
▸ monadic second-order variable symbols (symbolizing variables for

unary predicate symbols): X,Y ,Z,W,X1, Y1, Z1,W1,X1, . . .,
▸ propositional connectives: ∧,∨,¬,→,↔
▸ existential quantifier ∃, universal quantifier ∀

▸ atomic formulas (atoms): x = y ∣ R(x1 . . .xn) ∣ X(x) (for R ∈ τ )
▸ quantifications :

▸ first-order existential quantificiations ∃x and universal quant. ∀x
▸ second-order existential quantific. ∃X and universal quantif. ∀X

▸ formulas:
φ ∶∶= x = y ∣R(x1, . . . ,xar(R)) ∣ X(x)

∣ ¬φ ∣ φ1 ∧ φ2 ∣ φ1 ∨ φ2 ∣ φ1 → φ2 ∣ φ1 ↔ φ2

∣ ∃xφ ∣ ∀xφ ∣ ∃Xφ ∣ ∀Xφ
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Interpretation of MSO-formulas in first-order structures

Let A = ⟨A; {RA}
R∈τ
⟩ be a τ -structure.

For a MSO(τ)-formula φ(x1, . . . ,xk,X1, . . . ,Xℓ) its interpretation
φ(A) ⊆ Ak ×P(A)ℓ in A is defined by:

▸ similar clauses as before, plus:

▸ If φ(x1, . . . ,xk,X1, . . . ,Xℓ) ≡Xi(xj) with i ∈ [k] and j ∈ [ℓ], then:

φ(A) ∶= {⟨a1, . . . , ak, P1, . . . , Pℓ⟩ ∈ Ak ×P(A)ℓ ∣ aj ∈ Pi}

▸ If φ(x1, . . . ,xk,X1, . . . ,Xℓ) ≡ ∃Xk+1φ0(xi1 , . . . ,xik′ ,Xj1 , . . . ,Xjℓ′ )
with i1, . . . , ik′ ∈ [k], and j1, . . . , jℓ′ ∈ [ℓ + 1] then:

φ(A) ∶= {⟨a1, . . . , ak, P1, . . . , Pℓ⟩ ∈ Ak ×P(A)ℓ∣
there exists Pℓ+1 ∈ P(A) such that
⟨ai1 , . . . , aik′ , Pj1 , . . . , Pjℓ′ ⟩ ∈ φ0(A)}

▸ A ⊧ φ(a1, . . . , ak, P1, . . . , Pℓ)
will mean: ⟨a1, . . . , ak, P1, . . . , Pℓ⟩ ∈ φ(A).

▸ For a sentence φ, A ⊧ φ will mean φ(A) ≠ ∅ (then φ(A) = {⟨⟩}).
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Monadic second-order logic (formula example)

ψ3 ∶= ∃C1∃C2∃C3( (∀x(
3

⋁
i=1

Ci(x))) ∧ ∀x( ⋀
1≤i<j≤3

¬(Ci(x) ∧ Cj(x) ))

∧ ∀x∀y(E(x, y)→
3

⋀
i=1

¬(Ci(x) ∧ Ci(y))) )

≡ ∃C1∃C2∃C3(∀x(C1(x) ∨ C2(x) ∨ C3(x))
∧ ∀x(¬(C1(x) ∧ C2(x)) ∧ ¬(C1(x) ∧ C3(x))

∧ ¬(C2(x) ∧ C3(x)))
∧ ∀x∀y(E(x, y)→ ¬(C1(x) ∧ C1(y))

∧ ¬(C2(x) ∧ C2(y))
∧ ¬(C3(x) ∧ C3(y))) )

A(G) ⊧ ψ3 ⇐⇒ G has is 3-colorable .
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Expressing graph properties by MSO formulas (1)

Exercise

Express by a monadic second-order formula φ(X) with one free
unary predicate variable X over the vocabulary τG = {E/2} for graphs
that for all graphs G = ⟨V,E⟩ :

AτG(G) ⊧ φ(S) ⇐⇒ S ⊆ V is an independent set in G

Recall:

S ⊆ V is independent set in G ∶⇐⇒ ∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S) )
⇐⇒ ∀u, v ∈ S(u ≠ v⇒ {u, v} ∉ E )

Exercise

Express the independent set property by a MSO(τHG) formula ψ with
vocabulary τHG = {VERT/1,EDGE/1, INC/2} for hypergraphs:

AτHG(G) ⊧ ψ(S) ⇐⇒ S ⊆ V is an independent set in G
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Expressing graph properties by MSO formulas (2)

Exercise

Express by a monadic second-order formula feedback(X) with one
free unary predicate variable X over τHG = {VERT/1,EDGE/1, INC/2},
the vocabulary for graphs, that for all hypergraphs G = ⟨V,E⟩ :

AτHG(G) ⊧ feedback(S) ⇐⇒ S ⊆ V is a feedback vertex set

(A set S ⊆ V is a feedback vertex set in G if S contains a vertex of
every cycle of G.)

Steps:
▸ Construct a formula cycle-family(X) that expresses the property

of a set being the union of cycles.
▸ Using cycle-family(X), construct feedback(X).
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MSO for graphs and hypergraphs
▸ MSO(τG) : MSO with vocabulary τG = {E/2}
▸ MSO(τHG) : MSO with vocab. τHG = {VERT/1,EDGE/1, INC/2}
▸ MSO1 :

▸ vocabulary: {INC/2}
▸ quantifications: ∃(vert)x / ∀(vert)x , ∃(edge)x / ∀(edge)x ,

∃(vert)X / ∀(vert)X
▸ MSO2 :

▸ vocabulary: {INC/2}
▸ quantifications: ∃(vert)x / ∀(vert)x , ∃(edge)x / ∀(edge)x ,

∃(vert)X / ∀(vert)X , ∃(edge)X / ∀(edge)X

Correspondences

MSO(τG) corresponds to MSO1

MSO(τHG) corresponds to MSO2

where ‘corresponds to’ means: ‘is equally expressive as’.

Note:

We use MSO for either logic, restrict to MSO(τG) / MSO1 if needed.
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Expressing graph properties by MSO formulas (5)

Exercise

Express by a MSO(τHG) formula conn(X) with one free unary
predicate variable X over τHG = {VERT/1,EDGE/1, INC/2}, the
vocabulary for graphs, that for all hypergraphs G = ⟨V,E⟩ :

AτHG(G) ⊧ hamiltonian ⇐⇒ there is a Hamiltonian path in G.

Note:
▸ This property is not expressible by a (single) MSO(τG) formula.
▸ Other properties that are not MSO(τG) expressible:

▸ balanced bipartite graphs
▸ existence of a perfect matching
▸ simple graphs (graphs with no parallel edges)
▸ existence of spanning trees with maximum degree 3
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Expressing graph properties by MSO formulas (5)

Exercise

AτHG(G) ⊧ hamiltonian ⇐⇒ there is a Hamiltonian path in G.
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Evaluation and model checking (MSO)

The model checking problem for MSO-formulas on labeled, ordered
unranked trees:

MC(MSO,TREElo)
Instance: A labeled, ordered, unranked Σ-tree T ,

and a MSO(τuΣ)-formula φ
Problem: Decide whether T ⊧ φ.

where for given alphabet Σ, τuΣ ∶= {E/2,N/2} ∪ {Pa/1 ∣ a ∈ Σ}.

Theorem

MC(MSO,TREElo) ∈ FPT.
More precisely, there is a computable function f ∶ N→ N such that
MC(MSO,TREElo) can be decided in time ≤ O(f(∣φ∣) + ∥T ∥).

Note that here: f(k) ≥ 2. .
.
2

}k (a non-elementary function).
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Courcelle’s Theorem
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Courcelle’s Theorem for graphs

p∗-tw-MC(MSO)
Instance: A graph G and an MSO(τHG)-sentence φ.
Parameter: tw(G) + ∣φ∣ (where tw(G) the tree-width of G)
Problem: Decide whether A(G) ⊧ φ.

Theorem (special case of Courcelle’s Theorem)

p∗-tw-MC(MSO) ∈ FPT. More precisely, the problem is decidable, for
some computable and non-decreasing function f ∶ N ×N→ N by an
algorithm in time:

f(k1, k2) ⋅ n , where k1 ∶= tw(A), k2 ∶= ∣φ∣, n ∶= ∣V (G)∣
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Courcelle’s Theorem: applications (1)

p∗-tw-COLORABILITY ∈ FPT
Instance: A graph G and ℓ ∈ N.
Parameter: tw(C)
Problem: Decide whether is G ℓ-colorable.

Example

▸ p∗-tw-3-COLORABILITY ∈ FPT.
▸ p∗-tw-COLORABILITY ∈ FPT.
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Courcelle’s Theorem: applications (2)

p∗-tw-HAMILTONICITY

Instance: A graph G
Parameter: tw(C)
Problem: Decide whether G is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Example

p∗-tw-HAMILTONICITY ∈ FPT.
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Tree decompositions, and tree-width for graphs

Definition (recalling tree-width for graphs)

A tree decomposition of a graph G = ⟨V,E⟩
is a pair ⟨T ,{Bt}t∈T ⟩ where T = ⟨T,F ⟩ a (undirected, unrooted) tree,
and Bt ⊆ V for all t ∈ T such that:

(T1) A = ⋃t∈T Bt (every vertex of G is in some bag).

(T2) (∀{u, v} ∈ E) (∃t ∈ T )[ {u, v} ⊆ Bt ]

(the vertices of every edge of G are realized in some bag).

(T3) (∀v ∈ V ) [ subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected ]
(the tree vertices (in T ) whose bags contain some vertex of G

induce a subgraph of T that is connected).

The width of a tree dec. ⟨T ,{Bt}t∈T ⟩ is max{∣Bt∣ − 1 ∣ t ∈ T} .
The tree-width tw(A) of a τ -structure A is defined by:

tw(A) ∶=minimal width of a tree decomposition of A.
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Tree decompositions, and tree-width for structures

Definition (extension of tree-width to structures)

A tree decomposition of a τ -structure A = ⟨A;{RA}
R∈τ
⟩

is a pair ⟨T ,{Bt}t∈T ⟩ where T = ⟨T,F ⟩ a (undirected, unrooted) tree,
and Bt ⊆ V for all t ∈ T such that:

(T1) A = ⋃t∈T Bt (every element of the universe of A is in some bag).

(T2) (∀R ∈ τ) (∀⟨a1, . . . , ar⟩ ∈ R
A
)(∃t ∈ T )[ {a1, . . . , ar} ⊆ Bt ]

(the vertices of every ‘hyperedge’ in RA are realized in some bag).

(T3) (∀v ∈ V ) [ subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected ]
(the tree vertices (in T ) whose bags contain some vertex of G

induce a subgraph of T that is connected).

The width of a tree dec. ⟨T ,{Bt}t∈T ⟩ is max{∣Bt∣ − 1 ∣ t ∈ T} .
The tree-width tw(A) of a τ -structure A is defined by:

tw(A) ∶=minimal width of a tree decomposition of A.
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Courcelle’s Theorem

p∗-tw-MC(MSO)
Instance: A structure A and an MSO-sentence φ.
Parameter: tw(A) + ∣φ∣.
Problem: Decide whether A ⊧ φ.

Theorem ([Courcelle, 1990])

p∗-tw-MC(MSO) ∈ FPT. More precisely, the problem is decidable by
an algorithm in time:

f(k1, k2) ⋅ ∣A∣ +O(∥A∥) , where k1 ∶= tw(A), and k2 ∶= ∣φ∣,
f computable and non-decreasing

f(k1, k2) ⋅ ∣A∣ +O(∥A∥) ≤ f(k1, k2) ⋅ ∣A∣ + c ⋅ ∥A∥ with some c > 0
≤ (f(k1, k2) + c) ⋅ ∥A∥
≤ g(k) ⋅ (∥A∥ + ∣φ∣) for g(x) ∶= f(x,x) + c

k ∶= k1 + k2
≤ g(k) ⋅ n where n ∶= ∥A∥ + ∣φ∣
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Vertex Cover (first attempt)

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

p∗-tw-VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Instance: tw(G).
Problem: Does G have a vertex cover of size at most ℓ?
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Courcelle’s Theorem: Refinement 1

p∗-tw-MC≤(MSO)
Instance: A structure A, an φ(X), and m ∈ N.
Parameter: tw(A) + ∣φ(X)∣.
Problem: Decide whether A ⊧ ∃X(card≤m(X) ∧ φ(X) ).

Refinement 1 of Courcelle’s Theorem

p∗-tw-MC≤(MSO) ∈ FPT. More precisely, the problem is decidable by
an algorithm in time:

f(k1, k2) ⋅ ∣A∣ +O(∥A∥) , where k1 ∶= tw(A), and k2 ∶= ∣φ∣,
f computable and non-decreasing

Clemens Grabmayer Lecture 3: Algorithmic Meta-Theorems



ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel’s courc-clw graph minors fo-metathm’s summ Fri ex-sugg refs

Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

p∗-tw-VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Instance: tw(G).
Problem: Does G have a vertex cover of size at most ℓ?

Example

p∗-tw-VERTEX-COVER ∈ FPT.
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Vertex Cover
Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))
p∗-tw-VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Instance: tw(G).
Problem: Does G have a vertex cover of size at most ℓ?

Example

p∗-tw-VERTEX-COVER ∈ FPT.
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Courcelle’s Theorem: Refinement 2

p∗-tw-MC=(MSO)
Instance: A structure A, an MSO-sentence φ(X), and m ∈ N.
Parameter: tw(A) + ∣φ(X)∣.
Problem: Decide whether A ⊧ ∃X(card=m(X) ∧ φ(X) ).

Refinement 2 of Courcelle’s Theorem

p∗-tw-MC=(MSO) ∈ FPT. More precisely, the problem is decidable by
an algorithm in time:

f(k1, k2) ⋅ ∣A∣2 +O(∥A∥) , where k1 ∶= tw(A), and k2 ∶= ∣φ∣,
f computable and non-decreasing
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Courcelle’s Theorem Ref. 3: Optimization version

p∗-tw-opt-MC(MSO)
Instance: A graph G = ⟨V,E⟩, an MSO-sentence φ(X1, . . . ,Xp).
Parameter: tw(G) + ∣φ(X1, . . . ,Xp)∣.
Compute: max

min{α(∣X1∣ , . . . , ∣Xp∣) ∣
X1, . . . ,Xp ⊆ V ∪E
A(G) ⊧ φ(X1, . . . ,Xp). }.

where α is an affine function α(x1, . . . , xp) = a0 +∑p
i=1 ai ⋅ xi.

Optimization version of Courcelle’s Theorem

p∗-tw-opt-MC(MSO) ∈ FPT, and it is decidable by an algorithm in time:
f(tw(G), ∣φ∣) ⋅ ∣V ∣ , where f computable and non-decreasing.
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Maximum 2-edge colorable subgraphs

p∗-tw-max-2-edge-colorable-subgraph
Instance: A graph G = ⟨V,E⟩.
Parameter: tw(G).
Compute: Maximum number of edges

in a 2-edge colored subgraph ofG.

Example [AA & Vahan Mkrtchyan]

p∗-tw-max-2-edge-colorable-subgraph ∈ FPT.
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Maximum 2-edge colorable subgraphs

p∗-tw-max-2-edge-colorable-subgraph
Instance: A graph G = ⟨V,E⟩.
Parameter: tw(G).
Compute: Maximum number of edges

in a 2-edge colored subgraph ofG.

Example [AA & Vahan Mkrtchyan]

p∗-tw-max-2-edge-colorable-subgraph ∈ FPT.
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Courcelle’s Theorem: applications (3)

p∗-tw-INDEPENDENT-SET

Instance: A graph G, a number ℓ ∈ N.
Parameter: tw(G)
Problem: Decide whether G has an independent set of ℓ ele-

ments.

Example

p∗-tw-INDEPENDENT-SET ∈ FPT.
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Courcelle’s Theorem: applications (4)

p∗-tw-FEEDBACK-VERTEX-SET

Instance: A graph G and ℓ ∈ N.
Parameter: tw(C)
Problem: Decide whether G has a feedback vertex set of ℓ

elements.

Example

p∗-tw-FEEDBACK-VERTEX-SET ∈ FPT.
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Courcelle’s Theorem: applications (5)

p∗-tw-CROSSING-NUMBER

Instance: A graph G, and k ∈ N
Parameter: tw(G) + k
Problem: Decide whether the crossing number of G is k.

Example

p∗-tw-CROSSING-NUMBER ∈ FPT.

The crossing number is the least number of edge crossings required
to draw the graph in the plane such that at each point at most two
edges cross.
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Courcelle’s Theorem: applications (5)

Definition

Let G1 = ⟨V1,E1⟩ and G2 = ⟨V2,E2⟩ be graphs.
G1 is a subdivision of G2 if:
▸ G1 arises by splitting the edges of G2

into paths with intermediate vertices.
H is a topological subgraph of G

if G has a subgraph that is a subdivision of H.
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Courcelle’s Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K5 nor K3,3 as
topological subgraph.
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Courcelle’s Theorem: applications (5)

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K5 nor K3,3 as
topological subgraph.

Lemma

There is a MSO(τHG) formula top-subH such that for every graph G :

AτHG(G) ⊧ top-subH ⇐⇒ H is a topological subgraph of G.

Using MSO(τHG) formula path(x, y,Z) that Z is a path from x to y.

Lemma

There is a MSO(τHG) formula crossk such that for every graph G :

AτHG(G) ⊧ crossk ⇐⇒ the crossing number of G is at most k.

Proof: By induction, where cross0 ∶= ¬top-subK5 ∧ ¬top-subK3,3 .
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Computably boundedness between notions of width

(from Sasák, [Sásak, 2010])

g(wd1)⪰wd2 ∶ ⇔ wd1
g→ wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)
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Comparing parameterizations

Definition (computably bounded below)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[ g(κ1(x)) ≥ κ2(x) ] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .
▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT
⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT
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Courcelle’s Theorem for clique-width

Recall that MSO(τG) ∼MSO1 (quantification over sets of vertices,
but not sets of edges).

p∗-clw-MC(MSO(τG)/MSO1)
Instance: A graph G and an MSO(τG)-sentence φ.
Parameter: clw(G) + ∣φ∣.
Problem: Decide whether A(G) ⊧ φ.

Theorem ([Courcelle et al., 2000])

p∗-clw-MC(MSO(τG)/MSO1) ∈ FPT.

Also, there is a maximization version of this theorem.
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Courcelle’s Theorem for clique-width (example)

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

p∗-clw-VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Instance: clw(G).
Problem: Does G have a vertex cover of size at most ℓ?

Example

p∗-clw-VERTEX-COVER ∈ FPT.
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Application to maximum 2-edge colorable subgraphs?

p∗-clw-max-2-edge-colorable-subgraph
Instance: A graph G = ⟨V,E⟩.
Parameter: clw(G).
Compute: Maximum number of edges

in a 2-edge colored subgraph ofG.

Open problem [AA, Vahan Mkrtchyan]

p∗-clw-max-2-edge-colorable-subgraph ∈ FPT ?

We saw that there is a MSO2 formula φ(X) such that:

AτHG(G) ⊧ φ(S) ⇐⇒ S ⊆ E is an 2-colorable set of edges in G

But there seems not to be such an MSO1 formula.
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Courcelle’s Theorem for clique-width (non-example)

p∗-clw-HAMILTONICITY

Instance: A graph G
Parameter: clw(C)
Problem: Decide whether G is a hamiltonian (that is, contains

a cyclic path that visits every vertex precisely once).

Recall
There is no MSO1 formula that expresses Hamiltonicity.

Hence we cannot apply Courcelle’s Theorem for clique-width. Indeed:

Theorems
(T1) p∗-clw-HAMILTONICITY ∉ FPT,

since it is not decidable in time ∉ no(clw(C)) (Fomin et al, 2014).
(T2) p∗-clw-HAMILTONICITY ∈ O(no(clw(C)))

(Bergougnoux, Kanté, Kwon, 2020).
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Computably boundedness between notions of width

(from Sasák, [Sásak, 2010])

g(wd1)⪰wd2 ∶ ⇔ wd1
g→ wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)
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Graph Minors
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Graph minors

Definition
A graph G0 is a minor of a graph G if G0 is obtained by:
▸ deleting some edges,
▸ deleting arising isolated vertices,
▸ contracting edges in G.

G G0
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Excluded minors

Definition (minor closed)

A class G is minor closed if for every G ∈ G all minors of G are in G.

We say that a class G is characterized by excluded minors inH if:

G ∶= Excl(H) ∶= {G ∣ G does not have a minor inH}

Theorem (Graph Minor Theorem (Robertson–Seymour, 1983–2004))

Every class of graphs that is minor closed can be characterized by
finitely many excluded minors. That is, for every class G of minor
closed graphs there are graphs H1, . . . ,Hm such that:

G = Excl({H1, . . . ,Hm}) .
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Deciding minor closed classes

p-MINOR

Instance: Graphs G and H.
Parameter: ∥G∥
Problem: Decide whether G is a minor of H.

Theorem

p-MINOR ∈ FPT, decidable in time f(k) ⋅ n3 where k = ∥G∥, and n is
the number of vertices of H.

Corollary

Every minor-closed class of graphs is decidable in cubic time.

Corollary

Let ⟨Q,κ⟩ be a parameterized problem on graphs such that for every
k ∈ N, either {G ∈ Q ∣ κ(G) = k} or {G ∉ Q ∣ κ(G) = k} is minor closed.
Then every slice ⟨Q,κ⟩k is decidable in cubic time. In this case we
can say that ⟨Q,κ⟩ is nonuniformly fixed-parameter tractable.
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Non-uniformly fixed-parameter tractable

A parameterized problem ⟨Q,Σ, κ⟩ is fixed-parameter tractable if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗

∀x ∈ Σ∗[A decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣) ]

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is non-uniformly fixed-parameter
tractable (in nu-FPT) if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃{Ak}k∈N algorithms, takes inputs in Σ∗

∀x ∈ Σ∗[Aκ(x) decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣) ]
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Using minor-closed classes for FPT results

Corollary

Let ⟨Q,κ⟩ be a parameterized problem on graphs such that for every
k ∈ N, either {G ∈ Q ∣ κ(G) = k} or {G ∉ Q ∣ κ(G) = k} is minor closed.
Then ⟨Q,κ⟩ is non-uniformly fixed-parameter tractable (in nu-FPT).

Applications:
▸ p-VERTEX-COVER ∈ nu-FPT (p-VERTEX-COVER is minor closed).
▸ p-FEEDBACK-VERTEX-SET ∈ nu-FPT (problem is minor closed).
▸

p-DISJOINT-CYCLES

Instance: A graph G, and k ∈ N.
Parameter: k.
Problem: Decide whether G has k disjoint cycles.

p-DISJOINT-CYCLES ∈ nu-FPT , since the class of graphs that do
not have k disjoint cycles is minor closed.
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First-Order Meta-Theorem (example)
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Seese’s theorem

A class G of graphs has bounded degree if there is d ∈ N such that
∆(G) ≤ d for all G ∈ G (where ∆(G) =max. degree of vertex in G).

p-MC(FO,G)
Instance: A graph G ∈ G, and a f-o formula φ over τHG
Parameter: ∣φ∣.
Problem: Decide whether A(G) ⊧ φ.

Theorem ([Seese, 1995])

p-MC(FO,G) ∈ FPT for every class G of bounded degree. This model
checking problem can be solved in time f(∣φ∣) ⋅ ∣G∣, (linear in ∣G∣).

Theorem (for comparison, we saw it earlier)

EVAL(FO) and MC(FO) can be solved in time O(∣φ∣ ⋅ ∣A∣w ⋅w), where
w is the width of the input formula φ.
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First-order metatheorems: reference

A good reference for other meta-theorems for first-order logic is:

[Kreutzer, 2009]: Stephan Kreutzer: Algorithmic Meta-Theorems.
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Summary

▸ Logic preliminaries
▸ first-order logic

▸ expressing graph problems by f-o formulas
▸ monadic second-order logic (MSO)

▸ expressing graph problems by MSO formulas

▸ complexity of evaluation and model checking problems

▸ Courcelle’s theorem
▸ FPT-results by model-checking MSO-formulas

▸ for graphs with bounded tree-width
▸ for structures with bounded tree-width
▸ for graphs of bounded clique-width

▸ applications to concrete problems

▸ graph minors

▸ meta-theorems for first-order model-checking: an example
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Friday

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
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Example suggestions

Examples

1. Find a first-order logic formula over τG that expresses that a
graph has a cycle of length precisely k.

2. Find an MSO1 or MSO(τG) formula that expresses that a graph
has a dominating set of ≤ k elements.

3. Find an MSO2 or MSO(τHG) formula feedback(S) that expresses
that S ⊆ V is a feedback vertex set.

4. (⋆) Find an MSO1 or MSO(τG) formula that expresses that a
graph is connected.

5. (⋆) Find an MSO2 or MSO(τHG) formula path(x, y,Z) that
expresses that Z is a set of edges that forms a path from x to y.
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