Lecture 3: Algorithmic Meta-Theorems (A Short Introduction to Parameterized Complexity)

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

June 12, 2024

Course overview

Overview

- ▶ logic preliminaries
	- ▸ first-order logic
		- ▸ expressing graph problems by f-o formulas
	- ▸ monadic second-order logic (MSO)
		- ▸ expressing graph problems by MSO formulas
	- ▸ complexity of evaluation and model checking problems
- ▶ Courcelle's theorem
	- ▸ FPT-results by model-checking MSO-formulas
		- ▸ for graphs / structures with bounded tree-width
		- ▸ for maximization problems over graphs of bounded tree-width
		- \triangleright for graphs of bounded clique-width
	- ▸ applications to concrete problems
- ▶ graph minors
- ▸ meta-theorems for first-order model-checking: an example

Meta-theorems: idea, benefits and limitations

idea:

- \triangleright express a problem P by a logical formula φ_P (of 'short' size)
- \triangleright use model checking of φ_P on logical structures of bounded width k (tree-, clique-width, ...)
	- **► is time bounded depending on k, size of** φ_P **, size of the structure**
	- ▸ this often facilitates FPT-results

benefits:

- ▸ a quick and easy way to show that [some problems] are fixed-parameter tractable,
- ▸ without working out the tedious details of a dynamic programming algorithm.

limitations:

- ▸ algorithms obtained by meta-theorems cannot be expected to be optimal.
- ▸ a careful analysis of a specific problem at hand will usually yield more efficient fpt-algorithms

Logical preliminaries

First-order logic (formula example)

$$
\varphi_3 := \exists x_1 \exists x_2 \exists x_3 \Big(\neg (x_1 = x_2) \land \neg E(x_1, x_2)
$$

$$
\land \neg (x_1 = x_3) \land \neg E(x_1, x_3)
$$

$$
\land \neg (x_2 = x_3) \land \neg E(x_2, x_3) \Big)
$$

 $A(\mathcal{G}) \models \varphi_3 \iff \mathcal{G}$ has a 3-element independent set.

$$
\varphi_k := \exists x_1 \dots \exists x_k \Big(\bigwedge_{1 \leq i < j \leq k} \big(\neg (x_i = x_j) \land \neg E(x_i, x_j) \big) \Big)
$$

 $A(\mathcal{G}) \models \varphi_k \iff \mathcal{G}$ has a k-element independent set.

 $S \subseteq V$ is independent set in $G = \langle V, E \rangle$: $\iff \forall e = \{u, v\} \in E$ ($\neg(u \in S \land v \in S)$) $\iff \forall u, v \in S(u \neq v \Rightarrow \{u, v\} \notin E)$

First-order logic: syntax (language)

▸ language based on:

- \triangleright a *vocabulary* $\tau = \{R_1, \ldots, R_n\}$ of *predicate symbols* R_i together with arity $ar(R_i) \in \mathbb{N}$
- \rightarrow the binary equality predication =
- ▶ (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \ldots$
- ▸ propositional connectives: **∧**, **∨**, **¬**, **→**,**↔**
- ▸ existential quantifier **∃**, universal quantifier **∀**
- \triangleright *atomic formulas (atoms)*: a formula $x = y$ or $R(x_1 \dots x_n)$ for $R \in \tau$
- ▸ *quantifier-free formula*: atoms, literals (= negated atoms), formulas built up from atoms by using propositional connectives
- ▸ *quantifications* over (first-order variables):
	- ▸ existential quantifications **∃**x and universal quantifications **∀**x

▸ *formulas*:

$$
\varphi ::= x = y \mid R(x_1, ..., x_{ar(R)}) \quad \text{(where } R \in \tau)
$$
\n
$$
\mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \varphi_1 \leftrightarrow \varphi_2
$$
\n
$$
\mid \exists x \varphi \mid \forall x \varphi
$$

▸ *sentences*: formulas without *free* variables.

First-order logic: semantics (structures)

Definition

Let $\tau = \{R_1, \ldots, R_n\}$ be a vocabulary. A τ *-structure* is a tuple $\mathcal{A} = \langle A; R_1^{\mathcal{A}}, \ldots R_n^{\mathcal{A}} \rangle$ consisting of:

▸ the *universe* A,

ar(R_i)

 \triangleright *interpretations* $R_i^A \subseteq A^{ar(R_i)} = \overbrace{A \times \ldots \times A}$ $A \times \ldots \times A$ for each of the relation symbols R_i in τ , where $i \in \{1, \ldots, n\}$.

Examples

Let $\tau_{\rm G} = \{E/z\}$ vocabulary with binary edge relation. The *standard structure* for a graph $G = (V, E)$: $\mathcal{A}_{\tau_{\mathsf{G}}}(\mathcal{G}) \coloneqq \langle V; E^{\mathsf{symm}} \rangle$.

Example

Let $\tau_{HG} = \{ VERT/1, EDGE/1, INC/2\}$ vocabulary (for hypergraphs). The *hypergraph structure* for a graph $G = (V, E)$:

 $\mathcal{A}_{\tau_{\text{HC}}}(\mathcal{G}) \coloneqq \langle V \cup E; V, E, \{ \langle v, e \rangle \mid v \in V, e \in E, v \in e \} \rangle.$

Interpretation of first-order formulas in structures

Let $\mathcal{A} = \langle A; \left\{R^{\mathcal{A}}\right\}_{R\in\tau}$ be a τ -structure. For a τ -formula $\varphi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k$ *in* \mathcal{A} *is defined by:*

• If
$$
\varphi(\boldsymbol{x}_1, ..., \boldsymbol{x}_k) \equiv R(\boldsymbol{x}_{i_1}, ..., \boldsymbol{x}_{i_r})
$$
 with $i_1, ..., i_r \in [k]$, then:

$$
\varphi(\mathcal{A}) \coloneqq \{ (a_1, ..., a_k) \in A^k \mid \langle a_{i_1}, ..., a_{i_k} \rangle \in R^{\mathcal{A}} \}
$$

$$
\begin{aligned}\n\blacktriangleright & \text{ If } \varphi(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k) \equiv \varphi_1(\boldsymbol{x}_{i_1}, \dots, \boldsymbol{x}_{i_l}) \land \varphi_2(\boldsymbol{x}_{j_1}, \dots, \boldsymbol{x}_{j_m}) \text{ with } \\
& i_1, \dots, i_l, j_1, \dots, j_m \in [k], \text{ then: } \\
& \varphi(\mathcal{A}) \coloneqq \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_l} \rangle \in \varphi_1(\mathcal{A}) \right\} \\
& \cap \left\{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{j_1}, \dots, a_{j_m} \rangle \in \varphi_2(\mathcal{A}) \right\}\n\end{aligned}
$$

• If
$$
\varphi(\boldsymbol{x}_1, ..., \boldsymbol{x}_k) \equiv \exists \boldsymbol{x}_{k+1} \varphi_0(\boldsymbol{x}_{i_1}, ..., \boldsymbol{x}_{i_\ell})
$$
 with $i_1, ..., i_\ell \in [k+1]$, then:
\n
$$
\varphi(\mathcal{A}) \coloneqq \{ \langle a_1, ..., a_k \rangle \in A^k | \text{ there exists } a_{k+1} \in A \text{ such that } \langle a_{i_1}, ..., a_{i_\ell} \rangle \in \varphi_0(\mathcal{A}) \}
$$

 \blacktriangleright $\mathcal{A} \models \varphi(a_1, \ldots, a_k)$ will mean: $\langle a_1, \ldots, a_k \rangle \in \varphi(\mathcal{A})$.

► For a sentence φ , $\mathcal{A} \models \varphi$ will mean $\varphi(\mathcal{A}) \neq \varnothing$ (then $\varphi(\mathcal{A}) = \{ \langle \rangle \}$).

Expressing graph properties by first-order formulas

Exercise

For given formulas $\varphi(x)$ and for all $k \in \mathbb{N}$, $k \ge 1$ define formulas ∃^{≥ k} x $\varphi(x)$, ∃ $^{-k}$ x $\varphi(x)$, \exists $^{-k}$ x $\varphi(x)$, such that in a given τ -structure $\mathcal{A} = \langle A; \left\{ R^{\mathcal{A}} \right\}_{R \in \tau} \rangle$:

$$
\mathcal{A} \models \exists^{\geq k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \models \varphi(a)\}| \geq k
$$
\n
$$
\mathcal{A} \models \exists^{< k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \models \varphi(a)\}| < k
$$
\n
$$
\mathcal{A} \models \exists^{=k} x \, \varphi(x) \iff |\{a \in A \mid \mathcal{A} \models \varphi(a)\}| = k
$$

Expressing graph properties by first-order formulas

Exercise

Express by a first-order formula with the vocabulary $\tau_{\rm G} = \{E/z\}$ for graphs that:

- (i) a graph G contains a clique with precisely k elements,
- (ii) a graph G has a dominating set with less or equal to k elements,
- (iii) a graph G has a dominating set with precisely k elements,

Recall:

$$
\varphi_k \coloneqq \exists x_1 \ldots \exists x_k \Big(\bigwedge_{1 \leq i < j \leq k} \big(\neg (x_i = y_i) \land \neg E(x_i, x_j) \big) \Big)
$$

 $\mathcal{A}_{\tau_{\mathsf{G}}}(\mathcal{G})\vDash\varphi_{k}\;\;\iff\;\mathcal{G}\;\text{has a }k\text{-element independent set}\,.$

Expressing graph properties by first-order formulas

Exercise

Express by a first-order formula with the vocabulary with vocabulary $\tau_{HG} = \{ VERT/1, EDGE/1, INC/2 \}$ for hypergraphs that:

- (i) a graph G contains a clique with precisely k elements,
- (ii) a graph G has a dominating set with less or equal to k elements,
- (iii) a graph G has a dominating set with precisely k elements.

Evaluation and model checking (first-order logic)

Let Φ be a class of first-order formulas. The *evaluation problem* for Φ:

 $EVAL(\Phi)$

Instance: A structure A and a formula $\varphi \in \Phi$. **Problem:** Compute $\varphi(A)$.

The *model checking problem* for Φ:

 $MC(Φ)$ **Instance:** A structure A and a formula $\varphi \in \Phi$. **Problem:** Decide whether $A \models \varphi$ (that is, $\varphi(A) \neq \varnothing$).

Width of formula φ : maximal number of free variables in a subformula of φ .

Theorem

 $\mathsf{EVAL}(\mathsf{FO})$ and MC(FO) can be solved in time $O(|\varphi|\cdot {|A|}^w \cdot w)$, where w *is the width of the input formula* φ*.*

Monadic second-order logic (formula example)

$$
\psi_3 := \exists C_1 \exists C_2 \exists C_3 \Big(\Big(\forall x \Big(\bigvee_{i=1}^3 C_i(x) \Big) \Big) \land \forall x \Big(\bigwedge_{1 \le i < j \le 3} \neg \Big(C_i(x) \land C_j(x) \Big) \Big)
$$
\n
$$
\land \forall x \forall y \Big(E(x, y) \to \bigwedge_{i=1}^3 \neg \big(C_i(x) \land C_i(y) \big) \Big) \Big)
$$
\n
$$
\equiv \exists C_1 \exists C_2 \exists C_3 \Big(\forall x (C_1(x) \lor C_2(x) \lor C_3(x))
$$
\n
$$
\land \forall x \Big(\neg \big(C_1(x) \land C_2(x) \big) \land \neg \big(C_1(x) \land C_3(x) \big) \Big)
$$
\n
$$
\land \forall x \forall y \Big(E(x, y) \to \neg \big(C_1(x) \land C_1(y) \big) \Big)
$$
\n
$$
\land \neg \big(C_2(x) \land C_3(x) \big) \Big)
$$
\n
$$
\land \neg \big(C_2(x) \land C_1(y) \big)
$$

$$
\wedge \neg (C_3(x) \wedge C_3(y)))
$$

$$
\mathcal{A}(\mathcal{G}) \models \psi_3 \iff \mathcal{G} \text{ has is 3-colorable.}
$$

Monadic second-order logic

▸ language based on:

- \triangleright a *vocabulary* $\tau = \{R_1, \ldots, R_n\}$ of *predicate symbols* R_i together with arity $ar(R_i) \in \mathbb{N}$
- \rightarrow the binary equality predication =
- ▶ first-order variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \ldots$
- ▸ monadic second-order variable symbols (symbolizing variables for unary predicate symbols): $X, Y, Z, W, X_1, Y_1, Z_1, W_1, X_1, \ldots$
- ▸ propositional connectives: **∧**, **∨**, **¬**, **→**,**↔**
- ▸ existential quantifier **∃**, universal quantifier **∀**
- \triangleright *atomic formulas (atoms):* $x = y \mid R(x_1 \dots x_n) \mid X(x)$ (for $R \in \tau$)
- ▸ *quantifications* :
	- ▸ first-order existential quantificiations **∃**x and universal quant. **∀**x
	- ▸ second-order existential quantific. **∃**X and universal quantif. **∀**X

▸ *formulas*:

$$
\varphi ::= x = y \mid R(x_1, \ldots, x_{ar(R)}) \mid X(x)
$$

$$
\mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \varphi_1 \leftrightarrow \varphi_2
$$

$$
\mid \exists x \varphi \mid \forall x \varphi \mid \exists X \varphi \mid \forall X \varphi
$$

Interpretation of MSO-formulas in first-order structures

Let $\mathcal{A} = \langle A; \left\{R^{\mathcal{A}}\right\}_{R\in\tau} \rangle$ be a τ -structure. For a $\mathsf{MSO}(\tau)$ -formula $\varphi(x_1,\ldots,x_k,X_1,\ldots,X_\ell)$ its *interpretation* $\varphi(\mathcal{A})\in A^k\times \mathcal{P}(A)^\ell$ in \mathcal{A} is defined by:

▸ similar clauses as before, plus:

• If
$$
\varphi(\mathbf{x}_1, ..., \mathbf{x}_k, \mathbf{X}_1, ..., \mathbf{X}_\ell) \equiv \mathbf{X}_i(\mathbf{x}_j)
$$
 with $i \in [k]$ and $j \in [\ell]$, then:
\n
$$
\varphi(\mathcal{A}) \coloneqq \{ (a_1, ..., a_k, P_1, ..., P_\ell) \in A^k \times \mathcal{P}(A)^\ell \mid a_j \in P_i \}
$$

► If
$$
\varphi(\mathbf{x}_1, ..., \mathbf{x}_k, \mathbf{X}_1, ..., \mathbf{X}_\ell) \equiv \exists \mathbf{X}_{k+1} \varphi_0(\mathbf{x}_{i_1}, ..., \mathbf{x}_{i_k}, \mathbf{X}_{j_1}, ..., \mathbf{X}_{j_{\ell'}})
$$

with $i_1, ..., i_{k'} \in [k]$, and $j_1, ..., j_{\ell'} \in [\ell + 1]$ then:
 $\varphi(\mathcal{A}) \coloneqq \{ (a_1, ..., a_k, P_1, ..., P_\ell) \in A^k \times \mathcal{P}(\mathcal{A})^\ell \mid \text{there exists } P_{\ell+1} \in \mathcal{P}(\mathcal{A}) \text{ such that}$
 $\langle a_{i_1}, ..., a_{i_{k'}}, P_{j_1}, ..., P_{j_{\ell'}} \rangle \in \varphi_0(\mathcal{A}) \}$

$$
\blacktriangleright \mathcal{A} \models \varphi(a_1,\ldots,a_k,P_1,\ldots,P_\ell)
$$

will mean: $\langle a_1,\ldots,a_k,P_1,\ldots,P_\ell \rangle \in \varphi(\mathcal{A}).$

► For a sentence φ , $\mathcal{A} \models \varphi$ will mean $\varphi(\mathcal{A}) \neq \varnothing$ (then $\varphi(\mathcal{A}) = \{ \langle \rangle \}$).

Monadic second-order logic (formula example)

$$
\psi_3 := \exists C_1 \exists C_2 \exists C_3 \Big(\Big(\forall x \Big(\bigvee_{i=1}^3 C_i(x) \Big) \Big) \land \forall x \Big(\bigwedge_{1 \le i < j \le 3} \neg \Big(C_i(x) \land C_j(x) \Big) \Big)
$$
\n
$$
\land \forall x \forall y \Big(E(x, y) \to \bigwedge_{i=1}^3 \neg \big(C_i(x) \land C_i(y) \big) \Big) \Big)
$$
\n
$$
\equiv \exists C_1 \exists C_2 \exists C_3 \Big(\forall x (C_1(x) \lor C_2(x) \lor C_3(x))
$$
\n
$$
\land \forall x \Big(\neg \big(C_1(x) \land C_2(x) \big) \land \neg \big(C_1(x) \land C_3(x) \big) \Big)
$$
\n
$$
\land \forall x \forall y \Big(E(x, y) \to \neg \big(C_1(x) \land C_1(y) \big) \Big)
$$
\n
$$
\land \neg \big(C_2(x) \land C_3(x) \big) \Big)
$$
\n
$$
\land \neg \big(C_2(x) \land C_1(y) \big)
$$

$$
\wedge \neg (C_3(x) \wedge C_3(y)))
$$

$$
\mathcal{A}(\mathcal{G}) \models \psi_3 \iff \mathcal{G} \text{ has is 3-colorable.}
$$

Expressing graph properties by MSO formulas (1)

Exercise

Express by a monadic second-order formula $\varphi(X)$ with one free unary predicate variable X over the vocabulary $\tau_{\rm G} = \{E/2\}$ for graphs that for all graphs $G = (V, E)$:

 $\mathcal{A}_{\tau_{\bf G}}(\mathcal{G})\vDash\varphi(S)\iff S\subseteq V$ is an independent set in $\mathcal G$

Recall:

 $S \subseteq V$ is independent set in $G \Longleftrightarrow \forall e = \{u, v\} \in E$ ($\neg(u \in S \land v \in S)$) $\iff \forall u, v \in S(u \neq v \Rightarrow \{u, v\} \notin E)$

Exercise

Express the independent set property by a $MSO(\tau_{HG})$ formula ψ with vocabulary $\tau_{HG} = \{ VERT/1, EDGE/1, INC/2 \}$ for hypergraphs:

 $\mathcal{A}_{\tau\text{uc}}(\mathcal{G}) \models \psi(S) \iff S \subseteq V$ is an independent set in \mathcal{G}

Expressing graph properties by MSO formulas (2)

Exercise

Express by a monadic second-order formula *feedback*(X) with one free unary predicate variable X over $\tau_{HG} = \{ VERT / 1, EDGE / 1, \text{INC} / 2 \}$, the vocabulary for graphs, that for all hypergraphs $G = (V, E)$:

 $\mathcal{A}_{\tau_{\text{HS}}}(\mathcal{G})$ = *feedback*(S) \iff S \subseteq V is a feedback vertex set

(A set $S \subseteq V$ is a feedback vertex set in G if S contains a vertex of every cycle of \mathcal{G} .)

Steps:

- \triangleright Construct a formula *cycle-family*(X) that expresses the property of a set being the union of cycles.
- ▸ Using *cycle-family*(X), construct *feedback*(X).

MSO for graphs and hypergraphs

- \triangleright MSO(τ _G): MSO with vocabulary τ _G = {*E*/₂}
- \triangleright MSO(τ _{HG}): MSO with vocab. τ _{HG} = {*VERT*/₁, *EDGE*/₁, *INC*/₂}
- \triangleright MSO₁:
	- ▸ vocabulary: {*INC*/2}
	- ► quantifications: $\exists_{(vert)} x / \forall_{(vert)} x$, $\exists_{(edge)} x / \forall_{(edge)} x$, \exists (vert) $X \mid \forall$ (vert) X
- \triangleright MSO₂.
	- ▸ vocabulary: {*INC*/2}
	- ► quantifications: $\exists_{(vert)} x / \forall_{(vert)} x$, $\exists_{(edge)} x / \forall_{(edge)} x$, $\exists_{(vert)} X \mid \forall_{(vert)} X$, $\exists_{(edge)} X \mid \forall_{(edge)} X$

Correspondences

 $MSO(\tau_{\rm G})$ corresponds to MSO_1 $MSO(\tau_{HG})$ corresponds to MSO_2

where 'corresponds to' means: 'is equally expressive as'.

Note:

We use MSO for either logic, restrict to $MSO(\tau_G)$ / MSO₁ if needed.

Expressing graph properties by MSO formulas (5)

Exercise

Express by a MSO(τ _{HG}) formula *conn*(X) with one free unary predicate variable X over $\tau_{HG} = \{ VERT/1, EDGE/1, lNC/2 \}$, the vocabulary for graphs, that for all hypergraphs $G = (V, E)$:

 $\mathcal{A}_{\tau_{\text{HGC}}}(\mathcal{G})$ = *hamiltonian* \iff there is a Hamiltonian path in \mathcal{G} .

Note:

- \triangleright This property is not expressible by a (single) MSO($\tau_{\rm G}$) formula.
- \triangleright Other properties that are not MSO($\tau_{\rm G}$) expressible:
	- ▸ balanced bipartite graphs
	- \triangleright existence of a perfect matching
	- ▸ simple graphs (graphs with no parallel edges)
	- ▸ existence of spanning trees with maximum degree 3

Expressing graph properties by MSO formulas (5)

Exercise

 $\mathcal{A}_{\tau_{\text{unc}}}(\mathcal{G})$ = *hamiltonian* \iff there is a Hamiltonian path in \mathcal{G} .

Evaluation and model checking (MSO)

The *model checking problem* for MSO-formulas on labeled, ordered unranked trees:

MC(MSO,TREE*lo*) **Instance:** A labeled, ordered, unranked Σ -tree \mathcal{T} , and a MSO (τ^u_Σ) -formula φ **Problem:** Decide whether $T \vDash \varphi$.

where for given alphabet Σ , $\tau^n_{\Sigma} \coloneqq \{E/\mathsf{z}, N/\mathsf{z}\} \cup \{P_a/\mathsf{z} \mid a \in \Sigma\}$.

Theorem MC(MSO,TREE*lo*) ∈ FPT*. More precisely, there is a computable function* $f : \mathbb{N} \to \mathbb{N}$ *such that* MC(MSO, TREE_{lo}) *can be decided in time* $\leq O(f(|\varphi|) + ||\mathcal{T}||)$. Note that here: $f(k) \geq 2 \cdot \int^{2} k$ (a non-elementary function).

Courcelle's Theorem

Courcelle's Theorem for graphs

p ∗ -*tw*-MC(MSO) **Instance:** A graph G and an MSO(τ_{HG})-sentence φ . **Parameter:** $\mathbf{tw}(G) + |\varphi|$ (where $\mathbf{tw}(G)$) the tree-width of G) **Problem:** Decide whether $\mathcal{A}(\mathcal{G}) \models \varphi$.

Theorem (special case of Courcelle's Theorem)

p ∗ -*tw*-MC(MSO) ∈ FPT*. More precisely, the problem is decidable, for some computable and non-decreasing function* $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ *by an algorithm in time:*

 $f(k_1, k_2) \cdot n$, where $k_1 := \text{tw}(\mathcal{A})$, $k_2 := |\varphi|$, $n = |V(\mathcal{G})|$

 p^{\ast} *tw*-Colorability \in FPT **Instance:** A graph \mathcal{G} and $\ell \in \mathbb{N}$. **Parameter:** *tw*(C) **Problem:** Decide whether is $\mathcal G$ ℓ -colorable.

Example

- ► p^{*}tw-3-COLORABILITY ∈ FPT.
- ► p^{*}tw-COLORABILITY ∈ FPT.

 p^{\ast} *tw*-Hamiltonicity **Instance:** A graph G **Parameter:** *tw*(C) **Problem:** Decide whether G is a hamiltonian (that is, contains a cyclic path that visits every vertex precisely once).

Example

 p^{\ast} *tw*-Hamiltonicity \in FPT.

Tree decompositions, and tree-width for graphs

Definition (recalling tree-width for graphs)

A *tree decomposition* of a graph $G = (V, E)$ is a pair $\langle \mathcal{T}, \{B_t\}_{t\in T}\rangle$ where \mathcal{T} = $\langle T, F\rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ for all $t \in T$ such that: (T1) $A = \bigcup_{t \in T} B_t$ (every vertex of G is in some bag). (T2) $(\forall \{u, v\} \in E)$ $(\exists t \in T) [\{u, v\} \subseteq B_t]$ (the vertices of every edge of G are realized in some bag). (T3) $(\forall v \in V)$ subgraph of T defd. by $\{t \in T \mid v \in B_t\}$ is connected $\}$

(the tree vertices (in T) whose bags contain some vertex of G induce a subgraph of T that is connected).

The *width* of a tree dec. $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max \{|B_t| - 1 \mid t \in T\}$.

The *tree-width* $tw(A)$ of a τ -structure A is defined by:

 $tw(A)$:= minimal width of a tree decomposition of A.

Tree decompositions, and tree-width for structures

Definition (extension of tree-width to structures)

A *tree decomposition* of a τ -structure $\mathcal{A} = \langle A; \left\{R^\mathcal{A}\right\}_{R\in\tau} \rangle$ is a pair $\langle \mathcal{T}, \left\{ B_t \right\}_{t \in T} \rangle$ where \mathcal{T} = $\langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ for all $t \in T$ such that: (T1) $A = \bigcup_{t \in T} B_t$ (every element of the universe of A is in some bag). (T2) $(\forall R \in \tau) (\forall (a_1, \ldots, a_r) \in R^{\mathcal{A}})(\exists t \in T) \vert \{a_1, \ldots, a_r\} \subseteq B_t \vert$ (the vertices of **every 'hyperedge'** in $R^{\mathcal{A}}$ are realized in some bag). (T3) $(\forall v \in V)$ subgraph of T defd. by $\{t \in T \mid v \in B_t\}$ is connected $\}$ (the tree vertices (in T) whose bags contain some vertex of G induce a subgraph of T that is connected).

The *width* of a tree dec. $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max \{|B_t| - 1 \mid t \in T\}$.

The *tree-width* $tw(A)$ of a τ -structure A is defined by:

 $tw(A)$:= minimal width of a tree decomposition of A.

Courcelle's Theorem

```
p
∗
-tw-MC(MSO)
  Instance: A structure A and an MSO-sentence \varphi.
  Parameter: tw(A) + |\varphi|.
  Problem: Decide whether A \models \varphi.
```
Theorem ([\[Courcelle, 1990\]](#page-63-1))

p ∗ -*tw*-MC(MSO) ∈ FPT*. More precisely, the problem is decidable by an algorithm in time:*

 $f(k_1, k_2) \cdot |A| + O(||A||)$, where $k_1 := \text{tw}(A)$, and $k_2 := |\varphi|$,

f *computable and non-decreasing*

```
f(k_1, k_2) \cdot |A| + O(||A||) \leq f(k_1, k_2) \cdot |A| + c \cdot ||A|| with some c > 0\leq (f(k_1, k_2) + c) \cdot ||\mathcal{A}||\leq q(k) \cdot (\|\mathcal{A}\| + |\varphi|) for q(x) \coloneq f(x, x) + ck := k_1 + k_2where n := ||A|| + |\varphi|
```

$$
\leq g(k) \cdot n
$$

Vertex Cover (first attempt)

Let $G = (V, E)$ a graph. For all $S \subseteq V$: S is a vertex cover of \mathcal{G} : $\Longleftrightarrow \forall e = \{u, v\} \in E$ $(u \in S \lor v \in S)$)

p ∗ -*tw*-VERTEX-COVER **Instance:** A graph $G = (V, E)$, and $\ell \in \mathbb{N}$. **Instance:** $tw(G)$. **Problem:** Does G have a vertex cover of size at most ℓ ?

Courcelle's Theorem: Refinement 1

p ∗ -*tw*-MC[≤] (MSO) **Instance:** A structure \mathcal{A} , an $\varphi(X)$, and $m \in \mathbb{N}$. **Parameter:** $tw(A) + |\varphi(X)|$. **Problem:** Decide whether $A \models \exists X (\text{card}^{\leq m}(X) \land \varphi(X)).$

Refinement 1 of Courcelle's Theorem

 p^{\star} *tw*-MC≦(MSO) \in FPT. More precisely, the problem is decidable by an algorithm in time:

 $f(k_1, k_2) \cdot |A| + O(||A||)$, where $k_1 := tw(A)$, and $k_2 := |\varphi|$, f computable and non-decreasing

Vertex Cover

Let $G = (V, E)$ a graph. For all $S \subseteq V$: S is a vertex cover of \mathcal{G} : $\Longleftrightarrow \forall e = \{u, v\} \in E$ ($u \in S \vee v \in S$))

```
p
∗
-tw-VERTEX-COVER
  Instance: A graph G = \langle V, E \rangle, and \ell \in \mathbb{N}.
  Instance: tw(G).
  Problem: Does G have a vertex cover of size at most \ell?
```
Example

```
p^*-tw-Vertex-Cover \epsilon FPT.
```
[ov](#page-2-0) [idea](#page-3-0) [fo-logic](#page-4-0) [MSO](#page-13-0) [courc-graphs](#page-23-0) [courcelle](#page-27-0) [courc-ref](#page-31-0) [courc-opt](#page-35-0) [rel's](#page-44-0) [courc-clw](#page-46-0) [graph minors](#page-51-0) [fo-metathm's](#page-57-0) [summ](#page-60-0) [Fri](#page-61-0) [ex-sugg](#page-62-0) [refs](#page-63-0)

Vertex Cover

```
Let G = \langle V, E \rangle a graph. For all S \subseteq V:
```
S is a vertex cover of $G := \{u, v\} \in E$ $(u \in S \vee v \in S)$)

```
p
∗
-tw-VERTEX-COVER
  Instance: A graph G = (V, E), and \ell \in \mathbb{N}.
  Instance: tw(G).
  Problem: Does G have a vertex cover of size at most \ell?
```
Example

```
p^{\ast}tw-VERTEX-COVER \epsilon FPT.
```
Courcelle's Theorem: Refinement 2

 p^* -tw-MC⁼(MSO) **Instance:** A structure A, an MSO-sentence $\varphi(X)$, and $m \in \mathbb{N}$. **Parameter:** $tw(A) + |\varphi(X)|$. **Problem:** Decide whether $A \models \exists X (\text{ card}^{=m}(X) \land \varphi(X))$.

Refinement 2 of Courcelle's Theorem

 p^\star tw-MC⁼(MSO) \in FPT. More precisely, the problem is decidable by an algorithm in time:

 $f(k_1,k_2)\cdot\left|A\right|^2+O(\left\|A\right\|)$, where k_1 := $\mathsf{tw}(\mathcal{A})$, and $k_2\coloneqq|\varphi|,$

 f computable and non-decreasing

Courcelle's Theorem Ref. 3: Optimization version

p ∗ -*tw*-opt-MC(MSO) **Instance:** A graph $G = (V, E)$, an MSO-sentence $\varphi(X_1, \ldots, X_n)$. **Parameter:** $\mathit{tw}(\mathcal{G}) + |\varphi(X_1, \ldots, X_p)|$. **Compute:** $\frac{\max}{\min} \big\{ \alpha(|X_1|, \ldots, |X_p|) \mid \begin{matrix} X_1, \ldots, X_p \in V \cup E \ \mathcal{A}(\mathcal{G}) \models \varphi(X_1, \ldots, X_p). \end{matrix} \big\}.$ where α is an affine function $\alpha(x_1,\ldots,x_p)$ = $a_0 + \sum_{i=1}^{p} a_i \cdot x_i$.

Optimization version of Courcelle's Theorem

 p^{\star} *tw*-opt-MC(MSO) ∈ FPT, and it is decidable by an algorithm in time: $f(tw(\mathcal{G}), |\varphi|) \cdot |V|$, where f computable and non-decreasing.

Maximum 2-edge colorable subgraphs

p ∗ -*tw*-max-2-edge-colorable-subgraph **Instance:** A graph $G = (V, E)$. **Parameter:** *tw*(G). **Compute:** Maximum number of edges in a 2-edge colored subgraph of G .

Example [AA & Vahan Mkrtchyan]

 p^{\ast} *tw*-max-2-edge-colorable-subgraph ∈ FPT.

Maximum 2-edge colorable subgraphs

 p^{\star} *tw*-max-2-edge-colorable-subgraph **Instance:** A graph $G = (V, E)$. **Parameter:** *tw*(G). **Compute:** Maximum number of edges in a 2-edge colored subgraph of G .

Example [AA & Vahan Mkrtchyan]

p ∗ -*tw*-max-2-edge-colorable-subgraph ∈ FPT.

```
p^{\ast}tw-Independent-Set
  Instance: A graph \mathcal{G}, a number \ell \in \mathbb{N}.
  Parameter: tw(G)
  Problem: Decide whether G has an independent set of \ell ele-
              ments.
```
Example

 p^* -tw-Independent-Set ϵ FPT.

```
p^{\star}tw-Feedback-Vertex-Set
  Instance: A graph \mathcal{G} and \ell \in \mathbb{N}.
  Parameter: tw(C)
  Problem: Decide whether G has a feedback vertex set of \ellelements.
```
Example

 p^* -tw-Feedback-Vertex-Set ϵ FPT.

```
p^{\ast}tw-Crossing-Number
  Instance: A graph \mathcal{G}, and k \in \mathbb{N}Parameter: tw(G) + kProblem: Decide whether the crossing number of G is k.
```
Example

```
p^{\ast}tw-Crossing-Number \epsilon FPT.
```
The *crossing number* is the least number of edge crossings required to draw the graph in the plane such that at each point at most two edges cross.

Definition

Let $G_1 = \langle V_1, E_1 \rangle$ and $G_2 = \langle V_2, E_2 \rangle$ be graphs. \mathcal{G}_1 is a *subdivision* of \mathcal{G}_2 if:

- \triangleright \mathcal{G}_1 arises by splitting the edges of \mathcal{G}_2 into paths with intermediate vertices.
- H is a *topological subgraph* of G

if G has a subgraph that is a subdivision of H.

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 nor $K_{3,3}$ as *topological subgraph.*

Theorem (Kuratowski)

A graph is planar if and only if it contains neither K_5 *nor* $K_{3,3}$ *as topological subgraph.*

Lemma

There is a $MSO(\tau_{HG})$ formula *top-sub_H* such that for every graph \mathcal{G} :

 $\mathcal{A}_{\tau_{\text{HG}}}(\mathcal{G})$ = *top-sub*_H \iff H is a topological subgraph of \mathcal{G} .

Using $\mathsf{MSO}(\tau_{\mathsf{HG}})$ formula *path* (x, y, Z) that Z is a path from x to y.

Lemma

There is a $MSO(\tau_{HG})$ formula *cross_k* such that for every graph \mathcal{G} :

 $\mathcal{A}_{\tau_{\text{HG}}}(\mathcal{G})$ \models *cross*_k \iff the crossing number of \mathcal{G} is at most k.

Proof: By induction, where $\text{cross}_0 := \neg \text{top-sub}_{\mathcal{K}_5} \land \neg \text{top-sub}_{\mathcal{K}_{3,3}}$.

Computably boundedness between notions of width

Comparing parameterizations

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ► $\kappa_1 \geq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* \big[g(\kappa_1(x)) \geq \kappa_2(x) \big].$
- \triangleright $\kappa_1 \approx \kappa_2$: \Longleftrightarrow $\kappa_1 \geq \kappa_2$ ∧ $\kappa_2 \geq \kappa_1$.
- \triangleright $\kappa_1 > \kappa_2 : \iff \kappa_1 \geq \kappa_2 \land \neg(\kappa_2 \geq \kappa_1).$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with parameterizations $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ with $\kappa_1 \geq \kappa_2$.

$$
\langle Q, \kappa_1 \rangle \in \text{FPT} \iff \langle Q, \kappa_2 \rangle \in \text{FPT}
$$

$$
\langle Q, \kappa_1 \rangle \notin \text{FPT} \implies \langle Q, \kappa_2 \rangle \notin \text{FPT}
$$

Courcelle's Theorem for clique-width

Recall that $MSO(\tau_{G}) \sim MSO_1$ (quantification over sets of vertices, but not sets of edges).

 p^* *clw*-MC(MSO(τ _G)/MSO₁) **Instance:** A graph G and an $MSO(\tau_G)$ -sentence φ . **Parameter:** $clw(G) + |\varphi|$. **Problem:** Decide whether $\mathcal{A}(\mathcal{G}) \models \varphi$.

Theorem ([\[Courcelle et al., 2000\]](#page-63-2)) p^* *clw*-MC(MSO(τ _G)/MSO₁) ϵ FPT.

Also, there is a maximization version of this theorem.

Courcelle's Theorem for clique-width (example)

Let $G = (V, E)$ a graph. For all $S \subseteq V$:

S is a vertex cover of \mathcal{G} : $\Longleftrightarrow \forall e = \{u, v\} \in E$ ($u \in S \vee v \in S$))

p ∗ -*clw*-VERTEX-COVER **Instance:** A graph $G = \langle V, E \rangle$, and $\ell \in \mathbb{N}$. **Instance:** *clw*(G). **Problem:** Does G have a vertex cover of size at most ℓ ?

Example

```
p
∗
-clw-VERTEX-COVER ∈ FPT.
```
Application to maximum 2-edge colorable subgraphs?

p ∗ -*clw*-max-2-edge-colorable-subgraph **Instance:** A graph $G = (V, E)$. **Parameter:** *clw*(G). **Compute:** Maximum number of edges in a 2-edge colored subgraph of G .

Open problem [AA, Vahan Mkrtchyan]

p ∗ -*clw*-max-2-edge-colorable-subgraph ∈ FPT ?

We saw that there is a MSO_2 formula $\varphi(X)$ such that:

 $\mathcal{A}_{\tau \cup S}(\mathcal{G}) \models \varphi(S) \iff S \subseteq E$ is an 2-colorable set of edges in \mathcal{G}

But there seems not to be such an MSO_1 formula.

Courcelle's Theorem for clique-width (non-example)

p ∗ -*clw*-HAMILTONICITY **Instance:** A graph G **Parameter:** *clw*(C) **Problem:** Decide whether G is a hamiltonian (that is, contains a cyclic path that visits every vertex precisely once).

Recall

There is no $MSO₁$ formula that expresses Hamiltonicity.

Hence we cannot apply Courcelle's Theorem for clique-width. Indeed:

Theorems

```
(T1) p
∗
-clw-HAMILTONICITY ∉ FPT,
      since it is not decidable in time \epsilon n^{o(\textit{clw}(\mathcal{C}))} (Fomin et al, 2014).
(T2) p^*clw-Hamiltonicity \in O(n^{o(clw(\mathcal{C}))})(Bergougnoux, Kanté, Kwon, 2020).
```
Computably boundedness between notions of width

Graph Minors

Graph minors

Definition

A graph \mathcal{G}_0 is a *minor* of a graph \mathcal{G}_0 if \mathcal{G}_0 is obtained by:

- ▶ deleting some edges,
- ▸ deleting arising isolated vertices,
- \triangleright contracting edges in \mathcal{G} .

Excluded minors

Definition (minor closed)

A class $\mathcal G$ is *minor closed* if for every $\mathcal G \in \mathcal G$ all minors of $\mathcal G$ are in $\mathcal G$.

We say that a class \mathcal{G} is characterized by excluded minors in \mathcal{H} if:

 \mathcal{G} := Excl(\mathcal{H}) := { \mathcal{G} | \mathcal{G} does not have a minor in \mathcal{H} }

Theorem (Graph Minor Theorem (Robertson–Seymour, 1983–2004))

Every class of graphs that is minor closed can be characterized by finitely many excluded minors. That is, for every class **G** *of minor closed graphs there are graphs* H_1, \ldots, H_m *such that:*

 \mathcal{G} = Excl({ $\mathcal{H}_1, \ldots, \mathcal{H}_m$ }).

Deciding minor closed classes

```
p-MINOR
  Instance: Graphs G and H.
  Parameter: ∥G∥
  Problem: Decide whether G is a minor of H.
```
Theorem

p*-*MINOR ∈ FPT*, decidable in time* f(k) ⋅ n ³ *where* k = ∥G∥*, and* n *is the number of vertices of* H*.*

Corollary

Every minor-closed class of graphs is decidable in cubic time.

Corollary

Let ⟨Q, κ⟩ *be a parameterized problem on graphs such that for every* $k \in \mathbb{N}$, either $\{ \mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k \}$ or $\{ \mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k \}$ is minor closed. *Then every slice* ⟨Q, κ⟩^k *is decidable in cubic time. In this case we can say that* ⟨Q, κ⟩ *is nonuniformly fixed-parameter tractable.*

Non-uniformly fixed-parameter tractable

A parameterized problem (Q, Σ, κ) is *fixed-parameter tractable* if:

 $\exists f : \mathbb{N} \to \mathbb{N}$ computable $\exists p \in \mathbb{N}[X]$ polynomial $\exists \mathbb{A}$ algorithm, takes inputs in Σ^* $\forall x \in \Sigma^*$ A decides whether $x \in Q$ holds in time $\leq f(\kappa(x)) \cdot p(|x|)$

Definition

A parameterized problem ⟨Q, Σ, κ⟩ is *non-uniformly fixed-parameter tractable* (in nu-FPT) if:

> $\exists f : \mathbb{N} \to \mathbb{N}$ computable $\exists p \in \mathbb{N}[X]$ polynomial $\exists \left\{\mathbb{A}_k\right\}_{k\in\mathbb{N}}$ algorithms, takes inputs in Σ^* $\forall x \in \Sigma^*$ $\big[\mathbb{A}_{\kappa(x)}$ decides whether $x \in Q$ holds in time $\leq f(\kappa(x)) \cdot p(|x|)$

Using minor-closed classes for FPT results

Corollary

Let ⟨Q, κ⟩ *be a parameterized problem on graphs such that for every* $k \in \mathbb{N}$, either $\{ \mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k \}$ or $\{ \mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k \}$ is minor closed. *Then* ⟨Q, κ⟩ *is non-uniformly fixed-parameter tractable (in* nu-FPT*).*

Applications:

▸

- ▶ p-VERTEX-COVER ϵ nu-FPT (p-VERTEX-COVER is minor closed).
- \triangleright p-FEEDBACK-VERTEX-SET \in nu-FPT (problem is minor closed).

p-DISJOINT-CYCLES **Instance:** A graph \mathcal{G} , and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Decide whether $\mathcal G$ has k disjoint cycles.

 p -DISJOINT-CYCLES ϵ nu-FPT, since the class of graphs that do not have k disjoint cycles is minor closed.

First-Order Meta-Theorem (example)

Seese's theorem

A class $\mathcal G$ of graphs has *bounded degree* if there is $d \in \mathbb N$ such that $\Delta(G)$ ≤ d for all $G \in G$ (where $\Delta(G)$ = max. degree of vertex in G).

p-MC(FO,**G**) **Instance:** A graph $G \in \mathcal{G}$, and a f-o formula φ over τ_{HG} **Parameter:** ∣φ∣. **Problem:** Decide whether $\mathcal{A}(\mathcal{G}) \models \varphi$.

Theorem ([\[Seese, 1995\]](#page-64-2))

p-MC(FO,**G**) ∈ FPT *for every class* **G** *of bounded degree. This model checking problem can be solved in time* $f(|\varphi|) \cdot |G|$ *, (linear in* | G |).

Theorem (for comparison, we saw it earlier)

 $\mathsf{EVAL}(\mathsf{FO})$ and MC(FO) can be solved in time $O(|\varphi|\cdot {|A|}^w \cdot w)$, where w is the width of the input formula φ .

First-order metatheorems: reference

A good reference for other meta-theorems for first-order logic is:

[\[Kreutzer, 2009\]](#page-64-3): Stephan Kreutzer: *Algorithmic Meta-Theorems*.

Summary

- ▶ Logic preliminaries
	- ▸ first-order logic
		- ▸ expressing graph problems by f-o formulas
	- ▸ monadic second-order logic (MSO)
		- ▸ expressing graph problems by MSO formulas
	- ▸ complexity of evaluation and model checking problems
- ▶ Courcelle's theorem
	- ▸ FPT-results by model-checking MSO-formulas
		- \triangleright for graphs with bounded tree-width
		- ▸ for structures with bounded tree-width
		- \triangleright for graphs of bounded clique-width
	- ▸ applications to concrete problems
- ▶ graph minors
- ▸ meta-theorems for first-order model-checking: an example

[ov](#page-2-0) [idea](#page-3-0) [fo-logic](#page-4-0) [MSO](#page-13-0) [courc-graphs](#page-23-0) [courcelle](#page-27-0) [courc-ref](#page-31-0) [courc-opt](#page-35-0) [rel's](#page-44-0) [courc-clw](#page-46-0) graph-minors [fo-metathm's](#page-57-0) [summ](#page-60-0) [Fri](#page-61-0) [ex-sugg](#page-62-0) [refs](#page-63-0)

Friday

Example suggestions

Examples

- 1. Find a first-order logic formula over $\tau_{\rm G}$ that expresses that a graph has a cycle of length precisely k .
- 2. Find an $MSO₁$ or $MSO(\tau_{\rm G})$ formula that expresses that a graph has a dominating set of $\leq k$ elements.
- 3. Find an $MSO₂$ or $MSO(\tau_{HG})$ formula *feedback*(S) that expresses that $S \subseteq V$ is a feedback vertex set.
- 4. $(*)$ Find an $\overline{\mathsf{MSO}}_1$ or $\overline{\mathsf{MSO}}(\tau_\mathsf{G})$ formula that expresses that a graph is connected.
- 5. (\star) Find an MSO₂ or MSO(τ _{HG}) formula $\textit{path}(x,y,Z)$ that expresses that Z is a set of edges that forms a path from x to y .

References I

Courcelle, B. (1990).

The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Information and Computation, 85(1):12 – 75.

譶

Courcelle, B., Makowsky, J. A., and Rotics, U. (2000). Linear time solvable optimization problems on graphs of bounded clique-width.

Theory of Computing Systems, 33(2):125–150.

E. Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S. (2015). *Parameterized Algorithms*. Springer, 1st edition.

Flum, J. and Grohe, M. (2006) . *Parameterized Complexity Theory*. Springer.

References II

Kreutzer, S. (2009).

Algorithmic Meta-Theorems. Technical report, arXiv.org. <https://arxiv.org/abs/0902.3616>.

No. 3 Sásak, R. (2010). Comparing 17 graph parameters. Master's thesis, University of Bergen, Norway.

Seese, D. (1995).

Linear time computable problems and logical descriptions. *Electronic Notes in Theoretical Computer Science*, 2:246 – 259. SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation.