Lecture 3: Algorithmic Meta-Theorems (A Short Introduction to Parameterized Complexity)

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

June 12, 2024

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

Overview

- logic preliminaries
 - first-order logic
 - expressing graph problems by f-o formulas
 - monadic second-order logic (MSO)
 - expressing graph problems by MSO formulas
 - complexity of evaluation and model checking problems
- Courcelle's theorem
 - FPT-results by model-checking MSO-formulas
 - for graphs / structures with bounded tree-width
 - for maximization problems over graphs of bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems
- graph minors
- meta-theorems for first-order model-checking: an example

Meta-theorems: idea, benefits and limitations

idea:

- express a problem *P* by a logical formula φ_P (of 'short' size)
- use model checking of φ_P on logical structures of bounded width k (tree-, clique-width, ...)
 - is time bounded depending on k, size of φ_P , size of the structure
 - this often facilitates FPT-results

benefits:

- a quick and easy way to show that [some problems] are fixed-parameter tractable,
- without working out the tedious details of a dynamic programming algorithm.

limitations:

- algorithms obtained by meta-theorems cannot be expected to be optimal.
- a careful analysis of a specific problem at hand will usually yield more efficient fpt-algorithms

Logical preliminaries

First-order logic (formula example)

$$\varphi_{\mathbf{3}} := \exists x_1 \exists x_2 \exists x_3 \big(\neg (x_1 = x_2) \land \neg E(x_1, x_2) \\ \land \neg (x_1 = x_3) \land \neg E(x_1, x_3) \\ \land \neg (x_2 = x_3) \land \neg E(x_2, x_3) \big)$$

 $\mathcal{A}(\mathcal{G}) \vDash \varphi_3 \iff \mathcal{G}$ has a 3-element independent set.

$$\varphi_{\mathbf{k}} := \exists x_1 \dots \exists x_{\mathbf{k}} \Big(\bigwedge_{1 \le i < j \le \mathbf{k}} (\neg (x_i = x_j) \land \neg E(x_i, x_j)) \Big) \Big)$$

 $\mathcal{A}(\mathcal{G}) \vDash \varphi_k \iff \mathcal{G}$ has a *k*-element independent set.

 $S \subseteq V \text{ is independent set in } \mathcal{G} = \langle V, E \rangle : \iff \forall e = \{u, v\} \in E (\neg(u \in S \land v \in S)) \\ \iff \forall u, v \in S (u \neq v \Rightarrow \{u, v\} \notin E)$

First-order logic: syntax (language)

- Ianguage based on:
 - a vocabulary $\tau = \{R_1, ..., R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
 - the binary equality predication =
 - (first-order) variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
 - ▶ propositional connectives: ∧, ∨, ¬, →, ↔
 - ► existential quantifier ∃, universal quantifier ∀
- atomic formulas (atoms): a formula x = y or $R(x_1 \dots x_n)$ for $R \in \tau$
- quantifier-free formula: atoms, literals (= negated atoms), formulas built up from atoms by using propositional connectives
- quantifications over (first-order variables):
 - existential quantifications $\exists x$ and universal quantifications $\forall x$
- ▶ formulas:

$$\varphi ::= \boldsymbol{x} = \boldsymbol{y} \mid \boldsymbol{R}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_{ar(\boldsymbol{R})}) \quad \text{(where } \boldsymbol{R} \in \tau)$$
$$\mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \rightarrow \varphi_2 \mid \varphi_1 \leftrightarrow \varphi_2$$
$$\mid \exists x \varphi \mid \forall x \varphi$$

sentences: formulas without free variables.

First-order logic: semantics (structures)

Definition

Let $\tau = \{R_1, \dots, R_n\}$ be a vocabulary. A τ -structure is a tuple $\mathcal{A} = \langle A; R_1^{\mathcal{A}}, \dots, R_n^{\mathcal{A}} \rangle$ consisting of:

▶ the *universe A*,

$ar(\frac{R_i}{R_i})$

• *interpretations* $R_i^{\mathcal{A}} \subseteq A^{ar(R_i)} = \overbrace{A \times \ldots \times A}^{ar(R_i)}$ for each of the relation symbols R_i in τ , where $i \in \{1, \ldots, n\}$.

Examples

Let $\tau_{G} = \{E/2\}$ vocabulary with binary edge relation. The *standard structure* for a graph $\mathcal{G} = \langle V, E \rangle$: $\mathcal{A}_{\tau_{G}}(\mathcal{G}) := \langle V; E^{\text{symm}} \rangle$.

Example

Let $\tau_{HG} = \{VERT/1, EDGE/1, INC/2\}$ vocabulary (for hypergraphs). The *hypergraph structure* for a graph $\mathcal{G} = \langle V, E \rangle$:

 $\mathcal{A}_{\tau_{\mathsf{HG}}}(\mathcal{G}) \coloneqq \langle V \cup E; \, V, \, E, \, \{ \langle v, e \rangle \, | \, v \in V, \, e \in E, \underline{v \in e} \} \rangle \,.$

Interpretation of first-order formulas in structures

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a τ -formula $\varphi(x_1, \ldots, x_k)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k$ in \mathcal{A} is defined by:

► If
$$\varphi(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k) \equiv R(\boldsymbol{x}_{i_1}, \dots, \boldsymbol{x}_{i_r})$$
 with $i_1, \dots, i_r \in [k]$, then:
 $\varphi(\mathcal{A}) \coloneqq \{ \langle a_1, \dots, a_k \rangle \in A^k \mid \langle a_{i_1}, \dots, a_{i_k} \rangle \in R^{\mathcal{A}} \}$

► If
$$\varphi(x_1, \dots, x_k) \equiv \varphi_1(x_{i_1}, \dots, x_{i_l}) \land \varphi_2(x_{j_1}, \dots, x_{j_m})$$
 with
 $i_1, \dots, i_l, j_1, \dots, j_m \in [k]$, then:
 $\varphi(\mathcal{A}) \coloneqq \{\langle a_1, \dots, a_k \rangle \in \mathcal{A}^k \mid \langle a_{i_1}, \dots, a_{i_l} \rangle \in \varphi_1(\mathcal{A})\}$
 $\cap \{\langle a_1, \dots, a_k \rangle \in \mathcal{A}^k \mid \langle a_{j_1}, \dots, a_{j_m} \rangle \in \varphi_2(\mathcal{A})\}$

► If
$$\varphi(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k) \equiv \exists \boldsymbol{x}_{k+1} \varphi_0(\boldsymbol{x}_{i_1}, \dots, \boldsymbol{x}_{i_\ell})$$
 with $i_1, \dots, i_\ell \in [k+1]$, then:
 $\varphi(\mathcal{A}) \coloneqq \{\langle a_1, \dots, a_k \rangle \in \mathcal{A}^k | \text{ there exists } a_{k+1} \in \mathcal{A}$
such that $\langle a_{i_1}, \dots, a_{i_\ell} \rangle \in \varphi_0(\mathcal{A}) \}$

• $\mathcal{A} \models \varphi(a_1, \ldots, a_k)$ will mean: $\langle a_1, \ldots, a_k \rangle \in \varphi(\mathcal{A})$.

► For a sentence φ , $\mathcal{A} \models \varphi$ will mean $\varphi(\mathcal{A}) \neq \emptyset$ (then $\varphi(\mathcal{A}) = \{\langle \rangle\}$).

Expressing graph properties by first-order formulas

Exercise

For given formulas $\varphi(x)$ and for all $k \in \mathbb{N}$, $k \ge 1$ define formulas $\exists^{\ge k} x \varphi(x), \exists^{< k} x \varphi(x), \exists^{=k} x \varphi(x)$, such that in a given τ -structure $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$:

 $\begin{aligned} \mathcal{A} &\models \exists^{\geq k} x \, \varphi(x) &\iff |\{a \in A \mid \mathcal{A} \models \varphi(a)\}| \ge k \\ \mathcal{A} &\models \exists^{\leq k} x \, \varphi(x) &\iff |\{a \in A \mid \mathcal{A} \models \varphi(a)\}| < k \\ \mathcal{A} &\models \exists^{=k} x \, \varphi(x) &\iff |\{a \in A \mid \mathcal{A} \models \varphi(a)\}| = k \end{aligned}$

Expressing graph properties by first-order formulas

Exercise

Express by a first-order formula with the vocabulary $\tau_{\rm G}$ = {*E*/₂} for graphs that:

(i) a graph \mathcal{G} contains a clique with precisely k elements,

- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements,

Recall:

$$\varphi_{k} := \exists x_{1} \dots \exists x_{k} \Big(\bigwedge_{1 \le i < j \le k} (\neg (x_{i} = y_{i}) \land \neg E(x_{i}, x_{j})) \Big)$$

 $\mathcal{A}_{\tau_{\mathsf{G}}}(\mathcal{G}) \vDash \varphi_{k} \iff \mathcal{G} \text{ has a } k\text{-element independent set.}$

Expressing graph properties by first-order formulas

Exercise

Express by a first-order formula with the vocabulary with vocabulary $\tau_{HG} = \{VERT/1, EDGE/1, INC/2\}$ for hypergraphs that:

- (i) a graph \mathcal{G} contains a clique with precisely k elements,
- (ii) a graph \mathcal{G} has a dominating set with less or equal to k elements,
- (iii) a graph \mathcal{G} has a dominating set with precisely k elements.

Evaluation and model checking (first-order logic)

Let Φ be a class of first-order formulas. The *evaluation problem* for Φ :

 $\mathsf{EVAL}(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$. **Problem:** Compute $\varphi(\mathcal{A})$.

The model checking problem for Φ :

MC(Φ) **Instance:** A structure A and a formula $\varphi \in \Phi$. **Problem:** Decide whether $A \models \varphi$ (that is, $\varphi(A) \neq \emptyset$).

Width of formula φ : maximal number of free variables in a subformula of φ .

Theorem

EVAL(FO) and MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where *w* is the width of the input formula φ .

Monadic second-order logic (formula example)

l

$$\psi_{3} := \exists C_{1} \exists C_{2} \exists C_{3} \big(\big(\forall x \big(\bigvee_{i=1}^{3} C_{i}(x) \big) \big) \land \forall x \big(\bigwedge_{1 \leq i < j \leq 3} \neg \big(C_{i}(x) \land C_{j}(x) \big) \big) \\ \land \forall x \forall y \big(E(x, y) \to \bigwedge_{i=1}^{3} \neg \big(C_{i}(x) \land C_{i}(y) \big) \big) \big)$$

$$\exists C_1 \exists C_2 \exists C_3 \Big(\forall x (C_1(x) \lor C_2(x) \lor C_3(x)) \\ \land \forall x \Big(\neg (C_1(x) \land C_2(x)) \land \neg (C_1(x) \land C_3(x)) \\ \land \neg (C_2(x) \land C_3(x)) \Big) \\ \land \forall x \forall y \Big(E(x,y) \rightarrow \neg (C_1(x) \land C_1(y)) \\ \land \neg (C_2(x) \land C_2(y)) \\ \land \neg (C_3(x) \land C_3(y)) \Big) \Big)$$

$$\mathcal{A}(\mathcal{G}) \vDash \psi_3 \iff \mathcal{G}$$
 has is 3-colorable.

Monadic second-order logic

Ianguage based on:

- a vocabulary $\tau = \{R_1, ..., R_n\}$ of predicate symbols R_i together with arity $ar(R_i) \in \mathbb{N}$
- the binary equality predication =
- First-order variable symbols: $x, y, z, w, x_1, y_1, z_1, w_1, x_2, \dots$
- monadic second-order variable symbols (symbolizing variables for unary predicate symbols): X, Y, Z, W, X₁, Y₁, Z₁, W₁, X₁,...,
- propositional connectives: $\land, \lor, \neg, \rightarrow, \leftrightarrow$
- ► existential quantifier ∃, universal quantifier ∀
- atomic formulas (atoms): $x = y | R(x_1 ... x_n) | X(x)$ (for $R \in \tau$)
- quantifications :
 - first-order existential quantificiations $\exists x$ and universal quant. $\forall x$
 - second-order existential quantific. $\exists X$ and universal quantif. $\forall X$

▶ formulas:

$$\varphi ::= \boldsymbol{x} = \boldsymbol{y} | \boldsymbol{R}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_{ar(\boldsymbol{R})}) | \boldsymbol{X}(\boldsymbol{x}) \\ | \neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2 | \varphi_1 \rightarrow \varphi_2 | \varphi_1 \leftrightarrow \varphi_2 \\ | \exists \boldsymbol{x} \varphi | \forall \boldsymbol{x} \varphi | \exists \boldsymbol{X} \varphi | \forall \boldsymbol{X} \varphi$$

Interpretation of MSO-formulas in first-order structures

Let $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ be a τ -structure. For a MSO(τ)-formula $\varphi(x_1, \dots, x_k, X_1, \dots, X_\ell)$ its *interpretation* $\varphi(\mathcal{A}) \subseteq A^k \times \mathcal{P}(A)^\ell$ in \mathcal{A} is defined by:

similar clauses as before, plus:

• If
$$\varphi(x_1, \dots, x_k, X_1, \dots, X_\ell) \equiv X_i(x_j)$$
 with $i \in [k]$ and $j \in [\ell]$, then:
 $\varphi(\mathcal{A}) \coloneqq \{ \langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in A^k \times \mathcal{P}(\mathcal{A})^\ell \mid a_j \in P_i \}$

► If $\varphi(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k, \boldsymbol{X}_1, \dots, \boldsymbol{X}_\ell) \equiv \exists \boldsymbol{X}_{k+1} \varphi_0(\boldsymbol{x}_{i_1}, \dots, \boldsymbol{x}_{i_{k'}}, \boldsymbol{X}_{j_1}, \dots, \boldsymbol{X}_{j_{\ell'}})$ with $i_1, \dots, i_{k'} \in [k]$, and $j_1, \dots, j_{\ell'} \in [\ell+1]$ then: $\varphi(\mathcal{A}) \coloneqq \{\langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in \mathcal{A}^k \times \mathcal{P}(\mathcal{A})^\ell |$ there exists $P_{\ell+1} \in \mathcal{P}(\mathcal{A})$ such that $\langle a_{i_1}, \dots, a_{i_{k'}}, P_{j_1}, \dots, P_{j_{\ell'}} \rangle \in \varphi_0(\mathcal{A}) \}$

•
$$\mathcal{A} \vDash \varphi(a_1, \dots, a_k, P_1, \dots, P_\ell)$$

will mean: $\langle a_1, \dots, a_k, P_1, \dots, P_\ell \rangle \in \varphi(\mathcal{A}).$

For a sentence φ , $\mathcal{A} \vDash \varphi$ will mean $\varphi(\mathcal{A}) \neq \emptyset$ (then $\varphi(\mathcal{A}) = \{\langle \rangle\}$).

Monadic second-order logic (formula example)

l

$$\psi_{3} := \exists C_{1} \exists C_{2} \exists C_{3} \big(\big(\forall x \big(\bigvee_{i=1}^{3} C_{i}(x) \big) \big) \land \forall x \big(\bigwedge_{1 \leq i < j \leq 3} \neg \big(C_{i}(x) \land C_{j}(x) \big) \big) \\ \land \forall x \forall y \big(E(x, y) \to \bigwedge_{i=1}^{3} \neg \big(C_{i}(x) \land C_{i}(y) \big) \big) \big)$$

$$\exists C_1 \exists C_2 \exists C_3 \Big(\forall x (C_1(x) \lor C_2(x) \lor C_3(x)) \\ \land \forall x \Big(\neg (C_1(x) \land C_2(x)) \land \neg (C_1(x) \land C_3(x)) \\ \land \neg (C_2(x) \land C_3(x)) \Big) \\ \land \forall x \forall y \Big(E(x,y) \rightarrow \neg (C_1(x) \land C_1(y)) \\ \land \neg (C_2(x) \land C_2(y)) \\ \land \neg (C_3(x) \land C_3(y)) \Big) \Big)$$

$$\mathcal{A}(\mathcal{G}) \vDash \psi_3 \iff \mathcal{G}$$
 has is 3-colorable.

Expressing graph properties by MSO formulas (1)

Exercise

Express by a monadic second-order formula $\varphi(X)$ with one free unary predicate variable X over the vocabulary $\tau_{\mathsf{G}} = \{E/_{\mathsf{P}}\}$ for graphs that for all graphs $\mathcal{G} = \langle V, E \rangle$:

 $\mathcal{A}_{\tau_{\mathsf{G}}}(\mathcal{G}) \vDash \varphi(S) \iff S \subseteq V \text{ is an independent set in } \mathcal{G}$

Recall:

 $S \subseteq V \text{ is independent set in } \mathcal{G} : \iff \forall e = \{u, v\} \in E (\neg(u \in S \land v \in S)) \\ \iff \forall u, v \in S(u \neq v \Rightarrow \{u, v\} \notin E)$

Exercise

Express the independent set property by a MSO(τ_{HG}) formula ψ with vocabulary $\tau_{HG} = \{VERT/_1, EDGE/_1, INC/_2\}$ for hypergraphs:

 $\mathcal{A}_{\tau_{\mathrm{HG}}}(\mathcal{G}) \vDash \psi(S) \iff S \subseteq V \text{ is an independent set in } \mathcal{G}$

Expressing graph properties by MSO formulas (2)

Exercise

Express by a monadic second-order formula *feedback*(*X*) with one free unary predicate variable *X* over $\tau_{HG} = \{VERT/1, EDGE/1, INC/2\}$, the vocabulary for graphs, that for all hypergraphs $\mathcal{G} = \langle V, E \rangle$:

 $\mathcal{A}_{\tau_{\mathsf{HG}}}(\mathcal{G}) \vDash \textit{feedback}(S) \iff S \subseteq V \text{ is a feedback vertex set}$

(A set $S \subseteq V$ is a feedback vertex set in \mathcal{G} if S contains a vertex of every cycle of \mathcal{G} .)

Steps:

- Construct a formula cycle-family(X) that expresses the property of a set being the union of cycles.
- Using *cycle-family*(X), construct *feedback*(X).

MSO for graphs and hypergraphs

- MSO(τ_{G}): MSO with vocabulary $\tau_{G} = \{E/2\}$
- MSO(τ_{HG}): MSO with vocab. $\tau_{HG} = \{VERT/1, EDGE/1, INC/2\}$
- ► **MSO**₁ :
 - vocabulary: { INC/2}
 - ► quantifications: $\exists_{(vert)} x / \forall_{(vert)} x$, $\exists_{(edge)} x / \forall_{(edge)} x$, $\exists_{(vert)} X / \forall_{(vert)} X$

▶ MSO₂:

- vocabulary: { INC/2}
- ► quantifications: ∃_(vert)x / ∀_(vert)x , ∃_(edge)x / ∀_(edge)x , ∃_(vert)X / ∀_(vert)X , ∃_(edge)X / ∀_(edge)X

Correspondences

 $\begin{array}{ll} \mbox{MSO}(\tau_{G}) & \mbox{corresponds to} & \mbox{MSO}_{1} \\ \mbox{MSO}(\tau_{HG}) & \mbox{corresponds to} & \mbox{MSO}_{2} \end{array}$

where 'corresponds to' means: 'is equally expressive as'.

Note:

We use MSO for either logic, restrict to MSO(τ_{G}) / MSO₁ if needed.

Expressing graph properties by MSO formulas (5)

Exercise

Express by a MSO(τ_{HG}) formula *conn*(*X*) with one free unary predicate variable *X* over $\tau_{HG} = \{VERT/_1, EDGE/_1, INC/_2\}$, the vocabulary for graphs, that for all hypergraphs $\mathcal{G} = \langle V, E \rangle$:

 $\mathcal{A}_{\tau_{\text{HG}}}(\mathcal{G}) \vDash hamiltonian \iff$ there is a Hamiltonian path in \mathcal{G} .

Note:

- This property is not expressible by a (single) $MSO(\tau_G)$ formula.
- ► Other properties that are not MSO(*τ*_G) expressible:
 - balanced bipartite graphs
 - existence of a perfect matching
 - simple graphs (graphs with no parallel edges)
 - existence of spanning trees with maximum degree 3

Expressing graph properties by MSO formulas (5)

Exercise

 $\mathcal{A}_{\tau_{\text{HG}}}(\mathcal{G}) \vDash hamiltonian \iff \text{there is a Hamiltonian path in } \mathcal{G}.$

Evaluation and model checking (MSO)

The *model checking problem* for MSO-formulas on labeled, ordered unranked trees:

MC(MSO, TREE_{*lo*}) **Instance:** A labeled, ordered, unranked Σ -tree \mathcal{T} , and a MSO(τ_{Σ}^{u})-formula φ **Problem:** Decide whether $\mathcal{T} \vDash \varphi$.

where for given alphabet Σ , $\tau_{\Sigma}^{u} \coloneqq \{E/_{2}, N/_{2}\} \cup \{P_{a}/_{1} \mid a \in \Sigma\}.$

Theorem MC(MSO, TREE_{*lo*}) \in FPT. *More precisely, there is a computable function* $f : \mathbb{N} \to \mathbb{N}$ *such that* MC(MSO, TREE_{*lo*}) *can be decided in time* $\leq O(f(|\varphi|) + ||\mathcal{T}||)$. Note that here: $f(k) \geq 2^{||x|^2}$ (a non-elementary function).

Courcelle's Theorem

Courcelle's Theorem for graphs

 p^* -*tw*-MC(MSO) **Instance:** A graph \mathcal{G} and an MSO(τ_{HG})-sentence φ . **Parameter:** *tw*(\mathcal{G}) + $|\varphi|$ (where *tw*(\mathcal{G}) the tree-width of \mathcal{G}) **Problem:** Decide whether $\mathcal{A}(\mathcal{G}) \models \varphi$.

Theorem (special case of Courcelle's Theorem)

 p^{*} -*tw*-MC(MSO) \in FPT. More precisely, the problem is decidable, for some computable and non-decreasing function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by an algorithm in time:

 $f(k_1, k_2) \cdot n$, where $k_1 \coloneqq \mathsf{tw}(\mathcal{A}), k_2 \coloneqq |\varphi|, n \coloneqq |V(\mathcal{G})|$

Courcelle's Theorem: applications (1)

```
p^{*}tw-COLORABILITY \in FPT
Instance: A graph \mathcal{G} and \ell \in \mathbb{N}.
Parameter: tw(\mathcal{C})
Problem: Decide whether is \mathcal{G} \ell-colorable.
```

Example

- ▶ *p*-tw*-3-COLORABILITY ∈ FPT.
- ▶ *p*-tw*-COLORABILITY ∈ FPT.

Courcelle's Theorem: applications (2)

 p^*tw -HAMILTONICITY **Instance:** A graph \mathcal{G} **Parameter:** $tw(\mathcal{C})$ **Problem:** Decide whether \mathcal{G} is a hamiltonian (that is, contains a cyclic path that visits every vertex precisely once).

Example

*p**-*tw*-HAMILTONICITY ∈ FPT.

Tree decompositions, and tree-width for graphs

Definition (recalling tree-width for graphs)

A *tree decomposition* of a graph $\mathcal{G} = \langle V, E \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ for all $t \in T$ such that:

(T1) $A = \bigcup_{t \in T} B_t$ (every vertex of \mathcal{G} is in some bag).

(T2) $(\forall \{u, v\} \in E) (\exists t \in T) [\{u, v\} \subseteq B_t]$ (the vertices of every edge of \mathcal{G} are realized in some bag).

(T3) $(\forall v \in V)$ [subgraph of \mathcal{T} defd. by $\{t \in T \mid v \in B_t\}$ is connected] (the tree vertices (in \mathcal{T}) whose bags contain some vertex of \mathcal{G} induce a subgraph of \mathcal{T} that is connected).

The *width* of a tree dec. $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ is $\max\{|B_t| - 1 \mid t \in T\}$.

The *tree-width* tw(A) of a τ -structure A is defined by:

tw(A) := minimal width of a tree decomposition of A.

Tree decompositions, and tree-width for structures

Definition (extension of tree-width to structures)

A *tree decomposition* of a τ -structure $\mathcal{A} = \langle A; \{R^{\mathcal{A}}\}_{R \in \tau} \rangle$ is a pair $\langle \mathcal{T}, \{B_t\}_{t \in T} \rangle$ where $\mathcal{T} = \langle T, F \rangle$ a (undirected, unrooted) tree, and $B_t \subseteq V$ for all $t \in T$ such that: (T1) $A = \bigcup_{t \in T} B_t$ (every element of the universe of \mathcal{A} is in some bag). (T2) $(\forall R \in \tau) (\forall \langle a_1, \dots, a_r \rangle \in R^{\mathcal{A}}) (\exists t \in T) [\{a_1, \dots, a_r\} \subseteq B_t]$ (the vertices of every 'hyperedge' in $R^{\mathcal{A}}$ are realized in some bag). (T3) $(\forall v \in V) [$ subgraph of \mathcal{T} defd. by $\{t \in T \mid v \in B_t\}$ is connected] (the tree vertices (in \mathcal{T}) whose bags contain some vertex of \mathcal{G} induce a subgraph of \mathcal{T} that is connected).

The *width* of a tree dec. $(\mathcal{T}, \{B_t\}_{t \in T})$ is $\max\{|B_t| - 1 \mid t \in T\}$.

The *tree-width* tw(A) of a τ -structure A is defined by:

tw(A) := minimal width of a tree decomposition of A.

Courcelle's Theorem

```
p^{*}tw-MC(MSO)

Instance: A structure A and an MSO-sentence \varphi.

Parameter: tw(A) + |\varphi|.

Problem: Decide whether A \models \varphi.
```

Theorem ([Courcelle, 1990])

 p^{*} tw-MC(MSO) \in FPT. More precisely, the problem is decidable by an algorithm in time:

 $f(k_1,k_2) \cdot |A| + O(||\mathcal{A}||)$, where $k_1 \coloneqq \mathsf{tw}(\mathcal{A})$, and $k_2 \coloneqq |\varphi|$,

f computable and non-decreasing

```
\begin{aligned} f(k_1, k_2) \cdot |A| + O(||\mathcal{A}||) &\leq f(k_1, k_2) \cdot |A| + c \cdot ||\mathcal{A}|| & \text{with some } c > 0 \\ &\leq (f(k_1, k_2) + c) \cdot ||\mathcal{A}|| \\ &\leq g(k) \cdot (||\mathcal{A}|| + |\varphi|) & \text{for } g(x) \coloneqq f(x, x) + c \\ &\quad k \coloneqq k_1 + k_2 \\ &\leq g(k) \cdot n & \text{where } n \coloneqq ||\mathcal{A}|| + |\varphi| \end{aligned}
```

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Vertex Cover (first attempt)

Let $\mathcal{G} = \langle V, E \rangle$ a graph. For all $S \subseteq V$: S is a vertex cover of $\mathcal{G} : \iff \forall e = \{u, v\} \in E (u \in S \lor v \in S))$

 p^{*} *tw*-VERTEX-COVER **Instance:** A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$. **Instance:** *tw*(\mathcal{G}). **Problem:** Does \mathcal{G} have a vertex cover of size at most ℓ ?

Courcelle's Theorem: Refinement 1

 p^* *tw*-MC^{\leq}(MSO) **Instance:** A structure \mathcal{A} , an $\varphi(X)$, and $m \in \mathbb{N}$. **Parameter:** $tw(\mathcal{A}) + |\varphi(X)|$. **Problem:** Decide whether $\mathcal{A} \models \exists X(card^{\leq m}(X) \land \varphi(X))$.

Refinement 1 of Courcelle's Theorem

 p^{*} *tw*-MC[≤](MSO) ∈ FPT. More precisely, the problem is decidable by an algorithm in time:

 $f(k_1, k_2) \cdot |A| + O(||A||)$, where $k_1 := tw(A)$, and $k_2 := |\varphi|$, *f* computable and non-decreasing

Vertex Cover

Let $\mathcal{G} = \langle V, E \rangle$ a graph. For all $S \subseteq V$: S is a vertex cover of $\mathcal{G} : \iff \forall e = \{u, v\} \in E (u \in S \lor v \in S))$

```
p^{*}tw-VERTEX-COVER

Instance: A graph \mathcal{G} = \langle V, E \rangle, and \ell \in \mathbb{N}.

Instance: tw(\mathcal{G}).

Problem: Does \mathcal{G} have a vertex cover of size at most \ell?
```

Example

```
p^*-tw-VERTEX-COVER \in FPT.
```

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Vertex Cover

Let $\mathcal{G} = \langle V, E \rangle$ a graph. For all $S \subseteq V$: S is a vertex cover of $\mathcal{G} :\iff \forall e = \{u, v\} \in E (u \in S \lor v \in S))$

```
p^*tw-VERTEX-COVER

Instance: A graph \mathcal{G} = \langle V, E \rangle, and \ell \in \mathbb{N}.

Instance: tw(\mathcal{G}).

Problem: Does \mathcal{G} have a vertex cover of size at most \ell?
```

Example

```
p*-tw-VERTEX-COVER ∈ FPT.
```

Courcelle's Theorem: Refinement 2

 p^{*} *tw*-MC⁼(MSO) **Instance:** A structure A, an MSO-sentence $\varphi(X)$, and $m \in \mathbb{N}$. **Parameter:** $tw(A) + |\varphi(X)|$. **Problem:** Decide whether $A \models \exists X (card^{=m}(X) \land \varphi(X))$.

Refinement 2 of Courcelle's Theorem

 p^{+} *tw*-MC⁼(MSO) \in FPT. More precisely, the problem is decidable by an algorithm in time:

 $f(k_1, k_2) \cdot |A|^2 + O(||A||)$, where $k_1 \coloneqq tw(A)$, and $k_2 \coloneqq |\varphi|$, *f* computable and non-decreasing

Courcelle's Theorem Ref. 3: Optimization version

 $\begin{array}{l} p^{*}\text{-}\textit{tw-opt-MC(MSO)} \\ \textbf{Instance: A graph } \mathcal{G} = \langle V, E \rangle, \text{ an MSO-sentence } \varphi(X_{1}, \ldots, X_{p}). \\ \textbf{Parameter: } \textit{tw}(\mathcal{G}) + |\varphi(X_{1}, \ldots, X_{p})|. \\ \textbf{Compute: } & \max_{\min} \left\{ \alpha(|X_{1}|, \ldots, |X_{p}|) \mid \begin{array}{l} X_{1}, \ldots, X_{p} \subseteq V \cup E \\ \mathcal{A}(\mathcal{G}) \vDash \varphi(X_{1}, \ldots, X_{p}). \end{array} \right\}. \\ \text{where } \alpha \text{ is an affine function } \alpha(x_{1}, \ldots, x_{p}) = a_{0} + \sum_{i=1}^{p} a_{i} \cdot x_{i}. \end{array}$

Optimization version of Courcelle's Theorem

 p^* -*tw*-opt-MC(MSO) \in FPT, and it is decidable by an algorithm in time: $f(tw(\mathcal{G}), |\varphi|) \cdot |V|$, where f computable and non-decreasing.

Maximum 2-edge colorable subgraphs

 p^* -*tw*-max-2-edge-colorable-subgraph **Instance:** A graph $\mathcal{G} = \langle V, E \rangle$. **Parameter:** $tw(\mathcal{G})$. **Compute:** Maximum number of edges in a 2-edge colored subgraph of G.

Example [AA & Vahan Mkrtchyan]

 p^* -*tw*-max-2-edge-colorable-subgraph \in FPT.

Maximum 2-edge colorable subgraphs

 p^* *tw*-max-2-edge-colorable-subgraph **Instance:** A graph $\mathcal{G} = \langle V, E \rangle$. **Parameter:** $tw(\mathcal{G})$. **Compute:** Maximum number of edges in a 2-edge colored subgraph of G.

Example [AA & Vahan Mkrtchyan]

 p^* -*tw*-max-2-edge-colorable-subgraph \in FPT.

```
p^*tw-INDEPENDENT-SET

Instance: A graph \mathcal{G}, a number \ell \in \mathbb{N}.

Parameter: tw(\mathcal{G})

Problem: Decide whether \mathcal{G} has an independent set of \ell elements.
```

Example

```
p^*-tw-INDEPENDENT-SET \in FPT.
```

```
p^{*}tw-FEEDBACK-VERTEX-SET

Instance: A graph \mathcal{G} and \ell \in \mathbb{N}.

Parameter: tw(\mathcal{C})

Problem: Decide whether \mathcal{G} has a feedback vertex set of \ell

elements.
```

Example

 p^* -*tw*-FEEDBACK-VERTEX-SET \in FPT.

```
p^{*}tw-CROSSING-NUMBER
Instance: A graph \mathcal{G}, and k \in \mathbb{N}
Parameter: tw(\mathcal{G}) + k
Problem: Decide whether the crossing number of \mathcal{G} is k.
```

Example

```
p^{*}-tw-CROSSING-NUMBER \in FPT.
```

The *crossing number* is the least number of edge crossings required to draw the graph in the plane such that at each point at most two edges cross.

Definition

Let $\mathcal{G}_1 = \langle V_1, E_1 \rangle$ and $\mathcal{G}_2 = \langle V_2, E_2 \rangle$ be graphs. \mathcal{G}_1 is a *subdivision* of \mathcal{G}_2 if:

- G₁ arises by splitting the edges of G₂ into paths with intermediate vertices.
- \mathcal{H} is a topological subgraph of \mathcal{G}

if \mathcal{G} has a subgraph that is a subdivision of \mathcal{H} .

Theorem (Kuratowski)

A graph is planar if and only if it contains neither \mathcal{K}_5 nor $\mathcal{K}_{3,3}$ as topological subgraph.

Theorem (Kuratowski)

A graph is planar if and only if it contains neither \mathcal{K}_5 nor $\mathcal{K}_{3,3}$ as topological subgraph.

Lemma

There is a MSO(τ_{HG}) formula *top-sub*_H such that for every graph G:

 $\mathcal{A}_{\tau_{\text{HG}}}(\mathcal{G}) \vDash \textit{top-sub}_{\mathcal{H}} \iff \mathcal{H} \text{ is a topological subgraph of } \mathcal{G}.$

Using MSO(τ_{HG}) formula *path*(x, y, Z) that Z is a path from x to y.

Lemma

There is a MSO(τ_{HG}) formula *cross*_k such that for every graph \mathcal{G} :

 $\mathcal{A}_{\tau_{\mathsf{HG}}}(\mathcal{G}) \vDash \operatorname{cross}_k \iff \text{the crossing number of } \mathcal{G} \text{ is at most } k.$

Proof: By induction, where $cross_0 := \neg top-sub_{\mathcal{K}_5} \land \neg top-sub_{\mathcal{K}_{3,3}}$.

2k

carv

Computably boundedness between notions of width

Comparing parameterizations

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- $\kappa_1 \geq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* [g(\kappa_1(x)) \geq \kappa_2(x)].$
- $\blacktriangleright \ \kappa_1 \approx \kappa_2 : \iff \kappa_1 \geq \kappa_2 \land \kappa_2 \geq \kappa_1.$
- $\quad \mathbf{\kappa}_1 \succ \mathbf{\kappa}_2 : \iff \mathbf{\kappa}_1 \succeq \mathbf{\kappa}_2 \land \neg (\mathbf{\kappa}_2 \succeq \mathbf{\kappa}_1).$

Proposition

For all parameterized problems $\langle Q, \kappa_1 \rangle$ and $\langle Q, \kappa_2 \rangle$ with parameterizations $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ with $\kappa_1 \succeq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT}$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}$

Courcelle's Theorem for clique-width

Recall that $MSO(\tau_G) \sim MSO_1$ (quantification over sets of vertices, but not sets of edges).

 p^* -*clw*-MC(MSO(τ_G)/MSO₁) **Instance:** A graph \mathcal{G} and an MSO(τ_G)-sentence φ . **Parameter:** $c/w(\mathcal{G}) + |\varphi|$. **Problem:** Decide whether $\mathcal{A}(\mathcal{G}) \models \varphi$.

Theorem ([Courcelle et al., 2000]) p^*-c/w -MC(MSO(τ_G)/MSO₁) \in FPT.

Also, there is a maximization version of this theorem.

Courcelle's Theorem for clique-width (example)

Let $\mathcal{G} = \langle V, E \rangle$ a graph. For all $S \subseteq V$: S is a vertex cover of $\mathcal{G} : \iff \forall e = \{u, v\} \in E (u \in S \lor v \in S))$

 p^* -*clw*-VERTEX-COVER **Instance:** A graph $\mathcal{G} = \langle V, E \rangle$, and $\ell \in \mathbb{N}$. **Instance:** *clw*(\mathcal{G}). **Problem:** Does \mathcal{G} have a vertex cover of size at most ℓ ?

Example

```
p^*-clw-VERTEX-COVER \in FPT.
```

Application to maximum 2-edge colorable subgraphs?

 p^* -*clw*-max-2-edge-colorable-subgraph **Instance:** A graph $\mathcal{G} = \langle V, E \rangle$. **Parameter:** *clw*(\mathcal{G}). **Compute:** Maximum number of edges in a 2-edge colored subgraph of G.

Open problem [AA, Vahan Mkrtchyan]

 p^* -*clw*-max-2-edge-colorable-subgraph \in FPT ?

We saw that there is a MSO₂ formula $\varphi(X)$ such that:

 $\mathcal{A}_{\tau_{\mathsf{HG}}}(\mathcal{G}) \vDash \varphi(S) \iff S \subseteq E \text{ is an 2-colorable set of edges in } \mathcal{G}$

But there seems not to be such an MSO_1 formula.

Courcelle's Theorem for clique-width (non-example)

 p^* -*clw*-HAMILTONICITY **Instance:** A graph \mathcal{G} **Parameter:** *clw*(\mathcal{C}) **Problem:** Decide whether \mathcal{G} is a hamiltonian (that is, contains a cyclic path that visits every vertex precisely once).

Recall

There is no MSO₁ formula that expresses Hamiltonicity.

Hence we cannot apply Courcelle's Theorem for clique-width. Indeed:

Theorems

```
(T1) p*-clw-HAMILTONICITY ∉ FPT, since it is not decidable in time ∉ n<sup>o(clw(C))</sup> (Fomin et al, 2014).
(T2) p*-clw-HAMILTONICITY ∈ O(n<sup>o(clw(C))</sup>) (Bergougnoux, Kanté, Kwon, 2020).
```

2k

carv

Computably boundedness between notions of width

Graph Minors

Graph minors

Definition

A graph \mathcal{G}_0 is a *minor* of a graph \mathcal{G} if \mathcal{G}_0 is obtained by:

- deleting some edges,
- deleting arising isolated vertices,
- contracting edges in *G*.

Excluded minors

Definition (minor closed)

A class \mathcal{G} is *minor closed* if for every $\mathcal{G} \in \mathcal{G}$ all minors of \mathcal{G} are in \mathcal{G} .

We say that a class \mathcal{G} is characterized by excluded minors in \mathcal{H} if:

 $\mathcal{G} \coloneqq \mathsf{Excl}(\mathcal{H}) \coloneqq \{\mathcal{G} \mid \mathcal{G} \text{ does not have a minor in } \mathcal{H}\}$

Theorem (Graph Minor Theorem (Robertson–Seymour, 1983–2004))

Every class of graphs that is minor closed can be characterized by finitely many excluded minors. That is, for every class \mathcal{G} of minor closed graphs there are graphs $\mathcal{H}_1, \ldots, \mathcal{H}_m$ such that:

 $\boldsymbol{\mathcal{G}} = \mathsf{Excl}(\{\mathcal{H}_1,\ldots,\mathcal{H}_m\}).$

Deciding minor closed classes

```
p-MINOR
Instance: Graphs \mathcal{G} and \mathcal{H}.
Parameter: \|\mathcal{G}\|
Problem: Decide whether \mathcal{G} is a minor of \mathcal{H}.
```

Theorem

p-MINOR \in FPT, decidable in time $f(k) \cdot n^3$ where $k = ||\mathcal{G}||$, and n is the number of vertices of \mathcal{H} .

Corollary

Every minor-closed class of graphs is decidable in cubic time.

Corollary

Let $\langle Q, \kappa \rangle$ be a parameterized problem on graphs such that for every $k \in \mathbb{N}$, either $\{\mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k\}$ or $\{\mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k\}$ is minor closed. Then every slice $\langle Q, \kappa \rangle_k$ is decidable in cubic time. In this case we can say that $\langle Q, \kappa \rangle$ is nonuniformly fixed-parameter tractable.

Non-uniformly fixed-parameter tractable

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is *fixed-parameter tractable* if:

 $\exists f : \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \\ \forall x \in \Sigma^* \Big[\mathbb{A} \text{ decides whether } x \in Q \text{ holds} \\ \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \Big]$

Definition

A parameterized problem (Q, Σ, κ) is *non-uniformly fixed-parameter tractable* (in nu-FPT) if:

 $\begin{aligned} \exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \{\mathbb{A}_k\}_{k \in \mathbb{N}} \text{ algorithms, takes inputs in } \Sigma^* \\ \forall x \in \Sigma^* \Big[\mathbb{A}_{\kappa(x)} \text{ decides whether } x \in Q \text{ holds} \\ & \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \Big] \end{aligned}$

Using minor-closed classes for FPT results

Corollary

Let $\langle Q, \kappa \rangle$ be a parameterized problem on graphs such that for every $k \in \mathbb{N}$, either $\{\mathcal{G} \in Q \mid \kappa(\mathcal{G}) = k\}$ or $\{\mathcal{G} \notin Q \mid \kappa(\mathcal{G}) = k\}$ is minor closed. Then $\langle Q, \kappa \rangle$ is non-uniformly fixed-parameter tractable (in nu-FPT).

Applications:

- ▶ *p*-VERTEX-COVER ∈ nu-FPT (*p*-VERTEX-COVER is minor closed).
- ▶ *p*-FEEDBACK-VERTEX-SET ∈ nu-FPT (problem is minor closed).

p-DISJOINT-CYCLES **Instance:** A graph \mathcal{G} , and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Decide whether \mathcal{G} has k disjoint cycles.

p-DISJOINT-CYCLES \in nu-FPT, since the class of graphs that do not have k disjoint cycles is minor closed.

First-Order Meta-Theorem (example)

Seese's theorem

A class \mathcal{G} of graphs has *bounded degree* if there is $d \in \mathbb{N}$ such that $\Delta(\mathcal{G}) \leq d$ for all $\mathcal{G} \in \mathcal{G}$ (where $\Delta(\mathcal{G}) = \max$. degree of vertex in \mathcal{G}).

p-MC(FO, \mathcal{G}) Instance: A graph $\mathcal{G} \in \mathcal{G}$, and a f-o formula φ over τ_{HG} Parameter: $|\varphi|$. Problem: Decide whether $\mathcal{A}(\mathcal{G}) \models \varphi$.

Theorem ([Seese, 1995])

p-MC(FO, \mathcal{G}) \in FPT for every class \mathcal{G} of bounded degree. This model checking problem can be solved in time $f(|\varphi|) \cdot |\mathcal{G}|$, (linear in $|\mathcal{G}|$).

Theorem (for comparison, we saw it earlier)

EVAL(FO) and MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where *w* is the width of the input formula φ .

First-order metatheorems: reference

A good reference for other meta-theorems for first-order logic is:

[Kreutzer, 2009]: Stephan Kreutzer: Algorithmic Meta-Theorems.

Summary

- Logic preliminaries
 - first-order logic
 - expressing graph problems by f-o formulas
 - monadic second-order logic (MSO)
 - expressing graph problems by MSO formulas
 - complexity of evaluation and model checking problems
- Courcelle's theorem
 - FPT-results by model-checking MSO-formulas
 - for graphs with bounded tree-width
 - for structures with bounded tree-width
 - for graphs of bounded clique-width
 - applications to concrete problems
- graph minors
- meta-theorems for first-order model-checking: an example

ov idea fo-logic MSO courc-graphs courcelle courc-ref courc-opt rel's courc-clw graph minors fo-metathm's summ Fri ex-sugg refs

Friday

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

Example suggestions

Examples

- 1. Find a first-order logic formula over τ_{G} that expresses that a graph has a cycle of length precisely *k*.
- 2. Find an MSO₁ or MSO(τ_{G}) formula that expresses that a graph has a dominating set of $\leq k$ elements.
- 3. Find an MSO₂ or MSO(τ_{HG}) formula *feedback*(S) that expresses that $S \subseteq V$ is a feedback vertex set.
- 4. (*) Find an MSO₁ or MSO(τ_{G}) formula that expresses that a graph is connected.
- 5. (*) Find an MSO₂ or MSO(τ_{HG}) formula *path*(x, y, Z) that expresses that Z is a set of edges that forms a path from x to y.

References I

Courcelle, B. (1990).

The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Information and Computation, 85(1):12 – 75.

Courcelle, B., Makowsky, J. A., and Rotics, U. (2000). Linear time solvable optimization problems on graphs of bounded clique-width.

Theory of Computing Systems, 33(2):125–150.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S. (2015). *Parameterized Algorithms*. Springer, 1st edition.

Flum, J. and Grohe, M. (2006). Parameterized Complexity Theory. Springer.

References II

Kreutzer, S. (2009).

Algorithmic Meta-Theorems. Technical report, arXiv.org. https://arxiv.org/abs/0902.3616.

Sásak, R. (2010).

Comparing 17 graph parameters. Master's thesis, University of Bergen, Norway.

Seese, D. (1995).

Linear time computable problems and logical descriptions. *Electronic Notes in Theoretical Computer Science*, 2:246 – 259. SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation.