
Lecture 2: Graph width notions,
dynamical programming

An Introduction to Parameterized Complexity

Clemens Grabmayer

Ph.D. Program, Advanced Period
Gran Sasso Science Institute

L’Aquila, Italy

Tuesday, June 11, 2024

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Course overview

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Overview

▸ comparing parameterizations

▸ dynamical programming on trees, example:
▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly

▸ other notions of width
▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Overview

▸ comparing parameterizations
▸ dynamical programming on trees, example:

▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly
▸ other notions of width

▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Overview

▸ comparing parameterizations
▸ dynamical programming on trees, example:

▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly

▸ other notions of width
▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Overview

▸ comparing parameterizations
▸ dynamical programming on trees, example:

▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly
▸ other notions of width

▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Overview

▸ comparing parameterizations
▸ dynamical programming on trees, example:

▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly
▸ other notions of width

▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Fixed-Parameter tractable

A parameterized problem is a triple ⟨Q,Σ, κ⟩ (short: ⟨Q,κ⟩) where:
▷ Q ⊆ Σ∗ is the set of (classical) problem instances,
▷ κ ∶ Σ∗ → N is a (general) function, the parameterization.

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is fixed-parameter tractable
(is in FPT) if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗

∀x ∈ Σ∗[A decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣)]

†) Assumptions for a robust fpt-theory

κ(x) is polynomially computable, or itself fpt-computable: for all
x ∈ Σ∗ in time ≤ g(κ(x)) ⋅ q(∣x∣) for g computable, q ∈ N[X].

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Fixed-Parameter tractable

A parameterized problem is a triple ⟨Q,Σ, κ⟩ (short: ⟨Q,κ⟩) where:
▷ Q ⊆ Σ∗ is the set of (classical) problem instances,
▷ κ ∶ Σ∗ → N is a (general) function, the parameterization.

Parameterized problem ⟨Q,Σ, κ⟩
Instance: x ∈ Σ∗.
Parameter: κ(x).
Problem: Is x ∈ Q?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Fixed-Parameter tractable

A parameterized problem is a triple ⟨Q,Σ, κ⟩ (short: ⟨Q,κ⟩) where:
▷ Q ⊆ Σ∗ is the set of (classical) problem instances,
▷ κ ∶ Σ∗ → N is a (general) function, the parameterization.

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is fixed-parameter tractable
(is in FPT) if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗

∀x ∈ Σ∗[A decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣)]

†) Assumptions for a robust fpt-theory

κ(x) is polynomially computable, or itself fpt-computable: for all
x ∈ Σ∗ in time ≤ g(κ(x)) ⋅ q(∣x∣) for g computable, q ∈ N[X].

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Fixed-Parameter tractable

A parameterized problem is a triple ⟨Q,Σ, κ⟩ (short: ⟨Q,κ⟩) where:
▷ Q ⊆ Σ∗ is the set of (classical) problem instances,
▷ κ ∶ Σ∗ → N is a (general) function, the parameterization.

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is fixed-parameter tractable
(is in FPT) if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗

∀x ∈ Σ∗[A decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣)]

†) Assumptions for a robust fpt-theory

κ(x) is polynomially computable, or itself fpt-computable: for all
x ∈ Σ∗ in time ≤ g(κ(x)) ⋅ q(∣x∣) for g computable, q ∈ N[X].

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Comparing parameterizations

Definition (computably bounded below)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[g(κ1(x)) ≥ κ2(x)] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT

⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Comparing parameterizations

Definition (computably bounded below)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[g(κ1(x)) ≥ κ2(x)] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT

⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Comparing parameterizations

Definition (computably bounded below)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[g(κ1(x)) ≥ κ2(x)] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT
⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇔ wd1
g→ wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇔ wd1
g→ wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇔ wd1
g→ wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

You Always Walk Alone (with your children)

Attività motoria con i figli:

‘la possibilità di uscire con i figli minori è consentita a un solo genitore
per camminare purché questo avvenga in prossimità della propria
abitazione’

(Ministero dell’Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph G = ⟨V,E⟩ with V people who want to go for a
walk in the next hour in a radius of 200m of their home,
and edges in E between them if they live closer than
400m of each other. A number ℓ ∈ N.

Problem:

Is it possible that ℓ or more people can go out in the next
hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

You Always Walk Alone (with your children)

Attività motoria con i figli:

‘la possibilità di uscire con i figli minori è consentita a un solo genitore
per camminare purché questo avvenga in prossimità della propria
abitazione’

(Ministero dell’Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph G = ⟨V,E⟩ with V people who want to go for a
walk in the next hour in a radius of 200m of their home,
and edges in E between them if they live closer than
400m of each other. A number ℓ ∈ N.

Problem:

Is it possible that ℓ or more people can go out in the next
hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

You Always Walk Alone (with your children)

Attività motoria con i figli:

‘la possibilità di uscire con i figli minori è consentita a un solo genitore
per camminare purché questo avvenga in prossimità della propria
abitazione’

(Ministero dell’Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph G = ⟨V,E⟩ with V people who want to go for a
walk in the next hour in a radius of 200m of their home,
and edges in E between them if they live closer than
400m of each other. A number ℓ ∈ N.

Problem: Is it possible that ℓ or more people can go out in the next
hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

You Always Walk Alone (with your children)

Attività motoria con i figli:

‘la possibilità di uscire con i figli minori è consentita a un solo genitore
per camminare purché questo avvenga in prossimità della propria
abitazione’

(Ministero dell’Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph G = ⟨V,E⟩ with V people who want to go for a
walk in the next hour in a radius of 200m of their home,
and edges in E between them if they live closer than
400m of each other. A number ℓ ∈ N.

Problem: Is it possible that ℓ or more people can go out in the next
hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set, and Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is independent set in G ∶⇐⇒∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S))

⇐⇒∀e = {u, v} ∈ E (u ∉ S ∨ v ∉ S))
WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Problem: What is the max. weight of an independent set of G ?

S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

⇐⇒ ∀e = {u, v} ∈ E (u ∉ V ∖ S ∨ v ∉ V ∖ S))
⇐⇒ V ∖ S is an independent set of G

VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Problem: Does G have a vertex cover of size at most ℓ?

S ⊆ V is minimal vertex cover ⇐⇒ V ∖ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET

Ô⇒ solution of VERTEX-COVER.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set, and Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is independent set in G ∶⇐⇒∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S))

⇐⇒∀e = {u, v} ∈ E (u ∉ S ∨ v ∉ S))
WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Problem: What is the max. weight of an independent set of G ?

S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

⇐⇒ ∀e = {u, v} ∈ E (u ∉ V ∖ S ∨ v ∉ V ∖ S))
⇐⇒ V ∖ S is an independent set of G

VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Problem: Does G have a vertex cover of size at most ℓ?

S ⊆ V is minimal vertex cover ⇐⇒ V ∖ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET

Ô⇒ solution of VERTEX-COVER.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set, and Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is independent set in G ∶⇐⇒∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S))

⇐⇒∀e = {u, v} ∈ E (u ∉ S ∨ v ∉ S))
WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Problem: What is the max. weight of an independent set of G ?

S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

⇐⇒ ∀e = {u, v} ∈ E (u ∉ V ∖ S ∨ v ∉ V ∖ S))
⇐⇒ V ∖ S is an independent set of G

VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Problem: Does G have a vertex cover of size at most ℓ?

S ⊆ V is minimal vertex cover ⇐⇒ V ∖ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET

Ô⇒ solution of VERTEX-COVER.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set, and Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is independent set in G ∶⇐⇒∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S))

⇐⇒∀e = {u, v} ∈ E (u ∉ S ∨ v ∉ S))
WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Problem: What is the max. weight of an independent set of G ?

S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))
⇐⇒ ∀e = {u, v} ∈ E (u ∉ V ∖ S ∨ v ∉ V ∖ S))
⇐⇒ V ∖ S is an independent set of G

VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Problem: Does G have a vertex cover of size at most ℓ?

S ⊆ V is minimal vertex cover ⇐⇒ V ∖ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET

Ô⇒ solution of VERTEX-COVER.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set, and Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is independent set in G ∶⇐⇒∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S))

⇐⇒∀e = {u, v} ∈ E (u ∉ S ∨ v ∉ S))
WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Problem: What is the max. weight of an independent set of G ?

S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))
⇐⇒ ∀e = {u, v} ∈ E (u ∉ V ∖ S ∨ v ∉ V ∖ S))
⇐⇒ V ∖ S is an independent set of G

VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Problem: Does G have a vertex cover of size at most ℓ?

S ⊆ V is minimal vertex cover ⇐⇒ V ∖ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET

Ô⇒ solution of VERTEX-COVER.
Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Ind. Set / Vertex Cover, width-parameterized

p∗-WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Parameter: path-width / tree-width k.
Problem: What is the max. weight of an independent set of G ?

p∗-VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Parameter: path-width / tree-width k.
Problem: Does G have a vertex cover of size at most ℓ?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).

▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,

▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 ,

A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .

▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] ,

A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).
▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Theorem
On trees with n nodes,

WEIGHTED-INDEPENDENT-SET ∈ DTIME(O(n)).

VERTEX-COVER

Instance: A tree T = ⟨T,F ⟩, and ℓ ∈ N.
Problem: Does T have a vertex cover of size at most ℓ?

Corollary

On trees with n nodes,
VERTEX-COVER ∈ DTIME(O(n)).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Theorem
On trees with n nodes,

WEIGHTED-INDEPENDENT-SET ∈ DTIME(O(n)).

VERTEX-COVER

Instance: A tree T = ⟨T,F ⟩, and ℓ ∈ N.
Problem: Does T have a vertex cover of size at most ℓ?

Corollary

On trees with n nodes,
VERTEX-COVER ∈ DTIME(O(n)).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path-decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decompositions, and path-width

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph G = ⟨V,E⟩ is a sequence
⟨B1,B2, . . . ,Br⟩ of bags Bi ⊆ V such that:

(P1) V = ⋃r
i=1Bi (every vertex of G is in some bag).

(P2) (∀{u, v} ∈ E) (∃i ∈ {1,2, . . . , r})[{u, v} ⊆ Bi]
(every edge of G is realized in some bag).

(P3) (∀v ∈ V) (∃i, k ∈ {1, . . . , r} , i ≤ k)[{j ∣ v ∈ Bj} = [i, k]]
(the list of bags that contains a vertex of G
is ⟨Bi, . . . ,Bk⟩ for some interval [i, k])

The width of path decomp. ⟨B1,B2, . . . ,Br⟩ is max{∣Bt∣ − 1 ∣ 1 ≤ t ≤ r} .
The path-width pw(G) of a graph G = ⟨V,E⟩ is defined by:

pw(G) ∶=minimal width of a path decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decompositions, and path-width

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph G = ⟨V,E⟩ is a sequence
⟨B1,B2, . . . ,Br⟩ of bags Bi ⊆ V such that:

(P1) V = ⋃r
i=1Bi (every vertex of G is in some bag).

(P2) (∀{u, v} ∈ E) (∃i ∈ {1,2, . . . , r})[{u, v} ⊆ Bi]
(every edge of G is realized in some bag).

(P3) (∀v ∈ V) (∃i, k ∈ {1, . . . , r} , i ≤ k)[{j ∣ v ∈ Bj} = [i, k]]
(the list of bags that contains a vertex of G
is ⟨Bi, . . . ,Bk⟩ for some interval [i, k])

The width of path decomp. ⟨B1,B2, . . . ,Br⟩ is max{∣Bt∣ − 1 ∣ 1 ≤ t ≤ r} .
The path-width pw(G) of a graph G = ⟨V,E⟩ is defined by:

pw(G) ∶=minimal width of a path decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decompositions, and path-width

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph G = ⟨V,E⟩ is a sequence
⟨B1,B2, . . . ,Br⟩ of bags Bi ⊆ V such that:

(P1) V = ⋃r
i=1Bi (every vertex of G is in some bag).

(P2) (∀{u, v} ∈ E) (∃i ∈ {1,2, . . . , r})[{u, v} ⊆ Bi]
(every edge of G is realized in some bag).

(P3) (∀v ∈ V) (∃i, k ∈ {1, . . . , r} , i ≤ k)[{j ∣ v ∈ Bj} = [i, k]]
(the list of bags that contains a vertex of G
is ⟨Bi, . . . ,Bk⟩ for some interval [i, k])

The width of path decomp. ⟨B1,B2, . . . ,Br⟩ is max{∣Bt∣ − 1 ∣ 1 ≤ t ≤ r} .
The path-width pw(G) of a graph G = ⟨V,E⟩ is defined by:

pw(G) ∶=minimal width of a path decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decompositions, and path-width

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph G = ⟨V,E⟩ is a sequence
⟨B1,B2, . . . ,Br⟩ of bags Bi ⊆ V such that:

(P1) V = ⋃r
i=1Bi (every vertex of G is in some bag).

(P2) (∀{u, v} ∈ E) (∃i ∈ {1,2, . . . , r})[{u, v} ⊆ Bi]
(every edge of G is realized in some bag).

(P3) (∀v ∈ V) (∃i, k ∈ {1, . . . , r} , i ≤ k)[{j ∣ v ∈ Bj} = [i, k]]
(the list of bags that contains a vertex of G
is ⟨Bi, . . . ,Bk⟩ for some interval [i, k])

The width of path decomp. ⟨B1,B2, . . . ,Br⟩ is max{∣Bt∣ − 1 ∣ 1 ≤ t ≤ r} .

The path-width pw(G) of a graph G = ⟨V,E⟩ is defined by:

pw(G) ∶=minimal width of a path decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decompositions, and path-width

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph G = ⟨V,E⟩ is a sequence
⟨B1,B2, . . . ,Br⟩ of bags Bi ⊆ V such that:

(P1) V = ⋃r
i=1Bi (every vertex of G is in some bag).

(P2) (∀{u, v} ∈ E) (∃i ∈ {1,2, . . . , r})[{u, v} ⊆ Bi]
(every edge of G is realized in some bag).

(P3) (∀v ∈ V) (∃i, k ∈ {1, . . . , r} , i ≤ k)[{j ∣ v ∈ Bj} = [i, k]]
(the list of bags that contains a vertex of G
is ⟨Bi, . . . ,Bk⟩ for some interval [i, k])

The width of path decomp. ⟨B1,B2, . . . ,Br⟩ is max{∣Bt∣ − 1 ∣ 1 ≤ t ≤ r} .
The path-width pw(G) of a graph G = ⟨V,E⟩ is defined by:

pw(G) ∶=minimal width of a path decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path-decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decomposition defines separations

Lemma

Let ⟨B1,B2, . . . ,Br⟩ be a path decomposition of a graph G = ⟨V,E⟩.
Then for all i ∈ {1, . . . , r − 1} it holds:
▸ ⟨⋃i

j=1Bj ,⋃r
j=i+1Bj⟩ is a separation of G with separator Bi ∩Bi+1.

▸ ∂(⋃i
j=1Bj) ⊆ Bi ∩Bi+1.

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (set of border vertices) ∂(A) of a set A ⊆ V of
vertices consists of all vertices that have a neighbor in V ∖A.
Note that:
▸ ∂(A) = ∂(V ∖A).
▸ ⟨A, (V ∖A) ∪ ∂(A)⟩ is a separation of G, for all A ⊆ V .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decomposition defines separations

Lemma

Let ⟨B1,B2, . . . ,Br⟩ be a path decomposition of a graph G = ⟨V,E⟩.
Then for all i ∈ {1, . . . , r − 1} it holds:
▸ ⟨⋃i

j=1Bj ,⋃r
j=i+1Bj⟩ is a separation of G with separator Bi ∩Bi+1.

▸ ∂(⋃i
j=1Bj) ⊆ Bi ∩Bi+1.

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (set of border vertices) ∂(A) of a set A ⊆ V of
vertices consists of all vertices that have a neighbor in V ∖A.

Note that:
▸ ∂(A) = ∂(V ∖A).
▸ ⟨A, (V ∖A) ∪ ∂(A)⟩ is a separation of G, for all A ⊆ V .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decomposition defines separations

Lemma

Let ⟨B1,B2, . . . ,Br⟩ be a path decomposition of a graph G = ⟨V,E⟩.
Then for all i ∈ {1, . . . , r − 1} it holds:
▸ ⟨⋃i

j=1Bj ,⋃r
j=i+1Bj⟩ is a separation of G with separator Bi ∩Bi+1.

▸ ∂(⋃i
j=1Bj) ⊆ Bi ∩Bi+1.

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (set of border vertices) ∂(A) of a set A ⊆ V of
vertices consists of all vertices that have a neighbor in V ∖A.
Note that:
▸ ∂(A) = ∂(V ∖A).
▸ ⟨A, (V ∖A) ∪ ∂(A)⟩ is a separation of G, for all A ⊆ V .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path decomposition defines separations

Lemma

Let ⟨B1,B2, . . . ,Br⟩ be a path decomposition of a graph G = ⟨V,E⟩.
Then for all i ∈ {1, . . . , r − 1} it holds:
▸ ⟨⋃i

j=1Bj ,⋃r
j=i+1Bj⟩ is a separation of G with separator Bi ∩Bi+1.

▸ ∂(⋃i
j=1Bj) ⊆ Bi ∩Bi+1.

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (set of border vertices) ∂(A) of a set A ⊆ V of
vertices consists of all vertices that have a neighbor in V ∖A.
Note that:
▸ ∂(A) = ∂(V ∖A).
▸ ⟨A, (V ∖A) ∪ ∂(A)⟩ is a separation of G, for all A ⊆ V .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path-decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Caterpillar

Path-width?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Nice path decomposition
Definition

A path decomposition ⟨B1,B2, . . . ,Br⟩ of a graph G = ⟨V,E⟩ is nice if:
▸ B1 = Br = ∅
▸ Every index i > 1 is either of:

▸ introduce index: there is v ∈ V such that Bi+1 = Bi ∪ {v} and v ∉ Bi,
▸ forget index: there is v ∈ V such that Bi+1 = Bi ∖ {v} and v ∈ Bi.

Nice path decomposition:

∅ – A – A,B – A,B,C – B,C – C – C,D – C,D,E – D,E – D,E,F –

– D,F – D,F,G – D,F – D,F,H – F,H – H – H,I – I – I,J – I,J,K – J,K – K – ∅

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Nice path decomposition
Definition

A path decomposition ⟨B1,B2, . . . ,Br⟩ of a graph G = ⟨V,E⟩ is nice if:
▸ B1 = Br = ∅
▸ Every index i > 1 is either of:

▸ introduce index: there is v ∈ V such that Bi+1 = Bi ∪ {v} and v ∉ Bi,
▸ forget index: there is v ∈ V such that Bi+1 = Bi ∖ {v} and v ∈ Bi.

Nice path decomposition:

∅ – A – A,B – A,B,C – B,C – C – C,D – C,D,E – D,E – D,E,F –

– D,F – D,F,G – D,F – D,F,H – F,H – H – H,I – I – I,J – I,J,K – J,K – K – ∅

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Nice path decomposition
Definition

A path decomposition ⟨B1,B2, . . . ,Br⟩ of a graph G = ⟨V,E⟩ is nice if:
▸ B1 = Br = ∅
▸ Every index i > 1 is either of:

▸ introduce index: there is v ∈ V such that Bi+1 = Bi ∪ {v} and v ∉ Bi,
▸ forget index: there is v ∈ V such that Bi+1 = Bi ∖ {v} and v ∈ Bi.

Nice path decomposition:

∅ – A – A,B – A,B,C – B,C – C – C,D – C,D,E – D,E – D,E,F –

– D,F – D,F,G – D,F – D,F,H – F,H – H – H,I – I – I,J – I,J,K – J,K – K – ∅

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Nice path decomposition
Definition

A path decomposition ⟨B1,B2, . . . ,Br⟩ of a graph G = ⟨V,E⟩ is nice if:
▸ B1 = Br = ∅
▸ Every index i > 1 is either of:

▸ introduce index: there is v ∈ V such that Bi+1 = Bi ∪ {v} and v ∉ Bi,
▸ forget index: there is v ∈ V such that Bi+1 = Bi ∖ {v} and v ∈ Bi.

Lemma

From every path decomposition ⟨B1,B2, . . . ,Br⟩ of a graph G = ⟨V,E⟩
of width k a nice path decomposition ⟨B′1,B′2, . . . ,B′r′⟩ of width k can
be constructed in time O(k2 ⋅max{r, n}) where n ∶= ∣V ∣.

A,B,C – C,D,E – D,E,F – D,F,G – D,F,H – H,I – I,J,K

∅ – A – A,B – A,B,C – B,C – C – C,D – C,D,E – D,E – D,E,F –

– D,F – D,F,G – D,F – D,F,H – F,H – H – H,I – I – I,J – I,J,K – J,K – K – ∅

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set

Let G = ⟨V,E⟩ a graph.
S ⊆ V is independent set in G ∶⇐⇒ ∀e = {u, v} (¬(u ∈ S ∧ v ∈ S)).

WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Parameter: path-width k.
Problem: What is the max. weight of an independent set of G ?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Path-decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let ⟨B1, . . . ,Br⟩ be a nice path decomposition of G = ⟨V,E⟩.
Then for every i ∈ {1, . . . , r}, and every S ⊆ Bi, we define:

c[i, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
if S is independent.

Recursive equations for computing c[i, S] for independent S:

▸ Case i = 1: c[1,∅] = 0
▸ Case i + 1:

▸ i + 1 introduces v : Bi+1 = Bi ∪ {v} and v ∉ Bi,

c[i + 1, S] =

⎧
⎪⎪
⎨
⎪⎪
⎩

c[i, S] if v ∉ S,

c[i, S ∖ {v}] +w(v) if v ∈ S;

▸ i + 1 forgets v : Bi+1 = Bi ∖ {v} and v ∈ Bi,
c[i + 1, S] =max{c[i, S], c[i, S ∪ {v}]} .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let ⟨B1, . . . ,Br⟩ be a nice path decomposition of G = ⟨V,E⟩.
Then for every i ∈ {1, . . . , r}, and every S ⊆ Bi, we define:

c[i, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
if S is independent.

Recursive equations for computing c[i, S] for independent S:

▸ Case i = 1: c[1,∅] = 0

▸ Case i + 1:

▸ i + 1 introduces v : Bi+1 = Bi ∪ {v} and v ∉ Bi,

c[i + 1, S] =

⎧
⎪⎪
⎨
⎪⎪
⎩

c[i, S] if v ∉ S,

c[i, S ∖ {v}] +w(v) if v ∈ S;

▸ i + 1 forgets v : Bi+1 = Bi ∖ {v} and v ∈ Bi,
c[i + 1, S] =max{c[i, S], c[i, S ∪ {v}]} .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let ⟨B1, . . . ,Br⟩ be a nice path decomposition of G = ⟨V,E⟩.
Then for every i ∈ {1, . . . , r}, and every S ⊆ Bi, we define:

c[i, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
if S is independent.

Recursive equations for computing c[i, S] for independent S:

▸ Case i = 1: c[1,∅] = 0
▸ Case i + 1:

▸ i + 1 introduces v : Bi+1 = Bi ∪ {v} and v ∉ Bi,

c[i + 1, S] =

⎧
⎪⎪
⎨
⎪⎪
⎩

c[i, S] if v ∉ S,

c[i, S ∖ {v}] +w(v) if v ∈ S;

▸ i + 1 forgets v : Bi+1 = Bi ∖ {v} and v ∈ Bi,
c[i + 1, S] =max{c[i, S], c[i, S ∪ {v}]} .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let ⟨B1, . . . ,Br⟩ be a nice path decomposition of G = ⟨V,E⟩.
Then for every i ∈ {1, . . . , r}, and every S ⊆ Bi, we define:

c[i, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
if S is independent.

Recursive equations for computing c[i, S] for independent S:

▸ Case i = 1: c[1,∅] = 0
▸ Case i + 1:

▸ i + 1 introduces v : Bi+1 = Bi ∪ {v} and v ∉ Bi,

c[i + 1, S] =

⎧
⎪⎪
⎨
⎪⎪
⎩

c[i, S] if v ∉ S,
c[i, S ∖ {v}] +w(v) if v ∈ S;

▸ i + 1 forgets v : Bi+1 = Bi ∖ {v} and v ∈ Bi,
c[i + 1, S] =max{c[i, S], c[i, S ∪ {v}]} .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)

Let ⟨B1, . . . ,Br⟩ be a nice path decomposition of G = ⟨V,E⟩.
Then for every i ∈ {1, . . . , r}, and every S ⊆ Bi, we define:

c[i, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
if S is independent.

Recursive equations for computing c[i, S] for independent S:

▸ Case i = 1: c[1,∅] = 0
▸ Case i + 1:

▸ i + 1 introduces v : Bi+1 = Bi ∪ {v} and v ∉ Bi,

c[i + 1, S] =

⎧
⎪⎪
⎨
⎪⎪
⎩

c[i, S] if v ∉ S,
c[i, S ∖ {v}] +w(v) if v ∈ S;

▸ i + 1 forgets v : Bi+1 = Bi ∖ {v} and v ∈ Bi,
c[i + 1, S] =max{c[i, S], c[i, S ∪ {v}]} .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S

Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :

▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at r :
(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :

▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at r :
(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :

▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at r :
(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :
▸ ∣Bi∣ ≤ k + 1,

▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at r :

(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :
▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,

▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)
using a datastructure computable in time O(kO(1) ⋅ n),

▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at r :

(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :
▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),

▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at r :

(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :
▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)

▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at r :

(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :
▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at r :
(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :
▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at r :

(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.
Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with path width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with path width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with path width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A tree decomposition of a graph G = ⟨V,E⟩ is a pair ⟨T ,{Bt}t∈T ⟩
where T = ⟨T,F ⟩ a (undirected, unrooted) tree, and Bt ⊆ V such that:

(T1) V = ⋃t∈T Bt (every vertex of G is in some bag).

(T2) (∀{u, v} ∈ E) (∃t ∈ T)[{u, v} ⊆ Bt]
(the vertices of every edge of G are realized in some bag).

(T3) (∀v ∈ V) [subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected]
(the tree vertices (in T) whose bags contain some vertex of G

induce a subgraph of T that is connected).

The width of a tree decomposition ⟨T ,{Bt}t∈T ⟩ is
max{∣Bt∣ − 1 ∣ t ∈ T} .

The tree-width tw(G) of a graph G = ⟨V,E⟩ is defined by:

tw(G) ∶=minimal width of a tree decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A tree decomposition of a graph G = ⟨V,E⟩ is a pair ⟨T ,{Bt}t∈T ⟩
where T = ⟨T,F ⟩ a (undirected, unrooted) tree, and Bt ⊆ V such that:

(T1) V = ⋃t∈T Bt (every vertex of G is in some bag).
(T2) (∀{u, v} ∈ E) (∃t ∈ T)[{u, v} ⊆ Bt]

(the vertices of every edge of G are realized in some bag).

(T3) (∀v ∈ V) [subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected]
(the tree vertices (in T) whose bags contain some vertex of G

induce a subgraph of T that is connected).

The width of a tree decomposition ⟨T ,{Bt}t∈T ⟩ is
max{∣Bt∣ − 1 ∣ t ∈ T} .

The tree-width tw(G) of a graph G = ⟨V,E⟩ is defined by:

tw(G) ∶=minimal width of a tree decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A tree decomposition of a graph G = ⟨V,E⟩ is a pair ⟨T ,{Bt}t∈T ⟩
where T = ⟨T,F ⟩ a (undirected, unrooted) tree, and Bt ⊆ V such that:

(T1) V = ⋃t∈T Bt (every vertex of G is in some bag).
(T2) (∀{u, v} ∈ E) (∃t ∈ T)[{u, v} ⊆ Bt]

(the vertices of every edge of G are realized in some bag).
(T3) (∀v ∈ V) [subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected]

(the tree vertices (in T) whose bags contain some vertex of G
induce a subgraph of T that is connected).

The width of a tree decomposition ⟨T ,{Bt}t∈T ⟩ is
max{∣Bt∣ − 1 ∣ t ∈ T} .

The tree-width tw(G) of a graph G = ⟨V,E⟩ is defined by:

tw(G) ∶=minimal width of a tree decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A tree decomposition of a graph G = ⟨V,E⟩ is a pair ⟨T ,{Bt}t∈T ⟩
where T = ⟨T,F ⟩ a (undirected, unrooted) tree, and Bt ⊆ V such that:

(T1) V = ⋃t∈T Bt (every vertex of G is in some bag).
(T2) (∀{u, v} ∈ E) (∃t ∈ T)[{u, v} ⊆ Bt]

(the vertices of every edge of G are realized in some bag).
(T3) (∀v ∈ V) [subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected]

(the tree vertices (in T) whose bags contain some vertex of G
induce a subgraph of T that is connected).

The width of a tree decomposition ⟨T ,{Bt}t∈T ⟩ is
max{∣Bt∣ − 1 ∣ t ∈ T} .

The tree-width tw(G) of a graph G = ⟨V,E⟩ is defined by:

tw(G) ∶=minimal width of a tree decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A tree decomposition of a graph G = ⟨V,E⟩ is a pair ⟨T ,{Bt}t∈T ⟩
where T = ⟨T,F ⟩ a (undirected, unrooted) tree, and Bt ⊆ V such that:

(T1) V = ⋃t∈T Bt (every vertex of G is in some bag).
(T2) (∀{u, v} ∈ E) (∃t ∈ T)[{u, v} ⊆ Bt]

(the vertices of every edge of G are realized in some bag).
(T3) (∀v ∈ V) [subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected]

(the tree vertices (in T) whose bags contain some vertex of G
induce a subgraph of T that is connected).

The width of a tree decomposition ⟨T ,{Bt}t∈T ⟩ is
max{∣Bt∣ − 1 ∣ t ∈ T} .

The tree-width tw(G) of a graph G = ⟨V,E⟩ is defined by:

tw(G) ∶=minimal width of a tree decomposition of G.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition defines separations

Lemma

Let ⟨T ,{Bt}t∈T ⟩ be a tree decomposition of a graph G = ⟨V,E⟩.
Let e = ⟨a, b⟩ be an edge of T . The T ∖ e is the union of a tree Ta
containing a, and a tree Tb containing b.
Then for A ∶= ⋃t∈V (Ta)Bt and B ∶= ⋃t∈V (Tb)Bt it holds:
▸ ⟨A,B⟩ is a separation of G with separator Ba ∩Bb.

▸ ∂(A), ∂(B) ⊆ Ba ∩Bb.

Recall, for a graph G = ⟨V,E⟩:

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (vertices) ∂(A) of a set A ⊆ V of vertices consists of
all vertices that have a neighbor in V ∖A.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition defines separations

Lemma

Let ⟨T ,{Bt}t∈T ⟩ be a tree decomposition of a graph G = ⟨V,E⟩.
Let e = ⟨a, b⟩ be an edge of T . The T ∖ e is the union of a tree Ta
containing a, and a tree Tb containing b.
Then for A ∶= ⋃t∈V (Ta)Bt and B ∶= ⋃t∈V (Tb)Bt it holds:
▸ ⟨A,B⟩ is a separation of G with separator Ba ∩Bb.

▸ ∂(A), ∂(B) ⊆ Ba ∩Bb.

Recall, for a graph G = ⟨V,E⟩:
▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:

▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (vertices) ∂(A) of a set A ⊆ V of vertices consists of
all vertices that have a neighbor in V ∖A.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition defines separations

Lemma

Let ⟨T ,{Bt}t∈T ⟩ be a tree decomposition of a graph G = ⟨V,E⟩.
Let e = ⟨a, b⟩ be an edge of T . The T ∖ e is the union of a tree Ta
containing a, and a tree Tb containing b.
Then for A ∶= ⋃t∈V (Ta)Bt and B ∶= ⋃t∈V (Tb)Bt it holds:
▸ ⟨A,B⟩ is a separation of G with separator Ba ∩Bb.
▸ ∂(A), ∂(B) ⊆ Ba ∩Bb.

Recall, for a graph G = ⟨V,E⟩:
▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:

▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (vertices) ∂(A) of a set A ⊆ V of vertices consists of
all vertices that have a neighbor in V ∖A.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition defines separations

Lemma

Let ⟨T ,{Bt}t∈T ⟩ be a tree decomposition of a graph G = ⟨V,E⟩.
Let e = ⟨a, b⟩ be an edge of T . The T ∖ e is the union of a tree Ta
containing a, and a tree Tb containing b.
Then for A ∶= ⋃t∈V (Ta)Bt and B ∶= ⋃t∈V (Tb)Bt it holds:
▸ ⟨A,B⟩ is a separation of G with separator Ba ∩Bb.
▸ ∂(A), ∂(B) ⊆ Ba ∩Bb.

Recall, for a graph G = ⟨V,E⟩:
▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:

▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (vertices) ∂(A) of a set A ⊆ V of vertices consists of
all vertices that have a neighbor in V ∖A.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computing tree-width

TREE-WIDTH

Instance: A graph G and k ∈ N.
Problem: Decide whether tw(G) = k.

Theorem
TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph G = ⟨V,E⟩ and k ∈ N.
Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem
p-TREE-WIDTH is fixed-parameter tractable,

in time 2p(k) ⋅ n where n ∶= ∣V ∣.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computing tree-width

TREE-WIDTH

Instance: A graph G and k ∈ N.
Problem: Decide whether tw(G) = k.

Theorem
TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph G = ⟨V,E⟩ and k ∈ N.
Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem
p-TREE-WIDTH is fixed-parameter tractable,

in time 2p(k) ⋅ n where n ∶= ∣V ∣.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computing tree-width

TREE-WIDTH

Instance: A graph G and k ∈ N.
Problem: Decide whether tw(G) = k.

Theorem
TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph G = ⟨V,E⟩ and k ∈ N.
Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem
p-TREE-WIDTH is fixed-parameter tractable,

in time 2p(k) ⋅ n where n ∶= ∣V ∣.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computing tree-width

TREE-WIDTH

Instance: A graph G and k ∈ N.
Problem: Decide whether tw(G) = k.

Theorem
TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph G = ⟨V,E⟩ and k ∈ N.
Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem
p-TREE-WIDTH is fixed-parameter tractable,

in time 2p(k) ⋅ n where n ∶= ∣V ∣.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Nice tree decomposition

Definition

A tree decomposition ⟨T ,{Bt}t∈T ⟩ of graph G = ⟨V,E⟩ is nice if it is
based on the choice of a leaf as root r and the parent–children
relation away from r such that:
▸ Br = ∅, and Bℓ = ∅ for every leaf ℓ ∈ T .
▸ Every non-leaf node t ∈ T is of one of three types:

▸ introduce node: t has exactly one child t′ such that Bt = Bt′ ∪ {v};
we say v is introduced at t.

▸ forget node: t has exactly one child t′ such that Bt = Bt′ ∖ {w} for
some w ∈ Bt′ ; we say w is forgotten at t.

▸ join node: a node t with two children t1, t2 such that Bt = Bt1 = Bt2 .

Lemma

From every tree decomposition ⟨T ,{Bt}t∈T ⟩ of a graph G = ⟨V,E⟩ of
width k a nice tree decomposition ⟨T ′,{B′t}t∈T ′⟩ of width k
and with r ∶= ∣V (T)∣ ∈ O(kn) vertices
can be constructed in time O(k2 ⋅max{r, n}) where n ∶= ∣V ∣.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Nice tree decomposition

Definition

A tree decomposition ⟨T ,{Bt}t∈T ⟩ of graph G = ⟨V,E⟩ is nice if it is
based on the choice of a leaf as root r and the parent–children
relation away from r such that:
▸ Br = ∅, and Bℓ = ∅ for every leaf ℓ ∈ T .
▸ Every non-leaf node t ∈ T is of one of three types:

▸ introduce node: t has exactly one child t′ such that Bt = Bt′ ∪ {v};
we say v is introduced at t.

▸ forget node: t has exactly one child t′ such that Bt = Bt′ ∖ {w} for
some w ∈ Bt′ ; we say w is forgotten at t.

▸ join node: a node t with two children t1, t2 such that Bt = Bt1 = Bt2 .

Lemma

From every tree decomposition ⟨T ,{Bt}t∈T ⟩ of a graph G = ⟨V,E⟩ of
width k a nice tree decomposition ⟨T ′,{B′t}t∈T ′⟩ of width k
and with r ∶= ∣V (T)∣ ∈ O(kn) vertices
can be constructed in time O(k2 ⋅max{r, n}) where n ∶= ∣V ∣.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decomposition (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Weighted Independent Set

Let G = ⟨V,E⟩ a graph.
S ⊆ V is independent set in G ∶⇐⇒ ∀e = {u, v} (¬(u ∈ S ∧ v ∈ S)).

WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Parameter: tree-width k.
Problem: What is the max. weight of an independent set of G ?

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S

c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0

▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S

c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S

c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S
c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S
c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S
c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S

Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :

▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :

▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all t ∈ T :

▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :
▸ ∣Bt∣ ≤ k + 1,

▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :
▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,

▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)
using a datastructure computable in time O(kO(1) ⋅ n),

▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :
▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),

▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :
▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)

▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :
▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S
Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :
▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)
⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with tree width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with tree width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with tree width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = ⟨V,E⟩ of size n and nice tree
decompositions ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ of tree width k.

▸ Formulate a family of properties that can be restricted to
subtrees of T such that
▸ a solution of P can be obtained from the properties at the root of T .

▸ Find recursion equations for bottom-up evaluation on T .
▸ Prove correctness of these recursion equations by showing two

inequalities for each type of node:
▸ one relating an optimum solution for the node to some solutions for

its children,
▸ one relating optimum solutions for a node’s children to a solution

for the node.

▸ Obtain an estimate of the time needed to compute the properties
in a node t depending on n and k.

▸ Sum up the time needed to compute the solution(s) at root r of T .
▸ Add time needed to obtain the solution of P from properties at r.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = ⟨V,E⟩ of size n and nice tree
decompositions ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ of tree width k.
▸ Formulate a family of properties that can be restricted to

subtrees of T such that
▸ a solution of P can be obtained from the properties at the root of T .

▸ Find recursion equations for bottom-up evaluation on T .

▸ Prove correctness of these recursion equations by showing two
inequalities for each type of node:
▸ one relating an optimum solution for the node to some solutions for

its children,
▸ one relating optimum solutions for a node’s children to a solution

for the node.

▸ Obtain an estimate of the time needed to compute the properties
in a node t depending on n and k.

▸ Sum up the time needed to compute the solution(s) at root r of T .
▸ Add time needed to obtain the solution of P from properties at r.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = ⟨V,E⟩ of size n and nice tree
decompositions ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ of tree width k.
▸ Formulate a family of properties that can be restricted to

subtrees of T such that
▸ a solution of P can be obtained from the properties at the root of T .

▸ Find recursion equations for bottom-up evaluation on T .
▸ Prove correctness of these recursion equations by showing two

inequalities for each type of node:
▸ one relating an optimum solution for the node to some solutions for

its children,
▸ one relating optimum solutions for a node’s children to a solution

for the node.

▸ Obtain an estimate of the time needed to compute the properties
in a node t depending on n and k.

▸ Sum up the time needed to compute the solution(s) at root r of T .
▸ Add time needed to obtain the solution of P from properties at r.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = ⟨V,E⟩ of size n and nice tree
decompositions ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ of tree width k.
▸ Formulate a family of properties that can be restricted to

subtrees of T such that
▸ a solution of P can be obtained from the properties at the root of T .

▸ Find recursion equations for bottom-up evaluation on T .
▸ Prove correctness of these recursion equations by showing two

inequalities for each type of node:
▸ one relating an optimum solution for the node to some solutions for

its children,
▸ one relating optimum solutions for a node’s children to a solution

for the node.

▸ Obtain an estimate of the time needed to compute the properties
in a node t depending on n and k.

▸ Sum up the time needed to compute the solution(s) at root r of T .
▸ Add time needed to obtain the solution of P from properties at r.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = ⟨V,E⟩ of size n and nice tree
decompositions ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ of tree width k.
▸ Formulate a family of properties that can be restricted to

subtrees of T such that
▸ a solution of P can be obtained from the properties at the root of T .

▸ Find recursion equations for bottom-up evaluation on T .
▸ Prove correctness of these recursion equations by showing two

inequalities for each type of node:
▸ one relating an optimum solution for the node to some solutions for

its children,
▸ one relating optimum solutions for a node’s children to a solution

for the node.

▸ Obtain an estimate of the time needed to compute the properties
in a node t depending on n and k.

▸ Sum up the time needed to compute the solution(s) at root r of T .
▸ Add time needed to obtain the solution of P from properties at r.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming: similar results (I)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tw(G) = k,

▸ p∗-VERTEX-COVER, INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n),
▸ p∗-DOMINATING-SET ∈ DTIME(4k ⋅ kO(1) ⋅ n),
▸ p∗-ODD CYCLE TRAVERSAL ∈ DTIME(3k ⋅ kO(1) ⋅ n),
▸ p∗-MAXCUT ∈ DTIME(2k ⋅ kO(1) ⋅ n),
▸ p∗-q-COLORABILITY ∈ DTIME(qk ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming: similar results (II)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tw(G) = k, the following
problems are in DTIME(kO(k) ⋅ n) :
▸ p∗-STEINER-TREE,
▸ p∗-FEEDBACK-VERTEX-SET,
▸ p∗-HAMILTONIAN-PATH and p∗-LONGEST-PATH,
▸ p∗-HAMILTONIAN-CYCLE and p∗-LONGEST-CYCLE,
▸ p∗-CHROMATIC-NUMBER,
▸ p∗-CYCLE-PACKING,
▸ p∗-CONNECTED-VERTEX-COVER,
▸ p∗-CONNECTED-FEEDBACK-VERTEX-SET.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique width (example)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ) ∣ recolori→j(φ) ∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j.

k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.
▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i

by color j.
▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ) ∣ recolori→j(φ) ∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j. k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.
▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i

by color j.
▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i

∣ edgei−j(φ)

∣ recolori→j(φ)

∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j. k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.

▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex
of color i and every vertex of color j.

▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i
by color j.

▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ)

∣ recolori→j(φ)

∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j. k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.

▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i
by color j.

▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ) ∣ recolori→j(φ)

∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j. k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.
▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i

by color j.

▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ) ∣ recolori→j(φ) ∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j. k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.
▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i

by color j.
▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ) ∣ recolori→j(φ) ∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j. k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.
▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i

by color j.
▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique width (example)

Building a graph G of clique-width clw(G) = 3:

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.

▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.

▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.

▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.
▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;

f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Definition

Let U be a set, f ∶ 2U → R+0 a cut function.
A branch decomposition of U is a pair ⟨T , η⟩ where:
▷ T = ⟨T,F ⟩ a tree.
▷ η ∶ U → Leafs(T) a bijective function.

Every edge e ∈ T splits the tree into two connected parts, and, via η,
splits U into a partition ⟨Xe, Ye⟩.
The width of an edge e ∈ T (with respect to f) is f(Xe) = f(Ye). The
width of ⟨T , η⟩ w.r.t. f is the maximum width over the edges of T .
The f -width wf(U) of U is defined as:

wf(U) ∶=minimum width of branch decomp’s of U w.r.t. f .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Definition

Let U be a set, f ∶ 2U → R+0 a cut function.
A branch decomposition of U is a pair ⟨T , η⟩ where:
▷ T = ⟨T,F ⟩ a tree.
▷ η ∶ U → Leafs(T) a bijective function.

Every edge e ∈ T splits the tree into two connected parts, and, via η,
splits U into a partition ⟨Xe, Ye⟩.

The width of an edge e ∈ T (with respect to f) is f(Xe) = f(Ye). The
width of ⟨T , η⟩ w.r.t. f is the maximum width over the edges of T .
The f -width wf(U) of U is defined as:

wf(U) ∶=minimum width of branch decomp’s of U w.r.t. f .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Definition

Let U be a set, f ∶ 2U → R+0 a cut function.
A branch decomposition of U is a pair ⟨T , η⟩ where:
▷ T = ⟨T,F ⟩ a tree.
▷ η ∶ U → Leafs(T) a bijective function.

Every edge e ∈ T splits the tree into two connected parts, and, via η,
splits U into a partition ⟨Xe, Ye⟩.
The width of an edge e ∈ T (with respect to f) is f(Xe) = f(Ye). The
width of ⟨T , η⟩ w.r.t. f is the maximum width over the edges of T .

The f -width wf(U) of U is defined as:

wf(U) ∶=minimum width of branch decomp’s of U w.r.t. f .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [f(X) = f(U ∖X)] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Definition

Let U be a set, f ∶ 2U → R+0 a cut function.
A branch decomposition of U is a pair ⟨T , η⟩ where:
▷ T = ⟨T,F ⟩ a tree.
▷ η ∶ U → Leafs(T) a bijective function.

Every edge e ∈ T splits the tree into two connected parts, and, via η,
splits U into a partition ⟨Xe, Ye⟩.
The width of an edge e ∈ T (with respect to f) is f(Xe) = f(Ye). The
width of ⟨T , η⟩ w.r.t. f is the maximum width over the edges of T .
The f -width wf(U) of U is defined as:

wf(U) ∶=minimum width of branch decomp’s of U w.r.t. f .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Branch-Width
Definition

Let G = ⟨V,E⟩ be a graph. The border (vertices) of a set X ⊆ E of
edges is defined by:

∂(X) ∶= {v ∈ V ∣ ∃e1 ∈X ∃e2 ∈ E ∖X
[v is incident to e1 and e2]}

The branch-width bw(G) of a graph G = ⟨G,E⟩ is defined as

bw(G) ∶= wf(E) for f ∶ 2E → R+0 , X ↦ ∣∂(X)∣

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Branch-Width
Definition

Let G = ⟨V,E⟩ be a graph. The border (vertices) of a set X ⊆ E of
edges is defined by:

∂(X) ∶= {v ∈ V ∣ ∃e1 ∈X ∃e2 ∈ E ∖X
[v is incident to e1 and e2]}

The branch-width bw(G) of a graph G = ⟨G,E⟩ is defined as

bw(G) ∶= wf(E) for f ∶ 2E → R+0 , X ↦ ∣∂(X)∣

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Branch-Width
Definition

Let G = ⟨V,E⟩ be a graph. The border (vertices) of a set X ⊆ E of
edges is defined by:

∂(X) ∶= {v ∈ V ∣ ∃e1 ∈X ∃e2 ∈ E ∖X
[v is incident to e1 and e2]}

The branch-width bw(G) of a graph G = ⟨G,E⟩ is defined as

bw(G) ∶= wf(E) for f ∶ 2E → R+0 , X ↦ ∣∂(X)∣

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Branch-Width

Definition

Let G = ⟨V,E⟩ be a graph. The border (vertices) of a set X ⊆ E of
edges is defined by:

∂(X) ∶= {v ∈ V ∣ ∃e1 ∈X ∃e2 ∈ E ∖X
[v is incident to e1 and e2]}

The branch-width bw(G) of a graph G = ⟨G,E⟩ is defined as

bw(G) ∶= wf(E) for f ∶ 2E → R+0 , X ↦ ∣∂(X)∣

Proposition

bw(G) ≈ tw(G), for every graph; more precisely:

bw(G) ≤ tw(G) + 1 ≤ 3
2
⋅ bw(G) .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Rank-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V we define the GF (2)-matrix:

BG(X) ∶= (bx,y)x∈X,y∈V ∖X , where, for all x ∈X,y ∈ V ∖X:
bx,y = 1⇐⇒ {x, y} ∈ E .

(BG(X) is the adjacency matrix of the bipartite graph induced by G between
X and V ∖X.)

The rank-width rw(G) of a graph G = ⟨G,E⟩ is:

rw(G) ∶= wρG(E) for ρG ∶ 2V → N0, X ↦ rank of BG(X)

Properties

▸ rw(G) ≤ tw(G).
▸ tree-width cannot be bounded functionally by rank-width:

rw(Kn) = 1, but tw(Kn) = n − 1.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Rank-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V we define the GF (2)-matrix:

BG(X) ∶= (bx,y)x∈X,y∈V ∖X , where, for all x ∈X,y ∈ V ∖X:
bx,y = 1⇐⇒ {x, y} ∈ E .

(BG(X) is the adjacency matrix of the bipartite graph induced by G between
X and V ∖X.)

The rank-width rw(G) of a graph G = ⟨G,E⟩ is:

rw(G) ∶= wρG(E) for ρG ∶ 2V → N0, X ↦ rank of BG(X)

Properties

▸ rw(G) ≤ tw(G).
▸ tree-width cannot be bounded functionally by rank-width:

rw(Kn) = 1, but tw(Kn) = n − 1.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Rank-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V we define the GF (2)-matrix:

BG(X) ∶= (bx,y)x∈X,y∈V ∖X , where, for all x ∈X,y ∈ V ∖X:
bx,y = 1⇐⇒ {x, y} ∈ E .

(BG(X) is the adjacency matrix of the bipartite graph induced by G between
X and V ∖X.)

The rank-width rw(G) of a graph G = ⟨G,E⟩ is:

rw(G) ∶= wρG(E) for ρG ∶ 2V → N0, X ↦ rank of BG(X)

Properties

▸ rw(G) ≤ tw(G).
▸ tree-width cannot be bounded functionally by rank-width:

rw(Kn) = 1, but tw(Kn) = n − 1.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Carving-Width

and Cut-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V the edge-cut of X is:

cutG(X) ∶= {e = {u, v} ∈ E ∣ u ∈X,v ∈ V ∖X} .

The carving-width carw(G) of a graph G = ⟨G,E⟩ is:

carw(G) ∶= wcut(E) for cut ∶ 2V → N0, X ↦ ∣cutG(X)∣ .

Definition

Let G = ⟨V,E⟩ be a graph with n = ∣V ∣.
For a permutation π ∶ {1, . . . , n}→ V on V we define:

width(π) ∶= max
1≤i≤n

cutG({π(j) ∣ 1 ≤ j ≤ i}) .

The cut-width cutw(G) of G is:

cutw(G) ∶=minπ perm. of V width(π) .

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Carving-Width and Cut-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V the edge-cut of X is:

cutG(X) ∶= {e = {u, v} ∈ E ∣ u ∈X,v ∈ V ∖X} .

The carving-width carw(G) of a graph G = ⟨G,E⟩ is:

carw(G) ∶= wcut(E) for cut ∶ 2V → N0, X ↦ ∣cutG(X)∣ .

Definition

Let G = ⟨V,E⟩ be a graph with n = ∣V ∣.
For a permutation π ∶ {1, . . . , n}→ V on V we define:

width(π) ∶= max
1≤i≤n

cutG({π(j) ∣ 1 ≤ j ≤ i}) .

The cut-width cutw(G) of G is:

cutw(G) ∶=minπ perm. of V width(π) .
Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks

CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.

Solution: An allocation WA ∶ V → 2{1,...,a} of active interfaces
covering G such that WA(v) ⊆W (v), and ∣WA(v)∣ ≤ p for
all v ∈ V , if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks

CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.

Solution: An allocation WA ∶ V → 2{1,...,a} of active interfaces
covering G such that WA(v) ⊆W (v), and ∣WA(v)∣ ≤ p for
all v ∈ V , if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks

CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Solution: An allocation WA ∶ V → 2{1,...,a} of active interfaces

covering G such that WA(v) ⊆W (v), and ∣WA(v)∣ ≤ p for
all v ∈ V , if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks

CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Solution: An allocation WA ∶ V → 2{1,...,a} of active interfaces

covering G such that WA(v) ⊆W (v), and ∣WA(v)∣ ≤ p for
all v ∈ V , if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks

(parameterized)

Theorem

CMI(2) ∈ NP-complete, also for graphs with max. node degree ≥ 4.

p∗-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem

CMI(2) ∈ NP-complete, also for graphs with max. node degree ≥ 4.

p∗-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem

CMI(2) ∈ NP-complete, also for graphs with max. node degree ≥ 4.

p∗-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem

CMI(2) ∈ NP-complete, also for graphs with max. node degree ≥ 4.

p∗-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

(p∗)′-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: a + (path-width / carving-width k)
Problem: Obtain, if possible, a minimal solution with respect to

the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Corollary

(p∗)′-CMI(p) ∈ FPT.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Coverage in Multi-Interface Networks (parameterized)

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

(p∗)′-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: a + (path-width / carving-width k)
Problem: Obtain, if possible, a minimal solution with respect to

the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Corollary

(p∗)′-CMI(p) ∈ FPT.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Comparing parameterizations

Definition (computably bounded)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[g(κ1(x)) ≥ κ2(x)] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT
⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Comparing parameterizations

Definition (computably bounded)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[g(κ1(x)) ≥ κ2(x)] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT
⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇐ wd1
g(k)Ð→wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇐ wd1
g(k)Ð→wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇐ wd1
g(k)Ð→wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Summary

▸ comparing parameterizations
▸ dynamical programming on trees, example:

▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly
▸ other notions of width

▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ example problem: coverage in multi-interface networks
▸ comparing width-notions

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tomorrow

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tomorrow

▸ recalling notions from logic:
▸ propositional, and first-order logic

▸ monadic second-order logic (MSO)

▸ Courcelle’s Theorem: obtaining FPT-results by
▸ model-checking of MSO-properties

on graphs and structures of bounded tree-/clique-width

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

References I

Alessandro Aloisio and Alfredo Navarra.
Constrained connectivity in bounded x-width multi-interface
networks.
Algorithms, 13(2), 2020.

Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg.
Handle-rewriting hypergraph grammars.
Journal of Computer and System Sciences, 46(2):218 – 270,
1993.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh.
Parameterized Algorithms.
Springer, 1st edition, 2015.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

References II

Jörg Flum and Martin Grohe.
Parameterized Complexity Theory.
Springer, 2006.

Róbert Sásak.
Comparing 17 graph parameters.
Master’s thesis, University of Bergen, Norway, 2010.

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming

	Overview
	Fpt-tractable
	Comparing parameterizations
	Dynamic programming on trees
	Path-Width
	Dynamic programming example
	Tree-Width
	Dynamic programming example
	Other results
	Clique-Width
	f-Width
	Branch-Width
	Rank-Width
	Carving-Width
	CMI
	Relationships
	Summary
	Tomorrow
	References

