
Lecture 2: Graph width notions,
dynamical programming

An Introduction to Parameterized Complexity

Clemens Grabmayer

Ph.D. Program, Advanced Period
Gran Sasso Science Institute

L’Aquila, Italy

Tuesday, June 11, 2024

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Course overview

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Overview

▸ comparing parameterizations

▸ dynamical programming on trees, example:
▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly

▸ other notions of width
▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ comparing width-notions
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Fixed-Parameter tractable

A parameterized problem is a triple ⟨Q,Σ, κ⟩ (short: ⟨Q,κ⟩) where:
▷ Q ⊆ Σ∗ is the set of (classical) problem instances,
▷ κ ∶ Σ∗ → N is a (general) function, the parameterization.

Definition

A parameterized problem ⟨Q,Σ, κ⟩ is fixed-parameter tractable
(is in FPT) if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗

∀x ∈ Σ∗[A decides whether x ∈ Q holds
in time ≤ f(κ(x)) ⋅ p(∣x∣) ]

†) Assumptions for a robust fpt-theory

κ(x) is polynomially computable, or itself fpt-computable: for all
x ∈ Σ∗ in time ≤ g(κ(x)) ⋅ q(∣x∣) for g computable, q ∈ N[X].
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Fixed-Parameter tractable

A parameterized problem is a triple ⟨Q,Σ, κ⟩ (short: ⟨Q,κ⟩) where:
▷ Q ⊆ Σ∗ is the set of (classical) problem instances,
▷ κ ∶ Σ∗ → N is a (general) function, the parameterization.

Parameterized problem ⟨Q,Σ, κ⟩
Instance: x ∈ Σ∗.
Parameter: κ(x).
Problem: Is x ∈ Q?
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Comparing parameterizations

Definition (computably bounded below)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[ g(κ1(x)) ≥ κ2(x) ] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT

⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT
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Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇔ wd1
g→ wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)
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You Always Walk Alone (with your children)

Attività motoria con i figli:

‘la possibilità di uscire con i figli minori è consentita a un solo genitore
per camminare purché questo avvenga in prossimità della propria
abitazione’

(Ministero dell’Interno)

PHYSICAL-DISTANCE-WALKING

Instance: Graph G = ⟨V,E⟩ with V people who want to go for a
walk in the next hour in a radius of 200m of their home,
and edges in E between them if they live closer than
400m of each other. A number ℓ ∈ N.

Problem:

Is it possible that ℓ or more people can go out in the next
hour so that everybody walks alone (with their children)?

corresponds to: INDEPENDENT-SET

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

You Always Walk Alone (with your children)
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Attività motoria con i figli:
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Weighted Independent Set, and Vertex Cover

Let G = ⟨V,E⟩ a graph. For all S ⊆ V :
S is independent set in G ∶⇐⇒∀e = {u, v} ∈ E (¬(u ∈ S ∧ v ∈ S) )

⇐⇒∀e = {u, v} ∈ E (u ∉ S ∨ v ∉ S) )
WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Problem: What is the max. weight of an independent set of G ?

S is a vertex cover of G ∶⇐⇒∀e = {u, v} ∈ E (u ∈ S ∨ v ∈ S))

⇐⇒ ∀e = {u, v} ∈ E (u ∉ V ∖ S ∨ v ∉ V ∖ S) )
⇐⇒ V ∖ S is an independent set of G

VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Problem: Does G have a vertex cover of size at most ℓ?

S ⊆ V is minimal vertex cover ⇐⇒ V ∖ S is maximal independent set
Hence: solution of WEIGHTED-INDEPENDENT-SET

Ô⇒ solution of VERTEX-COVER.
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Weighted Ind. Set / Vertex Cover, width-parameterized

p∗-WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Parameter: path-width / tree-width k.
Problem: What is the max. weight of an independent set of G ?

p∗-VERTEX-COVER

Instance: A graph G = ⟨V,E⟩, and ℓ ∈ N.
Parameter: path-width / tree-width k.
Problem: Does G have a vertex cover of size at most ℓ?
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Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Obtain a directed tree T = ⟨T,F, r⟩ (pick a root r, orient edges away).

▸ A[v] ∶= max. weight of an independent set in subtree Tv at v,
▸ B[v] ∶= max. weight of an ind. set in Tv that does not contain v.

Computation of A[v] and B[v] :
▸ in leafs: B[v] = 0 , A[v] =w(v) .
▸ for inner vertices v with children v1, . . . , vq :

B[v] =
q

∑
i=1

A[vi] , A[v] =max{B[v],w(v) +
q

∑
i=1

B[vi]} .

Solution: value of A[r], can be computed bottom-up in linear time.
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Dynamical programming on trees (example)

WEIGHTED-INDEPENDENT-SET

Instance: A tree T = ⟨T,F ⟩, and a weight function w ∶ T → R+0 .
Problem: What is the max. weight of an independent set of T ?

Theorem
On trees with n nodes,

WEIGHTED-INDEPENDENT-SET ∈ DTIME(O(n)).

VERTEX-COVER

Instance: A tree T = ⟨T,F ⟩, and ℓ ∈ N.
Problem: Does T have a vertex cover of size at most ℓ?

Corollary

On trees with n nodes,
VERTEX-COVER ∈ DTIME(O(n)).
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Path-decomposition (example)
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Path decompositions, and path-width

Definition (Robertson–Seymour, 1983)

A path decomposition of a graph G = ⟨V,E⟩ is a sequence
⟨B1,B2, . . . ,Br⟩ of bags Bi ⊆ V such that:

(P1) V = ⋃r
i=1Bi (every vertex of G is in some bag).

(P2) (∀{u, v} ∈ E) (∃i ∈ {1,2, . . . , r})[ {u, v} ⊆ Bi ]
(every edge of G is realized in some bag).

(P3) (∀v ∈ V ) (∃i, k ∈ {1, . . . , r} , i ≤ k)[ {j ∣ v ∈ Bj} = [i, k] ]
(the list of bags that contains a vertex of G
is ⟨Bi, . . . ,Bk⟩ for some interval [i, k])

The width of path decomp. ⟨B1,B2, . . . ,Br⟩ is max{∣Bt∣ − 1 ∣ 1 ≤ t ≤ r} .
The path-width pw(G) of a graph G = ⟨V,E⟩ is defined by:

pw(G) ∶=minimal width of a path decomposition of G.
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Path-decomposition (example)
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Path decomposition defines separations

Lemma

Let ⟨B1,B2, . . . ,Br⟩ be a path decomposition of a graph G = ⟨V,E⟩.
Then for all i ∈ {1, . . . , r − 1} it holds:
▸ ⟨⋃i

j=1Bj ,⋃r
j=i+1Bj⟩ is a separation of G with separator Bi ∩Bi+1.

▸ ∂(⋃i
j=1Bj) ⊆ Bi ∩Bi+1.

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (set of border vertices) ∂(A) of a set A ⊆ V of
vertices consists of all vertices that have a neighbor in V ∖A.
Note that:
▸ ∂(A) = ∂(V ∖A).
▸ ⟨A, (V ∖A) ∪ ∂(A)⟩ is a separation of G, for all A ⊆ V .
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Path-decomposition (example)
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Caterpillar

Path-width?
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Nice path decomposition
Definition

A path decomposition ⟨B1,B2, . . . ,Br⟩ of a graph G = ⟨V,E⟩ is nice if:
▸ B1 = Br = ∅
▸ Every index i > 1 is either of:

▸ introduce index: there is v ∈ V such that Bi+1 = Bi ∪ {v} and v ∉ Bi,
▸ forget index: there is v ∈ V such that Bi+1 = Bi ∖ {v} and v ∈ Bi.

Nice path decomposition:

∅ – A – A,B – A,B,C – B,C – C – C,D – C,D,E – D,E – D,E,F –

– D,F – D,F,G – D,F – D,F,H – F,H – H – H,I – I – I,J – I,J,K – J,K – K – ∅
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Weighted Independent Set

Let G = ⟨V,E⟩ a graph.
S ⊆ V is independent set in G ∶⇐⇒ ∀e = {u, v} (¬(u ∈ S ∧ v ∈ S) ).

WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Parameter: path-width k.
Problem: What is the max. weight of an independent set of G ?
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Path-decomposition (example)
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Dyn. programming using path-width (Weigh. Ind. Set)

Let ⟨B1, . . . ,Br⟩ be a nice path decomposition of G = ⟨V,E⟩.
Then for every i ∈ {1, . . . , r}, and every S ⊆ Bi, we define:

c[i, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S
if S is independent.

Recursive equations for computing c[i, S] for independent S:

▸ Case i = 1: c[1,∅] = 0
▸ Case i + 1:

▸ i + 1 introduces v : Bi+1 = Bi ∪ {v} and v ∉ Bi,

c[i + 1, S] =

⎧
⎪⎪
⎨
⎪⎪
⎩

c[i, S] if v ∉ S,

c[i, S ∖ {v}] +w(v) if v ∈ S;

▸ i + 1 forgets v : Bi+1 = Bi ∖ {v} and v ∈ Bi,
c[i + 1, S] =max{c[i, S], c[i, S ∪ {v}]} .
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Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i
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Dyn. programming using path-width (Weigh. Ind. Set)
Let ⟨B1, . . . ,Br⟩ be a nice path dec. of G = ⟨V,E⟩ of width k.
For every i ∈ {1, . . . , r}, and every independent S ⊆ Bi, we define:

c[i, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vi = ⋃i

j=1Bj ∧ Ŝ ∩Bi = S

Time Complexity: Based on the values of c[i, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]

Then for all i ∈ {1, . . . , n} :

▸ ∣Bi∣ ≤ k + 1,
▸ ⇒ number of values c[i, S] at index i : 2∣Bi∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at i, using map of values at i − 1 : ∼ O(k)
▸ time for comp. all values at i, using values at i − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at r :
(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.
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j=1Bj ∧ Ŝ ∩Bi = S
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j=1Bj ∧ Ŝ ∩Bi = S
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(2k+1 ⋅O(k2)) ⋅ r +O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since r = 2n.
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Dynamical programming with path width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and path-width pw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).
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Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Tree decompositions, and tree-width

Definition (Bertelé–Brioschi, 1972, Halin, 1976, Robertson–Seymour, 1984)

A tree decomposition of a graph G = ⟨V,E⟩ is a pair ⟨T ,{Bt}t∈T ⟩
where T = ⟨T,F ⟩ a (undirected, unrooted) tree, and Bt ⊆ V such that:

(T1) V = ⋃t∈T Bt (every vertex of G is in some bag).

(T2) (∀{u, v} ∈ E) (∃t ∈ T )[ {u, v} ⊆ Bt ]
(the vertices of every edge of G are realized in some bag).

(T3) (∀v ∈ V ) [subgraph of T defd. by {t ∈ T ∣ v ∈ Bt} is connected ]
(the tree vertices (in T ) whose bags contain some vertex of G

induce a subgraph of T that is connected).

The width of a tree decomposition ⟨T ,{Bt}t∈T ⟩ is
max{∣Bt∣ − 1 ∣ t ∈ T} .

The tree-width tw(G) of a graph G = ⟨V,E⟩ is defined by:

tw(G) ∶=minimal width of a tree decomposition of G.
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Tree decomposition (example)
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Tree decomposition defines separations

Lemma

Let ⟨T ,{Bt}t∈T ⟩ be a tree decomposition of a graph G = ⟨V,E⟩.
Let e = ⟨a, b⟩ be an edge of T . The T ∖ e is the union of a tree Ta
containing a, and a tree Tb containing b.
Then for A ∶= ⋃t∈V (Ta)Bt and B ∶= ⋃t∈V (Tb)Bt it holds:
▸ ⟨A,B⟩ is a separation of G with separator Ba ∩Bb.

▸ ∂(A), ∂(B) ⊆ Ba ∩Bb.

Recall, for a graph G = ⟨V,E⟩:

▸ A pair ⟨A,B⟩ of subsets A,B ⊆ V is a separation of G if:
▸ V = A ∪B
▸ there is no edge between A ∖B and B ∖A.

A ∩B is called the separator of a separation ⟨A,B⟩,
and ∣A ∩B∣ is called its order.

▸ The border (vertices) ∂(A) of a set A ⊆ V of vertices consists of
all vertices that have a neighbor in V ∖A.
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Computing tree-width

TREE-WIDTH

Instance: A graph G and k ∈ N.
Problem: Decide whether tw(G) = k.

Theorem
TREE-WIDTH is NP-complete.

p-TREE-WIDTH

Instance: A graph G = ⟨V,E⟩ and k ∈ N.
Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem
p-TREE-WIDTH is fixed-parameter tractable,

in time 2p(k) ⋅ n where n ∶= ∣V ∣.
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Nice tree decomposition

Definition

A tree decomposition ⟨T ,{Bt}t∈T ⟩ of graph G = ⟨V,E⟩ is nice if it is
based on the choice of a leaf as root r and the parent–children
relation away from r such that:
▸ Br = ∅, and Bℓ = ∅ for every leaf ℓ ∈ T .
▸ Every non-leaf node t ∈ T is of one of three types:

▸ introduce node: t has exactly one child t′ such that Bt = Bt′ ∪ {v};
we say v is introduced at t.

▸ forget node: t has exactly one child t′ such that Bt = Bt′ ∖ {w} for
some w ∈ Bt′ ; we say w is forgotten at t.

▸ join node: a node t with two children t1, t2 such that Bt = Bt1 = Bt2 .

Lemma

From every tree decomposition ⟨T ,{Bt}t∈T ⟩ of a graph G = ⟨V,E⟩ of
width k a nice tree decomposition ⟨T ′,{B′t}t∈T ′⟩ of width k
and with r ∶= ∣V (T )∣ ∈ O(kn) vertices
can be constructed in time O(k2 ⋅max{r, n}) where n ∶= ∣V ∣.
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Tree decomposition (example)
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Weighted Independent Set

Let G = ⟨V,E⟩ a graph.
S ⊆ V is independent set in G ∶⇐⇒ ∀e = {u, v} (¬(u ∈ S ∧ v ∈ S) ).

WEIGHTED-INDEPENDENT-SET

Instance: A graph G = ⟨V,E⟩, and a weight function w ∶ V → R+0 .
Parameter: tree-width k.
Problem: What is the max. weight of an independent set of G ?
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Dynamical programming using tree-width (example)
For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S

c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)
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For every node t of a nice tree decomposition, and every S ⊆ Bt, we
define:

c[t, S] ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if S is not independent,
maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S

if S is independent.

Recursive equations for computing c[t, S] for independent S:

▸ leaf node t: c[t,∅] = 0
▸ introduction node t of vertex v with child t′ :

c[t, S] =
⎧⎪⎪⎨⎪⎪⎩

c[t′, S] if v ∉ S

c[t′, S ∖ {v}] +w(v) otherwise

▸ forget node t of vertex v with child t′ :
c[t, S] =max{c[t′, S], c[t′, S ∪ {v}]}

▸ join node t with children t1 and t2 :
c[t, S] = c[t1, S] + c[t2, S] −w(S)
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Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt ∧ Ŝ ∩Bt = S
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Dyn. programming using tree-width (Weigh. Ind. Set)
Let ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ be a nice tree decomposition of G = ⟨V,E⟩
of width k. For every t ∈ T , and every independent S ⊆ Bt :

c[t, S] ∶=
⎧⎪⎪⎨⎪⎪⎩

maximum possible weight of a set Ŝ such that
Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt

Bs ∧ Ŝ ∩Bi = S

Time Complexity: Based on the values of c[t, S], the maximum
possible weight of an independent set S ⊆ V can be computed as:

= max
S⊆Br

c[r, S] = c[r,∅]
Then for all t ∈ T :

▸ ∣Bt∣ ≤ k + 1,
▸ ⇒ number of values c[t, S] at index t : 2∣Bt∣ = 2k+1,
▸ ⇒ adjacency/independence check for S ⊆ Bt possible in: O(k2)

using a datastructure computable in time O(kO(1) ⋅ n),
▸ time for comp. a value at t, using map of values at t − 1 : O(k)
▸ time for comp. all values at t, using values at t − 1 : 2k+1 ⋅O(k2)

⇒ the time for computing all values at the root r :
(2k+1 ⋅O(k2)) ⋅ ∣T ∣+O(kO(1) ⋅ n) ∈ O(2k ⋅ kO(1) ⋅ n), since ∣T ∣ ∈ O(k ⋅ n).
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Ŝ is independent ∧ S ⊆ Ŝ ⊆ Vt = ⋃s∈Tt
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Dynamical programming with tree width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with tree width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dynamical programming with tree width (example)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-WEIGHTED-INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n).

S is a minimal vertex cover
⇐⇒ V ∖ S is a maximal independent set.

Corollary

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tree-width tw(G) = k,
p∗-VERTEX-COVER ∈ DTIME(2k ⋅ kO(1) ⋅ n).

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Dyn. programming with tree-width: general strategy

We consider problem P for graphs G = ⟨V,E⟩ of size n and nice tree
decompositions ⟨T = ⟨T,F, r⟩,{Bt}t∈T ⟩ of tree width k.

▸ Formulate a family of properties that can be restricted to
subtrees of T such that
▸ a solution of P can be obtained from the properties at the root of T .

▸ Find recursion equations for bottom-up evaluation on T .
▸ Prove correctness of these recursion equations by showing two

inequalities for each type of node:
▸ one relating an optimum solution for the node to some solutions for

its children,
▸ one relating optimum solutions for a node’s children to a solution

for the node.

▸ Obtain an estimate of the time needed to compute the properties
in a node t depending on n and k.

▸ Sum up the time needed to compute the solution(s) at root r of T .
▸ Add time needed to obtain the solution of P from properties at r.
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▸ Add time needed to obtain the solution of P from properties at r.
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Dynamical programming: similar results (I)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tw(G) = k,

▸ p∗-VERTEX-COVER, INDEPENDENT-SET ∈ DTIME(2k ⋅ kO(1) ⋅ n),
▸ p∗-DOMINATING-SET ∈ DTIME(4k ⋅ kO(1) ⋅ n),
▸ p∗-ODD CYCLE TRAVERSAL ∈ DTIME(3k ⋅ kO(1) ⋅ n),
▸ p∗-MAXCUT ∈ DTIME(2k ⋅ kO(1) ⋅ n),
▸ p∗-q-COLORABILITY ∈ DTIME(qk ⋅ kO(1) ⋅ n).
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Dynamical programming: similar results (II)

Theorem

For every graph G = ⟨V,E⟩ with ∣V ∣ = n and tw(G) = k, the following
problems are in DTIME(kO(k) ⋅ n) :
▸ p∗-STEINER-TREE,
▸ p∗-FEEDBACK-VERTEX-SET,
▸ p∗-HAMILTONIAN-PATH and p∗-LONGEST-PATH,
▸ p∗-HAMILTONIAN-CYCLE and p∗-LONGEST-CYCLE,
▸ p∗-CHROMATIC-NUMBER,
▸ p∗-CYCLE-PACKING,
▸ p∗-CONNECTED-VERTEX-COVER,
▸ p∗-CONNECTED-FEEDBACK-VERTEX-SET.
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Clique width (example)
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Clique-Width

For k ∈ N, the k-expressions are defined by:

φ,φ1, φ2 ∶∶= i ∣ edgei−j(φ) ∣ recolori→j(φ) ∣ (φ1 ⊕ φ2)

for i, j ∈ [k] with i ≠ j.

k-expressions φ generate graphs G(φ):

▷ G(i) is the graph with a single vertex of color i.
▷ G(edgei−j(φ)) results from G(φ) by adding edges between every vertex

of color i and every vertex of color j.
▷ G(recolori→j(φ)) results from G(φ) by recoloring every vertex of color i

by color j.
▷ G(φ1 ⊕ φ2) is the disjoint union of G(φ1) and G(φ2).

Definition (Courcelle, Engelfriet, Rozenberg, 1993, [2])

The clique-width clw(G) of G = ⟨V,E⟩ is defined by:

clw(G) ∶= the least k ∈ N such that, for some k-expression φ,
G = G(φ) (when removing colors)
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Clique width (example)

Building a graph G of clique-width clw(G) = 3:
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Clique-Width (examples, properties, computability)

Example

▸ The class of cliques has clique-width 2.

▸ The class of stars has clique-width 2.
▸ The class of trees has clique-width 3.
▸ The class of n × n grids has clique-width Θ(n).

▸ subgraphs/induced subgraphs:
▸ clique-width is preserved under taking induced subgraphs,
▸ clique-width is not preserved under taking subgraphs (e.g. minors).

▸ clw ≺ tw :
▸ clw ⪯ tw : clw(G) ≤ 3 ⋅ 2tw(G)−1

▸ ¬(tw ⪯ clw): for example, clw(Kn) = 2, and tw(Kn) = n − 1.

▸ Deciding whether clw(G) ≤ k is NP-hard. With parameter k it is in
XP (slice-wise polynomial), but unknown to be in FPT.

▸ Every graph property expressible in MSO (monadic second-order
logic) can be decided in linear time w.r.t. the graph’s clique-width.
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f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [ f(X) = f(U ∖X) ] ;

f is fair ∶⇐⇒ f(∅) = f(U) = 0 .
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f -Width (of sets)
By a cut function or a connectivity function we mean a function
f ∶ 2U → R+0 such that:

f is symmetric ∶⇐⇒ ∀X ⊆ U [ f(X) = f(U ∖X) ] ;
f is fair ∶⇐⇒ f(∅) = f(U) = 0 .

Definition

Let U be a set, f ∶ 2U → R+0 a cut function.
A branch decomposition of U is a pair ⟨T , η⟩ where:
▷ T = ⟨T,F ⟩ a tree.
▷ η ∶ U → Leafs(T ) a bijective function.

Every edge e ∈ T splits the tree into two connected parts, and, via η,
splits U into a partition ⟨Xe, Ye⟩.
The width of an edge e ∈ T (with respect to f ) is f(Xe) = f(Ye). The
width of ⟨T , η⟩ w.r.t. f is the maximum width over the edges of T .
The f -width wf(U) of U is defined as:

wf(U) ∶=minimum width of branch decomp’s of U w.r.t. f .
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Branch-Width
Definition

Let G = ⟨V,E⟩ be a graph. The border (vertices) of a set X ⊆ E of
edges is defined by:

∂(X) ∶= {v ∈ V ∣ ∃e1 ∈X ∃e2 ∈ E ∖X
[v is incident to e1 and e2]}

The branch-width bw(G) of a graph G = ⟨G,E⟩ is defined as

bw(G) ∶= wf(E) for f ∶ 2E → R+0 , X ↦ ∣∂(X)∣
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Branch-Width

Definition

Let G = ⟨V,E⟩ be a graph. The border (vertices) of a set X ⊆ E of
edges is defined by:

∂(X) ∶= {v ∈ V ∣ ∃e1 ∈X ∃e2 ∈ E ∖X
[v is incident to e1 and e2]}

The branch-width bw(G) of a graph G = ⟨G,E⟩ is defined as

bw(G) ∶= wf(E) for f ∶ 2E → R+0 , X ↦ ∣∂(X)∣

Proposition

bw(G) ≈ tw(G), for every graph; more precisely:

bw(G) ≤ tw(G) + 1 ≤ 3
2
⋅ bw(G) .
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Rank-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V we define the GF (2)-matrix:

BG(X) ∶= (bx,y)x∈X,y∈V ∖X , where, for all x ∈X,y ∈ V ∖X:
bx,y = 1⇐⇒ {x, y} ∈ E .

(BG(X) is the adjacency matrix of the bipartite graph induced by G between
X and V ∖X.)

The rank-width rw(G) of a graph G = ⟨G,E⟩ is:

rw(G) ∶= wρG(E) for ρG ∶ 2V → N0, X ↦ rank of BG(X)

Properties

▸ rw(G) ≤ tw(G).
▸ tree-width cannot be bounded functionally by rank-width:

rw(Kn) = 1, but tw(Kn) = n − 1.
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Carving-Width

and Cut-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V the edge-cut of X is:

cutG(X) ∶= {e = {u, v} ∈ E ∣ u ∈X,v ∈ V ∖X} .

The carving-width carw(G) of a graph G = ⟨G,E⟩ is:

carw(G) ∶= wcut(E) for cut ∶ 2V → N0, X ↦ ∣cutG(X)∣ .

Definition

Let G = ⟨V,E⟩ be a graph with n = ∣V ∣.
For a permutation π ∶ {1, . . . , n}→ V on V we define:

width(π) ∶= max
1≤i≤n

cutG({π(j) ∣ 1 ≤ j ≤ i}) .

The cut-width cutw(G) of G is:

cutw(G) ∶=minπ perm. of V width(π) .
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Carving-Width and Cut-Width

Definition

Let G = ⟨V,E⟩ be a graph.
For X ⊆ V the edge-cut of X is:

cutG(X) ∶= {e = {u, v} ∈ E ∣ u ∈X,v ∈ V ∖X} .

The carving-width carw(G) of a graph G = ⟨G,E⟩ is:

carw(G) ∶= wcut(E) for cut ∶ 2V → N0, X ↦ ∣cutG(X)∣ .

Definition

Let G = ⟨V,E⟩ be a graph with n = ∣V ∣.
For a permutation π ∶ {1, . . . , n}→ V on V we define:

width(π) ∶= max
1≤i≤n

cutG({π(j) ∣ 1 ≤ j ≤ i}) .

The cut-width cutw(G) of G is:

cutw(G) ∶=minπ perm. of V width(π) .
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Coverage in Multi-Interface Networks

CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.

Solution: An allocation WA ∶ V → 2{1,...,a} of active interfaces
covering G such that WA(v) ⊆W (v), and ∣WA(v)∣ ≤ p for
all v ∈ V , if possible; otherwise, a negative answer.

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).
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Coverage in Multi-Interface Networks

(parameterized)

Theorem

CMI(2) ∈ NP-complete, also for graphs with max. node degree ≥ 4.

p∗-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: path-width / carving-width k

Problem: Obtain, if possible, a minimal solution with respect to
the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).
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Coverage in Multi-Interface Networks (parameterized)

Theorem (Aloisio, Navarra, 2020, [1])

▸ For path-width pw(G) = k,
p∗-CMI(2) ∈ DTIME(n ⋅ (a + (a

2
))k+1).

▸ For carving-width carw(G) = k, p∗-CMI(2) ∈ DTIME(n ⋅ a4k).

(p∗)′-CMI(p) (for p ∈ N)
Instance: A graph G = ⟨V,E⟩, W ∶ V → 2{1,...,a} available-interface

allocation, c ∶ {1, . . . , a}→ R+ interface cost function.
Parameter: a + (path-width / carving-width k)
Problem: Obtain, if possible, a minimal solution with respect to

the total cost of the interfaces that are activated, that is,
c(WA) = ∑v∈V ∑i∈WA(v) c(i).

Corollary

(p∗)′-CMI(p) ∈ FPT.
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Comparing parameterizations

Definition (computably bounded)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[ g(κ1(x)) ≥ κ2(x) ] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT
⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Comparing parameterizations

Definition (computably bounded)

Let κ1, κ2 ∶ Σ∗ → N parameterizations.
▸ κ1 ⪰ κ2 ∶⇐⇒ ∃g ∶ N→ N computable∀x ∈ Σ∗[ g(κ1(x)) ≥ κ2(x) ] .
▸ κ1 ≈ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ κ2 ⪰ κ1 .

▸ κ1 ≻ κ2 ∶⇐⇒ κ1 ⪰ κ2 ∧ ¬(κ2 ⪰ κ1) .

Proposition

For all parameterized problems ⟨Q,κ1⟩ and ⟨Q,κ2⟩ with
parameterizations κ1, κ2 ∶ Σ∗ → N with κ1 ⪰ κ2:

⟨Q,κ1⟩ ∈ FPT ⇐Ô ⟨Q,κ2⟩ ∈ FPT
⟨Q,κ1⟩ ∉ FPT Ô⇒ ⟨Q,κ2⟩ ∉ FPT

Clemens Grabmayer Lecture 2: Graph width notions, dynamical programming



ov fpt comp param’s (ex trees) path-w (ex) tree-w (ex) (list) clique-w [f-width] branch-w rank-w carving-w CMI rel’s summ Wed refs

Computably boundedness between notions of width

(from Sasák, [5])

wd1 ⪰wd2 ∶ ⇐ wd1
g(k)Ð→wd2

▸ FPT-results
transfer upwards

(and conversely to
g
→)

▸ (∉ FPT)-results
transfer downwards

(and along
g
→)
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Summary

▸ comparing parameterizations
▸ dynamical programming on trees, example:

▸ WEIGHTED-INDEPENDENT-SET (and VERTEX-COVER)

▸ path-width
▸ example: fpt-algorithm for bounded path-width

▸ tree-width
▸ example: fpt-algorithm for bounded path-width

▸ fpt-results for other problems, obtained similarly
▸ other notions of width

▸ clique-width
▸ using f -width to define:
▸ carving-width (and cut-width)
▸ branch-width
▸ rank-width

▸ example problem: coverage in multi-interface networks
▸ comparing width-notions
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Tomorrow

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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Tomorrow

▸ recalling notions from logic:
▸ propositional, and first-order logic

▸ monadic second-order logic (MSO)

▸ Courcelle’s Theorem: obtaining FPT-results by
▸ model-checking of MSO-properties

on graphs and structures of bounded tree-/clique-width
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