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Motivation

Classical complexity theory

▸ analyses problems by resource (space or time)
needed to solve them on a reasonable machine model

▸ as a function of the input size n = ∣x∣ (Hartmanis/Stearns, 1965)

⇒ variety of complexity classes
(P, LOGSPACE, NP, PSPACE, . . . )

⇒ tractable problems
= polynomial-time computable (in P)

⇒ theory of intractability
(reductions, NP completeness)

Drawback
▸ measures problem size n = ∣x∣

only in terms of input instances x,
and ignores structural information about instances

▸ sometimes problems are easier to solve
for instances if additional structure information is available

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Motivation

Classical complexity theory

▸ analyses problems by resource (space or time)
needed to solve them on a reasonable machine model

▸ as a function of the input size n = ∣x∣ (Hartmanis/Stearns, 1965)

⇒ variety of complexity classes
(P, LOGSPACE, NP, PSPACE, . . . )

⇒ tractable problems
= polynomial-time computable (in P)

⇒ theory of intractability
(reductions, NP completeness)

Drawback
▸ measures problem size n = ∣x∣

only in terms of input instances x,
and ignores structural information about instances

▸ sometimes problems are easier to solve
for instances if additional structure information is available

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Motivation

Classical complexity theory

▸ analyses problems by resource (space or time)
needed to solve them on a reasonable machine model

▸ as a function of the input size n = ∣x∣ (Hartmanis/Stearns, 1965)

⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, . . . )
⇒ tractable problems = polynomial-time computable (in P)
⇒ theory of intractability (reductions, NP completeness)

Parameterized complexity

▸ measures complexity also in terms of a parameter k = κ(x)
that may depend on the input x in an arbitrary way

⇒ fixed-parameter tractable problems
relaxes polynomial time solvability to algorithms whose
non-polynomial behavior f(k) ⋅ p(n) is restricted by parameter k

⇒ complexity classes (FPT, XP, W[P], W- and A-hierarchies)
⇒ theory of fixed-parameter intractability

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Motivation

Classical complexity theory

▸ analyses problems by resource (space or time)
needed to solve them on a reasonable machine model

▸ as a function of the input size n = ∣x∣ (Hartmanis/Stearns, 1965)

⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, . . . )
⇒ tractable problems = polynomial-time computable (in P)
⇒ theory of intractability (reductions, NP completeness)

Parameterized complexity

▸ measures complexity also in terms of a parameter k = κ(x)
that may depend on the input x in an arbitrary way

⇒ fixed-parameter tractable problems
relaxes polynomial time solvability to algorithms whose
non-polynomial behavior f(k) ⋅ p(n) is restricted by parameter k

⇒ complexity classes (FPT, XP, W[P], W- and A-hierarchies)
⇒ theory of fixed-parameter intractability

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Parameterized (versus classical) problems

Definition

A classical (decision) problem is a pair ⟨Σ,Q⟩ where:
▷ Q ⊆ Σ∗ the set of problem yes-instances over a finite alphabet Σ

A parameterized (decision) problem is a triple ⟨Σ,Q, κ⟩ where:
▷ Q ⊆ Σ∗ the set of problem yes-instances over a finite alphabet Σ,
▷ κ ∶ Σ∗ → N a function, the parameterization.

We regularly shorten ⟨Σ,Q, κ⟩ to a pair ⟨Q,κ⟩.

Assumption

The parameterization κ can be efficiently computed.
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Parameterized problems (examples)

A Parameterized Clique Problem
p-CLIQUE:

Given: a graph G and an integer k.
Question: Does there exists a clique of size k in G?

Parameter: k.

A Parameterized Hitting Set Problem
p-HITTING SET

Given: a universe U = {x1, . . . , xn}, a collection of sets
S = (S1, . . . , Sm) where Si ⊆ U and an integer k,

Question: Does there exists a set S ⊆ U such that ∣S∣ ≤ k
and S ∩ Si ≠ ∅, ∀i ∈ {1, . . . ,m}.

Parameter: max ∣Si∣.
▸ NP-hard even if max ∣Si∣ = 2,
▸ is fixed-parameter tractable.
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The art of parameterization

What is a good parameter?

▸ We should have reasons to believe that the parameter is “small”
for some applications.

▸ It is better if the parameter is intuitive.

▸ It is better if the parameter is efficiently computable.
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The art of parameterization

What is a good parameter?

▸ We should have reasons to believe that the parameter is “small”
for some applications.

▸ It is better if the parameter is intuitive.

▸ It is better if the parameter is efficiently computable.

There is a hierarchy on parameters.
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The art of parameterization

There are many different types of parameters!

▸ The size of the solution we are looking for.

▸ The size of some parts of the instance.
E.g., the number of voters in an election problem.

▸ Some more structural property of the instance.
E.g., the diameter of a graph.

▸ It can be a combination of values, a difference, ...
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The art of parameterization

▸ Graph problems: maximum degree, treewidth, diameter...

▸ Social choice problems: number of voters, candidates,
correlation of preferences...

▸ Boolean formulas: number of variables, number of clauses...

▸ Problems on strings: maximum length of a string, size of the
alphabet...
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Fixed Parameter Tractability (Class FPT)

Definition

A parameterized problem ⟨Q,κ⟩ is fixed-parameter tractable if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗ and ∀x ∈ Σ∗

[A decides if x ∈ Q in time ≤ f(κ(x)) ⋅ p(∣x∣)] .

FPT ∶= complexity class of all fixed-parameter tractable problems.

Assumption for a robust fpt-theory:

κ is polynomially computable, or itself fpt-computable.

Goal in parameterized algorithmics:

⇒ design FPT algorithms,
⇒ try to make both factors f(κ(x)) and p(∣x∣) as small as possible.
⇒ or show (if possible) that finding such factors is impossible
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Slices of FPT problems are in P

The ℓ-th slice of a parameterized problem ⟨Q,κ⟩:
⟨Q,κ⟩ℓ ∶= {x ∈ Q ∣ κ(x) = ℓ} (as classical problem) .

Proposition

If ⟨Q,κ⟩ ∈ FPT, then ⟨Q,κ⟩ℓ ∈ P for all ℓ ∈ N.

Application

p-COLORABILITY

Instance: a graph G and k ∈ N.
Parameter: k.
Problem: Decide whether G is k-colorable.

Known: 3-COLORABILITY ∈ NP-complete (Lovàsz, Stockmeyer, 1973).

Since 3-COLORABILITY = p-COLORABILITY3,
it follows that p-COLORABILITY ∉ FPT (unless P = NP).

Clemens Grabmayer An Introduction to Parameterized Complexity
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A problem not in FPT (unless P = NP)

The ℓ-th slice of a parameterized problem ⟨Q,κ⟩:
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Slice-wise polynomial problems (Class XP)

Definition

A parameterized problem ⟨Q,κ⟩ is slice-wise polynomial if:

∃f, g ∶ N→ N computable
∃A algorithm, takes inputs in Σ∗ and ∀x ∈ Σ∗
[A decides if x ∈ Q in time ≤ f(κ(x)) ⋅ ∣x∣g(κ(x)) ] .

XP ∶= complexity class of slice-wise polynomial problems.
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Slices of XP problems are in P

The ℓ-th slice of a parameterized problem ⟨Q,κ⟩:
⟨Q,κ⟩ℓ ∶= {x ∈ Q ∣ κ(x) = ℓ} (as classical problem) .

Proposition

If ⟨Q,κ⟩ ∈ XP, then ⟨Q,κ⟩ℓ ∈ P for all ℓ ∈ N.

Application

p-COLORABILITY

Instance: a graph G and k ∈ N.
Parameter: k.
Problem: Decide whether G is k-colorable.

Known: 3-COLORABILITY ∈ NP-complete (Lovàsz, Stockmeyer, 1973).

Since 3-COLORABILITY = p-COLORABILITY3,
it follows that p-COLORABILITY ∉ XP (unless P = NP).
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Slices of XP problems are in P

The ℓ-th slice of a parameterized problem ⟨Q,κ⟩:
⟨Q,κ⟩ℓ ∶= {x ∈ Q ∣ κ(x) = ℓ} (as classical problem) .

Proposition

If ⟨Q,κ⟩ ∈ XP, then ⟨Q,κ⟩ℓ ∈ P for all ℓ ∈ N.

Proof.

If ⟨Q,κ⟩ ∈ XP, then there are a function f ∶ N→ N computable, a
polynomial p, and an algorithm A that decides x ∈ Σ∗ in running time
≤ f(κ(x)) ⋅ ∣x∣g(κ(x)) time.

This algorithm can be used to decide the
ℓ-th slice in time ≤ f(ℓ) ⋅ ∣x∣g(ℓ), which for fixed ℓ is a polynomial.
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Aims of the course

1 Acquire a basic notions of parameterized complexity.

2 Obtain an introduction to some techniques to derive FPT or XP
results.

3 Obtain an introduction to a variety of techniques to prove algorithmic
lower bounds and in particular prove parameterized hardness results.
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Course overview

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results
Algorithmic

Meta-Theorems
motivation for FPT

kernelization,
Crown Lemma,

Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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Today

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results
Algorithmic

Meta-Theorems
motivation for FPT

kernelization,
Crown Lemma,

Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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From today’s lecture

● ● ● ●

● ● ●

●

● ● ●

C

H

R

A crown decomposition of a
graph G is a partitioning (C,H,R)
of V (G), such that:

1 C is nonempty.
2 C is an independent set.
3 H separates C and R.
4 G contains a matching of H

into C.

Crown Lemma (⇐ results by Kőnig, Hall)

Let G be a graph with no isolated vertices and with at least 3k + 1
vertices. There is a polynomial-time algorithm that:
▸ either finds a matching of size k + 1 in G;
▸ or finds a crown decomposition of G.
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Tomorrow

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results
Algorithmic

Meta-Theorems
motivation for FPT

kernelization,
Crown Lemma,

Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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In tomorrow’s lecture: a path decomposition of a graph
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Wednesday

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results
Algorithmic

Meta-Theorems
motivation for FPT

kernelization,
Crown Lemma,

Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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In Wednesday’s lecture: Monadic second-order logic

ψ3 ∶= ∃C1∃C2∃C3( (∀x
3

⋁
i=1

Ci(x))

∧ ∀x∀y(E(x, y)→
3

⋀
i=1

¬(Ci(x) ∧ Ci(y))) )

A(G) ⊧ ψ3 ⇐⇒ G has is 3-colorable .
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Friday

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results
Algorithmic

Meta-Theorems
motivation for FPT

kernelization,
Crown Lemma,

Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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From Friday’s lecture: W-Hierarchy

‘There is no definite single class that can be viewed as
“the parameterized NP”. Rather, there is a whole hierarchy of
classes playing this role. (Flum, Grohe [FG06])

XPpara-NP

W[P]
⋮

W[2]

W[1]

FPT
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Books

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh, Parameterized Algorithms, 1st ed., Springer,
2015.

Jörg Flum and Martin Grohe, Parameterized Complexity Theory,
Springer, 2006.
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Kernelization

▸ Idea

▸ Definition

▸ Kernel examples for:
▸ point line cover problem
▸ vertex cover problem

▸ Kernelization⇔ FPT

▸ Crown lemma and crown decomposition
▸ smaller kernel for vertex cover problem
▸ kernel for dual colorability problem

▸ Sunflower lemma
▸ kernel for hitting set problem
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Kernelization methods (informally)
Kernelization is:
▸ a systematic study of polynomial-time preprocessing algorithms,
▸ an important tool in the design of parameterized algorithms.

Kernel of x

Instance x

x′

→ Application of rule 1

→ Application of rule 2

▸ Often a collection of
efficient preprocessing
rules.
▸ Transform an instance x

into a smaller equivalent
instance x′.
▸ Hopefully, ∣x′∣ ≤ g(κ(x)).
→ use a (non-efficient)
exact algorithm.
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Kernelization (formally)

Definition

Let ⟨Q,κ⟩ be a parameterized problem over Σ.
A kernelization of ⟨Q,κ⟩ is a function K ∶Σ∗ → Σ∗ such that:

(K1) For all x ∈ Σ∗ : (x ∈ Q ⇐⇒ K(x) ∈ Q).
(K2) K is polynomial-time computable.
(K3) There is a computable function h ∶ N→ N

such that for all x ∈ Σ∗ : ∣K(x)∣ ≤ h(κ(x)).

We say that such a kernelization K is polynomial (resp. linear)
(and that Q has a polynomial (resp. linear) kernel)

if the function h is polynomial (resp. linear).

Lemma

If ⟨Q,κ⟩ admits a kernel and is decidable, then ⟨Q,κ⟩ ∈ FPT.

Lemma

If ⟨Q,κ⟩ ∈ FPT, the ⟨Q,κ⟩ admits a kernel.
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The (parameterized) Point Line Cover Problem
p-POINT-LINE-COVER:

Given: n points in the plane and an integer k.
Parameter: The integer k.
Question: Do there exist k lines that cover all points?

Rule 1:
If we have a line that hits k + 1 or more points, then:
i) include it in the solution;
ii) remove the points hit by the line;
iii) set k∶= k − 1.

Observation: Let (x,κ) be a yes instance of the p-Point-Line-Cover
such that Rule 1 cannot be applied. Then n ≤ k2 holds.

Rule 2:
If we cannot apply Rule 1, and we have more than k2 points,
then say no, and return a trivial no instance.

Proposition

p-POINT-LINE-COVER ∈ FPT: it admits a kernel of size with k2 points.
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The (parameterized) Vertex Cover Problem

p-VERTEX-COVER:
Given: A graph G, and an integer k.
Parameter: The integer k.
Question: Does there exists a vertex cover of size at most k?

Definition

Let G be a graph and S ⊆ V (G). The set S is called a vertex cover if
for every edge of G at least one of its endpoints is in S.

Exercise

Find an O(k2) kernel for p-VERTEX-COVER.
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The (parameterized) Vertex Cover Problem (Buss kernel)

Rule 1: If G contains an isolated vertex v, delete v from G.
The new instance is (G ∖ v, k)

Rule 2: If there is a vertex v of degree at least k + 1, then delete v (and
its incident edges) from G and decrement the parameter k by 1.
The new instance is (G ∖ v;k − 1)

Observations

▸ If G has a vertex cover of ≤ k vertices after exhaustive application
of Rules 1 & 2, then G has ≤ k2 edges (and ≤ k2 + k vertices).

Rule 3: Let (G,k) be an instance to which Rules 1 & 2 are not applica-
ble. If G has > k2 + k vertices, or > k2 edges, then (G,k) is a
no-instance that can be replaced by a trivial no-instance.

Theorem (Samuel Buss)

p-VERTEX-COVER ∈ FPT, because it admits a kernel with at most
O(k2) vertices and O(k2) edges.
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Kernelization⇒ FPT

Exercise

If ⟨Q,κ⟩ admits a kernel and is decidable, then ⟨Q,κ⟩ ∈ FPT.

Definitions

A kernelization of ⟨Q,κ⟩ is a function K ∶Σ∗ → Σ∗ such that:
(K1) For all x ∈ Σ∗ : (x ∈ Q ⇐⇒ K(x) ∈ Q).
(K2) K is polynomial-time computable.
(K3) There is a computable function h ∶ N→ N

such that for all x ∈ Σ∗ : ∣K(x)∣ ≤ h(κ(x)).

A parameterized problem ⟨Q,κ⟩ is fixed-parameter tractable if:

∃f ∶ N→ N computable ∃p ∈ N[X] polynomial
∃A algorithm, takes inputs in Σ∗ and ∀x ∈ Σ∗

[A decides if x ∈ Q in time ≤ f(κ(x)) ⋅ p(∣x∣) ] .

FPT ∶= complexity class of all fixed-parameter tractable problems.
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Kernelization⇒ FPT
Lemma

If ⟨Q,κ⟩ admits a kernel and is decidable, then ⟨Q,κ⟩ ∈ FPT.
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FPT⇒ Kernelization

Lemma

If ⟨Q,κ⟩ ∈ FPT, then ⟨Q,κ⟩ admits a kernel.

Proof.

Let A be an algorithm that solves ⟨Q,κ⟩ in time f(κ(x)) ⋅ p(x), for all
x ∈ Σ∗, where f ∶ N→ N computable, and p(n) a polynomial.

We can
assume p(n) ≥max{n,1} for all n ∈ N.
If Q = ∅ or Q = Σ∗, then we can defined K(x) ∶= ϵ. Otherwise we have
∅ ⫋ Q ⫋ Σ∗, and we choose some x0 ∈ Q, and x1 ∈ Σ∗ ∖Q.
We define the polynomial-time computable function K ∶ Σ∗ → Σ∗ by:

K(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 . . . A accepts x in ≤ p(∣x∣) ⋅ p(∣x∣) steps,
x1 . . . A rejects x in ≤ p(∣x∣) ⋅ p(∣x∣) steps,
x . . . A does not terminate in ≤ p(∣x∣) ⋅ p(∣x∣) steps.

In the last case (K(x) = x) we have p(∣x∣) ⋅p(∣x∣) ≤ f(κ(x)) ⋅p(∣x∣), and
hence ∣K(x)∣ = ∣x∣ ≤ p(∣x∣) ≤ f(κ(x)). Therefore K is a kernel.
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Crown Decomposition and Crown Lemma
● ● ● ●

● ● ●

●
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C

H

R

A crown decomposition of a
graph G is a partitioning (C,H,R)
of V (G), such that:

1 C is nonempty.
2 C is an independent set.
3 H separates C and R.
4 G contains a matching of H

into C.

Crown Lemma (⇐ results by Kőnig, Hall)

Let G be a graph with no isolated vertices and with at least 3k + 1
vertices. There is a polynomial-time algorithm that:
▸ either finds a matching of size k + 1 in G;
▸ or finds a crown decomposition of G.

Exercise
Apply the Crown Lemma to the Vertex Cover Problem.
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The (par.) Vertex Cover Problem (smaller kernel)
p-VERTEX-COVER:

Given: A graph G, and an integer k.
Parameter: The integer k.
Question: Does there exists a vertex cover of size at most k?

Rule 1: If G contains an isolated vertex v, delete v from G.
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▸ If it returns a matching of size k + 1,
then conclude that (G,k) is a no-instance

▸ If it returns a crown decomposition V (G) = C ∪H ∪R:

▸ Pick the vertices in H in the solution
▸ Reduce (G,k) to (G −H,k − ∣H ∣)
▸ Reduce (G −H,k − ∣H ∣) to (G −H −C,k − ∣H ∣)

by using Rule 1 (note that vertices in C are isolated)

Theorem
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The (parameterized) Dual-Coloring Problem

p-COLORABILITY:
Given: A graph G = ⟨V,E⟩ on n vertices and an integer k.
Parameter: The integer k.
Question: Is G k-colorable?

Definition

Let k ∈ N. A graph G = ⟨V,E⟩ is k-colorable if there is a function
C ∶ V → {1, . . . , k} such that C(u) ≠ C(v) for all edges {u, v} ∈ E.

Exercise

Obtain a kernel with O(k) vertices using crown decomposition.
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The Dual-Coloring Problem
Rule 1: Let I ⊆ V (G) be the isolated vertices. Remove I from G,
and color them with one color. The new instance is (G − I, k)

Rule 2: Consider graph G(V,E) obtained from G by saying that
e ∈ E iff e ∉ E.
If ∣(V (G))∣ > 3k, apply the Crown Lemma to G.

▸ If it returns a matching of size k + 1,
then conclude that (G,k) is a yes-instance

▸ If it returns crown decomposition V (G) = V (G) = C ∪H ∪R:

▸ The vertices in H can be saved.
▸ Reduce (G,k) to (G −H −C,k − ∣H ∣) if ∣H ∣ < k, and

otherwise to a yes-instance
▸ Note that the vertices in C belong to a clique in G(V,E), that

is we need ∣C ∣ colors, and that we need different colors for R.

Theorem
p-DUAL-COLORING admits a kernel with at most 3k vertices.
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Sunflower Lemma
Definition
A sunflower with k petals and a core Y is a collection of sets
S1, . . . , Sk such that Si ∩ Sj = Y for all i ≠ j. The sets Si ∖ Y are petals
and they must be non-empty.

A sunflower with 6 petals and a
core Y = {x2, x5}.
S1 = {x2, x3, x5, x10}
S2 = {x1, x2, x5}
S3 = {x2, x5, x6, x11}
. . .

x2

x3 x5

x1 x6

x7 x8

x9

x10

x11

x12

Sunflower Lemma (Erdős, Rado)

Let A be a family of sets (without duplicates) over a universe U such
that each set in A has cardinality = d.
If ∣A∣ > d!(k − 1)d, then A contains a sunflower with k petals which can
be computed in time polynomial in ∣A∣, ∣U ∣, and k.
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Application to d-Hitting Set

Sunflower Lemma (Erdős, Rado)

Let A be a family of sets (without duplicates) over a universe U such
that each set in A has cardinality = d.
If ∣A∣ > d!(k − 1)d, then A contains a sunflower with k petals which can
be computed in time polynomial in ∣A∣, ∣U ∣, and k.

Parameterized d-Hitting Set Problem
p-d-HITTING-SET:

Given: A family A of sets over a universe U , where each
set has cardinality ≤ d and a positive integer k,

Parameter: The integer k.
Question: Does there exists a subset H ⊆ U of size at most

k such that H intersects each set in A?

Theorem

p-d-HITTING-SET has a kernel with ≤ d!kdd sets & ≤ d!kdd2 elements.
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Application to d-Hitting Set

Sunflower Lemma (Erdős, Rado)

Let A be a family of sets (without duplicates) over a universe U such
that each set in A has cardinality = d.
If ∣A∣ > d!(k − 1)d, then A contains a sunflower with k petals which can
be computed in time polynomial in ∣A∣, ∣U ∣, and k.

Parameterized d-Hitting Set Problem
p-d-HITTING-SET:

Given: A family A of sets over a universe U , where each
set has cardinality ≤ d and a positive integer k,

Parameter: The integer k.
Question: Does there exists a subset H ⊆ U of size at most

k such that H intersects each set in A?

Exercise
Apply the sunflower lemma.
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Application to d-Hitting Set
Observation

If A contains a sunflower S = {S1, . . . , Sk+1} of k + 1 sets, then every
hitting set H of A with ∣H ∣ ≤ k must intersect the core Y of S.
Otherwise it is a no-instance, because H cannot intersect each of the
k + 1 petals Si ∖ Y .

Rule HS.1: Let (U,A, k) be an instance of d-HITTING SET.
Assume that A contains a sunflower S = {S1, . . . , Sk+1}
of cardinality k + 1 with core Y .
Then return (U ′,A′, k), where A′ ∶= (A ∖ S) ∪ Y ,

U ′ ∶= ⋃A′ = ⋃X∈A′X.

Proof (kernel of p-d-HITTING-SET with ≤ d!kdd sets and ≤ d!kdd2 elements).

If for some d′ ∈ {1, ..., d}, the number of sets in A of size = d′ is more
than d′!kd

′

, then the sunflower lemma yields a sunflower of size k + 1.
Rule HS.1 applies. By applying this rule exhaustively, we obtain a
new family of sets A′ with ≤ d′!kd′ sets of size = d′ for every
d′ ∈ {1, ..., d}. Hence ∣A′∣ ≤ d!kdd and ∣U ′∣ = d!kdd2.
If ∅ ∈ A′ (a sunflower had an empty core), then it is a no instance.
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Otherwise it is a no-instance, because H cannot intersect each of the
k + 1 petals Si ∖ Y .

Rule HS.1: Let (U,A, k) be an instance of d-HITTING SET.
Assume that A contains a sunflower S = {S1, . . . , Sk+1}
of cardinality k + 1 with core Y .
Then return (U ′,A′, k), where A′ ∶= (A ∖ S) ∪ Y ,

U ′ ∶= ⋃A′ = ⋃X∈A′X.

Proof (kernel of p-d-HITTING-SET with ≤ d!kdd sets and ≤ d!kdd2 elements).

If for some d′ ∈ {1, ..., d}, the number of sets in A of size = d′ is more
than d′!kd

′

, then the sunflower lemma yields a sunflower of size k + 1.
Rule HS.1 applies. By applying this rule exhaustively, we obtain a
new family of sets A′ with ≤ d′!kd′ sets of size = d′ for every
d′ ∈ {1, ..., d}.

Hence ∣A′∣ ≤ d!kdd and ∣U ′∣ = d!kdd2.
If ∅ ∈ A′ (a sunflower had an empty core), then it is a no instance.

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Application to d-Hitting Set
Observation

If A contains a sunflower S = {S1, . . . , Sk+1} of k + 1 sets, then every
hitting set H of A with ∣H ∣ ≤ k must intersect the core Y of S.
Otherwise it is a no-instance, because H cannot intersect each of the
k + 1 petals Si ∖ Y .

Rule HS.1: Let (U,A, k) be an instance of d-HITTING SET.
Assume that A contains a sunflower S = {S1, . . . , Sk+1}
of cardinality k + 1 with core Y .
Then return (U ′,A′, k), where A′ ∶= (A ∖ S) ∪ Y ,

U ′ ∶= ⋃A′ = ⋃X∈A′X.

Proof (kernel of p-d-HITTING-SET with ≤ d!kdd sets and ≤ d!kdd2 elements).

If for some d′ ∈ {1, ..., d}, the number of sets in A of size = d′ is more
than d′!kd

′

, then the sunflower lemma yields a sunflower of size k + 1.
Rule HS.1 applies. By applying this rule exhaustively, we obtain a
new family of sets A′ with ≤ d′!kd′ sets of size = d′ for every
d′ ∈ {1, ..., d}. Hence ∣A′∣ ≤ d!kdd and ∣U ′∣ = d!kdd2.

If ∅ ∈ A′ (a sunflower had an empty core), then it is a no instance.

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Application to d-Hitting Set
Observation

If A contains a sunflower S = {S1, . . . , Sk+1} of k + 1 sets, then every
hitting set H of A with ∣H ∣ ≤ k must intersect the core Y of S.
Otherwise it is a no-instance, because H cannot intersect each of the
k + 1 petals Si ∖ Y .

Rule HS.1: Let (U,A, k) be an instance of d-HITTING SET.
Assume that A contains a sunflower S = {S1, . . . , Sk+1}
of cardinality k + 1 with core Y .
Then return (U ′,A′, k), where A′ ∶= (A ∖ S) ∪ Y ,

U ′ ∶= ⋃A′ = ⋃X∈A′X.

Proof (kernel of p-d-HITTING-SET with ≤ d!kdd sets and ≤ d!kdd2 elements).

If for some d′ ∈ {1, ..., d}, the number of sets in A of size = d′ is more
than d′!kd

′

, then the sunflower lemma yields a sunflower of size k + 1.
Rule HS.1 applies. By applying this rule exhaustively, we obtain a
new family of sets A′ with ≤ d′!kd′ sets of size = d′ for every
d′ ∈ {1, ..., d}. Hence ∣A′∣ ≤ d!kdd and ∣U ′∣ = d!kdd2.
If ∅ ∈ A′ (a sunflower had an empty core), then it is a no instance.

Clemens Grabmayer An Introduction to Parameterized Complexity



overview motivation definition fpt teasers books kernelization examples kernel⇔ FPT crown dec sunflower lemma tomorrow

Tomorrow

Monday, June 10 Tuesday, June 11 Wednesday, June 12 Thursday, June 13 Friday, June 14
10.30 – 12.30 10.30 – 12.30
Introduction

& basic FPT results

GDA

Algorithmic
Meta-Theorems

GDA GDA

motivation for FPT
kernelization,

Crown Lemma,
Sunflower Lemma

1st-order logic,
monadic 2nd-order
logic, FPT-results by

Courcelle’s Theorems
for tree and
clique-width

Algorithmic Techniques Formal-Method & Algorithmic Techniques
14.30 – 16.30 14.30 – 16.30

Notions of bounded
graph width

GDA GDA

FPT-Intractability
Classes&Hierarchies

path-, tree-, clique
width, FPT-results

by dynamic
programming,

transferring FPT
results betw. widths

motivation for
FP-intractability results,
FPT-reductions, class

XP (slicewise
polynomial), W- and

A-Hierarchies, placing
problems on these

hierarchies
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