An Introduction to Parameterized Complexity Lecture 1: Fixed-Parameter Tractability

Clemens Grabmayer

Ph.D. Program, Advanced Period Gran Sasso Science Institute L'Aquila, Italy

Monday, June 10, 2024

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14	
Introduction & basic FPT results		Algorithmic Meta-Theorems			
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA	
Algorithmic Techniques		Formal-Method & Algorithmic Techniques			
	14.30 - 16.30			14.30 - 16.30	
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies	
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies	

Course developers

Hugo Gilbert course 2019/20 (Hugo & Clemens)

CG & Alessandro Aloisio course 2020/21 (Alessandro & C)

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14	
Introduction & basic FPT results		Algorithmic Meta-Theorems			
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA	
Algorithmic Techniques		Formal-Method & Algorithmic Techniques			
	14.30 - 16.30			14.30 - 16.30	
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies	
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies	

Motivation

Classical complexity theory

- analyses problems by resource (space or time) needed to solve them on a reasonable machine model
- as a function of the input size n = |x| (Hartmanis/Stearns, 1965)
- ⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, ...)
- ⇒ tractable problems
 - = polynomial-time computable (in P)
- \Rightarrow theory of intractability

(reductions, NP completeness)

Motivation

Classical complexity theory

- analyses problems by resource (space or time) needed to solve them on a reasonable machine model
- as a function of the input size n = |x| (Hartmanis/Stearns, 1965)
- ⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, ...)
- ⇒ tractable problems
 - = polynomial-time computable (in P)
- \Rightarrow theory of intractability

(reductions, NP completeness)

Drawback

- measures problem size n = |x| only in terms of input instances x, and ignores structural information about instances
- sometimes problems are easier to solve for instances if additional structure information is available

Classical complexity theory

- analyses problems by resource (space or time) needed to solve them on a reasonable machine model
- as a function of the input size n = |x| (Hartmanis/Stearns, 1965)
- ⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, ...)
- ⇒ tractable problems = polynomial-time computable (in P)
- ⇒ theory of intractability (reductions, NP completeness)

Classical complexity theory

- analyses problems by resource (space or time) needed to solve them on a reasonable machine model
- as a function of the input size n = |x| (Hartmanis/Stearns, 1965)
- ⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, ...)
- ⇒ tractable problems = polynomial-time computable (in P)
- ⇒ theory of intractability (reductions, NP completeness)

Parameterized complexity

- measures complexity also in terms of a parameter k = κ(x) that may depend on the input x in an arbitrary way
- ⇒ fixed-parameter tractable problems relaxes polynomial time solvability to algorithms whose non-polynomial behavior $f(k) \cdot p(n)$ is restricted by parameter k
- ⇒ complexity classes (FPT, XP, W[P], W- and A-hierarchies)
- ⇒ theory of fixed-parameter intractability

Definition

A classical (decision) problem is a pair (Σ, Q) where:

 $\triangleright Q \subseteq \Sigma^*$ the set of *problem ves-instances* over a finite alphabet Σ

Definition

- A classical (decision) problem is a pair (Σ, Q) where:
 - $\triangleright Q \subseteq \Sigma^*$ the set of *problem ves-instances* over a finite alphabet Σ
- A parameterized (decision) problem is a triple (Σ, Q, κ) where:
 - $\triangleright Q \subseteq \Sigma^*$ the set of *problem yes-instances* over a finite alphabet Σ ,
 - $\triangleright \kappa : \Sigma^* \to \mathbb{N}$ a function, *the parameterization*.

Definition

A classical (decision) problem is a pair (Σ, Q) where:

 $\triangleright Q \subseteq \Sigma^*$ the set of *problem ves-instances* over a finite alphabet Σ

A parameterized (decision) problem is a triple (Σ, Q, κ) where:

 $\triangleright Q \subseteq \Sigma^*$ the set of *problem yes-instances* over a finite alphabet Σ ,

 $\triangleright \kappa : \Sigma^* \to \mathbb{N}$ a function, *the parameterization*.

We regularly shorten (Σ, Q, κ) to a pair (Q, κ) .

Definition

A classical (decision) problem is a pair (Σ, Q) where:

 $\triangleright Q \subseteq \Sigma^*$ the set of *problem ves-instances* over a finite alphabet Σ

A parameterized (decision) problem is a triple (Σ, Q, κ) where:

 $\triangleright Q \subseteq \Sigma^*$ the set of *problem yes-instances* over a finite alphabet Σ ,

 $\triangleright \kappa : \Sigma^* \to \mathbb{N}$ a function, *the parameterization*.

We regularly shorten (Σ, Q, κ) to a pair (Q, κ) .

Assumption

The parameterization κ can be efficiently computed.

n examples ke

Parameterized problems (examples)

A Parameterized Clique Problem

p-CLIQUE:

Given: a graph G and an integer k. **Question:** Does there exists a clique of size k in G?

Parameter: k.

n examples ke

Parameterized problems (examples)

A Parameterized Clique Problem

p-CLIQUE:

Given: a graph G and an integer k. **Question:** Does there exists a clique of size k in G?

Parameter: k.

A Parameterized Hitting Set Problem

p-HITTING SET Given: a universe $U = \{x_1, \dots, x_n\}$, a collection of sets $S = (S_1, \dots, S_m)$ where $S_i \subseteq U$ and an integer k, Question: Does there exists a set $S \subseteq U$ such that $|S| \le k$ and $S \cap S_i \neq \emptyset$, $\forall i \in \{1, \dots, m\}$. n examples ke

Parameterized problems (examples)

A Parameterized Clique Problem

p-CLIQUE:

Given: a graph G and an integer k. Question: Does there exists a clique of size k in G?

Parameter: k.

A Parameterized Hitting Set Problem

```
p-HITTING SET

Given: a universe U = \{x_1, \dots, x_n\}, a collection of sets

S = (S_1, \dots, S_m) where S_i \subseteq U and an integer k,

Question: Does there exists a set S \subseteq U such that |S| \le k

and S \cap S_i \neq \emptyset, \forall i \in \{1, \dots, m\}.

Parameter: \max |S_i|.
```

Parameterized problems (examples)

A Parameterized Clique Problem

p-CLIQUE:

Given: a graph G and an integer k. Question: Does there exists a clique of size k in G?

Parameter: k.

A Parameterized Hitting Set Problem

```
p-HITTING SET

Given: a universe U = \{x_1, \dots, x_n\}, a collection of sets

S = (S_1, \dots, S_m) where S_i \subseteq U and an integer k,

Question: Does there exists a set S \subseteq U such that |S| \le k

and S \cap S_i \neq \emptyset, \forall i \in \{1, \dots, m\}.

Parameter: \max |S_i|.
```

• NP-hard even if $\max |S_i| = 2$,

Parameterized problems (examples)

A Parameterized Clique Problem

p-CLIQUE:

Given: a graph G and an integer k. Question: Does there exists a clique of size k in G?

Parameter: k.

A Parameterized Hitting Set Problem

p-HITTING SET Given: a universe $U = \{x_1, \dots, x_n\}$, a collection of sets $S = (S_1, \dots, S_m)$ where $S_i \subseteq U$ and an integer k, Question: Does there exists a set $S \subseteq U$ such that $|S| \le k$ and $S \cap S_i \neq \emptyset$, $\forall i \in \{1, \dots, m\}$. Parameter: $\max |S_i|$.

- NP-hard even if $\max |S_i| = 2$,
- is fixed-parameter tractable.

overview motivation definition fpt teasers books kernelization examples kernel ↔ FPT crown dec sunflower lemma tomorrow

The art of parameterization

What is a good parameter?

overview motivation definition fpt teasers books kernelization examples kernel 👄 FPT crown dec sunflower lemma tomorrow

The art of parameterization

What is a good parameter?

We should have reasons to believe that the parameter is "small" for some applications. overview motivation definition fpt teasers books kernelization examples kernel \Leftrightarrow FPT crown dec sunflower lemma tomorrow

The art of parameterization

What is a good parameter?

- We should have reasons to believe that the parameter is "small" for some applications.
- It is better if the parameter is intuitive.

rview motivation definition fpt teasers books kernelization examples kernel 👄 FPT crown dec sunflower lemma tomorrow

The art of parameterization

What is a good parameter?

- We should have reasons to believe that the parameter is "small" for some applications.
- It is better if the parameter is intuitive.
- It is better if the parameter is efficiently computable.

iew motivation definition fpt teasers books kernelization examples kernel ↔ FPT crown dec sunflower lemma tomorrow

The art of parameterization

What is a good parameter?

- We should have reasons to believe that the parameter is "small" for some applications.
- It is better if the parameter is intuitive.
- It is better if the parameter is efficiently computable.

There is a hierarchy on parameters.

on examples kernel \Leftrightarrow FPT

crown dec sunflower lemma tomo

The art of parameterization

overview motivation definition fpt teasers books kernelization examples kernel ⇔ FPT crown dec sunflower lemma tomo

The art of parameterization

There are many different types of parameters!

The size of the solution we are looking for.

definition fpt teasers books kernelization examples kernel ↔ FPT crown dec sunflower lemma

The art of parameterization

overview

- The size of the solution we are looking for.
- The size of some parts of the instance.
 E.g., the number of voters in an election problem.

definition fpt teasers

 $kernel \Leftrightarrow FPT$

crown dec sunflower lemma

The art of parameterization

- The size of the solution we are looking for.
- The size of some parts of the instance. E.g., the number of voters in an election problem.
- Some more structural property of the instance. E.g., the diameter of a graph.

inition fpt teasers books kernelization examples

ation examples kernel ⇔ FPT

crown dec sunflower lemma tomorr

The art of parameterization

- The size of the solution we are looking for.
- The size of some parts of the instance.
 E.g., the number of voters in an election problem.
- Some more structural property of the instance.
 E.g., the diameter of a graph.
- It can be a combination of values, a difference, ...

The art of parameterization

Graph problems: maximum degree, treewidth, diameter...

overview motivation definition fpt teasers books kernelization examples kernel \Leftrightarrow FPT crown dec sunflower lemma tomorrow

The art of parameterization

- ► Graph problems: maximum degree, treewidth, diameter...
- Social choice problems: number of voters, candidates, correlation of preferences...

iew motivation definition fpt teasers books kernelization examples kernel ↔ FPT crown dec sunflower lemma tomorrow

The art of parameterization

- ► Graph problems: maximum degree, treewidth, diameter...
- Social choice problems: number of voters, candidates, correlation of preferences...
- Boolean formulas: number of variables, number of clauses...

ew motivation definition fpt teasers books kernelization examples kernel ↔ FPT crown dec sunflower lemma tomorrow

The art of parameterization

- ► Graph problems: maximum degree, treewidth, diameter...
- Social choice problems: number of voters, candidates, correlation of preferences...
- Boolean formulas: number of variables, number of clauses...
- Problems on strings: maximum length of a string, size of the alphabet...

definition fpt

teasers

Fixed Parameter Tractability (Class FPT)

Definition

A parameterized problem (Q, κ) is *fixed-parameter tractable* if:

 $\exists f : \mathbb{N} \to \mathbb{N}$ computable $\exists p \in \mathbb{N}[X]$ polynomial $\exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x \in \Sigma^*$ $\left[\mathbb{A} \text{ decides if } x \in Q \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \right].$

FPT := complexity class of all fixed-parameter tractable problems.

Fixed Parameter Tractability (Class FPT)

Definition

A parameterized problem (Q, κ) is *fixed-parameter tractable* if:

 $\exists f : \mathbb{N} \to \mathbb{N}$ computable $\exists p \in \mathbb{N}[X]$ polynomial $\exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x \in \Sigma^*$ A decides if $x \in Q$ in time $\leq f(\kappa(x)) \cdot p(|x|)$.

FPT := complexity class of all fixed-parameter tractable problems.

Assumption for a robust fpt-theory:

 κ is polynomially computable, or itself fpt-computable.

 $kernel \Leftrightarrow FPT$

Fixed Parameter Tractability (Class FPT)

Definition

A parameterized problem (Q, κ) is *fixed-parameter tractable* if:

 $\exists f : \mathbb{N} \to \mathbb{N}$ computable $\exists p \in \mathbb{N}[X]$ polynomial $\exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x \in \Sigma^*$ A decides if $x \in Q$ in time $\leq f(\kappa(x)) \cdot p(|x|)$.

FPT := complexity class of all fixed-parameter tractable problems.

Assumption for a robust fpt-theory:

 κ is polynomially computable, or itself fpt-computable.

Goal in parameterized algorithmics:

 \Rightarrow design FPT algorithms,

 \Rightarrow try to make both factors $f(\kappa(x))$ and p(|x|) as small as possible.

 \Rightarrow or show (if possible) that finding such factors is impossible

Slices of FPT problems are in P

The ℓ -th slice of a parameterized problem (Q, κ) :

 $(Q, \kappa)_{\ell} := \{x \in Q \mid \kappa(x) = \ell\}$ (as classical problem).

Proposition

If $(Q, \kappa) \in \mathsf{FPT}$, then $(Q, \kappa)_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

Slices of FPT problems are in P

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $(Q, \kappa)_{\ell} := \{x \in Q \mid \kappa(x) = \ell\}$ (as classical problem).

Proposition

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

Proof.

If $(Q, \kappa) \in \mathsf{FPT}$, then there are a computable function $f: \mathbb{N} \to \mathbb{N}$, a polynomial p, and an algorithm A that decides $x \in \Sigma^*$ in running time $\leq f(\kappa(x)) \cdot p(|x|)$ time.
Slices of FPT problems are in P

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \}$ (as classical problem).

Proposition

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

Proof.

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then there are a computable function $f : \mathbb{N} \to \mathbb{N}$, a polynomial p, and an algorithm \mathbb{A} that decides $x \in \Sigma^*$ in running time $\leq f(\kappa(x)) \cdot p(|x|)$ time. This algorithm can also be used to decide the ℓ -th slice in time $\leq f(\ell) \cdot p(|x|)$, which for fixed ℓ is a polynomial.

A problem not in FPT (unless P = NP)

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $(Q, \kappa)_{\ell} := \{x \in Q \mid \kappa(x) = \ell\}$ (as classical problem).

Proposition

```
If \langle Q, \kappa \rangle \in \mathsf{FPT}, then \langle Q, \kappa \rangle_{\ell} \in \mathsf{P} for all \ell \in \mathbb{N}.
```

Application

p-COLORABILITY **Instance:** a graph \mathcal{G} and $k \in \mathbb{N}$. **Parameter:** k. **Problem:** Decide whether \mathcal{G} is k-colorable.

Known: 3-COLORABILITY ∈ NP-complete (Lovàsz, Stockmeyer, 1973).

A problem not in FPT (unless P = NP)

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$ (as classical problem).

Proposition

```
If \langle Q, \kappa \rangle \in \mathsf{FPT}, then \langle Q, \kappa \rangle_{\ell} \in \mathsf{P} for all \ell \in \mathbb{N}.
```

Application

```
p-COLORABILITY
   Instance: a graph \mathcal{G} and k \in \mathbb{N}.
   Parameter: k.
   Problem: Decide whether \mathcal{G} is k-colorable.
```

Known: 3-COLORABILITY ∈ NP-complete (Lovàsz, Stockmeyer, 1973). Since 3-COLORABILITY = p-COLORABILITY₃, it follows that p-COLORABILITY \notin FPT (unless P = NP).

overview m

otivation definition fpt

t teasers b

kernelization

on examples k

kernel ⇔ FPT crown dec sunflower

na tomorrow

Slice-wise polynomial problems (Class XP)

Definition

A parameterized problem $\langle Q, \kappa \rangle$ is *slice-wise polynomial* if:

 $\begin{array}{l} \exists f,g:\mathbb{N}\to\mathbb{N} \quad \text{computable} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x\in\Sigma^* \\ \left[\mathbb{A} \text{ decides if } x\in Q \text{ in time } \leq f(\kappa(x))\cdot|x|^{g(\kappa(x))}\right]. \end{array}$

XP := complexity class of slice-wise polynomial problems.

Slices of XP problems are in P

The ℓ -th slice of a parameterized problem (Q, κ) :

 $(Q, \kappa)_{\ell} := \{x \in Q \mid \kappa(x) = \ell\}$ (as classical problem).

Proposition

If $(Q, \kappa) \in \mathsf{XP}$, then $(Q, \kappa)_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

teasers

definition fpt

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \}$ (as classical problem).

kernel ⇔ FPT

crown dec

sunflower lemma

Proposition

If $\langle Q, \kappa \rangle \in \mathsf{XP}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

Proof.

If $\langle Q, \kappa \rangle \in \mathsf{XP}$, then there are a function $f : \mathbb{N} \to \mathbb{N}$ computable, a polynomial p, and an algorithm \mathbb{A} that decides $x \in \Sigma^*$ in running time $\leq f(\kappa(x)) \cdot |x|^{g(\kappa(x))}$ time.

definition fpt

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$ (as classical problem).

kernel ⇔ FPT

crown dec

sunflower lemma

Proposition

If $\langle Q, \kappa \rangle \in \mathsf{XP}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

Proof.

If $\langle Q, \kappa \rangle \in \mathsf{XP}$, then there are a function $f : \mathbb{N} \to \mathbb{N}$ computable, a polynomial p, and an algorithm \mathbb{A} that decides $x \in \Sigma^*$ in running time $\leq f(\kappa(x)) \cdot |x|^{g(\kappa(x))}$ time. This algorithm can be used to decide the ℓ -th slice in time $\leq f(\ell) \cdot |x|^{g(\ell)}$, which for fixed ℓ is a polynomial.

A problem not in XP (unless P = NP)

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \}$ (as classical problem).

Proposition

```
If \langle Q, \kappa \rangle \in \mathsf{XP}, then \langle Q, \kappa \rangle_{\ell} \in \mathsf{P} for all \ell \in \mathbb{N}.
```

Application

p-COLORABILITY **Instance:** a graph \mathcal{G} and $k \in \mathbb{N}$. **Parameter:** *k*. **Problem:** Decide whether \mathcal{G} is *k*-colorable.

Known: 3-COLORABILITY ∈ NP-complete (Lovàsz, Stockmeyer, 1973).

A problem not in XP (unless P = NP)

The ℓ -th slice of a parameterized problem $\langle Q, \kappa \rangle$:

 $\langle Q, \kappa \rangle_{\ell} \coloneqq \{ x \in Q \mid \kappa(x) = \ell \}$ (as classical problem).

Proposition

```
If \langle Q, \kappa \rangle \in \mathsf{XP}, then \langle Q, \kappa \rangle_{\ell} \in \mathsf{P} for all \ell \in \mathbb{N}.
```

Application

```
p-COLORABILITY

Instance: a graph \mathcal{G} and k \in \mathbb{N}.

Parameter: k.

Problem: Decide whether \mathcal{G} is k-colorable.
```

Known: 3-COLORABILITY \in NP-complete (Lovàsz, Stockmeyer, 1973). Since 3-COLORABILITY = p-COLORABILITY₃, it follows that p-COLORABILITY \notin XP (unless P = NP).

Aims of the course

- Acquire a basic notions of parameterized complexity.
- Obtain an introduction to some techniques to derive FPT or XP results.
- Obtain an introduction to a variety of techniques to prove algorithmic lower bounds and in particular prove parameterized hardness results.

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization, Crown Lemma.		monadic 2nd-order		
Sunflower Lemma		Courcelle's Theorems for tree and		
		clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 – 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (SIICEWISE
	transferring FPT			polynomial), w- and
	results betw. widths			A-merarchies, placing
				hierarchies

overview	motivation	definition fpt	teasers	books	kernelization	examples	kernel ⇔ FPT	crown dec	sunflower lemma	tomorrow

Today

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by		
Cumowor Lomma		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, cirque width, FPT-results by dynamic programming, transferring FPT results betw. widths			FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these biorarchice

From today's lecture

A crown decomposition of a graph G is a partitioning (C, H, R) of V(G), such that:
C is nonempty.
C is an independent set.
H separates C and R.
G contains a matching of H into C.

Crown Lemma (< results by Kőnig, Hall)

Let *G* be a graph with no isolated vertices and with at least 3k + 1 vertices. There is a polynomial-time algorithm that:

- either finds a matching of size k + 1 in G;
- or finds a crown decomposition of G.

Tomorrow

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique width, FPT-results			motivation for FP-intractability results.
	by dynamic			FPT-reductions, class
	transferring FPT			polynomial). W- and
	results betw. widths			A-Hierarchies, placing
				problems on these
				hierarchies

examples

kernel ⇔ FPT

crown dec sunflower lemma

In tomorrow's lecture: a path decomposition of a graph

Wednesday

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths			motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

In Wednesday's lecture: Monadic second-order logic

kernel ⇔ FPT

crown dec

overview

definition fpt

$$\psi_{3} := \exists C_{1} \exists C_{2} \exists C_{3} \big(\big(\forall x \bigvee_{i=1}^{3} C_{i}(x) \big) \\ \land \forall x \forall y \big(E(x, y) \to \bigwedge_{i=1}^{3} \neg (C_{i}(x) \land C_{i}(y)) \big) \big)$$

 $\mathcal{A}(\mathcal{G}) \vDash \psi_3 \iff \mathcal{G}$ has is 3-colorable.

overview	motivation	definition fpt	teasers	books	kernelization	examples	kernel \Leftrightarrow FPT	crown dec	sunflower lemma	tomorrow

Friday

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT kernelization, Crown Lemma, Sunflower Lemma		Algorithmic Meta-Theorems 1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and		
		clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 – 16.30			14.30 – 16.30
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths			motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

ntivation definition fpt teasers books kernelization examples kernel ↔ FPT o

⇒ FPT crown dec sunflower lemma tomorro

From Friday's lecture: W-Hierarchy

overview

'There is no definite single class that can be viewed as "the parameterized NP". Rather, there is a whole hierarchy of classes playing this role. (Flum, Grohe [FG06])

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization, Crown Lemma.		monadic 2nd-order		
Sunflower Lemma		Courcelle's Theorems for tree and		
		clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 – 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (SIICEWISE
	transferring FPT			polynomial), w- and
	results betw. widths			A-merarchies, placing
				hierarchies

Books

- Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh, *Parameterized Algorithms*, 1st ed., Springer, 2015.
 - Jörg Flum and Martin Grohe, *Parameterized Complexity Theory*, Springer, 2006.

- Idea
- Definition

- Idea
- Definition
- Kernel examples for:
 - point line cover problem
 - vertex cover problem

- Idea
- Definition
- Kernel examples for:
 - point line cover problem
 - vertex cover problem
- ▶ Kernelization ⇔ FPT

- Idea
- Definition
- Kernel examples for:
 - point line cover problem
 - vertex cover problem
- ▶ Kernelization ⇔ FPT
- Crown lemma and crown decomposition
 - smaller kernel for vertex cover problem
 - kernel for dual colorability problem

- Idea
- Definition
- Kernel examples for:
 - point line cover problem
 - vertex cover problem
- ▶ Kernelization ⇔ FPT
- Crown lemma and crown decomposition
 - smaller kernel for vertex cover problem
 - kernel for dual colorability problem
- Sunflower lemma
 - kernel for hitting set problem

 $kernel \Leftrightarrow FPT$

Kernelization methods (informally)

Kernelization is:

definition fpt

- a systematic study of polynomial-time preprocessing algorithms,
- an important tool in the design of parameterized algorithms.

teasers books kerneliz

ation examples ke

Kernelization methods (informally)

Kernelization is:

definition fpt

- a systematic study of polynomial-time preprocessing algorithms,
- an important tool in the design of parameterized algorithms.

 Often a collection of efficient preprocessing rules. teasers books kernel

ation examples ke

Kernelization methods (informally)

Kernelization is:

definition fpt

- ► a systematic study of polynomial-time preprocessing algorithms,
- an important tool in the design of parameterized algorithms.

 \rightarrow Application of rule 2

- Often a collection of efficient preprocessing rules.
- Transform an instance x into a smaller equivalent instance x'.

teasers books kern

ation examples k

Kernelization methods (informally)

Kernelization is:

- a systematic study of polynomial-time preprocessing algorithms,
- an important tool in the design of parameterized algorithms.

 \rightarrow Application of rule 2

- Often a collection of efficient preprocessing rules.
- Transform an instance x into a smaller equivalent instance x'.
- ► Hopefully, $|x'| \le g(\kappa(x))$. → use a (non-efficient) exact algorithm.

overview motivation definition (pt teasers books kernelization examples kernel ↔ FPT crown dec sunflower lemma tomorrow

Kernelization (formally)

Definition

Let $\langle Q, \kappa \rangle$ be a parameterized problem over Σ . A *kernelization* of $\langle Q, \kappa \rangle$ is a function $K: \Sigma^* \to \Sigma^*$ such that:

- (K1) For all $x \in \Sigma^*$: $(x \in Q \iff K(x) \in Q)$.
- (K2) K is polynomial-time computable.
- (K3) There is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^* : |K(x)| \le h(\kappa(x))$.

overview motivation definition fpt teasers books kernelization examples kernel ⇔ FPT crown dec sunflower lemma tomorrow

Kernelization (formally)

Definition

Let $\langle Q, \kappa \rangle$ be a parameterized problem over Σ . A *kernelization* of $\langle Q, \kappa \rangle$ is a function $K: \Sigma^* \to \Sigma^*$ such that:

- (K1) For all $x \in \Sigma^*$: $(x \in Q \iff K(x) \in Q)$.
- (K2) K is polynomial-time computable.
- (K3) There is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^* : |K(x)| \le h(\kappa(x))$.

We say that such a kernelization K is *polynomial* (resp. *linear*) (and that Q has a polynomial (resp. *linear*) kernel) if the function h is polynomial (resp. linear).

overview motivation definition fpt teasers books kernelization examples kernel ⇔ FPT crown dec sunflower lemma tomorrov

Kernelization (formally)

Definition

Let $\langle Q, \kappa \rangle$ be a parameterized problem over Σ . A *kernelization* of $\langle Q, \kappa \rangle$ is a function $K: \Sigma^* \to \Sigma^*$ such that:

- (K1) For all $x \in \Sigma^*$: $(x \in Q \iff K(x) \in Q)$.
- (K2) K is polynomial-time computable.
- (K3) There is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^* : |K(x)| \le h(\kappa(x))$.
- We say that such a kernelization K is *polynomial* (resp. *linear*) (and that Q has a polynomial (resp. *linear*) kernel) if the function h is polynomial (resp. linear).

Lemma

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

overview motivation definition fpt teasers books kernelization examples kernel 👄 FPT crown dec sunflower lemma tomorrov

Kernelization (formally)

Definition

Let $\langle Q, \kappa \rangle$ be a parameterized problem over Σ . A *kernelization* of $\langle Q, \kappa \rangle$ is a function $K: \Sigma^* \to \Sigma^*$ such that:

- (K1) For all $x \in \Sigma^*$: $(x \in Q \iff K(x) \in Q)$.
- (K2) K is polynomial-time computable.
- (K3) There is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^* : |K(x)| \le h(\kappa(x))$.
- We say that such a kernelization K is *polynomial* (resp. *linear*) (and that Q has a polynomial (resp. *linear*) kernel) if the function h is polynomial (resp. linear).

Lemma

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

Lemma

```
If \langle Q, \kappa \rangle \in \mathsf{FPT}, the \langle Q, \kappa \rangle admits a kernel.
```

overview m

n examples l

kernel ⇔ FPT crown dec sunflower lemma

lemma tomorrow

The (parameterized) Point Line Cover Problem

p-POINT-LINE-COVER:

Given: n points in the plane and an integer k.

Parameter: The integer k.

Question: Do there exist *k* lines that cover all points?

overview m

n examples l

The (parameterized) Point Line Cover Problem

p-POINT-LINE-COVER:

Given: n points in the plane and an integer k.

Parameter: The integer k.

Question: Do there exist k lines that cover all points?

Rule 1:

If we have a line that hits k + 1 or more points, then:

i) include it in the solution;

ii) remove the points hit by the line;

iii) set k = k - 1.
n examples l

The (parameterized) Point Line Cover Problem

p-POINT-LINE-COVER:

Given: n points in the plane and an integer k.

Parameter: The integer k.

Question: Do there exist k lines that cover all points?

Rule 1:

If we have a line that hits k + 1 or more points, then:

i) include it in the solution;

ii) remove the points hit by the line;

iii) set k := k - 1.

Observation: Let (x, κ) be a yes instance of the p-Point-Line-Cover such that Rule 1 cannot be applied. Then $n \le k^2$ holds.

kernelization

n examples l

kernel ⇔ FPT crown dec sunflower lemma t

ma tomorrow

The (parameterized) Point Line Cover Problem

p-POINT-LINE-COVER:

Given: n points in the plane and an integer k.

Parameter: The integer k.

Question: Do there exist k lines that cover all points?

Rule 1:

If we have a line that hits k + 1 or more points, then:

i) include it in the solution;

ii) remove the points hit by the line;

iii) set k := k - 1.

Observation: Let (x, κ) be a yes instance of the p-Point-Line-Cover such that Rule 1 cannot be applied. Then $n \le k^2$ holds.

Rule 2:

If we cannot apply Rule 1, and we have more than k^2 points, then say no, and return a trivial no instance.

kernelization

n examples l

kernel ⇔ FPT crown dec sunflower lemma

ma tomorrow

The (parameterized) Point Line Cover Problem

p-POINT-LINE-COVER:

Given: n points in the plane and an integer k.

Parameter: The integer k.

Question: Do there exist k lines that cover all points?

Rule 1:

If we have a line that hits k + 1 or more points, then:

i) include it in the solution;

ii) remove the points hit by the line;

```
iii) set k := k - 1.
```

Observation: Let (x, κ) be a yes instance of the p-Point-Line-Cover such that Rule 1 cannot be applied. Then $n \le k^2$ holds.

Rule 2:

If we cannot apply Rule 1, and we have more than k^2 points, then say no, and return a trivial no instance.

Proposition

p-POINT-LINE-COVER \in **FPT**: it admits a kernel of size with k^2 points.

definition fpt teasers

books ker

n examples l

oles kernel ⇔ FPT crown dec

ec sunflower lemma tomorro

The (parameterized) Vertex Cover Problem

p-VERTEX-COVER:

Given: A graph G, and an integer k.Parameter: The integer k.Question: Does there exists a vertex cover of size at most k?

Definition

Let *G* be a graph and $S \subseteq V(G)$. The set *S* is called a vertex cover if for every edge of *G* at least one of its endpoints is in *S*.

definition fpt teasers

s kernelizatio

examples k

kernel ↔ FPT crown dec sunflower lemma

emma tomorrow

The (parameterized) Vertex Cover Problem

p-VERTEX-COVER:

Given: A graph G, and an integer k.Parameter: The integer k.Question: Does there exists a vertex cover of size at most k?

Definition

Let G be a graph and $S \subseteq V(G)$. The set S is called a vertex cover if for every edge of G at least one of its endpoints is in S.

Exercise

Find an $O(k^2)$ kernel for p-VERTEX-COVER.

examples ke

kernel ⇔ FPT

The (parameterized) Vertex Cover Problem (Buss kernel)

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \\ v, k)$

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \setminus v, k)$

Rule 2: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k - 1)$

- **Rule 1**: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \setminus v, k)$
- **Rule 2**: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k 1)$

Observations

► After exhaustive application of Rule 1 and Rule 2 all vertices have degree between 1 and *k*.

- **Rule 1**: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \\ v, k)$
- **Rule 2**: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k 1)$

Observations

- ► After exhaustive application of Rule 1 and Rule 2 all vertices have degree between 1 and *k*.
- ▶ If *G* has maximum degree *d*, *k* vertices can cover $\leq k \cdot d$ edges.

- **Rule 1**: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \\ v, k)$
- **Rule 2**: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k 1)$

Observations

- ► After exhaustive application of Rule 1 and Rule 2 all vertices have degree between 1 and *k*.
- ▶ If *G* has maximum degree *d*, *k* vertices can cover $\leq k \cdot d$ edges.
- If G has a vertex cover of ≤ k vertices after exhaustive application of Rules 1 & 2, then G has ≤ k² edges (and ≤ k² + k vertices).

- **Rule 1**: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \setminus v, k)$
- **Rule 2**: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k 1)$

Observations

If G has a vertex cover of ≤ k vertices after exhaustive application of Rules 1 & 2, then G has ≤ k² edges (and ≤ k² + k vertices).

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \\ v, k)$

Rule 2: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k - 1)$

Observations

If G has a vertex cover of ≤ k vertices after exhaustive application of Rules 1 & 2, then G has ≤ k² edges (and ≤ k² + k vertices).

Rule 3: Let (G, k) be an instance to which Rules 1 & 2 are not applicable. If *G* has $> k^2 + k$ vertices, or $> k^2$ edges, then (G, k) is a no-instance that can be replaced by a trivial no-instance.

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is $(G \\ v, k)$

Rule 2: If there is a vertex v of degree at least k + 1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \\ v; k - 1)$

Observations

If G has a vertex cover of ≤ k vertices after exhaustive application of Rules 1 & 2, then G has ≤ k² edges (and ≤ k² + k vertices).

Rule 3: Let (G, k) be an instance to which Rules 1 & 2 are not applicable. If *G* has $> k^2 + k$ vertices, or $> k^2$ edges, then (G, k) is a no-instance that can be replaced by a trivial no-instance.

Theorem (Samuel Buss)

p-VERTEX-COVER \in FPT, because it admits a kernel with at most $O(k^2)$ vertices and $O(k^2)$ edges.

Kernelization \Rightarrow FPT

Exercise

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

 $overview \qquad motivation \qquad definition \ fpt \qquad teasers \qquad books \qquad kernelization \qquad examples \qquad kernel \Leftrightarrow {\sf FPT} \qquad crown \ dec \qquad sunflower \ lemma \qquad tomorrow \qquad tomorrow \qquad teasers \qquad t$

Kernelization \Rightarrow FPT

Exercise

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

Definitions

A *kernelization* of $\langle Q, \kappa \rangle$ is a function $K: \Sigma^* \to \Sigma^*$ such that:

- (K1) For all $x \in \Sigma^*$: $(x \in Q \iff K(x) \in Q)$.
- (K2) K is polynomial-time computable.
- (K3) There is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^* : |K(x)| \le h(\kappa(x))$.

A parameterized problem (Q, κ) is *fixed-parameter tractable* if:

 $\exists f : \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x \in \Sigma^* \\ \left[\mathbb{A} \text{ decides if } x \in Q \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \right].$

FPT := complexity class of all fixed-parameter tractable problems.

Kernelization \Rightarrow FPT

Lemma

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

Kernelization \Rightarrow FPT

Lemma

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

$$\begin{array}{c|c} & \langle Q, \kappa \rangle \ a \ parameterized \ problem, \ Q \in \mathbb{Z}^{*} \\ \hline \text{Definition: } & \kappa: \mathbb{Z}^{*} \rightarrow \mathbb{Z}^{*} \ a \ kernelization \ for \ \langle Q, \kappa \rangle \ if: \\ \hline (\kappa_{1}) \ \forall x \in \mathbb{Z}^{*} (x \in Q \iff \kappa(x) \in Q) \\ \hline (\kappa_{2}) \ \kappa \ is \ polytime \ Computable \\ \hline (\kappa_{3}) \ \exists h: \mathbb{N} \rightarrow \mathbb{N} \ \forall x \in \mathbb{Z}^{*} (1 \ \kappa(x)] \in \mathbb{Q} \ (\kappa(x))). \\ \hline \hline \text{Proposition: } If \ \langle Q, \kappa \rangle \ is \ decidable, \ and \ has \ kernelization \ K, \ then \ \langle Q, \kappa \rangle \in \text{FPT} \\ \hline \hline \text{Proof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ and \ has \ kernelization \ K, \ then \ \langle Q, \kappa \rangle \in \text{FPT} \\ \hline \hline \text{Proof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ and \ has \ kernelization \ K, \ then \ \langle Q, \kappa \rangle \in \text{FPT} \\ \hline \hline \text{Proof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ there \ is \ an \ algorithm \ A \ that \ decides \ instances \ xe^{24} \\ \hline \hline \ \text{Proof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ there \ is \ an \ algorithm \ A \ that \ decides \ instances \ xe^{24} \\ \hline \hline \ \text{Roof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ there \ is \ an \ algorithm \ A \ that \ decides \ instances \ xe^{24} \\ \hline \ \ \text{Roof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ stances \ for \ Some \ Computable \ function \ f: \ \mathcal{N} \rightarrow \mathcal{N}. \\ \hline \ \ \text{Roof: } \ Since \ \langle Q, \kappa \rangle \ is \ decidable, \ algorithm \ A \ k \ for \ \kappa \ (time \ bounded \ by \ f(\kappa)) \\ \hline \ \ \text{Roof: } \ Since \ \langle M, \kappa \rangle \ e \ (k_{k}) \ e \$$

Clemens Grabmayer

An Introduction to Parameterized Complexity

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial.

 $overview \qquad motivation \qquad definition \ fpt \qquad teasers \qquad books \qquad kernelization \qquad examples \qquad kernel \Leftrightarrow {\sf FPT} \qquad crown \ dec \qquad sunflower \ lemma \qquad tomorrow \qquad tomorrow \qquad teasers \qquad t$

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$.

 $overview \qquad motivation \qquad definition \ fpt \qquad teasers \qquad books \qquad kernelization \qquad examples \qquad kernel \Leftrightarrow {\sf FPT} \qquad crown \ dec \qquad sunflower \ lemma \qquad tomorrow \qquad tomorrow \qquad teasers \qquad t$

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$. If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$.

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$. If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$. Otherwise we have $\emptyset \subseteq Q \subseteq \Sigma^*$, and we choose some $x_0 \in Q$, and $x_1 \in \Sigma^* \setminus Q$.

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$. If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$. Otherwise we have $\emptyset \subsetneq Q \subsetneq \Sigma^*$, and we choose some $x_0 \in Q$, and $x_1 \in \Sigma^* \setminus Q$. We define the polynomial-time computable function $K : \Sigma^* \to \Sigma^*$ by:

$$K(x) \coloneqq \begin{cases} x_0 & \dots & \mathbb{A} \text{ accepts } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x_1 & \dots & \mathbb{A} \text{ rejects } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x & \dots & \mathbb{A} \text{ does not terminate in } \leq p(|x|) \cdot p(|x|) \text{ steps.} \end{cases}$$

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$. If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$. Otherwise we have $\emptyset \subsetneq Q \gneqq \Sigma^*$, and we choose some $x_0 \in Q$, and $x_1 \in \Sigma^* \setminus Q$. We define the polynomial-time computable function $K : \Sigma^* \to \Sigma^*$ by:

$$K(x) \coloneqq \begin{cases} x_0 & \dots & \mathbb{A} \text{ accepts } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x_1 & \dots & \mathbb{A} \text{ rejects } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x & \dots & \mathbb{A} \text{ does not terminate in } \leq p(|x|) \cdot p(|x|) \text{ steps.} \end{cases}$$

In the last case (K(x) = x) we have $p(|x|) \cdot p(|x|) \leq f(\kappa(x)) \cdot p(|x|)$,

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$. If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$. Otherwise we have $\emptyset \subsetneq Q \subsetneq \Sigma^*$, and we choose some $x_0 \in Q$, and $x_1 \in \Sigma^* \setminus Q$. We define the polynomial-time computable function $K : \Sigma^* \to \Sigma^*$ by:

$$K(x) \coloneqq \begin{cases} x_0 & \dots & \mathbb{A} \text{ accepts } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x_1 & \dots & \mathbb{A} \text{ rejects } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x & \dots & \mathbb{A} \text{ does not terminate in } \leq p(|x|) \cdot p(|x|) \text{ steps.} \end{cases}$$

In the last case (K(x) = x) we have $p(|x|) \cdot p(|x|) \le f(\kappa(x)) \cdot p(|x|)$, and hence $|K(x)| = |x| \le p(|x|) \le f(\kappa(x))$.

$FPT \Rightarrow Kernelization$

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let \mathbb{A} be an algorithm that solves $\langle Q, \kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f : \mathbb{N} \to \mathbb{N}$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max\{n, 1\}$ for all $n \in \mathbb{N}$. If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$. Otherwise we have $\emptyset \subsetneq Q \subsetneq \Sigma^*$, and we choose some $x_0 \in Q$, and $x_1 \in \Sigma^* \setminus Q$. We define the polynomial-time computable function $K : \Sigma^* \to \Sigma^*$ by:

$$K(x) \coloneqq \begin{cases} x_0 & \dots & \mathbb{A} \text{ accepts } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x_1 & \dots & \mathbb{A} \text{ rejects } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x & \dots & \mathbb{A} \text{ does not terminate in } \leq p(|x|) \cdot p(|x|) \text{ steps.} \end{cases}$$

In the last case (K(x) = x) we have $p(|x|) \cdot p(|x|) \leq f(\kappa(x)) \cdot p(|x|)$, and hence $|K(x)| = |x| \leq p(|x|) \leq f(\kappa(x))$. Therefore K is a kernel.

crown dec

Crown Decomposition and Crown Lemma

A crown decomposition of a graph G is a partitioning (C, H, R)of V(G), such that:

- C is nonempty.
- C is an independent set.
- H separates C and R. (3)
- G contains a matching of H(4)into C.

definition fpt

teasers

kernelization

tion examples

es kernel ⇔ FPT

crown dec sunflower lemma to

Crown Decomposition and Crown Lemma

A **crown decomposition** of a graph G is a partitioning (C, H, R) of V(G), such that:

- C is nonempty.
- $\bigcirc C$ is an independent set.
- \bigcirc H separates C and R.
- G contains a matching of *H* into *C*.

Crown Lemma (< results by Kőnig, Hall)

Let G be a graph with no isolated vertices and with at least 3k + 1 vertices. There is a polynomial-time algorithm that:

- either finds a matching of size k + 1 in G;
- or finds a crown decomposition of G.

definition fpt t

s books k

elization examp

examples kern

kernel ⇔ FPT crown dec sunflower lemma

a tomorrow

Crown Decomposition and Crown Lemma

A **crown decomposition** of a graph G is a partitioning (C, H, R) of V(G), such that:

- C is nonempty.
- \bigcirc C is an independent set.
- \bigcirc H separates C and R.
- G contains a matching of *H* into *C*.

Crown Lemma (< results by Kőnig, Hall)

Let G be a graph with no isolated vertices and with at least 3k + 1 vertices. There is a polynomial-time algorithm that:

- either finds a matching of size k + 1 in G;
- or finds a crown decomposition of G.

Exercise

Apply the Crown Lemma to the Vertex Cover Problem.

examples ke

 $kernel \Leftrightarrow FPT$ crown dec

sunflower lemma tomorrow

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G, and an integer k.

Parameter: The integer k.

Question: Does there exists a vertex cover of size at most k?

vation definition fpt

t teasers

kernelization

i examples k

rnel ⇔ FPT crown dec

sunflower lemma tomorrow

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G, and an integer k.

Parameter: The integer k.

Question: Does there exists a vertex cover of size at most k?

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is (G - v, k)

definition fpt teasers

s books ke

on examples

kernel ⇔ FPT cr

crown dec sunflower lemma tomorr

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G, and an integer k.

Parameter: The integer *k*.

Question: Does there exists a vertex cover of size at most k?

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is (G - v, k)

Rule 2: If $|(V(G))| \ge 3k + 1$, apply the Crown Lemma.

- If it returns a matching of size k + 1, then conclude that (G,k) is a no-instance
- If it returns a crown decomposition $V(G) = C \cup H \cup R$:
 - Pick the vertices in H in the solution

definition fpt teasers

s kernelizatior

n examples k

ernel ⇔ FPT 👘 crown dec

sunflower lemma tomorrow

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G, and an integer k.

Parameter: The integer *k*.

Question: Does there exists a vertex cover of size at most k?

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is (G - v, k)

Rule 2: If $|(V(G))| \ge 3k + 1$, apply the Crown Lemma.

- If it returns a matching of size k + 1, then conclude that (G,k) is a no-instance
- If it returns a crown decomposition $V(G) = C \cup H \cup R$:
 - Pick the vertices in H in the solution
 - Reduce (G, k) to (G H, k |H|)

kernelization

n examples k

kernel ⇔ FPT crown dec

dec sunflower lemma tomorro

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G, and an integer k.

Parameter: The integer *k*.

Question: Does there exists a vertex cover of size at most k?

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is (G - v, k)

Rule 2: If $|(V(G))| \ge 3k + 1$, apply the Crown Lemma.

- If it returns a matching of size k + 1, then conclude that (G,k) is a no-instance
- If it returns a crown decomposition $V(G) = C \cup H \cup R$:
 - Pick the vertices in H in the solution
 - Reduce (G, k) to (G H, k |H|)
 - ▶ Reduce (G − H, k − |H|) to (G − H − C, k − |H|) by using Rule 1 (note that vertices in C are isolated)

n definition fpt

teasers boo

kernelization

examples k

 $kernel \Leftrightarrow FPT$ crown dec

ec sunflower lemma tomorro

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G, and an integer k.

Parameter: The integer k.

Question: Does there exists a vertex cover of size at most k?

Rule 1: If *G* contains an isolated vertex *v*, delete *v* from *G*. The new instance is (G - v, k)

Rule 2: If $|(V(G))| \ge 3k + 1$, apply the Crown Lemma.

- If it returns a matching of size k + 1, then conclude that (G,k) is a no-instance
- If it returns a crown decomposition $V(G) = C \cup H \cup R$:
 - Pick the vertices in H in the solution
 - Reduce (G, k) to (G H, k |H|)
 - ▶ Reduce (G H, k |H|) to (G H C, k |H|) by using Rule 1 (note that vertices in C are isolated)

Theorem

p-VERTEX-COVER admits a kernel with at most 3k vertices.

definition fpt teasers

books ker

ion examples

kernel ⇔ FPT crown dec su

sunflower lemma tomorrow

The (parameterized) Dual-Coloring Problem

p-COLORABILITY:

Given: A graph $G = \langle V, E \rangle$ on *n* vertices and an integer *k*. **Parameter:** The integer *k*. **Question:** Is *G k*-colorable?

Definition

Let $k \in \mathbb{N}$. A graph $G = \langle V, E \rangle$ is *k*-colorable if there is a function $C : V \to \{1, \dots, k\}$ such that $C(u) \neq C(v)$ for all edges $\{u, v\} \in E$.

definition fpt teasers

kernelizatior

on examples

kernel ⇔ FPT crown dec sunflower lemma

na tomorrow

The (parameterized) Dual-Coloring Problem

p-DUAL-COLORABILITY:

Given: A graph $G = \langle V, E \rangle$ on *n* vertices and an integer *k*. **Parameter:** The integer *k*. **Question:** Is G(n - k)-colorable?

Definition

Let $k \in \mathbb{N}$. A graph $G = \langle V, E \rangle$ is *k*-colorable if there is a function $C : V \to \{1, \dots, k\}$ such that $C(u) \neq C(v)$ for all edges $\{u, v\} \in E$.
overview m

definition fpt teasers

kernelization

n examples

kernel ⇔ FPT crown dec sunflower lemma

a tomorrow

The (parameterized) Dual-Coloring Problem

p-DUAL-COLORABILITY:

Given: A graph $G = \langle V, E \rangle$ on *n* vertices and an integer *k*. **Parameter:** The integer *k*. **Question:** Is G(n - k)-colorable?

Definition

Let $k \in \mathbb{N}$. A graph $G = \langle V, E \rangle$ is *k*-colorable if there is a function $C : V \to \{1, \dots, k\}$ such that $C(u) \neq C(v)$ for all edges $\{u, v\} \in E$.

Exercise

Obtain a kernel with O(k) vertices using crown decomposition.

ks kernelizatio

ation examples ke

s kernel ⇔ FPT crown dec sunflower lemma tomor

The Dual-Coloring Problem

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from *G* by saying that $e \in \overline{E}$ iff $e \notin E$.

If |(V(G))| > 3k, apply the Crown Lemma to \overline{G} .

► If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from *G* by saying that $e \in \overline{E}$ iff $e \notin E$.

- ► If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance
- If it returns crown decomposition $V(G) = V(\overline{G}) = C \cup H \cup R$:

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from *G* by saying that $e \in \overline{E}$ iff $e \notin E$.

- ► If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance
- If it returns crown decomposition $V(G) = V(\overline{G}) = C \cup H \cup R$:
 - The vertices in *H* can be saved.

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from *G* by saying that $e \in \overline{E}$ iff $e \notin E$.

- ► If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance
- ▶ If it returns crown decomposition $V(G) = V(\overline{G}) = C \cup H \cup R$:
 - The vertices in *H* can be saved.
 - ▶ Reduce (G, k) to (G H C, k |H|) if |H| < k, and otherwise to a yes-instance</p>

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from *G* by saying that $e \in \overline{E}$ iff $e \notin E$.

- ► If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance
- ▶ If it returns crown decomposition $V(G) = V(\overline{G}) = C \cup H \cup R$:
 - The vertices in *H* can be saved.
 - ▶ Reduce (G, k) to (G H C, k |H|) if |H| < k, and otherwise to a yes-instance
 - ► Note that the vertices in C belong to a clique in G(V, E), that is we need |C| colors, and that we need different colors for R.

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove *I* from *G*, and color them with one color. The new instance is (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from *G* by saying that $e \in \overline{E}$ iff $e \notin E$.

If |(V(G))| > 3k, apply the Crown Lemma to \overline{G} .

- ► If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance
- ▶ If it returns crown decomposition $V(G) = V(\overline{G}) = C \cup H \cup R$:
 - The vertices in *H* can be saved.
 - ▶ Reduce (*G*, *k*) to (*G* − *H* − *C*, *k* − |*H*|) if |*H*| < *k*, and otherwise to a yes-instance
 - ► Note that the vertices in C belong to a clique in G(V, E), that is we need |C| colors, and that we need different colors for R.

Theorem

p-DUAL-COLORING admits a kernel with at most 3k vertices.

Sunflower Lemma

Definition

A sunflower with k petals and a core Y is a collection of sets S_1, \ldots, S_k such that $S_i \cap S_j = Y$ for all $i \neq j$. The sets $S_i \setminus Y$ are petals and they must be non-empty.

 $overview \qquad motivation \qquad definition \ fpt \qquad teasers \qquad books \qquad kernelization \qquad examples \qquad kernel \leftrightarrow \textit{FPT} \qquad crown \ dec \qquad sunflower \ lemma \qquad tomorrow \qquad dec \qquad dec$

Sunflower Lemma

Definition

A sunflower with k petals and a core Y is a collection of sets S_1, \ldots, S_k such that $S_i \cap S_j = Y$ for all $i \neq j$. The sets $S_i \setminus Y$ are petals and they must be non-empty.

A sunflower with 6 petals and a core $Y = \{x_2, x_5\}$. $S_1 = \{x_2, x_3, x_5, x_{10}\}$ $S_2 = \{x_1, x_2, x_5\}$ $S_3 = \{x_2, x_5, x_6, x_{11}\}$...

Sunflower Lemma

Definition

A sunflower with k petals and a core Y is a collection of sets S_1, \ldots, S_k such that $S_i \cap S_j = Y$ for all $i \neq j$. The sets $S_i \setminus Y$ are petals and they must be non-empty.

Sunflower Lemma (Erdős, Rado)

Let \mathcal{A} be a family of sets (without duplicates) over a universe U such that each set in \mathcal{A} has cardinality = d. If $|\mathcal{A}| > d! (k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|$, |U|, and k. rview motivation definition fpt teasers books kernelization examples kernel 👄 FPT crown dec sunflower lemma tomorrow

Application to *d*-Hitting Set

Sunflower Lemma (Erdős, Rado)

Let \mathcal{A} be a family of sets (without duplicates) over a universe U such that each set in \mathcal{A} has cardinality = d. If $|\mathcal{A}| > d! (k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|, |U|$, and k. v motivation definition fpt teasers books kernelization examples kernel \Leftrightarrow FPT crown dec sunflower lemma tomorrow

Application to *d*-Hitting Set

Sunflower Lemma (Erdős, Rado)

Let \mathcal{A} be a family of sets (without duplicates) over a universe U such that each set in \mathcal{A} has cardinality = d. If $|\mathcal{A}| > d! (k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|$, |U|, and k.

Parameterized *d*-Hitting Set Problem

```
p-d-HITTING-SET:
```

Given: A family A of sets over a universe U, where each set has cardinality $\leq d$ and a positive integer k,

```
Parameter: The integer k.
```

Question: Does there exists a subset $H \subseteq U$ of size at most

```
k such that H intersects each set in A?
```

motivation definition fpt teasers books kernelization examples kernel 👄 FPT crown dec sunflower lemma tomorrow

Application to *d*-Hitting Set

Sunflower Lemma (Erdős, Rado)

Let \mathcal{A} be a family of sets (without duplicates) over a universe U such that each set in \mathcal{A} has cardinality = d. If $|\mathcal{A}| > d! (k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|$, |U|, and k.

Parameterized *d*-Hitting Set Problem

```
p-d-HITTING-SET:
```

Given: A family A of sets over a universe U, where each set has cardinality $\leq d$ and a positive integer k,

```
Parameter: The integer k.
```

Question: Does there exists a subset $H \subseteq U$ of size at most

k such that H intersects each set in A?

Exercise

Apply the sunflower lemma.

motivation definition fpt teasers books kernelization examples kernel 👄 FPT crown dec sunflower lemma tomorrow

Application to *d*-Hitting Set

Sunflower Lemma (Erdős, Rado)

Let \mathcal{A} be a family of sets (without duplicates) over a universe U such that each set in \mathcal{A} has cardinality = d. If $|\mathcal{A}| > d! (k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|$, |U|, and k.

Parameterized *d*-Hitting Set Problem

```
p-d-HITTING-SET:
```

Given: A family A of sets over a universe U, where each set has cardinality $\leq d$ and a positive integer k,

```
Parameter: The integer k.
```

Question: Does there exists a subset $H \subseteq U$ of size at most

k such that H intersects each set in A?

Theorem

p-*d*-HITTING-SET has a kernel with $\leq d!k^d d$ sets $\& \leq d!k^d d^2$ elements.

Observation

If \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of k+1 sets, then every hitting set H of A with $|H| \leq k$ must intersect the core Y of S. Otherwise it is a no-instance, because H cannot intersect each of the k + 1 petals $S_i \smallsetminus Y$.

Observation

If \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of k + 1 sets, then every hitting set H of \mathcal{A} with $|H| \le k$ must intersect the core Y of \mathcal{S} . Otherwise it is a no-instance, because H cannot intersect each of the k + 1 petals $S_i \setminus Y$.

Rule **HS.1**: Let (U, \mathcal{A}, k) be an instance of *d*-HITTING SET. Assume that \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \dots, S_{k+1}\}$ of cardinality k + 1 with core Y. Then return (U', \mathcal{A}', k) , where $\mathcal{A}' := (\mathcal{A} \setminus \mathcal{S}) \cup Y$, $U' := \bigcup \mathcal{A}' = \bigcup_{X \in \mathcal{A}'} X$.

Proof (kernel of p-d-HITTING-SET with $\leq d! \mathbf{k}^d d$ sets and $\leq d! \mathbf{k}^d d^2$ elements).

If for some $d' \in \{1, ..., d\}$, the number of sets in \mathcal{A} of size = d' is more than $d'!k^{d'}$, then the sunflower lemma yields a sunflower of size k + 1.

s kernelization

ation examples kernel ⇔ FPT

Application to *d*-Hitting Set

Observation

If \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of k + 1 sets, then every hitting set H of \mathcal{A} with $|H| \le k$ must intersect the core Y of \mathcal{S} . Otherwise it is a no-instance, because H cannot intersect each of the k + 1 petals $S_i \setminus Y$.

Rule **HS.1**: Let (U, \mathcal{A}, k) be an instance of *d*-HITTING SET. Assume that \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \dots, S_{k+1}\}$ of cardinality k + 1 with core Y. Then return (U', \mathcal{A}', k) , where $\mathcal{A}' := (\mathcal{A} \setminus \mathcal{S}) \cup Y$, $U' := \bigcup \mathcal{A}' = \bigcup_{X \in \mathcal{A}'} X$.

Proof (kernel of p-d-HITTING-SET with $\leq d! \mathbf{k}^d d$ sets and $\leq d! \mathbf{k}^d d^2$ elements).

If for some $d' \in \{1, ..., d\}$, the number of sets in \mathcal{A} of size = d' is more than $d'!k^{d'}$, then the sunflower lemma yields a sunflower of size k + 1. Rule **HS.1** applies.

Observation

If \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of k + 1 sets, then every hitting set H of \mathcal{A} with $|H| \le k$ must intersect the core Y of \mathcal{S} . Otherwise it is a no-instance, because H cannot intersect each of the k + 1 petals $S_i \setminus Y$.

Rule **HS.1**: Let (U, \mathcal{A}, k) be an instance of *d*-HITTING SET. Assume that \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \dots, S_{k+1}\}$ of cardinality k + 1 with core Y. Then return (U', \mathcal{A}', k) , where $\mathcal{A}' := (\mathcal{A} \setminus \mathcal{S}) \cup Y$, $U' := \bigcup \mathcal{A}' = \bigcup_{X \in \mathcal{A}'} X$.

Proof (kernel of p-d-HITTING-SET with $\leq d! \mathbf{k}^d d$ sets and $\leq d! \mathbf{k}^d d^2$ elements).

If for some $d' \in \{1, ..., d\}$, the number of sets in \mathcal{A} of size = d' is more than $d'!k^{d'}$, then the sunflower lemma yields a sunflower of size k + 1. Rule **HS.1** applies. By applying this rule exhaustively, we obtain a new family of sets \mathcal{A}' with $\leq d'!k^{d'}$ sets of size = d' for every $d' \in \{1, ..., d\}$.

Observation

If \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of k + 1 sets, then every hitting set H of \mathcal{A} with $|H| \le k$ must intersect the core Y of \mathcal{S} . Otherwise it is a no-instance, because H cannot intersect each of the k + 1 petals $S_i \setminus Y$.

Rule **HS.1**: Let (U, \mathcal{A}, k) be an instance of *d*-HITTING SET. Assume that \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \dots, S_{k+1}\}$ of cardinality k + 1 with core Y. Then return (U', \mathcal{A}', k) , where $\mathcal{A}' := (\mathcal{A} \setminus \mathcal{S}) \cup Y$, $U' := \bigcup \mathcal{A}' = \bigcup_{X \in \mathcal{A}'} X$.

Proof (kernel of p-d-HITTING-SET with $\leq d! \mathbf{k}^d d$ sets and $\leq d! \mathbf{k}^d d^2$ elements).

If for some $d' \in \{1, ..., d\}$, the number of sets in \mathcal{A} of size = d' is more than $d'!k^{d'}$, then the sunflower lemma yields a sunflower of size k + 1. Rule **HS.1** applies. By applying this rule exhaustively, we obtain a new family of sets \mathcal{A}' with $\leq d'!k^{d'}$ sets of size = d' for every $d' \in \{1, ..., d\}$. Hence $|\mathcal{A}'| \leq d!k^d d$ and $|U'| = d!k^d d^2$.

Observation

If \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of k+1 sets, then every hitting set H of A with $|H| \leq k$ must intersect the core Y of S. Otherwise it is a no-instance, because H cannot intersect each of the k+1 petals $S_i \smallsetminus Y$.

Rule **HS.1**: Let (U, A, k) be an instance of *d*-HITTING SET. Assume that \mathcal{A} contains a sunflower $\mathcal{S} = \{S_1, \ldots, S_{k+1}\}$ of cardinality k + 1 with core Y. Then return $(U', \mathcal{A}', \mathbf{k})$, where $\mathcal{A}' \coloneqq (\mathcal{A} \setminus \mathcal{S}) \cup Y$, $U' \coloneqq \bigcup \mathcal{A}' = \bigcup_{X \in \mathcal{A}'} X.$

Proof (kernel of p-d-HITTING-SET with $\leq d!k^d d$ sets and $\leq d!k^d d^2$ elements).

If for some $d' \in \{1, ..., d\}$, the number of sets in \mathcal{A} of size = d' is more than $d'!k^{d'}$, then the sunflower lemma yields a sunflower of size k + 1. Rule HS.1 applies. By applying this rule exhaustively, we obtain a new family of sets \mathcal{A}' with $\leq d'!k^{d'}$ sets of size = d' for every $d' \in \{1, ..., d\}$. Hence $|\mathcal{A}'| \leq d! k^d d$ and $|U'| = d! k^d d^2$. If $\emptyset \in \mathcal{A}'$ (a sunflower had an empty core), then it is a no instance.

Tomorrow

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded graph width			FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies