Equivalence of Stream Specifications

Jörg Endrullis^, Clemens Grabmayer ${ }^{\dagger}$, Dimitri Hendriks*, Jan Willem Klop ${ }^{\star}$, and Larry Moss ${ }^{\ddagger}$

\dagger Universiteit Utrecht
* Vrije Universiteit, Amsterdam
₹ Indiana University

$2^{\text {nd }}$ Workshop on Proof Theory and Rewriting Obergurgl, 29 ${ }^{\text {th }}$ March 2010

Overview

- Ad: International Summer School Rewriting in Utrecht 3-8 July http://www.utrechtsummerschool.nl
- ROS: Realising Optimal Sharing (NWO-project)
- Equivalence of stream specifications
- stream specifications
- equivalence of stream specifications
- productivity vs. unique solvability
- zip-specifications, Larry Moss' question
- solution: decidability of equivalence for zip-specs
- extensions of the result
- Summary

Overview

1. ROS

2. Stream Equality
3. Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Realising Optimal Sharing (ROS)

NWO-Project (2009-2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)
- Study optimal-sharing implementations of the λ-calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)
- Phil: Vincent van Oostrom (principal investigator), CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student/4 years)

Realising Optimal Sharing (ROS)

NWO-Project (2009-2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)

Aims

- Study optimal-sharing implementations of the λ-calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)
- Phil: Vincent van Oostrom (principal investigator), CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student/4 years)

Realising Optimal Sharing (ROS)

NWO-Project (2009-2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)

Aims

- Study optimal-sharing implementations of the λ-calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)

People

- Phil: Vincent van Oostrom (principal investigator), CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student/4 years)

Research questions

Aims (more detail)

- Theory: contribute to the graph rewrite theory of optimal implementations of rewrite systems, e.g.:
- refine existing implementations of weak β-reduction by OTRSs
- refine, adapt for the practice, and compare with other approaches, the LamdaScope optimal implementation of λ-calculus by interaction nets.
- relation semantics for graph rewrite systems (Birkhoff-theorem?)
- Theory/Practice: gain an overview of existing optimal and non-optimal sharing techniques

Research questions

Aims (more detail)

- Theory: contribute to the graph rewrite theory of optimal implementations of rewrite systems, e.g.:
- refine existing implementations of weak β-reduction by OTRSs
- refine, adapt for the practice, and compare with other approaches, the LamdaScope optimal implementation of λ-calculus by interaction nets.
- relation semantics for graph rewrite systems (Birkhoff-theorem?)
- Theory/Practice: gain an overview of existing optimal and non-optimal sharing techniques

Research questions

Aims (more detail)

- Practice: investigate applications for optimal-sharing techniques for compiler construction
- find convincing 'real-life' examples in which optimal-sharing algorithms perform better than existing (Haskell) compilers
- isolate classes of programs where using optimal evaluation leads to speed-up, with the aim of incorporating in UHC of certain Haskell-programs.
- also interested in applying non-optimal sharing techniques (not already in use)

Overview

1. ROS

2. Stream Equality

3. Summary

Stream Specifications

Example

The specifications:

$$
\text { alt }=0: 1 \text { : alt }
$$

$$
\begin{aligned}
& \mathrm{alt}_{1}=0: \text { alt }_{1}^{\prime} \\
& \text { alt }_{1}^{\prime}=1: \text { alt }_{1}
\end{aligned}
$$

define the stream $0: 1: 0: 1: 0: 1: \ldots$
The same is true for the specification:
$\operatorname{zip}(x: \sigma, y: \tau)=x: y: \operatorname{zip}(\sigma, \tau)$

Stream Specifications

Example

The specifications:

$$
\text { alt }=0: 1: \text { alt }
$$

$$
\begin{aligned}
& \mathrm{alt}_{1}=0: \text { alt }_{1}^{\prime} \\
& \text { alt }_{1}^{\prime}=1: \text { alt }_{1}
\end{aligned}
$$

define the stream $0: 1: 0: 1: 0: 1: \ldots$.
The same is true for the specification:

$$
\begin{gathered}
\text { alt } \left._{2}=\text { zip(zeros, ones }\right) \\
\text { zeros }=0: \text { zeros } \\
\text { ones }=1: \text { ones } \\
\text { zip }(x: \sigma, y: \tau)=x: y: \text { zip }(\sigma, \tau)
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
\mathrm{a}_{0}: \mathrm{a}_{1}: \mathrm{a}_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L}=0: \mathrm{X} \\
\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, y: \tau)=x: y: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
\mathrm{a}_{0}: \mathrm{a}_{1}: \mathrm{a}_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, y: \tau) \rightarrow x: y: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

Specifying streams

- a stream over A is an infinite sequence of elements from A.
- using the stream constructor symbol ":", we write streams as:

$$
\mathrm{a}_{0}: \mathrm{a}_{1}: \mathrm{a}_{2}: \ldots
$$

Example (Thue-Morse stream)

$$
\begin{gathered}
\mathrm{L} \rightarrow 0: X \\
\mathrm{X} \rightarrow 1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y} \rightarrow 0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\mathrm{L} \rightarrow 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: 0: 1: 1: 0: \ldots \\
\operatorname{zip}(x: \sigma, y: \tau) \rightarrow x: y: \operatorname{zip}(\tau, \sigma) \\
\hline \text { 0 } 0: 1
\end{gathered}
$$

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: T

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $T \rightarrow 0: 1: f($ tail $(\underline{T}))$

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $T \rightarrow 0: 1: f($ tail $(0 \vdots 1: f($ tail $(T))))$

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $T \rightarrow 0: 1: f(1: f($ tail $(T)))$

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $\top \rightarrow 0: 1: 1: \underline{i}(1): f(f($ tail $(T)))$

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $T \rightarrow 0: 1: 1: 0: f(f($ tail $(T)))$

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $T \rightarrow 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: f(f(f($ tail $(T))))$

A stream specification is productive if lazy/fair evaluation of its root results in an infinite constructor normal form (representing a stream).

Specifying Streams

Example (Thue-Morse stream)

$\mathrm{T} \rightarrow 0: 1: \mathrm{f}($ tail $(\mathrm{T}))$	stream constant
$\mathrm{f}(x: \sigma) \rightarrow x: \mathrm{i}(x): \mathrm{f}(\sigma)$	stream functions
tail $(x: \sigma) \rightarrow \sigma$	
$\mathrm{i}(0) \rightarrow 1 \quad \mathrm{i}(1) \rightarrow 0$	data functions

one finds: $T \rightarrow 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: 0: 1: 1: 0: \ldots$

A stream specification is productive if lazy/fair evaluation of its root M_{0} results in an infinite constructor normal form (representing a stream).

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:

- data constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots$,
- stream constructor symbol ' ${ }^{\prime}$ ’,
- the binary stream function symbol zip,
and with defining equations:

where C_{i} are zip-term contexts with n holes.

Is equivalence of specified stream decidable for zip-specifications?

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:

- data constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots$,
- stream constructor symbol ' \because ’,
- the binary stream function symbol zip, and with defining equations:

$$
\begin{gathered}
\mathrm{M}_{i}=C_{i}\left[\mathrm{M}_{1}, \ldots, \mathrm{M}_{n}\right] \quad(i=0, \ldots, n) \\
\operatorname{zip}(x: \sigma, y: \tau)=x: y: \operatorname{zip}(\sigma, \tau)
\end{gathered}
$$

where C_{i} are zip-term contexts with n holes.

Is equivalence of specified stream decidable for zip-specifications?

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:

- data constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots$,
- stream constructor symbol ' \because ’,
- the binary stream function symbol zip, and with defining equations:

$$
\begin{gathered}
\mathrm{M}_{i}=C_{i}\left[\mathrm{M}_{1}, \ldots, \mathrm{M}_{n}\right] \quad(i=0, \ldots, n) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

where C_{i} are zip-term contexts with n holes.

Is equivalence of specified stream decidable for zip-specifications?

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:

- data constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots$,
- stream constructor symbol ' \because ’,
- the binary stream function symbol zip, and with defining equations:

$$
\begin{gathered}
\mathrm{M}_{i}=C_{i}\left[\mathrm{M}_{1}, \ldots, \mathrm{M}_{n}\right] \quad(i=0, \ldots, n) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

where C_{i} are zip-term contexts with n holes.

Question

Is equivalence of specified stream decidable for zip-specifications?

Some known results / existing tools

Equivalence of stream specifications

- Π_{2}^{0}-complete (Roşu, 2006)
- Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π_{2}^{0}-complete (Simonsen, E/G/H, 2006)
- much previous and current work on productivity
([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry,
Buchholz, E/G/H/K/Isihara, Zantema)
- Productivity prover ProPro of E/G/H for stream productivity:

Some known results / existing tools

Equivalence of stream specifications

- Π_{2}^{0}-complete (Roşu, 2006)
- Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π_{2}^{0}-complete (Simonsen, E/G/H, 2006)
- much previous and current work on productivity
([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry,
Buchholz, E/G/H/K/Isihara, Zantema)
- Productivity prover ProPro of E/G/H for stream productivity:

Some known results / existing tools

Equivalence of stream specifications

- Π_{2}^{0}-complete (Roşu, 2006)
- Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π_{2}^{0}-complete (Simonsen, E/G/H, 2006)
- much previous and current work on productivity
([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry, Buchholz, E/G/H/K/Isihara, Zantema)
- Productivity prover ProPro of $\mathrm{E} / \mathrm{G} / \mathrm{H}$ for stream productivity: infinity.few.vu.nl/productivity/tool.html

Roadmap to a decidability result

- unique solvability versus productivity for zip-specs
- transformation into 'zip-guarded', and 'flat' zip-specs
- 'observation graphs' of flat zip-specs
- using a rewrite system that employs the 〈head, even, odd〉-cobasis for streams
- link between:
- equivalence of zip-specs, and
- bisimilarity of associated observation graphs
- using bisimilarity-checking to decide equivalence of zip-specs

Roadmap: uphill to observation graphs

$$
\begin{gathered}
\mathrm{L}=0: X \\
\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{L}=0: \operatorname{zip}\left(\mathrm{L}_{e}^{\prime}, \mathrm{X}\right) \\
\mathrm{L}_{e}^{\prime}=1: \operatorname{zip}(\mathrm{L}, \mathrm{Y}) \\
\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

Roadmap: uphill to observation graphs

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following statements are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- \mathcal{S} has a guard on every left-most cycle.

Hence: Productivity is decidable for zip-specifications.

Unique Solvability versus Productivity

Proposition

For a zip-specification \mathcal{S} the following statements are equivalent:

- \mathcal{S} is uniquely solvable,
- \mathcal{S} is productive,
- \mathcal{S} has a guard on every left-most cycle.

Hence: Productivity is decidable for zip-specifications.

Example

- $Z=\operatorname{zip}(Z, \operatorname{zip}(Z, 0: Z))$ is neither productive nor uniquely solvable.
- $Z=\operatorname{zip}(0: Z, \operatorname{zip}(Z, 0: Z))$ is productive and uniquely solvable.

zip-guarded zip-specifications

A zip-specification \mathcal{S} is called zip-guarded if every cycle in \mathcal{S} contains an occurrence of zip.

Non-Example/Example

Non-Example

$$
\begin{gathered}
\text { alt } \left._{2}=\text { zip(zeros, ones }\right) \\
\text { zeros }=0: \text { zeros } \\
\text { ones }=1: \text { ones }
\end{gathered}
$$

$$
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
$$

Example

$$
\begin{gathered}
\mathrm{L}=0: \mathrm{X} \\
\mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \mathrm{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

zip-guarded zip-specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.
Every cycle $\mathrm{M}=\mathrm{c}: \mathrm{M}$ of length 1 can be replaced by:

$$
M=c: z i p(M, M) ;
$$

A cycle $M=a: b: M$ of length 2 can be replaced by the spec:

A cycle $M=a: b: c: M$ of length 3 by the specification:
cycles of even length: split into cycles of odd length;
cycles of odd length n : idea as for length 3 applies.

zip-guarded zip-specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.
Every cycle $\mathrm{M}=\mathrm{c}: \mathrm{M}$ of length 1 can be replaced by:

$$
\mathrm{M}=\mathrm{c}: \mathrm{zip}(\mathrm{M}, \mathrm{M}) ;
$$

A cycle $M=a: b: M$ of length 2 can be replaced by the spec:

$$
M=\operatorname{zip}\left(M_{a}, M_{b}\right) \quad M_{a}=a: \operatorname{zip}\left(M_{a}, M_{a}\right) \quad M_{b}=b: \operatorname{zip}\left(M_{b}, M_{b}\right) ;
$$

A cycle $M=a: b: c: M$ of length 3 by the specification:

zip-guarded zip-specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle $\mathrm{M}=\mathrm{c}: \mathrm{M}$ of length 1 can be replaced by:

$$
\mathrm{M}=\mathrm{c}: \mathrm{zip}(\mathrm{M}, \mathrm{M}) ;
$$

A cycle $M=a: b: M$ of length 2 can be replaced by the spec:

$$
M=\operatorname{zip}\left(M_{a}, M_{b}\right) \quad M_{a}=a: z i p\left(M_{a}, M_{a}\right) \quad M_{b}=b: \operatorname{zip}\left(M_{b}, M_{b}\right) ;
$$

A cycle $M=a: b: c: M$ of length 3 by the specification:

$$
M_{a b c}=z i p\left(a: c: M_{b a c}, M_{b a c}\right) \quad M_{b a c}=z i p\left(b: c: M_{a b c}, M_{a b c}\right) .
$$

cycles of even length: split into cycles of odd length;
cycles of odd length n : idea as for length 3 applies.

zip-guarded zip-specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle $\mathrm{M}=\mathrm{c}: \mathrm{M}$ of length 1 can be replaced by:

$$
\mathrm{M}=\mathrm{c}: \mathrm{zip}(\mathrm{M}, \mathrm{M}) ;
$$

A cycle $M=a: b: M$ of length 2 can be replaced by the spec:

$$
M=z i p\left(M_{a}, M_{b}\right) \quad M_{a}=a: z i p\left(M_{a}, M_{a}\right) \quad M_{b}=b: z i p\left(M_{b}, M_{b}\right) ;
$$

A cycle $M=a: b: c: M$ of length 3 by the specification:

$$
M_{a b c}=z i p\left(a: c: M_{b a c}, M_{b a c}\right) \quad M_{b a c}=z i p\left(b: c: M_{a b c}, M_{a b c}\right) .
$$

cycles of even length: split into cycles of odd length; cycles of odd length n : idea as for length 3 applies.

Flat zip-specifications

A zip-guarded $\operatorname{spec} \mathcal{S}$ is called flat if its equations are of the form:

$$
M_{i}=\mathrm{c}_{i, 1}: \ldots: \mathrm{c}_{i, m_{i}}: \operatorname{zip}\left(\mathrm{M}_{i, 1}, \mathrm{M}_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Proposition
Fvery zin-guarded specification S can be transformed into a flat zip-specification \mathcal{S}^{\prime} with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:
can be transformed into the spec:

Flat zip-specifications

A zip-guarded $\operatorname{spec} \mathcal{S}$ is called flat if its equations are of the form:

$$
M_{i}=\mathrm{c}_{i, 1}: \ldots: \mathrm{c}_{i, m_{i}}: \operatorname{zip}\left(\mathrm{M}_{i, 1}, \mathrm{M}_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Proposition

Every zip-guarded specification \mathcal{S} can be transformed into a flat zip-specification \mathcal{S}^{\prime} with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:
can be transformed into the spec:

Flat zip-specifications

A zip-guarded spec \mathcal{S} is called flat if its equations are of the form:

$$
M_{i}=\mathrm{c}_{i, 1}: \ldots: \mathrm{c}_{i, m_{i}}: \operatorname{zip}\left(\mathrm{M}_{i, 1}, \mathrm{M}_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Proposition

Every zip-guarded specification \mathcal{S} can be transformed into a flat zip-specification \mathcal{S}^{\prime} with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

$$
M=0: z i p(1: z i p(M, M), 0: M)
$$

can be transformed into the spec:

Flat zip-specifications

A zip-guarded spec \mathcal{S} is called flat if its equations are of the form:

$$
M_{i}=\mathrm{c}_{i, 1}: \ldots: \mathrm{c}_{i, m_{i}}: \operatorname{zip}\left(\mathrm{M}_{i, 1}, \mathrm{M}_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Proposition

Every zip-guarded specification \mathcal{S} can be transformed into a flat zip-specification \mathcal{S}^{\prime} with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

$$
M=0: z i p(1: z i p(M, M), 0: M)
$$

can be transformed into the spec:

$$
M=0: z i p\left(M_{1}, M_{2}\right)
$$

Flat zip-specifications

A zip-guarded spec \mathcal{S} is called flat if its equations are of the form:

$$
M_{i}=\mathrm{c}_{i, 1}: \ldots: \mathrm{c}_{i, m_{i}}: \operatorname{zip}\left(\mathrm{M}_{i, 1}, \mathrm{M}_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Proposition

Every zip-guarded specification \mathcal{S} can be transformed into a flat zip-specification \mathcal{S}^{\prime} with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

$$
M=0: z i p(1: z i p(M, M), 0: M)
$$

can be transformed into the spec:

$$
\begin{aligned}
& M=0: z i p\left(M_{1}, M_{2}\right) \\
& M_{1}=1: z i p(M, M)
\end{aligned}
$$

Flat zip-specifications

A zip-guarded spec \mathcal{S} is called flat if its equations are of the form:

$$
M_{i}=\mathrm{c}_{i, 1}: \ldots: \mathrm{c}_{i, m_{i}}: \operatorname{zip}\left(\mathrm{M}_{i, 1}, \mathrm{M}_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Proposition

Every zip-guarded specification \mathcal{S} can be transformed into a flat zip-specification \mathcal{S}^{\prime} with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

$$
M=0: z i p(1: z i p(M, M), 0: M)
$$

can be transformed into the spec:

$$
\begin{gathered}
M=0: \operatorname{zip}\left(M_{1}, M_{2}\right) \\
M_{1}=1: \operatorname{zip}(M, M) \\
M_{2}=0: 0: \operatorname{zip}\left(M_{1}, M_{2}\right)
\end{gathered}
$$

Flat zip-specifications

Example (Thue-Morse)

$\mathrm{L}=0: \operatorname{zip}\left(\mathrm{L}_{e}^{\prime}, \mathrm{X}\right)$
$\mathrm{L}_{e}^{\prime}=1: \operatorname{zip}(\mathrm{L}, \mathrm{Y})$
$\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y})$
$\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X})$
$\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)$

Rewriting zip-terms

For a zip-spec \mathcal{S}, the zip-terms over \mathcal{S} are defined by the grammar:

$$
Z::=\mathrm{M}_{i}|\mathrm{c}: Z| \operatorname{zip}(Z, Z)
$$

Definition

Let \mathcal{S} be a zip-spec. The TRS R on zip-terms over \mathcal{S} has the rules:

$$
\begin{aligned}
\text { head }(x: t) & \rightarrow x & \text { head }(\operatorname{zip}(s, t)) & \rightarrow \text { head }(s) \\
\text { even }(x: t) & \rightarrow x: \operatorname{odd}(t) & \operatorname{even}(\operatorname{zip}(s, t)) & \rightarrow s \\
\operatorname{odd}(x: t) & \rightarrow \operatorname{even}(t) & \operatorname{odd}(\operatorname{zip}(s, t)) & \rightarrow t
\end{aligned}
$$

and, in addition, for each equation $M_{i}=t$ of S, rules:
head $\left(M_{i}\right) \rightarrow$ head $(t) \quad$ even $\left(M_{i}\right) \rightarrow \operatorname{even}(t) \quad \operatorname{odd}\left(M_{i}\right) \rightarrow \operatorname{odd}(t)$
By +1 we denote the normal form of t with respect to n.

Rewriting zip-terms

For a zip-spec \mathcal{S}, the zip-terms over \mathcal{S} are defined by the grammar:

$$
Z::=\mathrm{M}_{i}|\mathrm{c}: Z| \operatorname{zip}(Z, Z)
$$

Definition

Let \mathcal{S} be a zip-spec. The TRS R on zip-terms over \mathcal{S} has the rules:

$$
\begin{aligned}
\text { head }(x: t) & \rightarrow x & \text { head }(\operatorname{zip}(s, t)) & \rightarrow \text { head }(s) \\
\text { even }(x: t) & \rightarrow x: \operatorname{odd}(t) & \operatorname{even}(\operatorname{zip}(s, t)) & \rightarrow s \\
\operatorname{odd}(x: t) & \rightarrow \operatorname{even}(t) & \operatorname{odd}(\operatorname{zip}(s, t)) & \rightarrow t
\end{aligned}
$$

and, in addition, for each equation $\mathrm{M}_{i}=t$ of \mathcal{S}, rules:
$\operatorname{head}\left(M_{i}\right) \rightarrow \operatorname{head}(t) \quad \operatorname{even}\left(M_{i}\right) \rightarrow \operatorname{even}(t) \quad \operatorname{odd}\left(M_{i}\right) \rightarrow \operatorname{odd}(t)$
By $t \downarrow$ we denote the normal form of t with respect to R.

Rewriting zip-terms

For a zip-spec \mathcal{S}, the zip-terms over \mathcal{S} are defined by the grammar:

$$
Z::=\mathrm{M}_{i}|\mathrm{c}: Z| \operatorname{zip}(Z, Z)
$$

Definition

Let \mathcal{S} be a zip-spec. The TRS R on zip-terms over \mathcal{S} has the rules:

$$
\begin{aligned}
\text { head }(x: t) & \rightarrow x & \text { head }(\operatorname{zip}(s, t)) & \rightarrow \text { head }(s) \\
\text { even }(x: t) & \rightarrow x: \operatorname{odd}(t) & \operatorname{even}(\operatorname{zip}(s, t)) & \rightarrow s \\
\operatorname{odd}(x: t) & \rightarrow \operatorname{even}(t) & \operatorname{odd}(\operatorname{zip}(s, t)) & \rightarrow t
\end{aligned}
$$

and, in addition, for each equation $\mathrm{M}_{i}=t$ of \mathcal{S}, rules:
$\operatorname{head}\left(M_{i}\right) \rightarrow \operatorname{head}(t) \quad \operatorname{even}\left(M_{i}\right) \rightarrow \operatorname{even}(t) \quad \operatorname{odd}\left(M_{i}\right) \rightarrow \operatorname{odd}(t)$
By $t \downarrow$ we denote the normal form of t with respect to R.
R is orthogonal, hence CR. If \mathcal{S} is product., R is terminating, thus UN.

(even, odd)-Derivatives

Definition

Let \mathcal{S} be a zip-guarded zip-specification. Let t a zip-term over \mathcal{S}. (even, odd)-derivatives of t (w.r.t. \mathcal{S}) are defined inductively:

- $t \downarrow$ is an (even, odd)-derivative of t;
- if s is an (even, odd)-der. of t, then so are even $(s) \downarrow$ and odd $(s) \downarrow$. By $\partial_{\mathcal{S}}(t)$ we denote the set of (even, odd)-derivatives of t.

Observation graphs

Definition

Let \mathcal{S} be a zip-guarded, productive zip-specification.
The ((even, odd)-)observation graph $\mathcal{O}(\mathcal{S})$ of \mathcal{S} :

- its root node is M_{0};
- every node t is labelled with head $(t) \downarrow$;
- every node t has two outgoing edges, even and odd, to the nodes even $(t) \downarrow$, and odd $(t) \downarrow$, resp. .

$$
\begin{gathered}
\mathrm{L}=0: \mathrm{X} \\
\mathrm{X}=1: \mathrm{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, y: \tau)=x: y: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

(ev, od)-derivatives versus observation graphs

Proposition

Let \mathcal{S} be a zip-guarded, productive zip-specification.
The set of nodes of $\mathcal{O}(\mathcal{S})$ coincides with the set $\partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ of (even, odd)-derivatives of the root M_{0} of \mathcal{S}.
Hence (at least) for flat specs, the observation graph of \mathcal{S} is finite.

Finiteness of (even, odd)-derivatives

Abstract

Main Lemma Let \mathcal{S} be a flat zip-specification. The set $\partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ of (even, odd)-derivatives of the root M_{0} of \mathcal{S} is finite.

Since \mathcal{S} is flat, its equations are of the form:

Let $m:=\max _{0}$
It suffices to show that every $t \in \partial_{s}\left(M_{0}\right)$ is of the form:

Finiteness of (even, odd)-derivatives

Main Lemma

Let \mathcal{S} be a flat zip-specification.
The set $\partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ of (even, odd)-derivatives of the root M_{0} of \mathcal{S} is finite.

Proof.

Since \mathcal{S} is flat, its equations are of the form:

$$
M_{i}=c_{i, 1}: \ldots: c_{i, m_{i}}: \operatorname{zip}\left(M_{i, 1}, M_{i, 2}\right) \quad \text { for } i=0, \ldots, n
$$

Let $m:=\max _{0 \leq i \leq n} m_{i}$.
It suffices to show that every $t \in \partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ is of the form:

$$
\begin{equation*}
c_{1}: \ldots: c_{k}: M_{i} \tag{1}
\end{equation*}
$$

where $k \leq m, c_{1}, \ldots, c_{k}$ are constants, and M_{i} a rec. var. of \mathcal{S}.

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).
We use induction on the definition of derivatives of M_{0} over \mathcal{S}.

- Base case. We note that $\mathrm{M}_{0} \downarrow=\mathrm{M}_{0}$, and hence (??) holds.
- Induction Step. Let $t \in \partial_{S}\left(\mathrm{M}_{0}\right)$ be arbitrary.

By induction hypothesis, t is of the form (??), that is:
for some $k \leq m, c_{1}$, constants \ldots, c_{k} are constants, and a rec.
var. M_{i} of
We have to show that even $(t) \downarrow$ and odd $(t) \downarrow$ are again
of the form (??).
We treat only check the case of even (t) li;
the case of odd $(t) \downarrow$ can be established analogously.

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M_{0} over \mathcal{S}.

- Base case. We note that $\mathrm{M}_{0} \downarrow=\mathrm{M}_{0}$, and hence (??) holds.
- Induction Step. Let $t \in \partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ be arbitrary.

By induction hypothesis, t is of the form (??), that is:
for some $k \leq m, c_{1}$, constants \ldots, c_{k} are constants, and a rec. var. M_{i} of
We have to show that even $(t) \downarrow$ and odd $(t) \downarrow$ are again
of the form (??).
We treat only check the case of even $(t) \downarrow$;
the case of odd $(t) \downarrow$ can be established analogously.

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M_{0} over \mathcal{S}.

- Base case. We note that $\mathrm{M}_{0} \downarrow=\mathrm{M}_{0}$, and hence (??) holds.
- Induction Step. Let $t \in \partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ be arbitrary.

By induction hypothesis, t is of the form (??), that is:

$$
t=c_{1}: \ldots: c_{k}: M_{i}
$$

for some $k \leq m, c_{1}$, constants \ldots, c_{k} are constants, and a rec. var. M_{i} of \mathcal{S}.

We have to show that even $(t) \downarrow$ and odd $(t) \downarrow$ are again of the form (??).
We treat only check the case of even $(t) \downarrow$
the case of odd $(t) \downarrow$ can be established analogously.

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M_{0} over \mathcal{S}.

- Base case. We note that $\mathrm{M}_{0} \downarrow=\mathrm{M}_{0}$, and hence (??) holds.
- Induction Step. Let $t \in \partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ be arbitrary.

By induction hypothesis, t is of the form (??), that is:

$$
t=\mathrm{c}_{1}: \ldots: \mathrm{c}_{k}: \mathrm{M}_{i}
$$

for some $k \leq m, c_{1}$, constants \ldots, c_{k} are constants, and a rec. var. M_{i} of \mathcal{S}.
We have to show that even $(t) \downarrow$ and odd $(t) \downarrow$ are again of the form (??).
We treat only check the case of even $(t) \downarrow$; the case of odd $(t) \downarrow$ can be established analogously.

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).

Induction Step (Continued). We find:

> The terms on the right have data prefixes of length $\leq m$, and are normal forms w.r.t. R. Hence even (t) is again of the form (??).

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).

Induction Step (Continued). We find:
$\underbrace{\operatorname{even}\left(c_{1}: \ldots: c_{k}: M_{i}\right)}_{=\operatorname{even}(t)} \rightarrow\left\{\begin{array}{c}c_{1}: c_{3}: \ldots: c_{k-1}: c_{i, 1}: c_{i, 3}: \ldots: M_{i, 1} \\ \ldots \text { for } k \text { even, } M_{i} \text { even } \\ c_{1}: c_{3}: \ldots: c_{k-1}: c_{i, 1}: c_{i, 3}: \ldots: M_{i, 2} \\ \ldots \text { for } k \text { even, } M_{i} \text { odd } \\ c_{1}: c_{3}: \ldots: c_{k}: c_{i, 2}: c_{i, 4}: \ldots: M_{i, 1} \\ \ldots \text { for } k \text { odd, } M_{i} \text { even } \\ c_{1}: c_{3}: \ldots: c_{k}: c_{i, 2}: c_{i, 4}: \ldots: M_{i, 2}\end{array}\right.$

The terms on the right have data prefixes of length $\leq m$, and are normal forms w.r.t. R. Hence even (t) is again of the form (??).

Finiteness of (even, odd)-derivatives (Proof)

Proof (Continued).

Induction Step (Continued). We find:

$$
\underbrace{\operatorname{even}\left(c_{1}: \ldots: c_{k}: M_{i}\right)}_{=\operatorname{even}(t)} \rightarrow\left\{\begin{array}{r}
c_{1}: c_{3}: \ldots: c_{k-1}: c_{i, 1}: c_{i, 3}: \ldots: M_{i, 1} \\
\ldots \text { for } k \text { even, } M_{i} \text { even } \\
c_{1}: c_{3}: \ldots: c_{k-1}: c_{i, 1}: c_{i, 3}: \ldots: M_{i, 2} \\
\ldots \text { for } k \text { even, } M_{i} \text { odd } \\
c_{1}: c_{3}: \ldots: c_{k}: c_{i, 2}: c_{i, 4}: \ldots: M_{i, 1} \\
\ldots \text { for } k \text { odd, } M_{i} \text { even } \\
c_{1}: c_{3}: \ldots: c_{k}: c_{i, 2}: c_{i, 4}: \ldots: M_{i, 2} \\
\ldots \text { for } k \text { odd, } m_{i} \text { odd }
\end{array}\right.
$$

The terms on the right have data prefixes of length $\leq m$, and are normal forms w.r.t. R. Hence even (t) is again of the form (??).

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

- $\sigma(1)$ by head $(\operatorname{odd}(\sigma))$, and head $\left(\operatorname{even}^{\prime}(\operatorname{odd}(\sigma))\right)$ for all i;
- $\sigma(2)$ by head(odd $(\operatorname{even}(\sigma)))$, and head $\left(\operatorname{even}^{\prime}(\operatorname{odd}(\operatorname{even}(\sigma)))\right.$;
- $\sigma(3)$ by head (odd $(\operatorname{odd}(\sigma)))$, and head $\left(\operatorname{even}^{i}(\operatorname{odd}(\operatorname{odd}(\sigma)))\right)$;

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

〈head, odd, even〉 is a cobasis of the coalgebra of streams.
That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head (σ), and head $\left(\operatorname{even}^{i}(\sigma)\right)$ for all i;

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

〈head, odd, even〉 is a cobasis of the coalgebra of streams.
That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head (σ), and head $\left(\operatorname{even}^{i}(\sigma)\right)$ for all i;
- $\sigma(1)$ by head $(\operatorname{odd}(\sigma))$, and head $\left(\operatorname{even}^{i}(\operatorname{odd}(\sigma))\right)$ for all i;

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

<head, odd, even〉 is a cobasis of the coalgebra of streams.
That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head (σ), and head $\left(\operatorname{even}^{i}(\sigma)\right)$ for all i;
- $\sigma(1)$ by head $(\operatorname{odd}(\sigma))$, and head $\left(\operatorname{even}^{i}(\operatorname{odd}(\sigma))\right)$ for all i;
- $\sigma(2)$ by head(odd(even $(\sigma)))$, and head(even $\left.{ }^{i}(\operatorname{odd}(\operatorname{even}(\sigma)))\right)$;

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

〈head, odd, even〉 is a cobasis of the coalgebra of streams.
That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head (σ), and head $\left(\operatorname{even}^{i}(\sigma)\right)$ for all i;
- $\sigma(1)$ by head $(\operatorname{odd}(\sigma))$, and head(even $\left.{ }^{i}(\operatorname{odd}(\sigma))\right)$ for all i;
- $\sigma(2)$ by head $(\operatorname{odd}(\operatorname{even}(\sigma)))$, and head($\left.\operatorname{even}^{i}(\operatorname{odd}(\operatorname{even}(\sigma)))\right)$;
- $\sigma(3)$ by head $(\operatorname{odd}(\operatorname{odd}(\sigma)))$, and head $\left(\operatorname{even}^{i}(\operatorname{odd}(\operatorname{odd}(\sigma)))\right)$;
- ...

Carrying out the same 'experiment' at bisimilar observation graphs leads to the same observation.

Bisimilarity of observation graphs (downhill)

$$
\begin{gathered}
\mathrm{L}=0: X \\
\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{L}=0: \operatorname{zip}\left(\mathrm{L}_{e}^{\prime}, \mathrm{X}\right) \\
\mathrm{L}_{e}^{\prime}=1: \operatorname{zip}(\mathrm{L}, \mathrm{Y}) \\
\mathrm{X}=1: \operatorname{zip}(\mathrm{X}, \mathrm{Y}) \\
\mathrm{Y}=0: \operatorname{zip}(\mathrm{Y}, \mathrm{X}) \\
\operatorname{zip}(x: \sigma, \tau)=x: \operatorname{zip}(\tau, \sigma)
\end{gathered}
$$

Bisimilarity of observation graphs (downhill)

Bisimilarity of observation graphs (downhill)

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(\mathcal{S})$ with $\leq n$ vertices is decidable in time $O(n)$.
which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states,
bisimilarity coincides with trace (language) equivalence, which can be decided in time:

- O(n) time (Hopcroft-Karp).

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(\mathcal{S})$ with $\leq n$ vertices is decidable in time $O(n)$.

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O\left(m n+n^{2}\right)$ time (Kannellakis-Smolka),
- $O(m \log n)$ time (Tarjan-Paige),
which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states,
bisimilarity coincides with trace (language) equivalence, which can be decided in time:
- O(n) time (Hopcroft-Karp).

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(\mathcal{S})$ with $\leq n$ vertices is decidable in time $O(n)$.

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O\left(m n+n^{2}\right)$ time (Kannellakis-Smolka),
- $O(m \log n)$ time (Tarjan-Paige), which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(\mathcal{S})$ with $\leq n$ vertices is decidable in time $O(n)$.

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O\left(m n+n^{2}\right)$ time (Kannellakis-Smolka),
- $O(m \log n)$ time (Tarjan-Paige),
which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states, bisimilarity coincides with trace (language) equivalence, which can be decided in time:
- O(n) time (Hopcroft-Karp).

Decidability Result

Theorem
 Equivalence of zip-specifications is decidable.

Decidability Result

Theorem
Equivalence of zip-specifications is decidable.
Proof (Putting things together).
1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.

3 Every productive zip-spec \mathcal{S} can be transformed into a flat zip-spec S^{\prime} that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
6 Given two productive zip-specs \mathcal{S}_{1} and \mathcal{S}_{2}, their equivalence can be decided by obtaining flat forms \mathcal{S}_{1}^{\prime} and S_{2}^{\prime}, and deciding bisimilarity for the observation graphs

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.
Proof (Putting things together).
1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.

3 Every productive zip-spec \mathcal{S} can be transformed into a flat zip-spec \mathcal{S}^{\prime} that specifies/computes that same stream.
4 Observation araphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar
6 Given two productive zip-specs

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
3 Every productive zip-spec \mathcal{S} can be transformed into a flat zip-spec \mathcal{S}^{\prime} that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar
6 Given two productive zip-specs
and be decided by obtaining flat forms and
their equivalence can bisimilarity for the observation graphs

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
3 Every productive zip-spec \mathcal{S} can be transformed into a flat zip-spec \mathcal{S}^{\prime} that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite. associated observation graphs are bisimilar
ss Given two productive zin speos
and S_{2}, their equivalence can be decided by obtaining flat forms and and deciding bisimilarity for the observation graphs

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
3 Every productive zip-spec \mathcal{S} can be transformed into a flat zip-spec \mathcal{S}^{\prime} that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
6. Given two productive zip-specs S_{1}
be decided by obtaining flat forms be decided by obtaining flat forms S_{1}^{\prime} and bisimilarity for the observation araphs
their equivalence can
and deciding

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
3 Every productive zip-spec \mathcal{S} can be transformed into a flat zip-spec \mathcal{S}^{\prime} that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
6 Given two productive zip-specs \mathcal{S}_{1} and \mathcal{S}_{2}, their equivalence can be decided by obtaining flat forms \mathcal{S}_{1}^{\prime} and \mathcal{S}_{2}^{\prime}, and deciding bisimilarity for the observation graphs $\mathcal{O}\left(\mathcal{S}_{1}^{\prime}\right)$ and $\mathcal{O}\left(\mathcal{S}_{2}^{\prime}\right)$.

PTIME-decidability result

Remember:
Main Lemma
Let \mathcal{S} be a flat zip-specification.
The set $\partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ of (even, odd)-derivatives of the root M_{0} of \mathcal{S} is finite.
It can be strengthened:
Main Lemma Plus
let s he a flat zin-snecification with n recursion variables, o stream constants, and m the longest stream prefix in \mathcal{S}. Then it holds:

[^0]Equiva'ence of zip-specifications is decidable in PTIME.

PTIME-decidability result

Remember:

Main Lemma

Let \mathcal{S} be a flat zip-specification.
The set $\partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ of (even, odd)-derivatives of the root M_{0} of \mathcal{S} is finite.
It can be strengthened:

Main Lemma Plus

Let \mathcal{S} be a flat zip-specification with n recursion variables, c stream constants, and m the longest stream prefix in \mathcal{S}. Then it holds:

$$
\left|\partial_{\mathcal{S}}\left(M_{0}\right)\right| \leq 2 \cdot(c+1) \cdot m \cdot n+4 \cdot m
$$

Equivalence of zip-specifications is decidable in PTIME

PTIME-decidability result

Remember:

Main Lemma

Let \mathcal{S} be a flat zip-specification.
The set $\partial_{\mathcal{S}}\left(\mathrm{M}_{0}\right)$ of (even, odd)-derivatives of the root M_{0} of \mathcal{S} is finite.
It can be strengthened:

Main Lemma Plus

Let \mathcal{S} be a flat zip-specification with n recursion variables, c stream constants, and m the longest stream prefix in \mathcal{S}. Then it holds:

$$
\left|\partial_{\mathcal{S}}\left(M_{0}\right)\right| \leq 2 \cdot(c+1) \cdot m \cdot n+4 \cdot m
$$

Theorem

Equivalence of zip-specifications is decidable in PTIME.

Extensions of the decidability result

- zip-inv-tail-specifications:

$$
\begin{array}{rr}
\operatorname{inv}(0: \sigma) \rightarrow 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x: \sigma) \\
\operatorname{inv}(1: \sigma) \rightarrow 0 & \rightarrow 0 \\
\operatorname{inv}(\sigma) & \operatorname{zip}(x: \sigma, \tau)
\end{array} \rightarrow x: \operatorname{zip}(\tau, \sigma)=
$$

\Rightarrow zip $_{n}$-specs for $n \in \mathbb{N}, n>2$, where zip $_{n}$ is defined by:

- zip $_{n}$-specs versus zip $_{m}$-specs for $m, n \geq 2, m \neq n$.
- zin_{n}-snecs versus zin;-mix-snecs (all of zin; $i \geq 2$, may be used).

Extensions of the decidability result

- zip-inv-tail-specifications:

$$
\begin{aligned}
\operatorname{inv}(0: \sigma) & \rightarrow 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x: \sigma) & \rightarrow \sigma \\
& \operatorname{inv}(1: \sigma) & \rightarrow 0: \operatorname{inv}(\sigma) & \operatorname{zip}(x: \sigma, \tau)
\end{aligned} \rightarrow x: \operatorname{zip}(\tau, \sigma)=
$$

- zip $_{n}$-specs for $n \in \mathbb{N}, n>2$, where zip $_{n}$ is defined by:

$$
\operatorname{zip}_{n}\left(x: \sigma_{1}^{\prime}, \sigma_{2}, \ldots, \sigma_{n}\right) \rightarrow x: \operatorname{zip}_{n}\left(\sigma_{2}, \ldots, \sigma_{n}, \sigma_{1}^{\prime}\right)
$$

- zip ${ }_{n}$-specs versus zipm-specs for $m, n \geq 2, m \neq n$.

Extensions of the decidability result

- zip-inv-tail-specifications:

$$
\begin{aligned}
\operatorname{inv}(0: \sigma) & \rightarrow 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x: \sigma) & \rightarrow \sigma \\
\operatorname{inv}(1: \sigma) & \rightarrow 0: \operatorname{inv}(\sigma) & \operatorname{zip}(x: \sigma, \tau) & \rightarrow x: \operatorname{zip}(\tau, \sigma)
\end{aligned}
$$

- zip $_{n}$-specs for $n \in \mathbb{N}, n>2$, where zip $_{n}$ is defined by:

$$
\operatorname{zip}_{n}\left(x: \sigma_{1}^{\prime}, \sigma_{2}, \ldots, \sigma_{n}\right) \rightarrow x: \operatorname{zip}_{n}\left(\sigma_{2}, \ldots, \sigma_{n}, \sigma_{1}^{\prime}\right)
$$

- zip $_{n}$-specs versus zip $_{m}$-specs for $m, n \geq 2, m \neq n$.
- zip n_{n}-specs versus zipi-mix-specs (all of zipi, $i \geq 2$, may be used).

Extensions of the decidability result

- zip-inv-tail-specifications:

$$
\begin{aligned}
\operatorname{inv}(0: \sigma) & \rightarrow 1: \operatorname{inv}(\sigma) \\
\operatorname{inv}(1: \sigma) & \rightarrow 0: \operatorname{tail}(x: \sigma)
\end{aligned} \rightarrow \sigma
$$

- zip_{n}-specs for $n \in \mathbb{N}, n>2$, where zip $_{n}$ is defined by:

$$
\operatorname{zip}_{n}\left(x: \sigma_{1}^{\prime}, \sigma_{2}, \ldots, \sigma_{n}\right) \rightarrow x: \operatorname{zip}_{n}\left(\sigma_{2}, \ldots, \sigma_{n}, \sigma_{1}^{\prime}\right)
$$

- zip $_{n}$-specs versus zip_{m}-specs for $m, n \geq 2, m \neq n$.
- zip $_{n}$-specs versus zip $_{i}$-mix-specs (all of zip $_{i}, i \geq 2$, may be used).

Overview

1. ROS

2. Stream Equality

3. Summary

Summary

- Ad for ISR'2010 in Utrecht.
- ROS: Realising Optimal Sharing (NWO-project)
- Equivalence of stream specifications
- stream specifications
- equivalence of stream specifications versus productivity and unique solvability
- zip-specifications, Larry Moss' question
- solution: decidability of equivalence for zip-specs
- zip-guarded, and flat specs
- observation graphs of zip-guarded specs
- reducing equivalence to checking bisimilarity of obs. graphs
- extensions of the result

[^0]: Theorem

