Equivalence of Stream Specifications

Jörg Endrullis*, Clemens Grabmayer[†], Dimitri Hendriks*, Jan Willem Klop*, and Larry Moss[‡]

[†] Universiteit Utrecht
 * Vrije Universiteit, Amsterdam
 [‡] Indiana University

2nd Workshop on Proof Theory and Rewriting Obergurgl, 29th March 2010

Overview

- Ad: International Summer School Rewriting in Utrecht 3-8 July http://www.utrechtsummerschool.nl
- ROS: Realising Optimal Sharing (NWO-project)
- Equivalence of stream specifications
 - stream specifications
 - equivalence of stream specifications
 - productivity vs. unique solvability
 - zip-specifications, Larry Moss' question
 - solution: decidability of equivalence for zip-specs
 - extensions of the result

Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)

Aims

- Study optimal-sharing implementations of the λ -calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)

People

- Phil: Vincent van Oostrom (principal investigator), CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student/4 years)

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)

Aims

- Study optimal-sharing implementations of the λ-calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)

People

- Phil: Vincent van Oostrom (principal investigator), CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student/4 years)

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:

- Dept. of Philosophy (Theor. Philosophy)
- Dept. of Computer Science (Functional Languages)

Aims

- Study optimal-sharing implementations of the λ-calculus
- Try to incorporate optimal-sharing techniques in the Utrecht Haskell Compiler (UHC)

People

- Phil: Vincent van Oostrom (principal investigator), CG (postdoc/3 years)
- CS: Doaitse Swierstra and Atze Dijkstra, Jan Rochel (PhD student/4 years)

Research questions

Aims (more detail)

- Theory: contribute to the graph rewrite theory of optimal implementations of rewrite systems, e.g.:
 - refine existing implementations of weak β-reduction by OTRSs
 - refine, adapt for the practice, and compare with other approaches, the LamdaScope optimal implementation of λ-calculus by interaction nets.
 - relation semantics for graph rewrite systems (Birkhoff-theorem?)
- Theory/Practice: gain an overview of existing optimal and non-optimal sharing techniques

Research questions

Aims (more detail)

- Theory: contribute to the graph rewrite theory of optimal implementations of rewrite systems, e.g.:
 - refine existing implementations of weak β-reduction by OTRSs
 - refine, adapt for the practice, and compare with other approaches, the LamdaScope optimal implementation of λ-calculus by interaction nets.
 - relation semantics for graph rewrite systems (Birkhoff-theorem?)
- Theory/Practice: gain an overview of existing optimal and non-optimal sharing techniques

Research questions

Aims (more detail)

- Practice: investigate applications for optimal-sharing techniques for compiler construction
 - find convincing 'real-life' examples in which optimal-sharing algorithms perform better than existing (Haskell) compilers
 - isolate classes of programs where using optimal evaluation leads to speed-up, with the aim of incorporating in UHC of certain Haskell-programs.
 - also interested in applying non-optimal sharing techniques (not already in use)

Overview

1. ROS

2. Stream Equality

3. Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

Stream Specifications

Example

The specifications:

alt = 0:1:alt

 $alt_1 = 0 : alt'_1$ $alt'_1 = 1 : alt_1$

define the stream 0 : 1 : 0 : 1 : 0 : 1 : . . .

The same is true for the specification:

alt₂ = zip(zeros, ones) zeros = 0 : zeros ones = 1 : ones zip($x : \sigma, y : \tau$) = $x : y : zip(\sigma, \tau)$

Stream Specifications

Example

The specifications:

alt = 0:1:alt

 $alt_1 = \mathbf{0} : alt'_1$ $alt'_1 = \mathbf{1} : alt_1$

define the stream 0 : 1 : 0 : 1 : 0 : 1 : . . .

The same is true for the specification:

alt₂ = zip(zeros, ones) zeros = 0 : zeros ones = 1 : ones zip($x : \sigma, y : \tau$) = $x : y : zip(\sigma, \tau)$

Specifying streams

- ► a stream over *A* is an infinite sequence of elements from *A*.
- using the stream constructor symbol ":", we write streams as:

 $a_0: a_1: a_2: \ldots$

Example (Thue–Morse stream) L = 0 : X X = 1 : zip(X, Y) Y = 0 : zip(Y, X) $zip(x : \sigma, y : \tau) = x : y : zip(\tau, \sigma)$

Specifying streams

- ► a stream over *A* is an infinite sequence of elements from *A*.
- using the stream constructor symbol ":", we write streams as:

 $a_0: a_1: a_2: \ldots$

Example (Thue–Morse stream) $\begin{array}{c}
 L \rightarrow 0 : X \\
 X \rightarrow 1 : zip(X, Y) \\
 Y \rightarrow 0 : zip(Y, X) \\
 zip(x : \sigma, y : \tau) \rightarrow x : y : zip(\tau, \sigma)
\end{array}$

Specifying streams

- ► a stream over *A* is an infinite sequence of elements from *A*.
- using the stream constructor symbol ":", we write streams as:

 $a_0: a_1: a_2: \ldots$

Example (Thue–Morse stream) $\begin{array}{c}
 L \rightarrow 0: X \\
 X \rightarrow 1: zip(X, Y) \\
 Y \rightarrow 0: zip(Y, X) \\
 zip(x: \sigma, y: \tau) \rightarrow x: y: zip(\tau, \sigma) \\
 L \rightarrow 0: 1: 1: 0: 1: 0: 0: 1: 1: 0: 0: 1: 1: 0: \ldots
\end{array}$

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0:1:f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ $tail(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	т	

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0:1:f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ $tail(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	$T \rightarrow 0: 1: f(tail(\underline{T}))$	

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0: 1: f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ $tail(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds: T		

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0:1:f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ $tail(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	T → 0 : 1 : <u>f(1 :</u> f(tail(T)))	

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0: 1: f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ tail $(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	T → 0 : 1 : 1 : <u>i(1</u>) : f(f(tail(۲)))

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0:1:f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ $tail(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	T → 0 : 1 : 1 : 0 : f(f(tail(T)))

Specifying Streams

Example (7	Thue–Morse stream)	
	$T \rightarrow 0:1:f(tail(T))$	stream constant
	$f(\mathbf{x}:\sigma) \to \mathbf{x}: i(\mathbf{x}): f(\sigma)$ $tail(\mathbf{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	T → 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1	: 1 : 0 : 0 : 1 : f(f(f(tail(T))))

Specifying Streams

Example (Thue–Morse stream)	
	$T \rightarrow 0:1:f(tail(T))$	stream constant
	$f(\boldsymbol{x}:\sigma) \to \boldsymbol{x}: i(\boldsymbol{x}): f(\sigma)$ $tail(\boldsymbol{x}:\sigma) \to \sigma$	stream functions
	$i(0) \rightarrow 1$ $i(1) \rightarrow 0$	data functions
one finds:	T	:1:0:0:1:0:1:1:0:

Consider zip-specifications formed with zip-terms built from:

- data constants c₁, c₂, ...,
- stream constructor symbol ':',
- the binary stream function symbol zip,

and with defining equations:

$$\mathbf{M}_i = \mathbf{C}_i[\mathbf{M}_1, \dots, \mathbf{M}_n] \qquad (i = 0, \dots, n)$$
$$\operatorname{zip}(x : \sigma, \tau) = x : \operatorname{zip}(\tau, \sigma)$$

where C_i are zip-term contexts with *n* holes.

Question

Consider zip-specifications formed with zip-terms built from:

- data constants c₁, c₂, ...,
- stream constructor symbol ':',
- the binary stream function symbol zip,

and with defining equations:

$$M_i = C_i[M_1, \dots, M_n] \qquad (i = 0, \dots, n)$$
$$zip(x : \sigma, y : \tau) = x : y : zip(\sigma, \tau)$$

where C_i are zip-term contexts with *n* holes.

Question

Consider zip-specifications formed with zip-terms built from:

- data constants c₁, c₂, ...,
- stream constructor symbol ':',
- the binary stream function symbol zip,

and with defining equations:

$$M_i = C_i[M_1, \dots, M_n] \qquad (i = 0, \dots, n)$$
$$zip(x : \sigma, \tau) = x : zip(\tau, \sigma)$$

where C_i are zip-term contexts with *n* holes.

Question

Consider zip-specifications formed with zip-terms built from:

- data constants c₁, c₂, ...,
- stream constructor symbol ':',
- the binary stream function symbol zip,

and with defining equations:

$$M_i = C_i[M_1, \dots, M_n] \qquad (i = 0, \dots, n)$$
$$zip(x : \sigma, \tau) = x : zip(\tau, \sigma)$$

where C_i are zip-term contexts with *n* holes.

Question

Some known results / existing tools

Equivalence of stream specifications

- Π₂⁰-complete (Roşu, 2006)
- Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π⁰₂-complete (Simonsen, E/G/H, 2006)
- much previous and current work on productivity ([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry, Buchholz, E/G/H/K/Isihara, Zantema)
- Productivity prover *ProPro* of E/G/H for stream productivity:

infinity.few.vu.nl/productivity/tool.html

Some known results / existing tools

Equivalence of stream specifications

- Π₂⁰-complete (Roşu, 2006)
- Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π₂⁰-complete (Simonsen, E/G/H, 2006)
- much previous and current work on productivity ([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry, Buchholz, E/G/H/K/Isihara, Zantema)
- ► Productivity prover *ProPro* of E/G/H for stream productivity:

infinity.few.vu.nl/productivity/tool.html

Some known results / existing tools

Equivalence of stream specifications

- Π₂⁰-complete (Roşu, 2006)
- ▶ Proof Tool *Circ* of Roşu for stream equivalence.

Productivity of stream specifications

- productivity implies unique solvability (Sijtsma, 1989)
- Π₂⁰-complete (Simonsen, E/G/H, 2006)
- much previous and current work on productivity ([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry, Buchholz, E/G/H/K/Isihara, Zantema)
- Productivity prover *ProPro* of E/G/H for stream productivity:

infinity.few.vu.nl/productivity/tool.html

Roadmap to a decidability result

- unique solvability versus productivity for zip-specs
- transformation into 'zip-guarded', and 'flat' zip-specs
- 'observation graphs' of flat zip-specs
 - using a rewrite system that employs the (head, even, odd)-cobasis for streams
- link between:
 - equivalence of zip-specs, and
 - bisimilarity of associated observation graphs
- using bisimilarity-checking to decide equivalence of zip-specs

Roadmap: uphill to observation graphs

$$L = 0: X$$

$$X = 1: zip(X, Y)$$

$$Y = 0: zip(Y, X)$$

$$zip(x: \sigma, \tau) = x: zip(\tau, \sigma)$$

$$L = 0: zip(L'_{e}, X)$$

$$L'_{e} = 1: zip(L, Y)$$

$$X = 1: zip(X, Y)$$

$$Y = 0: zip(Y, X)$$

$$zip(x: \sigma, \tau) = x: zip(\tau, \sigma)$$

Roadmap: uphill to observation graphs

Unique Solvability versus Productivity

Proposition

For a zip-specification S the following statements are equivalent:

- S is uniquely solvable,
- S is productive,
- S has a guard on every left-most cycle.

Hence: Productivity is decidable for zip-specifications.

Example

 \blacktriangleright Z = zip(Z, zip(Z, 0 : Z)) is neither productive nor uniquely

solvable.

 \blacktriangleright Z = zip(0 : Z, zip(Z, 0 : Z)) is productive and uniquely solvable.

Unique Solvability versus Productivity

Proposition

For a zip-specification S the following statements are equivalent:

- S is uniquely solvable,
- S is productive,
- S has a guard on every left-most cycle.

Hence: Productivity is decidable for zip-specifications.

Example

• Z = zip(Z, zip(Z, 0 : Z)) is neither productive nor uniquely

solvable.

► Z = zip(0 : Z, zip(Z, 0 : Z)) is productive and uniquely solvable.

A zip-specification ${\cal S}$ is called zip-guarded if every cycle in ${\cal S}$ contains an occurrence of zip.

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

M = c : zip(M, M);

A cycle M = a : b : M of length 2 can be replaced by the spec:

 $\mathsf{M} = \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_b) \quad \mathsf{M}_a = \mathsf{a} : \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_a) \quad \mathsf{M}_b = \mathsf{b} : \mathsf{zip}(\mathsf{M}_b, \mathsf{M}_b);$

A cycle M = a : b : c : M of length 3 by the specification:

 $M_{abc} = zip(a:c:M_{bac},M_{bac}) \qquad M_{bac} = zip(b:c:M_{abc},M_{abc}) .$

cycles of even length: split into cycles of odd length; cycles of odd length *n*: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss

Equivalence of Stream Specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

 $\mathsf{M} = \mathsf{c} : \mathsf{zip}(\mathsf{M}, \mathsf{M});$

A cycle M = a : b : M of length 2 can be replaced by the spec:

 $\mathsf{M} = \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_b) \quad \mathsf{M}_a = a : \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_a) \quad \mathsf{M}_b = b : \mathsf{zip}(\mathsf{M}_b, \mathsf{M}_b);$

A cycle M = a : b : c : M of length 3 by the specification:

 $M_{abc} = zip(a:c:M_{bac},M_{bac}) \qquad M_{bac} = zip(b:c:M_{abc},M_{abc}) .$

cycles of even length: split into cycles of odd length; cycles of odd length *n*: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss

Equivalence of Stream Specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

 $\mathsf{M} = \mathsf{c} : \mathsf{zip}(\mathsf{M}, \mathsf{M});$

A cycle M = a : b : M of length 2 can be replaced by the spec:

 $\mathsf{M} = \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_b) \quad \mathsf{M}_a = \mathsf{a} : \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_a) \quad \mathsf{M}_b = \mathsf{b} : \mathsf{zip}(\mathsf{M}_b, \mathsf{M}_b) ;$

A cycle M = a : b : c : M of length 3 by the specification:

 $M_{abc} = zip(a:c:M_{bac},M_{bac}) \qquad M_{bac} = zip(b:c:M_{abc},M_{abc}) \,.$

cycles of even length: split into cycles of odd length; cycles of odd length *n*: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss

Equivalence of Stream Specifications

Lemma

Every productive zip-specification can be transformed into an equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

 $\mathsf{M} = \mathsf{c} : \mathsf{zip}(\mathsf{M}, \mathsf{M});$

A cycle M = a : b : M of length 2 can be replaced by the spec:

 $\mathsf{M} = \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_b) \quad \mathsf{M}_a = a : \mathsf{zip}(\mathsf{M}_a, \mathsf{M}_a) \quad \mathsf{M}_b = b : \mathsf{zip}(\mathsf{M}_b, \mathsf{M}_b) ;$

A cycle M = a : b : c : M of length 3 by the specification:

 $M_{abc} = zip(a:c:M_{bac},M_{bac}) \qquad M_{bac} = zip(b:c:M_{abc},M_{abc}).$

cycles of even length: split into cycles of odd length; cycles of odd length *n*: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss

A zip-guarded spec ${\mathcal S}$ is called flat if its equations are of the form:

 $M_i = c_{i,1} : ... : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for i = 0, ..., n

Proposition

Every zip-guarded specification S can be transformed into a flat zip-specification S' with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0: zip(1: zip(M, M), 0: M)

can be transformed into the spec:

$$\begin{split} M &= 0: zip(M_1, M_2) \\ M_1 &= 1: zip(M, M) \\ M_2 &= 0: 0: zip(M_1, M_2) \end{split}$$

A zip-guarded spec ${\mathcal S}$ is called flat if its equations are of the form:

 $M_i = c_{i,1} : ... : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for i = 0, ..., n

Proposition

Every zip-guarded specification S can be transformed into a flat zip-specification S' with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0: zip(1: zip(M, M), 0: M)

can be transformed into the spec:

$$\begin{split} M &= 0: zip(M_1, M_2) \\ M_1 &= 1: zip(M, M) \\ M_2 &= 0: 0: zip(M_1, M_2) \end{split}$$

A zip-guarded spec ${\mathcal S}$ is called flat if its equations are of the form:

 $M_i = c_{i,1} : ... : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for i = 0, ..., n

Proposition

Every zip-guarded specification S can be transformed into a flat zip-specification S' with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

 $\mathsf{M} = 0: \mathsf{zip}(1:\mathsf{zip}(\mathsf{M},\mathsf{M}), 0:\mathsf{M})$

can be transformed into the spec:

$$\begin{split} M &= 0: zip(M_1, M_2) \\ M_1 &= 1: zip(M, M) \\ M_2 &= 0: 0: zip(M_1, M_2) \end{split}$$

A zip-guarded spec ${\mathcal S}$ is called flat if its equations are of the form:

 $M_i = c_{i,1} : ... : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for i = 0, ..., n

Proposition

Every zip-guarded specification S can be transformed into a flat zip-specification S' with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

 $\mathsf{M} = \mathsf{0} : \mathsf{zip}(\mathsf{1} : \mathsf{zip}(\mathsf{M}, \mathsf{M}), \mathsf{0} : \mathsf{M})$

can be transformed into the spec:

 $M = 0 : zip(M_1, M_2)$ $M_1 = 1 : zip(M, M)$ $M_2 = 0 : 0 : zip(M_1, M_2)$

A zip-guarded spec ${\mathcal S}$ is called flat if its equations are of the form:

 $M_i = c_{i,1} : ... : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for i = 0, ..., n

Proposition

Every zip-guarded specification S can be transformed into a flat zip-specification S' with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

 $\mathsf{M} = \mathsf{0} : \mathsf{zip}(\mathsf{1} : \mathsf{zip}(\mathsf{M}, \mathsf{M}), \mathsf{0} : \mathsf{M})$

can be transformed into the spec:

$$\begin{split} M &= 0 : zip(M_1, M_2) \\ M_1 &= 1 : zip(M, M) \\ M_2 &= 0 : 0 : zip(M_1, M_2) \end{split}$$

A zip-guarded spec ${\mathcal S}$ is called flat if its equations are of the form:

 $M_i = c_{i,1} : ... : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for i = 0, ..., n

Proposition

Every zip-guarded specification S can be transformed into a flat zip-specification S' with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

 $\mathsf{M} = \mathsf{0} : \mathsf{zip}(\mathsf{1} : \mathsf{zip}(\mathsf{M}, \mathsf{M}), \mathsf{0} : \mathsf{M})$

can be transformed into the spec:

 $M = 0 : zip(M_1, M_2)$ $M_1 = 1 : zip(M, M)$ $M_2 = 0 : 0 : zip(M_1, M_2)$ ROS Stream Equality Summary

Flat zip-specifications

Example (Thue–Morse)

 $L = 0: zip(L'_{e}, X)$ $L'_{e} = 1: zip(L, Y)$ X = 1: zip(X, Y) Y = 0: zip(Y, X) $zip(x: \sigma, \tau) = x: zip(\tau, \sigma)$

Rewriting zip-terms

For a zip-spec S, the zip-terms over S are defined by the grammar:

 $Z ::= \mathsf{M}_i \mid \mathbf{c} : Z \mid \mathsf{zip}(Z, Z)$

Definition

Let S be a zip-spec. The TRS *R* on zip-terms over S has the rules:

 $\begin{aligned} \mathsf{head}(x:t) \to x\\ \mathsf{even}(x:t) \to x: \mathsf{odd}(t)\\ \mathsf{odd}(x:t) \to \mathsf{even}(t) \end{aligned}$

 $ext{head}(ext{zip}(s,t))
ightarrow ext{head}(s)$ $ext{even}(ext{zip}(s,t))
ightarrow s$ $ext{odd}(ext{zip}(s,t))
ightarrow t$

and, in addition, for each equation $M_i = t$ of S, rules:

 $head(M_i) \rightarrow head(t) \quad even(M_i) \rightarrow even(t) \quad odd(M_i) \rightarrow odd(t)$

By $t\downarrow$ we denote the normal form of t with respect to **R**.

R is orthogonal, hence CR. If S is product., R is terminating, thus UN.

Endrullis, Grabmayer, Hendriks, Klop, Moss

Rewriting zip-terms

For a zip-spec S, the zip-terms over S are defined by the grammar:

 $Z ::= \mathsf{M}_i \mid \mathbf{c} : Z \mid \mathsf{zip}(Z, Z)$

Definition

Let S be a zip-spec. The TRS *R* on zip-terms over S has the rules:

 $\begin{array}{ll} \operatorname{head}(x:t) \to x & \operatorname{head}(\operatorname{zip}(s,t)) \to \operatorname{head}(s) \\ \operatorname{even}(x:t) \to x: \operatorname{odd}(t) & \operatorname{even}(\operatorname{zip}(s,t)) \to s \\ \operatorname{odd}(x:t) \to \operatorname{even}(t) & \operatorname{odd}(\operatorname{zip}(s,t)) \to t \end{array}$

and, in addition, for each equation $M_i = t$ of S, rules:

 $head(M_i) \rightarrow head(t) \quad even(M_i) \rightarrow even(t) \quad odd(M_i) \rightarrow odd(t)$

By $t\downarrow$ we denote the normal form of t with respect to **R**.

R is orthogonal, hence CR. If S is product., R is terminating, thus UN.

Endrullis, Grabmayer, Hendriks, Klop, Moss

Rewriting zip-terms

For a zip-spec S, the zip-terms over S are defined by the grammar:

 $Z ::= \mathsf{M}_i \mid \mathbf{c} : Z \mid \mathsf{zip}(Z, Z)$

Definition

Let S be a zip-spec. The TRS *R* on zip-terms over S has the rules:

 $\begin{array}{ll} \operatorname{head}(x:t) \to x & \operatorname{head}(\operatorname{zip}(s,t)) \to \operatorname{head}(s) \\ \operatorname{even}(x:t) \to x: \operatorname{odd}(t) & \operatorname{even}(\operatorname{zip}(s,t)) \to s \\ \operatorname{odd}(x:t) \to \operatorname{even}(t) & \operatorname{odd}(\operatorname{zip}(s,t)) \to t \end{array}$

and, in addition, for each equation $M_i = t$ of S, rules:

 $head(M_i) \rightarrow head(t) \quad even(M_i) \rightarrow even(t) \quad odd(M_i) \rightarrow odd(t)$

By $t \downarrow$ we denote the normal form of t with respect to **R**.

R is orthogonal, hence CR. If *S* is product., *R* is terminating, thus UN.

(even, odd)-Derivatives

Definition

Let S be a zip-guarded zip-specification. Let *t* a zip-term over S.

(even, odd)-derivatives of t (w.r.t. S) are defined inductively:

t↓ is an (even, odd)-derivative of *t*;

▶ if *s* is an (even, odd)-der. of *t*, then so are even(*s*)↓ and odd(*s*)↓. By $\partial_{\mathcal{S}}(t)$ we denote the set of (even, odd)-derivatives of *t*.

Observation graphs

Definition

Let $\ensuremath{\mathcal{S}}$ be a zip-guarded, productive zip-specification.

The ((even, odd)-)observation graph $\mathcal{O}(S)$ of S:

- its root node is M₀;
- every node t is labelled with head(t) \downarrow ;
- ► every node t has two outgoing edges, even and odd, to the nodes even(t)↓, and odd(t)↓, resp..

L = 0 : X X = 1 : zip(X, Y) Y = 0 : zip(Y, X) $zip(x : \sigma, y : \tau) = x : y : zip(\tau, \sigma)$

(ev, od)-derivatives versus observation graphs

Proposition

Let S be a zip-guarded, productive zip-specification.

The set of nodes of $\mathcal{O}(S)$ coincides with the set $\partial_{S}(M_{0})$ of (even, odd)-derivatives of the root M_{0} of S.

Hence (at least) for flat specs, the observation graph of S is finite.

Main Lemma

Let S be a flat zip-specification. The set $\partial_{S}(M_{0})$ of (even, odd)-derivatives of the root M_{0} of S is finite.

Proof.

Since S is flat, its equations are of the form:

 $M_i = c_{i,1} : \ldots : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for $i = 0, \ldots, n$

Let $m := \max_{0 \le i \le n} m_i$.

It suffices to show that every $t \in \partial_{\mathcal{S}}(M_0)$ is of the form:

 $\mathbf{c}_1:\ldots:\mathbf{c}_k:\mathbf{M}_i \tag{1}$

where $k \leq m, c_1, \ldots, c_k$ are constants, and M_i a rec. var. of S.

Main Lemma

Let S be a flat zip-specification. The set $\partial_{\mathcal{S}}(M_0)$ of (even, odd)-derivatives of the root M_0 of S is finite.

Proof.

Since S is flat, its equations are of the form:

 $M_i = c_{i,1} : \ldots : c_{i,m_i} : zip(M_{i,1}, M_{i,2})$ for $i = 0, \ldots, n$

Let $m := \max_{0 \le i \le n} m_i$.

It suffices to show that every $t \in \partial_{\mathcal{S}}(M_0)$ is of the form:

$$\mathbf{C}_1:\ldots:\mathbf{C}_k:\mathbf{M}_i \tag{1}$$

where $k \leq m, c_1, \ldots, c_k$ are constants, and M_i a rec. var. of S.

Proof (Continued).

We use induction on the definition of derivatives of M_0 over S.

- ▶ Base case. We note that $M_0 \downarrow = M_0$, and hence (??) holds.
- Induction Step. Let t ∈ ∂_S(M₀) be arbitrary. By induction hypothesis, t is of the form (??), that is:

 $t = c_1 : \ldots : c_k : M_i$

for some $k \leq m$, c_1 , constants ..., c_k are constants, and a rec. var. M_i of S.

We have to show that $even(t)\downarrow$ and $odd(t)\downarrow$ are again of the form (??).

Proof (Continued).

We use induction on the definition of derivatives of M_0 over S.

- ▶ Base case. We note that $M_0 \downarrow = M_0$, and hence (??) holds.
- ▶ Induction Step. Let $t \in \partial_{\mathcal{S}}(M_0)$ be arbitrary.

By induction hypothesis, *t* is of the form (??), that is:

 $t = c_1 : \ldots : c_k : \mathbf{M}_i$

for some $k \leq m$, c_1 , constants ..., c_k are constants, and a rec. var. M_i of S.

We have to show that $even(t)\downarrow$ and $odd(t)\downarrow$ are again of the form (??).

Proof (Continued).

We use induction on the definition of derivatives of M_0 over S.

- ▶ Base case. We note that $M_0 \downarrow = M_0$, and hence (??) holds.
- Induction Step. Let t ∈ ∂_S(M₀) be arbitrary. By induction hypothesis, t is of the form (??), that is:

$$t = \mathbf{c}_1 : \ldots : \mathbf{c}_k : \mathbf{M}_i$$

for some $k \leq m$, c_1 , constants ..., c_k are constants, and a rec. var. M_i of S.

We have to show that $even(t)\downarrow$ and $odd(t)\downarrow$ are again of the form (??).

Proof (Continued).

We use induction on the definition of derivatives of M_0 over S.

- ▶ Base case. We note that $M_0 \downarrow = M_0$, and hence (??) holds.
- Induction Step. Let t ∈ ∂_S(M₀) be arbitrary. By induction hypothesis, t is of the form (??), that is:

 $t = \mathbf{c}_1 : \ldots : \mathbf{c}_k : \mathbf{M}_i$

for some $k \leq m$, c_1 , constants ..., c_k are constants, and a rec. var. M_i of S.

We have to show that $even(t)\downarrow$ and $odd(t)\downarrow$ are again of the form (??).

Proof (Continued).

```
Induction Step (Continued). We find:
```

$$\underbrace{\operatorname{even}(c_1:\ldots:c_k:M_i)}_{=\operatorname{even}(t)} \rightarrow$$

$$\begin{cases} c_1 : c_3 : \dots : c_{k-1} : c_{i,1} : c_{i,3} : \dots : M_{i,1} \\ \dots & \text{for } k \text{ even, } M_i \text{ even} \\ c_1 : c_3 : \dots : c_{k-1} : c_{i,1} : c_{i,3} : \dots : M_{i,2} \\ \dots & \text{for } k \text{ even, } M_i \text{ odd} \\ c_1 : c_3 : \dots : c_k : c_{i,2} : c_{i,4} : \dots : M_{i,1} \\ \dots & \text{for } k \text{ odd, } M_i \text{ even} \\ c_1 : c_3 : \dots : c_k : c_{i,2} : c_{i,4} : \dots : M_{i,2} \\ \dots & \text{for } k \text{ odd, } M_i \text{ odd} \end{cases}$$

The terms on the right have data prefixes of length $\leq m$, and are normal forms w.r.t. *R*. Hence even(*t*) is again of the form (**??**).

Proof (Continued).

Induction Step (Continued). We find:

$$\underbrace{\operatorname{even}(c_1:\ldots:c_k:\mathsf{M}_i)}_{=\operatorname{even}(t)}\twoheadrightarrow$$

$$\begin{cases} c_1 : c_3 : \ldots : c_{k-1} : c_{i,1} : c_{i,3} : \ldots : M_{i,1} \\ \dots \text{ for } k \text{ even, } M_i \text{ even} \\ c_1 : c_3 : \ldots : c_{k-1} : c_{i,1} : c_{i,3} : \ldots : M_{i,2} \\ \dots \text{ for } k \text{ even, } M_i \text{ odd} \\ c_1 : c_3 : \ldots : c_k : c_{i,2} : c_{i,4} : \ldots : M_{i,1} \\ \dots \text{ for } k \text{ odd, } M_i \text{ even} \\ c_1 : c_3 : \ldots : c_k : c_{i,2} : c_{i,4} : \ldots : M_{i,2} \\ \dots \text{ for } k \text{ odd, } m_i \text{ odd} \end{cases}$$

The terms on the right have data prefixes of length $\leq m$, and are normal forms w.r.t. *R*. Hence even(*t*) is again of the form (**??**).

Proof (Continued).

Induction Step (Continued). We find:

$$\underbrace{\operatorname{even}(c_1:\ldots:c_k:M_i)}_{=\operatorname{even}(t)} \twoheadrightarrow \left\{ \right.$$

$$\begin{cases} c_1 : c_3 : \dots : c_{k-1} : c_{i,1} : c_{i,3} : \dots : M_{i,1} \\ \dots & \text{for } k \text{ even, } M_i \text{ even} \\ c_1 : c_3 : \dots : c_{k-1} : c_{i,1} : c_{i,3} : \dots : M_{i,2} \\ \dots & \text{for } k \text{ even, } M_i \text{ odd} \\ c_1 : c_3 : \dots : c_k : c_{i,2} : c_{i,4} : \dots : M_{i,1} \\ \dots & \text{for } k \text{ odd, } M_i \text{ even} \\ c_1 : c_3 : \dots : c_k : c_{i,2} : c_{i,4} : \dots : M_{i,2} \\ \dots & \text{for } k \text{ odd, } m_i \text{ odd} \end{cases}$$

The terms on the right have data prefixes of length $\leq m$, and are normal forms w.r.t. *R*. Hence even(*t*) is again of the form (??).

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

▶ ...

 $\langle head, odd, even \rangle$ is a cobasis of the coalgebra of streams. That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head(σ), and head(even^{*i*}(σ)) for all *i*;
- $\sigma(1)$ by head(odd(σ)), and head(even^{*i*}(odd(σ))) for all *i*;
- $\sigma(2)$ by head(odd(even(σ))), and head(evenⁱ(odd(even(σ))));
- $\sigma(3)$ by head(odd(odd(σ))), and head(even^{*i*}(odd(odd(σ))));

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

 $\langle head, odd, even \rangle$ is a cobasis of the coalgebra of streams. That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head(σ), and head(even^{*i*}(σ)) for all *i*;
- $\sigma(1)$ by head(odd(σ)), and head(even^{*i*}(odd(σ))) for all *i*;
- $\sigma(2)$ by head(odd(even(σ))), and head(evenⁱ(odd(even(σ))));
- $\sigma(3)$ by head(odd(odd(σ))), and head(even^{*i*}(odd(odd(σ))));

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

 $\langle head, odd, even \rangle$ is a cobasis of the coalgebra of streams. That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head(σ), and head(even^{*i*}(σ)) for all *i*;
- $\sigma(1)$ by head(odd(σ)), and head(even^{*i*}(odd(σ))) for all *i*;
- $\sigma(2)$ by head(odd(even(σ))), and head(evenⁱ(odd(even(σ))));
- $\sigma(3)$ by head(odd(odd(σ))), and head(even^{*i*}(odd(odd(σ))));

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

 $\langle head, odd, even \rangle$ is a cobasis of the coalgebra of streams. That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head(σ), and head(even^{*i*}(σ)) for all *i*;
- σ(1) by head(odd(σ)), and head(evenⁱ(odd(σ))) for all i;
- $\sigma(2)$ by head(odd(even(σ))), and head(evenⁱ(odd(even(σ))));
- $\sigma(3)$ by head(odd(odd(σ))), and head(even^{*i*}(odd(odd(σ))));

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and only if their observation graphs are bisimilar.

Proof (Idea).

▶ ...

 $\langle head, odd, even \rangle$ is a cobasis of the coalgebra of streams. That is, 'experiments' built from these operations can be used to observe every element of a stream σ :

- $\sigma(0)$ by head(σ), and head(even^{*i*}(σ)) for all *i*;
- σ(1) by head(odd(σ)), and head(evenⁱ(odd(σ))) for all i;
- σ(2) by head(odd(even(σ))), and head(evenⁱ(odd(even(σ))));
- $\sigma(3)$ by head(odd(odd(σ))), and head(even^{*i*}(odd(odd(σ))));

ROS Stream Equality Summary

Bisimilarity of observation graphs (downhill)

$$L = 0: X$$

$$X = 1: zip(X, Y)$$

$$Y = 0: zip(Y, X)$$

$$zip(x: \sigma, \tau) = x: zip(\tau, \sigma)$$

$$L = 0: zip(L'_e, X)$$

$$L'_e = 1: zip(L, Y)$$

$$X = 1: zip(X, Y)$$

$$Y = 0: zip(Y, X)$$

$$zip(x: \sigma, \tau) = x: zip(\tau, \sigma)$$

ROS Stream Equality Summary

Bisimilarity of observation graphs (downhill)

Bisimilarity of observation graphs (downhill)

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(S)$ with $\leq n$ vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O(mn + n^2)$ time (Kannellakis–Smolka),
- ► O(m log n) time (Tarjan-Paige),

which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.

However: For deterministic transition systems with *n* states, bisimilarity coincides with trace (language) equivalence, which can be decided in time:

• O(n) time (Hopcroft–Karp).

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(S)$ with $\leq n$ vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O(mn + n^2)$ time (Kannellakis–Smolka),
- O(m log n) time (Tarjan–Paige),

which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.

However: For deterministic transition systems with *n* states, bisimilarity coincides with trace (language) equivalence, which can be decided in time:

• O(n) time (Hopcroft–Karp).

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(S)$ with $\leq n$ vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O(mn + n^2)$ time (Kannellakis–Smolka),
- O(m log n) time (Tarjan–Paige),

which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.

However: For deterministic transition systems with *n* states, bisimilarity coincides with trace (language) equivalence, which can be decided in time:

• O(n) time (Hopcroft–Karp).

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even, odd)-observation graphs $\mathcal{O}(S)$ with $\leq n$ vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions can be decided in:

- $O(mn + n^2)$ time (Kannellakis–Smolka),
- O(m log n) time (Tarjan–Paige),

which implies $O(n \log n)$ (with T/P) for obs. graphs with n vertices.

However: For deterministic transition systems with *n* states, bisimilarity coincides with trace (language) equivalence, which can be decided in time:

• O(n) time (Hopcroft–Karp).

Theorem

Equivalence of zip-specifications is decidable.

- Unique solvability of zip-specs is equivalent to productivity.
- Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- Observation graphs of flat zip-specs are finite.
- Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- Given two productive zip-specs S_1 and S_2 , their equivalence can be decided by obtaining flat forms S'_1 and S'_2 , and deciding bisimilarity for the observation graphs $\mathcal{O}(S'_1)$ and $\mathcal{O}(S'_2)$.

Theorem

Equivalence of zip-specifications is decidable.

- Unique solvability of zip-specs is equivalent to productivity.
- Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- 4 Observation graphs of flat zip-specs are finite.
- **5** Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- Given two productive zip-specs S₁ and S₂, their equivalence can be decided by obtaining flat forms S'₁ and S'₂, and deciding bisimilarity for the observation graphs O(S'₁) and O(S'₂).

Theorem

Equivalence of zip-specifications is decidable.

- Unique solvability of zip-specs is equivalent to productivity.
- 2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- 4 Observation graphs of flat zip-specs are finite.
- **5** Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- Given two productive zip-specs S_1 and S_2 , their equivalence can be decided by obtaining flat forms S'_1 and S'_2 , and deciding bisimilarity for the observation graphs $\mathcal{O}(S'_1)$ and $\mathcal{O}(S'_2)$.

Theorem

Equivalence of zip-specifications is decidable.

- 1 Unique solvability of zip-specs is equivalent to productivity.
- Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- 4 Observation graphs of flat zip-specs are finite.
- **5** Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- Given two productive zip-specs S_1 and S_2 , their equivalence can be decided by obtaining flat forms S'_1 and S'_2 , and deciding bisimilarity for the observation graphs $\mathcal{O}(S'_1)$ and $\mathcal{O}(S'_2)$.

Theorem

Equivalence of zip-specifications is decidable.

- 1 Unique solvability of zip-specs is equivalent to productivity.
- Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- 4 Observation graphs of flat zip-specs are finite.
- 5 Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- Given two productive zip-specs S_1 and S_2 , their equivalence can be decided by obtaining flat forms S'_1 and S'_2 , and deciding bisimilarity for the observation graphs $\mathcal{O}(S'_1)$ and $\mathcal{O}(S'_2)$.

Theorem

Equivalence of zip-specifications is decidable.

- 1 Unique solvability of zip-specs is equivalent to productivity.
- Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- 4 Observation graphs of flat zip-specs are finite.
- **5** Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- Given two productive zip-specs S_1 and S_2 , their equivalence can be decided by obtaining flat forms S'_1 and S'_2 , and deciding bisimilarity for the observation graphs $\mathcal{O}(S'_1)$ and $\mathcal{O}(S'_2)$.

Theorem

Equivalence of zip-specifications is decidable.

- 1 Unique solvability of zip-specs is equivalent to productivity.
- 2 Productivity of zip-specs is (easily) decidable. Hence it suffices to decide equivalence of productive zip-specs.
- Every productive zip-spec S can be transformed into a flat zip-spec S' that specifies/computes that same stream.
- 4 Observation graphs of flat zip-specs are finite.
- **5** Two productive, flat specifications are equivalent if and only if the associated observation graphs are bisimilar.
- **6** Given two productive zip-specs S_1 and S_2 , their equivalence can be decided by obtaining flat forms S'_1 and S'_2 , and deciding bisimilarity for the observation graphs $\mathcal{O}(S'_1)$ and $\mathcal{O}(S'_2)$.

ROS Stream Equality Summary

PTIME-decidability result

Remember:

Main Lemma

Let S be a flat zip-specification. The set $\partial_{\mathcal{S}}(M_0)$ of (even, odd)-derivatives of the root M_0 of S is finite.

It can be strengthened:

Main Lemma Plus

Let *S* be a flat zip-specification with *n* recursion variables, *c* stream constants, and *m* the longest stream prefix in *S*. Then it holds:

$$|\partial_{\mathcal{S}}(\mathsf{M}_0)| \leq 2 \cdot (c+1) \cdot m \cdot n + 4 \cdot m$$

Theorem

Equivalence of zip-specifications is decidable in PTIME.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

PTIME-decidability result

Remember:

Main Lemma

Let S be a flat zip-specification. The set $\partial_{S}(M_{0})$ of (even, odd)-derivatives of the root M_{0} of S is finite.

It can be strengthened:

Main Lemma Plus

Let S be a flat zip-specification with *n* recursion variables, *c* stream constants, and *m* the longest stream prefix in S. Then it holds:

$$|\partial_{\mathcal{S}}(\mathsf{M}_{0})| \leq 2 \cdot (c+1) \cdot m \cdot n + 4 \cdot m$$

Theorem

Equivalence of zip-specifications is decidable in PTIME.

PTIME-decidability result

Remember:

Main Lemma

Let S be a flat zip-specification. The set $\partial_{S}(M_{0})$ of (even, odd)-derivatives of the root M_{0} of S is finite.

It can be strengthened:

Main Lemma Plus

Let S be a flat zip-specification with *n* recursion variables, *c* stream constants, and *m* the longest stream prefix in S. Then it holds:

$$|\partial_{\mathcal{S}}(\mathsf{M}_0)| \leq 2 \cdot (c+1) \cdot m \cdot n + 4 \cdot m$$

Theorem

Equivalence of zip-specifications is decidable in PTIME.

zip-inv-tail-specifications:

 $\begin{array}{ll} \operatorname{inv}(0:\sigma) \to 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x:\sigma) \to \sigma \\ \operatorname{inv}(1:\sigma) \to 0: \operatorname{inv}(\sigma) & \operatorname{zip}(x:\sigma,\tau) \to x: \operatorname{zip}(\tau,\sigma) \end{array}$

▶ zip_n -specs for $n \in \mathbb{N}$, n > 2, where zip_n is defined by:

 $\operatorname{zip}_n(x:\sigma'_1, \sigma_2, \ldots, \sigma_n) \to x: \operatorname{zip}_n(\sigma_2, \ldots, \sigma_n, \sigma'_1)$

- ▶ zip_n -specs versus zip_m -specs for $m, n \ge 2, m \ne n$.
- ▶ zip_n -specs versus zip_i -mix-specs (all of zip_i , $i \ge 2$, may be used).

zip-inv-tail-specifications:

 $\begin{array}{ll} \operatorname{inv}(0:\sigma) \to 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x:\sigma) \to \sigma \\ \operatorname{inv}(1:\sigma) \to 0: \operatorname{inv}(\sigma) & \operatorname{zip}(x:\sigma,\tau) \to x: \operatorname{zip}(\tau,\sigma) \end{array}$

▶ zip_n -specs for $n \in \mathbb{N}$, n > 2, where zip_n is defined by:

$$\operatorname{zip}_{n}(x:\sigma'_{1}, \sigma_{2}, \ldots, \sigma_{n}) \rightarrow x: \operatorname{zip}_{n}(\sigma_{2}, \ldots, \sigma_{n}, \sigma'_{1})$$

- ▶ zip_n -specs versus zip_m -specs for $m, n \ge 2, m \ne n$.
- ▶ zip_n -specs versus zip_i -mix-specs (all of zip_i , $i \ge 2$, may be used).

zip-inv-tail-specifications:

 $\begin{array}{ll} \operatorname{inv}(0:\sigma) \to 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x:\sigma) \to \sigma \\ \operatorname{inv}(1:\sigma) \to 0: \operatorname{inv}(\sigma) & \operatorname{zip}(x:\sigma,\tau) \to x: \operatorname{zip}(\tau,\sigma) \end{array}$

▶ zip_n -specs for $n \in \mathbb{N}$, n > 2, where zip_n is defined by:

 $\operatorname{zip}_{n}(x:\sigma'_{1}, \sigma_{2}, \ldots, \sigma_{n}) \rightarrow x: \operatorname{zip}_{n}(\sigma_{2}, \ldots, \sigma_{n}, \sigma'_{1})$

▶ zip_n -specs versus zip_m -specs for $m, n \ge 2, m \ne n$.

▶ zip_n -specs versus zip_i -mix-specs (all of zip_i , $i \ge 2$, may be used).

zip-inv-tail-specifications:

 $\begin{array}{ll} \operatorname{inv}(0:\sigma) \to 1: \operatorname{inv}(\sigma) & \operatorname{tail}(x:\sigma) \to \sigma \\ \operatorname{inv}(1:\sigma) \to 0: \operatorname{inv}(\sigma) & \operatorname{zip}(x:\sigma,\tau) \to x: \operatorname{zip}(\tau,\sigma) \end{array}$

▶ zip_n -specs for $n \in \mathbb{N}$, n > 2, where zip_n is defined by:

$$\operatorname{zip}_n(x:\sigma'_1, \sigma_2, \ldots, \sigma_n) \to x: \operatorname{zip}_n(\sigma_2, \ldots, \sigma_n, \sigma'_1)$$

- ► zip_n -specs versus zip_m -specs for $m, n \ge 2, m \ne n$.
- ► zip_n -specs versus zip_i -mix-specs (all of zip_i , $i \ge 2$, may be used).

ROS Stream Equality Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

Summary

- Ad for ISR'2010 in Utrecht.
- ROS: Realising Optimal Sharing (NWO-project)
- Equivalence of stream specifications
 - stream specifications
 - equivalence of stream specifications versus productivity and unique solvability
 - zip-specifications, Larry Moss' question
 - solution: decidability of equivalence for zip-specs
 - zip-guarded, and flat specs
 - observation graphs of zip-guarded specs
 - reducing equivalence to checking bisimilarity of obs. graphs
 - extensions of the result