
ROS
Stream Equality

Summary

Equivalence of Stream Specifications

Jörg Endrullis?, Clemens Grabmayer†, Dimitri Hendriks?,
Jan Willem Klop?, and Larry Moss‡

† Universiteit Utrecht
? Vrije Universiteit, Amsterdam

‡ Indiana University

2nd Workshop on Proof Theory and Rewriting
Obergurgl, 29th March 2010

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Overview

I Ad: International Summer School Rewriting in Utrecht 3-8 July
http://www.utrechtsummerschool.nl

I ROS: Realising Optimal Sharing (NWO-project)

I Equivalence of stream specifications
I stream specifications
I equivalence of stream specifications
I productivity vs. unique solvability
I zip-specifications, Larry Moss’ question
I solution: decidability of equivalence for zip-specs
I extensions of the result

I Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

http://www.utrechtsummerschool.nl

ROS
Stream Equality

Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:
I Dept. of Philosophy (Theor. Philosophy)
I Dept. of Computer Science (Functional Languages)

Aims
I Study optimal-sharing implementations of the λ-calculus
I Try to incorporate optimal-sharing techniques in the

Utrecht Haskell Compiler (UHC)

People
I Phil: Vincent van Oostrom (principal investigator),

CG (postdoc/3 years)
I CS: Doaitse Swierstra and Atze Dijkstra,

Jan Rochel (PhD student/4 years)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:
I Dept. of Philosophy (Theor. Philosophy)
I Dept. of Computer Science (Functional Languages)

Aims
I Study optimal-sharing implementations of the λ-calculus
I Try to incorporate optimal-sharing techniques in the

Utrecht Haskell Compiler (UHC)

People
I Phil: Vincent van Oostrom (principal investigator),

CG (postdoc/3 years)
I CS: Doaitse Swierstra and Atze Dijkstra,

Jan Rochel (PhD student/4 years)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Realising Optimal Sharing (ROS)

NWO-Project (2009–2012/13) at Utrecht University linking:
I Dept. of Philosophy (Theor. Philosophy)
I Dept. of Computer Science (Functional Languages)

Aims
I Study optimal-sharing implementations of the λ-calculus
I Try to incorporate optimal-sharing techniques in the

Utrecht Haskell Compiler (UHC)

People
I Phil: Vincent van Oostrom (principal investigator),

CG (postdoc/3 years)
I CS: Doaitse Swierstra and Atze Dijkstra,

Jan Rochel (PhD student/4 years)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Research questions

Aims (more detail)

I Theory: contribute to the graph rewrite theory of optimal
implementations of rewrite systems, e.g.:

I refine existing implementations of weak β-reduction by OTRSs
I refine, adapt for the practice, and compare with other approaches,

the LamdaScope optimal implementation of λ-calculus by
interaction nets.

I relation semantics for graph rewrite systems (Birkhoff-theorem?)

I Theory/Practice: gain an overview of existing optimal and
non-optimal sharing techniques

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Research questions

Aims (more detail)

I Theory: contribute to the graph rewrite theory of optimal
implementations of rewrite systems, e.g.:

I refine existing implementations of weak β-reduction by OTRSs
I refine, adapt for the practice, and compare with other approaches,

the LamdaScope optimal implementation of λ-calculus by
interaction nets.

I relation semantics for graph rewrite systems (Birkhoff-theorem?)

I Theory/Practice: gain an overview of existing optimal and
non-optimal sharing techniques

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Research questions

Aims (more detail)

I Practice: investigate applications for optimal-sharing techniques
for compiler construction

I find convincing ‘real-life’ examples in which optimal-sharing
algorithms perform better than existing (Haskell) compilers

I isolate classes of programs where using optimal evaluation leads
to speed-up, with the aim of incorporating in UHC of certain
Haskell-programs.

I also interested in applying non-optimal sharing techniques (not
already in use)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Stream Specifications

Example

The specifications:

alt = 0 : 1 : alt
alt1 = 0 : alt′1
alt′1 = 1 : alt1

define the stream 0 : 1 : 0 : 1 : 0 : 1 :

The same is true for the specification:

alt2 = zip(zeros,ones)

zeros = 0 : zeros

ones = 1 : ones

zip(x : σ, y : τ) = x : y : zip(σ, τ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Stream Specifications

Example

The specifications:

alt = 0 : 1 : alt
alt1 = 0 : alt′1
alt′1 = 1 : alt1

define the stream 0 : 1 : 0 : 1 : 0 : 1 :

The same is true for the specification:

alt2 = zip(zeros,ones)

zeros = 0 : zeros

ones = 1 : ones

zip(x : σ, y : τ) = x : y : zip(σ, τ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying streams

I a stream over A is an infinite sequence of elements from A.

I using the stream constructor symbol ":", we write streams as:

a0 : a1 : a2 :

Example (Thue–Morse stream)

L = 0 : X

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, y : τ) = x : y : zip(τ, σ)

L �� 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : . . .

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying streams

I a stream over A is an infinite sequence of elements from A.

I using the stream constructor symbol ":", we write streams as:

a0 : a1 : a2 :

Example (Thue–Morse stream)

L→ 0 : X

X→ 1 : zip(X,Y)

Y→ 0 : zip(Y,X)

zip(x : σ, y : τ)→ x : y : zip(τ, σ)

L �� 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : . . .

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying streams

I a stream over A is an infinite sequence of elements from A.

I using the stream constructor symbol ":", we write streams as:

a0 : a1 : a2 :

Example (Thue–Morse stream)

L→ 0 : X

X→ 1 : zip(X,Y)

Y→ 0 : zip(Y,X)

zip(x : σ, y : τ)→ x : y : zip(τ, σ)

L �� 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : . . .

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T→ 0 : 1 : f(tail(T))

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T � 0 : 1 : f(tail(0 : 1 : f(tail(T))))

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T � 0 : 1 : f(1 : f(tail(T)))

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T � 0 : 1 : 1 : i(1) : f(f(tail(T)))

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T � 0 : 1 : 1 : 0 : f(f(tail(T)))

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T � 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : f(f(f(tail(T))))

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Specifying Streams

Example (Thue–Morse stream)

T→ 0 : 1 : f(tail(T)) stream constant

f(x : σ)→ x : i(x) : f(σ)
stream functions

tail(x : σ)→ σ

i(0)→ 1 i(1)→ 0 data functions

one finds: T �� 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : . . .

A stream specification is productive if lazy/fair evaluation of its root M0
results in an infinite constructor normal form (representing a stream).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:
I data constants c1, c2, . . . ,
I stream constructor symbol ‘:’,
I the binary stream function symbol zip,

and with defining equations:

Mi = Ci [M1, . . . , Mn] (i = 0, . . . ,n)

zip(x : σ, τ) = x : zip(τ, σ)

where Ci are zip-term contexts with n holes.

Question

Is equivalence of specified stream decidable for zip-specifications?

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:
I data constants c1, c2, . . . ,
I stream constructor symbol ‘:’,
I the binary stream function symbol zip,

and with defining equations:

Mi = Ci [M1, . . . , Mn] (i = 0, . . . ,n)

zip(x : σ, y : τ) = x : y : zip(σ, τ)

where Ci are zip-term contexts with n holes.

Question

Is equivalence of specified stream decidable for zip-specifications?

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:
I data constants c1, c2, . . . ,
I stream constructor symbol ‘:’,
I the binary stream function symbol zip,

and with defining equations:

Mi = Ci [M1, . . . , Mn] (i = 0, . . . ,n)

zip(x : σ, τ) = x : zip(τ, σ)

where Ci are zip-term contexts with n holes.

Question

Is equivalence of specified stream decidable for zip-specifications?

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-specifications: motivating question

Consider zip-specifications formed with zip-terms built from:
I data constants c1, c2, . . . ,
I stream constructor symbol ‘:’,
I the binary stream function symbol zip,

and with defining equations:

Mi = Ci [M1, . . . , Mn] (i = 0, . . . ,n)

zip(x : σ, τ) = x : zip(τ, σ)

where Ci are zip-term contexts with n holes.

Question

Is equivalence of specified stream decidable for zip-specifications?

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Some known results / existing tools

Equivalence of stream specifications

I Π0
2-complete (Roşu, 2006)

I Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

I productivity implies unique solvability (Sijtsma, 1989)

I Π0
2-complete (Simonsen, E/G/H, 2006)

I much previous and current work on productivity

([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry,
Buchholz, E/G/H/K/Isihara, Zantema)

I Productivity prover ProPro of E/G/H for stream productivity:

infinity.few.vu.nl/productivity/tool.html

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

infinity.few.vu.nl/productivity/tool.html

ROS
Stream Equality

Summary

Some known results / existing tools

Equivalence of stream specifications

I Π0
2-complete (Roşu, 2006)

I Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

I productivity implies unique solvability (Sijtsma, 1989)

I Π0
2-complete (Simonsen, E/G/H, 2006)

I much previous and current work on productivity

([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry,
Buchholz, E/G/H/K/Isihara, Zantema)

I Productivity prover ProPro of E/G/H for stream productivity:

infinity.few.vu.nl/productivity/tool.html

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

infinity.few.vu.nl/productivity/tool.html

ROS
Stream Equality

Summary

Some known results / existing tools

Equivalence of stream specifications

I Π0
2-complete (Roşu, 2006)

I Proof Tool Circ of Roşu for stream equivalence.

Productivity of stream specifications

I productivity implies unique solvability (Sijtsma, 1989)

I Π0
2-complete (Simonsen, E/G/H, 2006)

I much previous and current work on productivity

([Dijkstra], Wadge, Sijtsma, Telford/Turner, Hughes/Pareto/Sabry,
Buchholz, E/G/H/K/Isihara, Zantema)

I Productivity prover ProPro of E/G/H for stream productivity:

infinity.few.vu.nl/productivity/tool.html

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

infinity.few.vu.nl/productivity/tool.html

ROS
Stream Equality

Summary

Roadmap to a decidability result

I unique solvability versus productivity for zip-specs

I transformation into ‘zip-guarded’, and ‘flat’ zip-specs

I ‘observation graphs’ of flat zip-specs
I using a rewrite system that employs the 〈head, even, odd〉-cobasis

for streams

I link between:
I equivalence of zip-specs, and
I bisimilarity of associated observation graphs

I using bisimilarity-checking to decide equivalence of zip-specs

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Roadmap: uphill to observation graphs

L = 0 : X

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, τ) = x : zip(τ, σ)

L = 0 : zip(L′e,X)

L′e = 1 : zip(L,Y)

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, τ) = x : zip(τ, σ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Roadmap: uphill to observation graphs

0 : X

L

1 : Y

0
L

0 : X L′e

1 : Y

00
1

1

1

0

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Unique Solvability versus Productivity

Proposition

For a zip-specification S the following statements are equivalent:
I S is uniquely solvable,
I S is productive,
I S has a guard on every left-most cycle.

Hence: Productivity is decidable for zip-specifications.

Example

I Z = zip(Z, zip(Z,0 : Z)) is neither productive nor uniquely
solvable.

I Z = zip(0 : Z, zip(Z,0 : Z)) is productive and uniquely solvable.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Unique Solvability versus Productivity

Proposition

For a zip-specification S the following statements are equivalent:
I S is uniquely solvable,
I S is productive,
I S has a guard on every left-most cycle.

Hence: Productivity is decidable for zip-specifications.

Example

I Z = zip(Z, zip(Z,0 : Z)) is neither productive nor uniquely
solvable.

I Z = zip(0 : Z, zip(Z,0 : Z)) is productive and uniquely solvable.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-guarded zip-specifications
A zip-specification S is called zip-guarded if every cycle in S contains
an occurrence of zip.

Non-Example/Example

Non-Example

alt2 = zip(zeros,ones)

zeros = 0 : zeros

ones = 1 : ones

zip(x : σ, τ) = x : zip(τ, σ)

Example

L = 0 : X

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, τ) = x : zip(τ, σ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-guarded zip-specifications
Lemma

Every productive zip-specification can be transformed into an
equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

M = c : zip(M,M) ;

A cycle M = a : b : M of length 2 can be replaced by the spec:

M = zip(Ma,Mb) Ma = a : zip(Ma,Ma) Mb = b : zip(Mb,Mb) ;

A cycle M = a : b : c : M of length 3 by the specification:

Mabc = zip(a : c : Mbac ,Mbac) Mbac = zip(b : c : Mabc ,Mabc) .

cycles of even length: split into cycles of odd length;
cycles of odd length n: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-guarded zip-specifications
Lemma

Every productive zip-specification can be transformed into an
equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

M = c : zip(M,M) ;

A cycle M = a : b : M of length 2 can be replaced by the spec:

M = zip(Ma,Mb) Ma = a : zip(Ma,Ma) Mb = b : zip(Mb,Mb) ;

A cycle M = a : b : c : M of length 3 by the specification:

Mabc = zip(a : c : Mbac ,Mbac) Mbac = zip(b : c : Mabc ,Mabc) .

cycles of even length: split into cycles of odd length;
cycles of odd length n: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-guarded zip-specifications
Lemma

Every productive zip-specification can be transformed into an
equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

M = c : zip(M,M) ;

A cycle M = a : b : M of length 2 can be replaced by the spec:

M = zip(Ma,Mb) Ma = a : zip(Ma,Ma) Mb = b : zip(Mb,Mb) ;

A cycle M = a : b : c : M of length 3 by the specification:

Mabc = zip(a : c : Mbac ,Mbac) Mbac = zip(b : c : Mabc ,Mabc) .

cycles of even length: split into cycles of odd length;
cycles of odd length n: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

zip-guarded zip-specifications
Lemma

Every productive zip-specification can be transformed into an
equivalent zip-guarded and productive zip-specification.

Idea of Proof: Remove cycles that specify periodic streams.

Every cycle M = c : M of length 1 can be replaced by:

M = c : zip(M,M) ;

A cycle M = a : b : M of length 2 can be replaced by the spec:

M = zip(Ma,Mb) Ma = a : zip(Ma,Ma) Mb = b : zip(Mb,Mb) ;

A cycle M = a : b : c : M of length 3 by the specification:

Mabc = zip(a : c : Mbac ,Mbac) Mbac = zip(b : c : Mabc ,Mabc) .

cycles of even length: split into cycles of odd length;
cycles of odd length n: idea as for length 3 applies.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications
A zip-guarded spec S is called flat if its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Proposition

Every zip-guarded specification S can be transformed into a flat
zip-specification S ′ with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0 : zip(1 : zip(M,M),0 : M)

can be transformed into the spec:

M = 0 : zip(M1,M2)

M1 = 1 : zip(M,M)

M2 = 0 : 0 : zip(M1,M2)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications
A zip-guarded spec S is called flat if its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Proposition

Every zip-guarded specification S can be transformed into a flat
zip-specification S ′ with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0 : zip(1 : zip(M,M),0 : M)

can be transformed into the spec:

M = 0 : zip(M1,M2)

M1 = 1 : zip(M,M)

M2 = 0 : 0 : zip(M1,M2)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications
A zip-guarded spec S is called flat if its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Proposition

Every zip-guarded specification S can be transformed into a flat
zip-specification S ′ with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0 : zip(1 : zip(M,M),0 : M)

can be transformed into the spec:

M = 0 : zip(M1,M2)

M1 = 1 : zip(M,M)

M2 = 0 : 0 : zip(M1,M2)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications
A zip-guarded spec S is called flat if its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Proposition

Every zip-guarded specification S can be transformed into a flat
zip-specification S ′ with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0 : zip(1 : zip(M,M),0 : M)

can be transformed into the spec:

M = 0 : zip(M1,M2)

M1 = 1 : zip(M,M)

M2 = 0 : 0 : zip(M1,M2)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications
A zip-guarded spec S is called flat if its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Proposition

Every zip-guarded specification S can be transformed into a flat
zip-specification S ′ with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0 : zip(1 : zip(M,M),0 : M)

can be transformed into the spec:

M = 0 : zip(M1,M2)

M1 = 1 : zip(M,M)

M2 = 0 : 0 : zip(M1,M2)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications
A zip-guarded spec S is called flat if its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Proposition

Every zip-guarded specification S can be transformed into a flat
zip-specification S ′ with the same solutions.

Idea of Proof. Introduce new recursion variables. E.g., the spec:

M = 0 : zip(1 : zip(M,M),0 : M)

can be transformed into the spec:

M = 0 : zip(M1,M2)

M1 = 1 : zip(M,M)

M2 = 0 : 0 : zip(M1,M2)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Flat zip-specifications

Example (Thue–Morse)

L = 0 : zip(L′e,X)

L′e = 1 : zip(L,Y)

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, τ) = x : zip(τ, σ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Rewriting zip-terms
For a zip-spec S, the zip-terms over S are defined by the grammar:

Z ::= Mi | c : Z | zip(Z,Z)

Definition

Let S be a zip-spec. The TRS R on zip-terms over S has the rules:

head(x : t)→ x head(zip(s, t))→ head(s)

even(x : t)→ x : odd(t) even(zip(s, t))→ s
odd(x : t)→ even(t) odd(zip(s, t))→ t

and, in addition, for each equation Mi = t of S, rules:

head(Mi)→ head(t) even(Mi)→ even(t) odd(Mi)→ odd(t)

By t↓ we denote the normal form of t with respect to R.

R is orthogonal, hence CR. If S is product., R is terminating, thus UN.
Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Rewriting zip-terms
For a zip-spec S, the zip-terms over S are defined by the grammar:

Z ::= Mi | c : Z | zip(Z,Z)

Definition

Let S be a zip-spec. The TRS R on zip-terms over S has the rules:

head(x : t)→ x head(zip(s, t))→ head(s)

even(x : t)→ x : odd(t) even(zip(s, t))→ s
odd(x : t)→ even(t) odd(zip(s, t))→ t

and, in addition, for each equation Mi = t of S, rules:

head(Mi)→ head(t) even(Mi)→ even(t) odd(Mi)→ odd(t)

By t↓ we denote the normal form of t with respect to R.

R is orthogonal, hence CR. If S is product., R is terminating, thus UN.
Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Rewriting zip-terms
For a zip-spec S, the zip-terms over S are defined by the grammar:

Z ::= Mi | c : Z | zip(Z,Z)

Definition

Let S be a zip-spec. The TRS R on zip-terms over S has the rules:

head(x : t)→ x head(zip(s, t))→ head(s)

even(x : t)→ x : odd(t) even(zip(s, t))→ s
odd(x : t)→ even(t) odd(zip(s, t))→ t

and, in addition, for each equation Mi = t of S, rules:

head(Mi)→ head(t) even(Mi)→ even(t) odd(Mi)→ odd(t)

By t↓ we denote the normal form of t with respect to R.

R is orthogonal, hence CR. If S is product., R is terminating, thus UN.
Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

(even,odd)-Derivatives

Definition

Let S be a zip-guarded zip-specification. Let t a zip-term over S.

(even,odd)-derivatives of t (w.r.t. S) are defined inductively:
I t↓ is an (even,odd)-derivative of t ;
I if s is an (even,odd)-der. of t , then so are even(s)↓ and odd(s)↓.

By ∂S(t) we denote the set of (even,odd)-derivatives of t .

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Observation graphs

Definition

Let S be a zip-guarded, productive zip-specification.
The ((even,odd)-)observation graph O(S) of S:

I its root node is M0;
I every node t is labelled with head(t)↓ ;
I every node t has two outgoing edges, even and odd,

to the nodes even(t)↓, and odd(t)↓, resp. .

L 0

0 : X 0

even↓

1 : Y 1

odd↓
even↓odd↓even↓
odd↓

L = 0 : X

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, y : τ) = x : y : zip(τ, σ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

(ev,od)-derivatives versus observation graphs

Proposition

Let S be a zip-guarded, productive zip-specification.

The set of nodes of O(S) coincides with the set ∂S(M0)
of (even,odd)-derivatives of the root M0 of S.

Hence (at least) for flat specs, the observation graph of S is finite.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives

Main Lemma

Let S be a flat zip-specification.
The set ∂S(M0) of (even,odd)-derivatives of the root M0 of S is finite.

Proof.

Since S is flat, its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Let m := max0≤i≤n mi .

It suffices to show that every t ∈ ∂S(M0) is of the form:

c1 : . . . : ck : Mi (1)

where k ≤ m, c1, . . . , ck are constants, and Mi a rec. var. of S.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives

Main Lemma

Let S be a flat zip-specification.
The set ∂S(M0) of (even,odd)-derivatives of the root M0 of S is finite.

Proof.

Since S is flat, its equations are of the form:

Mi = ci,1 : . . . : ci,mi : zip(Mi,1,Mi,2) for i = 0, . . . ,n

Let m := max0≤i≤n mi .

It suffices to show that every t ∈ ∂S(M0) is of the form:

c1 : . . . : ck : Mi (1)

where k ≤ m, c1, . . . , ck are constants, and Mi a rec. var. of S.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M0 over S.

I Base case. We note that M0↓ = M0, and hence (??) holds.

I Induction Step. Let t ∈ ∂S(M0) be arbitrary.

By induction hypothesis, t is of the form (??), that is:

t = c1 : . . . : ck : Mi

for some k ≤ m, c1, constants . . . , ck are constants, and a rec.
var. Mi of S.

We have to show that even(t)↓ and odd(t)↓ are again
of the form (??).

We treat only check the case of even(t)↓;
the case of odd(t)↓ can be established analogously.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M0 over S.

I Base case. We note that M0↓ = M0, and hence (??) holds.

I Induction Step. Let t ∈ ∂S(M0) be arbitrary.

By induction hypothesis, t is of the form (??), that is:

t = c1 : . . . : ck : Mi

for some k ≤ m, c1, constants . . . , ck are constants, and a rec.
var. Mi of S.

We have to show that even(t)↓ and odd(t)↓ are again
of the form (??).

We treat only check the case of even(t)↓;
the case of odd(t)↓ can be established analogously.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M0 over S.

I Base case. We note that M0↓ = M0, and hence (??) holds.

I Induction Step. Let t ∈ ∂S(M0) be arbitrary.

By induction hypothesis, t is of the form (??), that is:

t = c1 : . . . : ck : Mi

for some k ≤ m, c1, constants . . . , ck are constants, and a rec.
var. Mi of S.

We have to show that even(t)↓ and odd(t)↓ are again
of the form (??).

We treat only check the case of even(t)↓;
the case of odd(t)↓ can be established analogously.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

We use induction on the definition of derivatives of M0 over S.

I Base case. We note that M0↓ = M0, and hence (??) holds.

I Induction Step. Let t ∈ ∂S(M0) be arbitrary.

By induction hypothesis, t is of the form (??), that is:

t = c1 : . . . : ck : Mi

for some k ≤ m, c1, constants . . . , ck are constants, and a rec.
var. Mi of S.

We have to show that even(t)↓ and odd(t)↓ are again
of the form (??).

We treat only check the case of even(t)↓;
the case of odd(t)↓ can be established analogously.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

Induction Step (Continued). We find:

even(c1 : . . . : ck : Mi)︸ ︷︷ ︸
= even(t)

�

c1 : c3 : . . . : ck−1 : ci,1 : ci,3 : . . . : Mi,1

. . . for k even, Mi even
c1 : c3 : . . . : ck−1 : ci,1 : ci,3 : . . . : Mi,2

. . . for k even, Mi odd
c1 : c3 : . . . : ck : ci,2 : ci,4 : . . . : Mi,1

. . . for k odd, Mi even
c1 : c3 : . . . : ck : ci,2 : ci,4 : . . . : Mi,2

. . . for k odd, mi odd

The terms on the right have data prefixes of length ≤ m, and are
normal forms w.r.t. R. Hence even(t) is again of the form (??).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

Induction Step (Continued). We find:

even(c1 : . . . : ck : Mi)︸ ︷︷ ︸
= even(t)

�

c1 : c3 : . . . : ck−1 : ci,1 : ci,3 : . . . : Mi,1

. . . for k even, Mi even
c1 : c3 : . . . : ck−1 : ci,1 : ci,3 : . . . : Mi,2

. . . for k even, Mi odd
c1 : c3 : . . . : ck : ci,2 : ci,4 : . . . : Mi,1

. . . for k odd, Mi even
c1 : c3 : . . . : ck : ci,2 : ci,4 : . . . : Mi,2

. . . for k odd, mi odd

The terms on the right have data prefixes of length ≤ m, and are
normal forms w.r.t. R. Hence even(t) is again of the form (??).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Finiteness of (even,odd)-derivatives (Proof)

Proof (Continued).

Induction Step (Continued). We find:

even(c1 : . . . : ck : Mi)︸ ︷︷ ︸
= even(t)

�

c1 : c3 : . . . : ck−1 : ci,1 : ci,3 : . . . : Mi,1

. . . for k even, Mi even
c1 : c3 : . . . : ck−1 : ci,1 : ci,3 : . . . : Mi,2

. . . for k even, Mi odd
c1 : c3 : . . . : ck : ci,2 : ci,4 : . . . : Mi,1

. . . for k odd, Mi even
c1 : c3 : . . . : ck : ci,2 : ci,4 : . . . : Mi,2

. . . for k odd, mi odd

The terms on the right have data prefixes of length ≤ m, and are
normal forms w.r.t. R. Hence even(t) is again of the form (??).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and
only if their observation graphs are bisimilar.

Proof (Idea).

〈head,odd,even〉 is a cobasis of the coalgebra of streams.
That is, ‘experiments’ built from these operations can be used to
observe every element of a stream σ:

I σ(0) by head(σ), and head(eveni (σ)) for all i ;
I σ(1) by head(odd(σ)), and head(eveni (odd(σ))) for all i ;
I σ(2) by head(odd(even(σ))), and head(eveni (odd(even(σ))));
I σ(3) by head(odd(odd(σ))), and head(eveni (odd(odd(σ))));
I . . .

Carrying out the same ‘experiment’ at bisimilar observation graphs
leads to the same observation.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and
only if their observation graphs are bisimilar.

Proof (Idea).

〈head,odd,even〉 is a cobasis of the coalgebra of streams.
That is, ‘experiments’ built from these operations can be used to
observe every element of a stream σ:

I σ(0) by head(σ), and head(eveni (σ)) for all i ;
I σ(1) by head(odd(σ)), and head(eveni (odd(σ))) for all i ;
I σ(2) by head(odd(even(σ))), and head(eveni (odd(even(σ))));
I σ(3) by head(odd(odd(σ))), and head(eveni (odd(odd(σ))));
I . . .

Carrying out the same ‘experiment’ at bisimilar observation graphs
leads to the same observation.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and
only if their observation graphs are bisimilar.

Proof (Idea).

〈head,odd,even〉 is a cobasis of the coalgebra of streams.
That is, ‘experiments’ built from these operations can be used to
observe every element of a stream σ:

I σ(0) by head(σ), and head(eveni (σ)) for all i ;
I σ(1) by head(odd(σ)), and head(eveni (odd(σ))) for all i ;
I σ(2) by head(odd(even(σ))), and head(eveni (odd(even(σ))));
I σ(3) by head(odd(odd(σ))), and head(eveni (odd(odd(σ))));
I . . .

Carrying out the same ‘experiment’ at bisimilar observation graphs
leads to the same observation.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and
only if their observation graphs are bisimilar.

Proof (Idea).

〈head,odd,even〉 is a cobasis of the coalgebra of streams.
That is, ‘experiments’ built from these operations can be used to
observe every element of a stream σ:

I σ(0) by head(σ), and head(eveni (σ)) for all i ;
I σ(1) by head(odd(σ)), and head(eveni (odd(σ))) for all i ;
I σ(2) by head(odd(even(σ))), and head(eveni (odd(even(σ))));
I σ(3) by head(odd(odd(σ))), and head(eveni (odd(odd(σ))));
I . . .

Carrying out the same ‘experiment’ at bisimilar observation graphs
leads to the same observation.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Equivalence of zip-specs via bisimilarity

Proposition

Two productive, zip-guarded zip-specifications are equivalent if and
only if their observation graphs are bisimilar.

Proof (Idea).

〈head,odd,even〉 is a cobasis of the coalgebra of streams.
That is, ‘experiments’ built from these operations can be used to
observe every element of a stream σ:

I σ(0) by head(σ), and head(eveni (σ)) for all i ;
I σ(1) by head(odd(σ)), and head(eveni (odd(σ))) for all i ;
I σ(2) by head(odd(even(σ))), and head(eveni (odd(even(σ))));
I σ(3) by head(odd(odd(σ))), and head(eveni (odd(odd(σ))));
I . . .

Carrying out the same ‘experiment’ at bisimilar observation graphs
leads to the same observation.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs (downhill)

L = 0 : X

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, τ) = x : zip(τ, σ)

L = 0 : zip(L′e,X)

L′e = 1 : zip(L,Y)

X = 1 : zip(X,Y)

Y = 0 : zip(Y,X)

zip(x : σ, τ) = x : zip(τ, σ)

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs (downhill)

0 : X

L

1 : Y

0
L

0 : X L′e

1 : Y

00
1

1

1

0

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs (downhill)

0 : X

L

1 : Y

0
L

0 : X L′e

1 : Y

00
1

1

1

0

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even,odd)-observation graphs O(S) with ≤ n
vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions
can be decided in:

I O(mn + n2) time (Kannellakis–Smolka),
I O(m log n) time (Tarjan–Paige),

which implies O(n log n) (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states,
bisimilarity coincides with trace (language) equivalence, which can be
decided in time:

I O(n) time (Hopcroft–Karp).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even,odd)-observation graphs O(S) with ≤ n
vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions
can be decided in:

I O(mn + n2) time (Kannellakis–Smolka),
I O(m log n) time (Tarjan–Paige),

which implies O(n log n) (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states,
bisimilarity coincides with trace (language) equivalence, which can be
decided in time:

I O(n) time (Hopcroft–Karp).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even,odd)-observation graphs O(S) with ≤ n
vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions
can be decided in:

I O(mn + n2) time (Kannellakis–Smolka),
I O(m log n) time (Tarjan–Paige),

which implies O(n log n) (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states,
bisimilarity coincides with trace (language) equivalence, which can be
decided in time:

I O(n) time (Hopcroft–Karp).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Bisimilarity of observation graphs

Proposition

Bisimilarity of pairs of (even,odd)-observation graphs O(S) with ≤ n
vertices is decidable in time O(n).

Proof.

Bisimilarity of finite transition systems with n states and m transitions
can be decided in:

I O(mn + n2) time (Kannellakis–Smolka),
I O(m log n) time (Tarjan–Paige),

which implies O(n log n) (with T/P) for obs. graphs with n vertices.
However: For deterministic transition systems with n states,
bisimilarity coincides with trace (language) equivalence, which can be
decided in time:

I O(n) time (Hopcroft–Karp).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Decidability Result

Theorem

Equivalence of zip-specifications is decidable.

Proof (Putting things together).

1 Unique solvability of zip-specs is equivalent to productivity.
2 Productivity of zip-specs is (easily) decidable. Hence it suffices

to decide equivalence of productive zip-specs.
3 Every productive zip-spec S can be transformed into a flat

zip-spec S ′ that specifies/computes that same stream.
4 Observation graphs of flat zip-specs are finite.
5 Two productive, flat specifications are equivalent if and only if the

associated observation graphs are bisimilar.
6 Given two productive zip-specs S1 and S2, their equivalence can

be decided by obtaining flat forms S ′1 and S ′2, and deciding
bisimilarity for the observation graphs O(S ′1) and O(S ′2).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

PTIME-decidability result
Remember:

Main Lemma

Let S be a flat zip-specification.
The set ∂S(M0) of (even,odd)-derivatives of the root M0 of S is finite.

It can be strengthened:

Main Lemma Plus

Let S be a flat zip-specification with n recursion variables, c stream
constants, and m the longest stream prefix in S. Then it holds:

|∂S(M0)| ≤ 2 · (c + 1) ·m · n + 4 ·m

Theorem

Equivalence of zip-specifications is decidable in PTIME.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

PTIME-decidability result
Remember:

Main Lemma

Let S be a flat zip-specification.
The set ∂S(M0) of (even,odd)-derivatives of the root M0 of S is finite.

It can be strengthened:

Main Lemma Plus

Let S be a flat zip-specification with n recursion variables, c stream
constants, and m the longest stream prefix in S. Then it holds:

|∂S(M0)| ≤ 2 · (c + 1) ·m · n + 4 ·m

Theorem

Equivalence of zip-specifications is decidable in PTIME.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

PTIME-decidability result
Remember:

Main Lemma

Let S be a flat zip-specification.
The set ∂S(M0) of (even,odd)-derivatives of the root M0 of S is finite.

It can be strengthened:

Main Lemma Plus

Let S be a flat zip-specification with n recursion variables, c stream
constants, and m the longest stream prefix in S. Then it holds:

|∂S(M0)| ≤ 2 · (c + 1) ·m · n + 4 ·m

Theorem

Equivalence of zip-specifications is decidable in PTIME.

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Extensions of the decidability result

I zip-inv-tail-specifications:

inv(0 : σ)→ 1 : inv(σ) tail(x : σ)→ σ

inv(1 : σ)→ 0 : inv(σ) zip(x : σ, τ)→ x : zip(τ, σ)

I zipn-specs for n ∈ N, n > 2, where zipn is defined by:

zipn(x : σ′1, σ2, . . . , σn)→ x : zipn(σ2, . . . , σn, σ
′
1)

I zipn-specs versus zipm-specs for m,n ≥ 2, m 6= n.

I zipn-specs versus zipi -mix-specs (all of zipi , i ≥ 2, may be used).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Extensions of the decidability result

I zip-inv-tail-specifications:

inv(0 : σ)→ 1 : inv(σ) tail(x : σ)→ σ

inv(1 : σ)→ 0 : inv(σ) zip(x : σ, τ)→ x : zip(τ, σ)

I zipn-specs for n ∈ N, n > 2, where zipn is defined by:

zipn(x : σ′1, σ2, . . . , σn)→ x : zipn(σ2, . . . , σn, σ
′
1)

I zipn-specs versus zipm-specs for m,n ≥ 2, m 6= n.

I zipn-specs versus zipi -mix-specs (all of zipi , i ≥ 2, may be used).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Extensions of the decidability result

I zip-inv-tail-specifications:

inv(0 : σ)→ 1 : inv(σ) tail(x : σ)→ σ

inv(1 : σ)→ 0 : inv(σ) zip(x : σ, τ)→ x : zip(τ, σ)

I zipn-specs for n ∈ N, n > 2, where zipn is defined by:

zipn(x : σ′1, σ2, . . . , σn)→ x : zipn(σ2, . . . , σn, σ
′
1)

I zipn-specs versus zipm-specs for m,n ≥ 2, m 6= n.

I zipn-specs versus zipi -mix-specs (all of zipi , i ≥ 2, may be used).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Extensions of the decidability result

I zip-inv-tail-specifications:

inv(0 : σ)→ 1 : inv(σ) tail(x : σ)→ σ

inv(1 : σ)→ 0 : inv(σ) zip(x : σ, τ)→ x : zip(τ, σ)

I zipn-specs for n ∈ N, n > 2, where zipn is defined by:

zipn(x : σ′1, σ2, . . . , σn)→ x : zipn(σ2, . . . , σn, σ
′
1)

I zipn-specs versus zipm-specs for m,n ≥ 2, m 6= n.

I zipn-specs versus zipi -mix-specs (all of zipi , i ≥ 2, may be used).

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Overview

1. ROS

2. Stream Equality

3. Summary

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

ROS
Stream Equality

Summary

Summary

I Ad for ISR’2010 in Utrecht.

I ROS: Realising Optimal Sharing (NWO-project)

I Equivalence of stream specifications
I stream specifications
I equivalence of stream specifications versus

productivity and unique solvability
I zip-specifications, Larry Moss’ question
I solution: decidability of equivalence for zip-specs

I zip-guarded, and flat specs
I observation graphs of zip-guarded specs
I reducing equivalence to checking bisimilarity of obs. graphs

I extensions of the result

Endrullis, Grabmayer, Hendriks, Klop, Moss Equivalence of Stream Specifications

	ROS
	Stream Equality

