Regular Expressions Under the Process Interpretation

Clemens Grabmayer¹

(Partly) Joint work with Jos Baeten and Flavio Corradini

¹Department of Computer Science Vrije Universiteit Amsterdam

clemens@cs.vu.nl
http://www.cs.vu.nl/~clemens

Workshop on Proof Theory and Rewriting Obergurgl, September 5–9, 2006

Clemens Grabmayer Regular Expressions Under the Process Interpretation

Overview

- 2 The Expressibility Problem
- The Star Height Problems

Introduction

The Expressibility Problem The Star Height Problems The Axiomatization Problem The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Overview

- The Process Interpretation
- Milner's Questions
- Milner's Adaptation of Salomaa's System
- 2 The Expressibility Problem
 - Well-Behaved Specifications
 - Solvability and Definability Lemmas
 - Reducibility Lemma, Decidability Theorem
- 3 The Star Height Problems
 - Results for Minimal Star Height under the Proc.Int.
- 4 The Axiomatization Problem
 - Antimirov Derivatives
 - A Coinductive Proof System
 - An Extension of Milner's System That Is Complete
 - Summary and Questions for Further Research

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

The Language Interpretation *L* (Kleene)

 $\begin{array}{ccc} e + f & \stackrel{L}{\longmapsto} & \text{union of } L(e) \text{ and } L(f) \\ e \cdot f & \stackrel{L}{\longmapsto} & \text{element-wise concatenation of } L(e) \text{ and } L(f) \\ e^* & \stackrel{L}{\longmapsto} & \text{set of "words over of } L(e)" \end{array}$

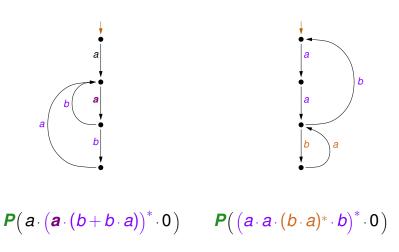
The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

The Process Interpretation P (Milner)

- $\mathbf{0} \stackrel{\mathbf{P}}{\longmapsto} \operatorname{deadlock} \delta$
- 1 $\stackrel{P}{\longmapsto}$ empty process ϵ
- $a \stackrel{P}{\longmapsto}$ atomic action a
- $e + f \longrightarrow$ alternative composition between P(e) and P(f)
 - $e \cdot f \xrightarrow{P}$ sequential composition of P(e) and P(f)
 - $e^* \xrightarrow{P}$ unbounded iteration of P(e)

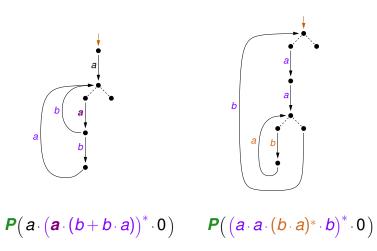
The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

The Process Interpretation P



The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

The Process Interpretation P



The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

The Process Interpretation *P* (Transition System)

P (a	$a \rightarrow 1$	1↓	
$\frac{P(e) \stackrel{a}{\rightarrow} H}{P(e+f) \stackrel{a}{\rightarrow}}$		$\frac{P(e)\downarrow}{P(e+f)\downarrow}$	
$\frac{\boldsymbol{P}(f) \stackrel{\boldsymbol{a}}{\rightarrow} \boldsymbol{P}(f')}{\boldsymbol{P}(\boldsymbol{e}+f) \stackrel{\boldsymbol{a}}{\rightarrow} \boldsymbol{P}(f')}$	$\frac{\boldsymbol{P}(f)\downarrow}{\boldsymbol{P}(e+f)\downarrow}$	<i>P</i> (<i>e</i>)↓ <i>P</i> (<i>e</i>	
$oldsymbol{P}(e) \stackrel{a}{ ightarrow} oldsymbol{P}(e')$ $oldsymbol{P}(e \cdot f) \stackrel{a}{ ightarrow} oldsymbol{P}(e' \cdot f)$	${oldsymbol{\mathcal{P}}}(e)$	$\downarrow \mathbf{P}(f) \xrightarrow{a} \mathbf{P}(e \cdot f) \xrightarrow{a} \mathbf{P}(f)$	
$\frac{\boldsymbol{P}(e) \xrightarrow{\boldsymbol{a}} \boldsymbol{P}(e')}{\boldsymbol{P}(e^*) \xrightarrow{\boldsymbol{a}} \boldsymbol{P}(e' \cdot e^*)} \qquad \overline{\boldsymbol{P}(e^*) \downarrow}$			

Clemens Grabmayer

Regular Expressions Under the Process Interpretation

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

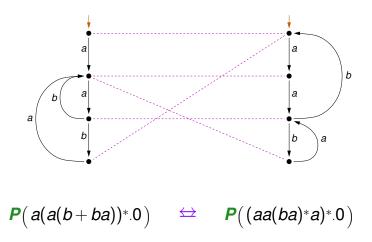
The Process Interpretation *P* (Transition System)

P (a) → 1	1↓	
$\frac{P(e) \xrightarrow{a}}{P(e+f)}$		$\frac{\boldsymbol{P}(\boldsymbol{e})\downarrow}{\boldsymbol{P}(\boldsymbol{e}+\boldsymbol{f})\downarrow}$	
$\frac{\boldsymbol{P}(f) \stackrel{a}{\rightarrow} \boldsymbol{P}(f')}{\boldsymbol{P}(e+f) \stackrel{a}{\rightarrow} \boldsymbol{P}(f')}$	$\frac{P(f)\downarrow}{P(e+f)\downarrow}$	<i>P(e</i>)↓ <i>P</i> (<i>e</i>	
$\frac{P(e) \xrightarrow{a} P(e')}{P(e \cdot f) \xrightarrow{a} P(e' \cdot f)}$	(e	$(f) \downarrow \mathbf{P}(f) \stackrel{a}{\to} \mathbf{P}(f) \stackrel{a}{\to} \mathbf{P}(f)$. ,
$\frac{P(e) \xrightarrow{a} P(e')}{P(e^*) \xrightarrow{a} P(e' \cdot e^*)} \qquad P(e^*) \downarrow$			

Regular Expressions Under the Process Interpretation

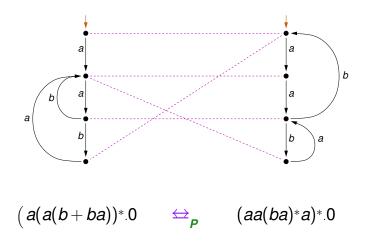
The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Regular Expressions under Bisimulation



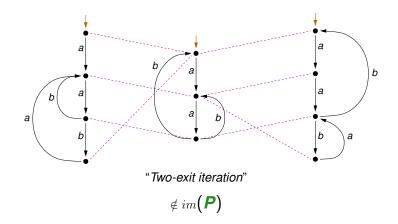
The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Regular Expressions under Bisimulation



The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

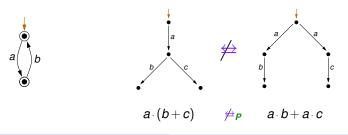
Regular Expressions under Bisimulation



The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Properties of the Process Interpretation P

- There are finite transition graphs that are *not isomorpic* to any process graph *P*(*e*) in the image of *P*.
- What is more: there are finite transition graphs that are not bisimilar to any process graph P(e) in the image of P.
- Identities e ⇔_P f under P also hold as identities e =_L f under the language intepretation L. The converse is false:



The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatization for language equivalence =_L complete for ⇔_P?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?

- Yes! (Hirshfeld and Moller, 1999).

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatization for language equivalence =_L complete for ⇔_P?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?
 - Yes! (Hirshfeld and Moller, 1999).

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatization for language equivalence =_L complete for ⇔_P?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?

- Yes! (Hirshfeld and Moller, 1999).

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatization for language equivalence =_L complete for ⇔_P ?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?

- Yes! (Hirshfeld and Moller, 1999).

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

The Axiom System **REG** for $=_L$ (Salomaa's Axiomatization **F**₁ reversed)

Axioms:

(B1)	x + (y + z) = (x + y) + z	(B7)	$x \cdot 1 = x$
(B2)	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	(B8)	$x \cdot 0 = 0$
(B3)	x + y = y + x	(B9)	x + 0 = x
(B4)	$(x+y)\cdot z = x\cdot z + y\cdot z$	(B10)	$x^* = 1 + x \cdot x^*$
(B5)	$x \cdot (y+z) = x \cdot y + x \cdot z$	(B11)	$x^{*} = (1 + x)^{*}$
(B6)	x + x = x		

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g}$$
 FIX (if $\lambda \notin L(f)$)

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Sound and Unsound Axioms of **REG** w.r.t. \approx_P

Also sound are:

$$0 \cdot x = 0$$
 $\frac{e = f \cdot e + g}{e = f^* \cdot g}$ FIX (if $\lambda \notin L(f)$)

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Sound and Unsound Axioms of **REG** w.r.t. \approx_P

Also sound are:

$$0 \cdot x = 0 \qquad \frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{FIX} (\operatorname{if} \lambda \notin \boldsymbol{L}(f))$$

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Milner's Adaptation for $rac{}_{P}$: **BPA**^{*}_{0.1}

Axioms:

(B1)	x + (y + z) = (x + y) + z	(B7)	$x \cdot 1 = x$
(B2)	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	(B8)'	$0 \cdot x = 0$
(B3)	x + y = y + x	(B9)	x + 0 = x
(B4)	$(x+y) \cdot z = x \cdot z + y \cdot z$	(B10)	$x^* = 1 + x \cdot x^*$
		(B11)	$x^{*} = (1 + x)^{*}$
(B6)	x + x = x		

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g}$$
 1-RSP (if $\lambda \notin L(f)$)

The Process Interpretation Milner's Questions Milner's Adaptation of Salomaa's System

Milner's Adaptation for \Rightarrow_P : **BPA**^{*}_{0,1} +1-RSP

Axioms:

(B1)	x + (y + z) = (x + y) + z	(B7)	$x \cdot 1 = x$
(B2)	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	(B8)'	$0 \cdot x = 0$
(B3)	x + y = y + x	(B9)	x + 0 = x
(B4)	$(x+y) \cdot z = x \cdot z + y \cdot z$	(B10)	$x^* = 1 + x \cdot x^*$
		(B11)	$x^{*} = (1 + x)^{*}$
(B6)	x + x = x		

Inference rules : equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ 1-RSP (if } \lambda \notin L(f))$$

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Overview

- 1 Introduction
 - The Process Interpretation
 - Milner's Questions
 - Milner's Adaptation of Salomaa's System
- 2 The Expressibility Problem
 - Well-Behaved Specifications
 - Solvability and Definability Lemmas
 - Reducibility Lemma, Decidability Theorem
- 3 The Star Height Problems
 - Results for Minimal Star Height under the Proc.Int.
- 4 The Axiomatization Problem
 - Antimirov Derivatives
 - A Coinductive Proof System
 - An Extension of Milner's System That Is Complete
 - Summary and Questions for Further Research

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

The Expressibility Problem

A finite-state process *p* is called expressible as a regular expression under **P**

iff

there exists $e \in RegExps$ such that $p \simeq P(e)$.

The Expressibility Problem for P

Instance: p a finite-state process *Question:* Is *p* expressible as a regular expression under *P*?

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Well-Behaved Specifications (Motivation): A Correspondence Theorem

Theorem ([BC05])

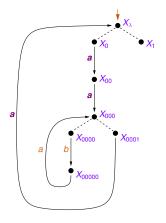
Expressibility as a regular expression under **P** is equivalent to definability by a <u>well-behaved</u> specification:

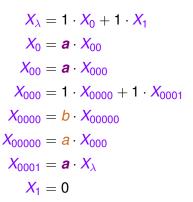
For all processes p,

$$(\exists e \in RegExps) [p \nleftrightarrow P(e)] \\ \Leftrightarrow (\exists \mathcal{E} \in WBSpecs) [p \text{ is a solution of } \mathcal{E}]$$

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Well-Behaved Specifications (Example)

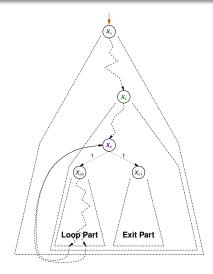




 $P((aa(ba)^*a)^*.0)$

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Well-Behaved Specifications (Some Intuition, I)



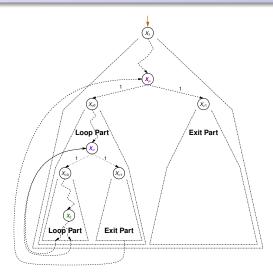
 $X_{\xi}, X_{\lambda} \dots$ well-behaved variables $(X_{\xi} \text{ "does not return" to a recursion variable above itself})$

X_{σ} is a cycling variable

(Some recursion variable below X_{σ} "returns to" X_{σ})

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Well-Behaved Specifications (Some Intuition, II)



 $X_{\sigma}, X_{\rho} \ldots$ cycling variables

 X_{ξ} cycles back to X_{σ}

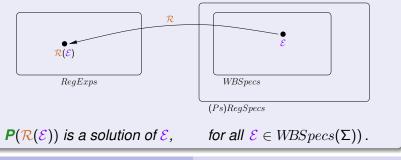
(The nearest return of X_{ξ} to a rec.var. above is to X_{σ}) X_{σ} cycles back to X_{ρ}

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Solvability Lemma

Lemma (Solvability of well-behaved spec's [BC05])

Every well-behaved specification is solved by a process represented by a regular expression. Moreover: there is an effectively computable mapping \mathcal{R} : WBSpecs(Σ) \rightarrow RegExps(Σ) such that

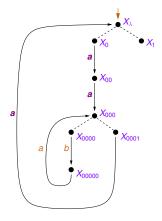


Clemens Grabmayer

Regular Expressions Under the Process Interpretation

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Well-Behaved Specifications (Example)

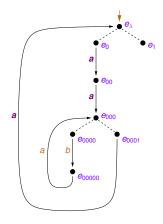


P((**aa**(**ba**)***a**)*.0)

 $X_{\lambda} = 1 \cdot X_0 + 1 \cdot X_1$ $X_0 = \boldsymbol{a} \cdot X_{00}$ $X_{00} = \boldsymbol{a} \cdot X_{000}$ $X_{000} = 1 \cdot X_{0000} + 1 \cdot X_{0001}$ $X_{0000} = b \cdot X_{00000}$ $X_{00000} = a \cdot X_{000}$ $X_{0001} = \boldsymbol{a} \cdot \boldsymbol{X}_{\lambda}$ $X_1 = 0$

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Solving a Well-Behaved Specification (Example, I/III)

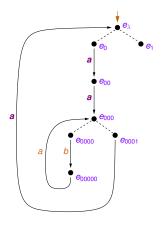


 $e_{\lambda} = 1 \cdot e_{0} + 1 \cdot e_{1}$ $e_{0} = a \cdot e_{00}$ $e_{00} = a \cdot e_{000}$ $e_{000} = 1 \cdot e_{0000} + 1 \cdot e_{0001}$ $e_{0000} = b \cdot e_{00000}$ $e_{00000} = a \cdot e_{00}$ $e_{0001} = a \cdot e_{\lambda}$ $e_{1} = 0$

P((**aa**(**ba**)***a**)*.0)

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Solving a Well-Behaved Specification (Example, II/III)

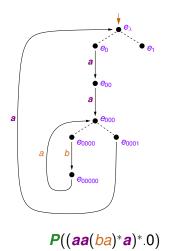


 $e_{00000} = a \cdot e_{000}$ $e_{0000} = b \cdot e_{00000} = b \cdot a \cdot e_{000}$ $e_{0001} = a \cdot e_{\lambda}$ $e_{000} = 1 \cdot e_{0000} + 1 \cdot e_{0001}$ $= b \cdot a \cdot e_{000} + a \cdot e_{\lambda}$ $\Rightarrow e_{000} = (b \cdot a)^* \cdot a \cdot e_{\lambda}$ (by 1-RSP)

 $P((aa(ba)^*a)^*.0)$

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Solving a Well-Behaved Specification (Example, III/III)



$$e_{000} = (b \cdot a)^* \cdot a \cdot e_{\lambda}$$

$$e_{00} = a \cdot e_{000} = a \cdot (b \cdot a)^* \cdot a \cdot e_{\lambda}$$

$$e_0 = a \cdot e_{00} = a \cdot a \cdot (b \cdot a)^* \cdot a \cdot e_{\lambda}$$

$$e_1 = 0$$

$$e_{\lambda} = 1 \cdot e_0 + 1 \cdot e_1$$

$$= 1 \cdot a \cdot a \cdot (b \cdot a)^* \cdot a \cdot e_{\lambda} + 1 \cdot 0$$

$$= a \cdot a \cdot (b \cdot a)^* \cdot a \cdot e_{\lambda} + 0$$

$$e_{\lambda} = (a \cdot a \cdot (b \cdot a)^* \cdot a)^* \cdot 0$$

$$(by 1-RSP)$$

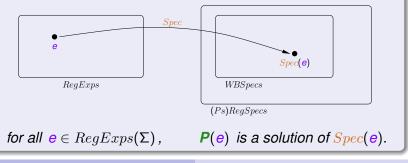
 \equiv

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Definability Lemma

Lemma (Definability by well-behaved spec's [BC05])

The processes represented by regular expressions under **P** are definable by well-behaved specifications. Moreover: there is an effectively computable mapping $Spec : RegExps(\Sigma) \rightarrow WBSpecs(\Sigma)$ such that

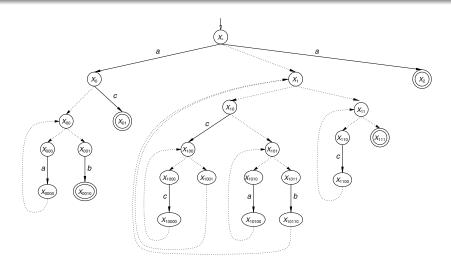


Clemens Grabmayer

Regular Expressions Under the Process Interpretation

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Example: $Spec(a(a^*b + c) + (c^* + a^*b)^* + a)$

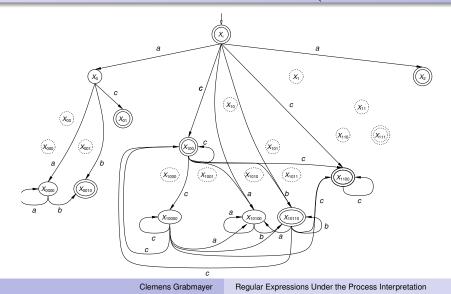


Clemens Grabmayer

Regular Expressions Under the Process Interpretation

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Example: Canonical Solution of $Spec(a(a^*b+c)+...)$



Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

The Correspondence Theorem

Theorem ([BC05])

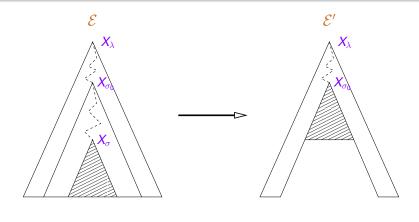
Expressibility as a regular expression under **P** is equivalent to definability by a <u>well-behaved</u> specification:

For all processes p,

 $(\exists e \in RegExps) [p \Rightarrow P(e)]$ $\Leftrightarrow (\exists \mathcal{E} \in WBSpecs) [p \text{ is a solution of } \mathcal{E}]$

Well-Behaved Specifications Solvability and Definability Lemmas Reducibility Lemma, Decidability Theorem

Reducible Well-Behaved Specifications (Example)



 $\langle X_{\sigma} | \mathcal{E} \rangle \simeq \langle X_{\sigma_0} | \mathcal{E} \rangle$ X_{σ}, X_{σ_0} are well-behaved

Reducibility Lemma, Decidability Theorem

Lemma (Reducibility of well-behaved spec's [BCG05])

Let \mathcal{E} be a well-behaved specification that has a finite-state process p with n states and maximal branching degree k as a solution.

Then \mathcal{E} is equivalent to a well-behaved specification \mathcal{E}_{red} with

- depth less or equal to $(n + 1)^3 \cdot 2^{3k}$, and
- less or equal to k summands in each defining equation.

Theorem ([BCG05])

Expressibility by a regular expression under the process interpretation is decidable. In other words, the expressibility problem under **P** is algorithmically solvable.

Results for Minimal Star Height under the Proc.Int.

Overview

- 1 Introduction
 - The Process Interpretation
 - Milner's Questions
 - Milner's Adaptation of Salomaa's System
- 2 The Expressibility Problem
 - Well-Behaved Specifications
 - Solvability and Definability Lemmas
 - Reducibility Lemma, Decidability Theorem
- 3 The Star Height Problems
 - Results for Minimal Star Height under the Proc.Int.
 - 4 The Axiomatization Problem
 - Antimirov Derivatives
 - A Coinductive Proof System
 - An Extension of Milner's System That Is Complete
 - Summary and Questions for Further Research

Results for Minimal Star Height under the Proc.Int.

The Star Height Problem

The Star Height Problem for P

Instance: $e \in RegExps(\Sigma)$ Question: What is the minimal star height of *e* under *P*?

Milner's Star-Height Question

Does "minimal star height" modulo \Leftrightarrow_P define a hierarchy also over single-letter alphabets?

Star Height, and Star Height of Regular Languages

The *star height* sh(e) of a regular expression e is the maximum number of nested stars in e.

For example: sh((a+b)c) = 0, $sh((a(ba)^*a)^*dc^*) = 2$.

Definition

The *(restricted) star height* sh(L) of a regular language *L* is the least natural number *n* such that sh(e) = n for some regular expression *e* that represents *L*.

Generalised Star Height: concerning generalised regular expressions in which complementation and intersection may occur.

Classical Results on (Restricted) Star Height

- Every regular language over a single-letter alphabet has star height 1 at most.
- There are regular languages with any preassigned star height (Eggan, 1963);
 - ... even over a two-letter alphabet (McNaughton, 1965,

Dejean/Schützenberger, 1966);

 There exists an algorithm for computing the star height of the regular language given by a regular expression (Hashiguchi, 1983).
 (The (Restricted) Star Height Problem is solvable).

Results for Minimal Star Height under the Proc.Int.

Minimal Star Height under P

Definition

The *minimal star height* msh(e) (*under* P) of a regular expression e is the least natural number n such that there exists a regular expression e_{min} with $sh(e_{min}) = n$ and $e_{min} \Leftrightarrow_P e$.

Remark. For all $e \in RegExps$ it holds: $sh(L(e)) \leq msh(e)$.

Results for Minimal Star Height under the Proc.Int.

Results for Minimal Star Height under P

- For every $n \in \mathbb{N}$, there exists a regular expression f_n over the single-letter alphabet such that the minimal star height of f_n is n (Hirshfeld/Moller, 2000).
- Consequently: For the set regular expressions over a non-empty alphabet, "minimal star height under P" defines a proper hierarchy.
- The Star-Height Problem under P is solvable ([BCG05]).

The Star Height Problem under *P* Instance: $e \in RegExps(\Sigma)$

Question: What is the minimal star height of *e* under *P*?

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Overview

- 1 Introduction
 - The Process Interpretation
 - Milner's Questions
 - Milner's Adaptation of Salomaa's System
- 2 The Expressibility Problem
 - Well-Behaved Specifications
 - Solvability and Definability Lemmas
 - Reducibility Lemma, Decidability Theorem
- 3 The Star Height Problems
 - Results for Minimal Star Height under the Proc.Int.
 - The Axiomatization Problem
 - Antimirov Derivatives
 - A Coinductive Proof System
 - An Extension of Milner's System That Is Complete
 - Summary and Questions for Further Research

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

The Axiomatization Problem(s)

Is Milner's adaptation BPA^{*}_{0,1}+1-RSP of Salomaa's complete axiomatization F₁ for =_L complete for ⇔_P?

Is there a finite extension of **BPA**^{*}_{0,1}+1-RSP (by additional axioms or rules) that is complete for \Leftrightarrow_P ?

Is there a natural-deduction style or sequent-style proof system that is complete for ⇔_P?

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Inspiration: A Coinductive/Proof-Theoretic Completeness Proof

In [G05] a coinductive/proof-theoretic proof is given for the completeness of Salomaa's axiomatisation F_1 w.r.t. $=_L$:

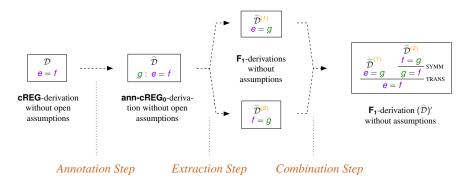
A characterisation of =_L by a "finitary coinduction principle" (based on "Brzozowski derivatives"):

$$e =_L f \iff e \sim_{fin} f.$$

- A natural-deduction system cREG that is sound and complete with respect to =_L (reminiscent of a system by Brandt/Henglein, 1998).
- 3 A proof-transformation from **cREG** to Salomaa's complete axiomatisation F_1 of $=_L$.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

The Proof-Transformation from cREG to F₁



Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Coinductive/Proof-Theoretic Completeness Proof for an Extension of Milner's system

Here we describe a similar coinductive/proof-theoretic completeness proof w.r.t. \Leftrightarrow_P for an extension of **BPA**^{*}_{0.1}+1-RSP by a more powerful rule USP:

A characterisation of ⇔_P by a "finitary coinduction principle" (based on "Antimirov derivatives"):

$$e \Leftrightarrow_{P} f \iff e \sim_{fin} f.$$

- ② A natural-deduction system c-BPA^{*}_{0,1} that is sound and complete with respect to ⇔_P.
- A proof-transformation from c-BPA^{*}_{0,1} to an extension BPA^{*}_{0,1}+USP of Milner's system BPA^{*}_{0,1}+1-RSP.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Antimirov and Brzozowkski Derivatives

Brzozowski deriv's (1963) Antimirov's partial derivatives (1995)

$$\begin{array}{ll} (\cdot)_{\cdot} : \mathcal{R}(\Sigma) \times \Sigma \to \mathcal{R}(\Sigma) & \partial : \mathcal{R}(\Sigma) \times \Sigma \to \mathcal{P}_{\mathsf{f}}(\mathcal{R}(\Sigma)) \\ & \langle e, a \rangle \mapsto e_{a} & \langle e, a \rangle \mapsto \partial_{a}(e) \end{array}$$

- Brzozowski der's mimic language derivatives on a synatactic level: $L(e_a) = (L(e))_a (=_{def} \{v \mid a.v \in L(e)\}).$
- Partial der's are mathematically motivated refinements.
- Both defined syntactically by ind. on the size of reg. expr's.
- Relationship: F.a. $e \in RegExps(\Sigma)$, $e_a \equiv_{ACI} \sum_{e' \in \partial_a(e)} e'$
- Every regular expression has only finitely many Brzozowski (Antimirov) derivatives.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

The Coalgebra Induced by Partial Derivatives

Antimirov's partial derivatives induce an *F*-coalgebra $(RegExps(\Sigma), \langle o, t \rangle)$, for the functor $F(X) = 2 \times \mathcal{P}_{f}(\Sigma \times X)$ by:

$$\langle o, t \rangle : RegExps(\Sigma) \longmapsto 2 \times \mathcal{P}_{f}(\Sigma \times RegExps(\Sigma)), \text{ where}$$

$$\begin{array}{ll} o: \ RegExps(\Sigma) \longrightarrow \mathbf{2} \\ e \longmapsto o(e) =_{\mathsf{def}} \end{array} \begin{cases} \mathbf{0} & \dots \mathbf{P}(e) \not\downarrow & (\lambda \notin \mathbf{L}(e)) \\ \mathbf{1} & \dots \mathbf{P}(e) \not\downarrow & (\lambda \in \mathbf{L}(e)) \end{cases}$$

$$\begin{array}{l} t: \ RegExps(\boldsymbol{\Sigma}) \longrightarrow \mathcal{P}_{\mathsf{f}}(\boldsymbol{\Sigma} \times RegExps(\boldsymbol{\Sigma})) \\ \boldsymbol{e} \longmapsto \boldsymbol{t}(\boldsymbol{e}) =_{\mathsf{def}} \left\{ \langle \boldsymbol{a}, \boldsymbol{e}' \rangle \mid \boldsymbol{a} \in \boldsymbol{\Sigma}, \ \boldsymbol{e}' \in \boldsymbol{\partial}_{\boldsymbol{a}} \boldsymbol{e} \right\}. \end{array}$$

 \sim : bisimilarity on this coalgebra;

 $e \sim_{\text{fin}} f$: there is a finite bisimulation between e and f.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Relationship with the Process Interpretation P

Lemma For all $e, f \in RegExps(\Sigma)$ and $a \in \Sigma$: $\begin{bmatrix} P(e) \xrightarrow{a} P(f) \iff f \in \partial_a(e) \end{bmatrix}$.

A finitary coinduction principle (finite bisimulation principle):

Theorem

For all $e, f \in RegExps(\Sigma)$:

 $e \simeq_{P} f \iff e \sim_{fin} f in (RegExps(\Sigma), \langle o, t \rangle).$

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

The Proof System c-BPA_{0,1}

Inference rule in c-BPA^{*}_{0,1}: (Given $\Sigma = \{a_1, \ldots, a_n\}$).

 $[e = f]^{\boldsymbol{u}} \qquad [e = f]^{\boldsymbol{u}}$ $\mathcal{D}_{1}^{(i)} \qquad \mathcal{D}_{m_{i}}^{(i)}$ $\dots \qquad e_{1}^{(i)} = f_{1}^{(i)} \qquad \dots \qquad e_{m_{i}}^{(i)} = f_{m_{i}}^{(i)} \qquad \dots \qquad \text{c-COMP, } \boldsymbol{u} \text{ (if (*))}$ e = f

where (*) demands:

 $\begin{array}{l} - \ o(e) = o(f) \ \text{holds, and} \\ - \ \partial_{a_i} e = \{ e_1^{(i)}, \dots, e_{m_i}^{(i)} \} \ \text{ and } \ \partial_{a_i} f = \{ f_1^{(i)}, \dots, f_{m_i}^{(i)} \} \\ (\text{for all } i \in \{1, \dots, n\}). \end{array}$

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Derivation in **c-BPA**^{*}_{0,1}

For $e =_{def} 1 \cdot (a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0$ and $f =_{def} a \cdot (a \cdot (b + b \cdot a)^*) \cdot 0$, for which $e \rightleftharpoons_P f$ holds, we find the following proof in **c-BPA**^{*}_{0,1}:

$$\frac{(e_1 = f_1)^{\boldsymbol{u}}}{e = f_3} \operatorname{COMP} \quad \frac{(e_2 = f_2)^{\boldsymbol{v}}}{e_3 = f_1} \operatorname{COMP}_{c\text{-COMP}, \boldsymbol{v}}$$

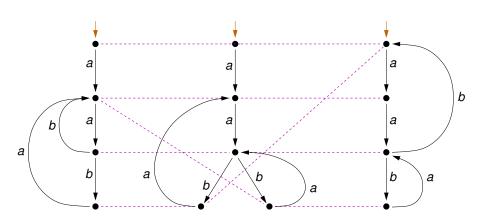
$$\frac{\frac{e_2 = f_2}{e_1 = f_1} \operatorname{c-COMP}_{c\text{-COMP}, \boldsymbol{u}}}{e = f} \operatorname{COMP}$$

where, in particular,

$$\begin{split} e_2 &\equiv 1 \cdot (b \cdot a)^* \cdot b \cdot (a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0, \\ f_2 &\equiv 1 \cdot (b + b \cdot a) \cdot (a \cdot (b + b \cdot a))^* \cdot 0, \\ \partial_b(e_2) &= \{e, e_3\} \text{ and } \partial_b(f_2) &= \{f_1, f_3\}. \end{split}$$

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Derivation in $c-BPA_{0,1}^*$ (the Intuition)



Completeness of c-BPA_{0.1}

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Theorem

c-BPA^{*}_{0,1} is sound and complete w.r.t. \Leftrightarrow_{P} :

$$(\forall e, f \in RegExps(\Sigma)) \left[\vdash_{c-BPA^*_{0,1}} e = f \iff e \Leftrightarrow_{P} f \right]$$

Proof.

By the finitary coinduction principle for \Leftrightarrow_{P} .

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Reconstructing Regular Expressions from Partial Derivatives

Lemma Let $\Sigma = \{a_1, \dots, a_n\}$. Then for all $e \in RegExps(\Sigma)$ it holds: $\vdash_{\mathsf{BPA}^*_{0,1}} e = o(e) + \sum_{i=1}^n \sum_{e' \in \partial_{a_i}(e)} a_i \cdot e'$.

(This statement is reminiscent of the *fundamental theorem of calculus* that links differentiation and integration.)

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Unique Solvability Principle(s)

1-RSP
$$\frac{x = f.x + g}{x = f^*.g}$$
 (if $\lambda \notin L(f)$)

1-USP
$$\frac{x = f \cdot x + g \qquad y = f \cdot y + g}{x = y}$$
 (if $\lambda \notin L(f)$)

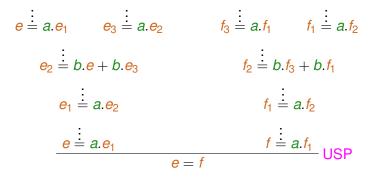
USP
$$\frac{\{x_{j} = E_{j}(x_{1}, \dots, x_{m})\}_{j=1}^{m} \{y_{j} = E_{j}(y_{1}, \dots, y_{m})\}_{j=1}^{m}}{x_{i} = y_{i}}$$

where, for all $i \in \{1, \dots, m\}$, $E_j(x_1, \dots, x_m)$ is of the form $[1+]\sum_{k=1}^{m_j} a_{l_k} \cdot x_{l_{j,k}}$.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Transforming into **BPA**^{*}_{0,1}+ USP-der's (Example)

By the "expr's reconstr. lemma", one finds that in the example the vectors $\langle e, e_1, e_2, e, e_3 \rangle$ and $\langle f, f_1, f_2, f_3, f_1 \rangle$ of reg. expr's satisfy the same system of equations. This enables to extract from the proof in **c-BPA**^{*}_{0.1} a proof in **BPA**^{*}_{0.1}+USP:



Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Completeness of **BPA**^{*}_{0.1}+USP

Theorem

BPA^{*}_{0,1}+USP is sound and complete w.r.t. \Leftrightarrow_P :

$$(\forall e, f \in RegExps) \left[\vdash_{\mathsf{BPA}_{0,1}^* + \mathsf{USP}} e = f \iff e \Leftrightarrow_{\mathsf{P}} f \right].$$

Remaining Question (equivalent to Milner's first question): $Is BPA_{0,1}^*+1-USP \text{ complete for } \cong_P ?$

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Local Summary

- Antimirov's partial derivatives guide the operational behaviour of regular expressions under *P*.
- The complete proof system c-BPA^{*}_{0,1} for ⇔_P which is based on a "finitary coinduction principle" for ⇔_P.
- Replacing 1-RSP in Milner's system BPA^{*}_{0,1}+1-RSP by the *unique solvability principle* USP gives the complete axiomatization BPA^{*}_{0,1}+USP for ⇔_P.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

Global Summary

- The Expressibility Problem for *P* is solvable.
- The Star-Height Problem for P is solvable.
- Concerning the Axiomatisation Problem for ⇔_P:
 - There is a coinductively motivated, natural-deduction system **c-BPA**^{*}_{0.1} that is complete for ⇔_P.
 - The system BPA^{*}_{0,1}+USP is complete for ⇔_P (USP is a *unique solvability principle* for linear systems of equations).
 - Milner's question: "Is BPA^{*}_{0,1}+1-RSP complete for ⇔_P?" is (to my knowledge) still unanswered.

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Further Partial Result. Questions.

Let \rightarrow_P denote the relation functional bisimulation on well-behaved specifications, and \leftarrow_P its converse.

Theorem

Let $e, f \in \operatorname{RegExps}(\Sigma)$. Then it holds:

 $Spec(e) (\rightarrow_{P} \cup \leftarrow_{P})^{*} Spec(f) \implies \vdash_{\mathsf{BPA}^{*}_{0,1}+1\text{-}\mathsf{RSP}} e = f$ (1)

Questions:

Does the converse of (1) hold? (My Conjecture is: No)

 What relation on corresponding well-behaved spec's does provability in BPA^{*}_{0,1}+1-RSP induce? (Having a grip on this relation could help to prove/disprove completeness of BPA^{*}_{0,1}+1-RSP w.r.t. ⇔_P.)

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Further Partial Result. Questions.

Let \rightarrow_P denote the relation functional bisimulation on well-behaved specifications, and \leftarrow_P its converse.

Theorem

Let $e, f \in \operatorname{RegExps}(\Sigma)$. Then it holds:

 $Spec(e) (\rightarrow_{P} \cup \leftarrow_{P})^{*} Spec(f) \implies \vdash_{\mathsf{BPA}_{0,1}^{*}+1\text{-}\mathsf{RSP}} e = f$ (1)

Questions:

- Does the converse of (1) hold? (My Conjecture is: No)
- What relation on corresponding well-behaved spec's does provability in BPA^{*}_{0,1}+1-RSP induce? (Having a grip on this relation could help to prove/disprove completeness of BPA^{*}_{0,1}+1-RSP w.r.t. ⇔_P.)

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Further Partial Result. Questions.

Let \rightarrow_P denote the relation functional bisimulation on well-behaved specifications, and \leftarrow_P its converse.

Theorem

Let $e, f \in \operatorname{RegExps}(\Sigma)$. Then it holds:

$$Spec(e) (\multimap_{\boldsymbol{P}} \cup \multimap_{\boldsymbol{P}})^* Spec(f) \implies \vdash_{\boldsymbol{\mathsf{BPA}}_{\boldsymbol{0},1}^*+1\text{-}\mathsf{RSP}} e = f \quad (1)$$

Questions:

- Does the converse of (1) hold? (My Conjecture is: No)
- What relation on corresponding well-behaved spec's does provability in BPA^{*}_{0,1}+1-RSP induce? (Having a grip on this relation could help to prove/disprove completeness of BPA^{*}_{0,1}+1-RSP w.r.t. ⇔_P.)

Antimirov Derivatives A Coinductive Proof System An Extension of Milner's System That Is Complete Summary and Questions for Further Research

A Further Partial Result. Questions.

Let \rightarrow_P denote the relation functional bisimulation on well-behaved specifications, and \leftarrow_P its converse.

Theorem

Let $e, f \in \operatorname{RegExps}(\Sigma)$. Then it holds:

$$Spec(e) (\multimap_{\boldsymbol{P}} \cup \multimap_{\boldsymbol{P}})^* Spec(f) \implies \vdash_{\boldsymbol{\mathsf{BPA}}_{\boldsymbol{0},1}^*+1\text{-}\mathsf{RSP}} e = f \quad (1)$$

Questions:

- Does the converse of (1) hold? (My Conjecture is: No)
- What relation on corresponding well-behaved spec's does provability in BPA^{*}_{0,1}+1-RSP induce? (Having a grip on this relation could help to prove/disprove completeness of BPA^{*}_{0,1}+1-RSP w.r.t. ⇔_P.)

References I

V. Antimirov

Partial derivatives of regular expressions and finite automaton constructions Theoretical Computer Science, 1996.

- J.C.M. Baeten and F. Corradini Regular Expressions in Process Algebra. *Proceedings of LICS 2005*, 2005.
- J.C.M. Baeten, F. Corradini, and C. Grabmayer A Characterization of Regular Expressions under Bisimulation. *Research Report*, Techn. Univ. Eindhoven, Oct. 2005.

References II

C. Grabmayer

Using Proofs by Coinduction to Find "Traditional" Proofs Proceedings of CALCO 2005, LNCS 3629, 2005.

R. Milner

A Complete Inference System for a Class of Regular Behaviours.

Journal of Comp. and Syst. Sciences, 28:439-466, 1984.

Y. Hirshfeld and F. Moller

On the Star Height of Unary Regular Behaviours.

In: *Proof, Language, Interaction: Essays in honour of Robin Milner*, MIT Press, 2000.