	Nested Term G	raphs	

(work in progress)

Clemens Grabmayer and Vincent van Oostrom

Computer Science (VU University Amsterdam) and Philosophy (Utrecht University)

TERMGRAPH 2014 13 July 2014

definition

bisimulation/nested bisimulation

implementation

further investigations/aims

nested

'a group of objects made to fit close together or one within another'

$$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}$$

nested term graphs

- motivation
 - an implementation of higher-order term graphs as first-order term graphs
 - representing nested scope structure of terms in λ or in $\lambda_{ ext{letrec}}$
- definitions
 - intensional definition as: recursive graph specifications
 - extensional definition as: enriched first-order term graphs
- bisimulation, and nested bisimulation
- implementation as first-order term graphs
- further investigations and aims

higher-order as first-order term graphs [TERMGRAPH 2013]

let $f = \lambda x.(\lambda y.f x)x$ in f

higher-order term graph [Blom '03] higher-order term graph (abstraction-prefix funct.) first-order term graph

CG, Jan Rochel:

- Term Graph Representations for Cyclic Lambda Terms, TG 2013.
- Maximal Sharing in the Lambda Calculus with Letrec, ICFP 2014.

higher-order as first-order term graphs [TERMGRAPH 2013]

let $f = \lambda x.(\lambda y.f x)x$ in f

higher-order term graph [Blom '03] higher-order term graph (abstraction-prefix funct.) first-order term graph

CG, Jan Rochel:

- Term Graph Representations for Cyclic Lambda Terms, TG 2013.
- Maximal Sharing in the Lambda Calculus with Letrec, ICFP 2014.

first-order term graph over $\Sigma = \{\lambda/1, \mathbb{Q}/2, v/0\}$

$$\lambda x.(\lambda y. \text{let } \alpha = x\alpha \text{ in } \alpha)(\lambda z. \text{let } \beta = x(\lambda w. w)\beta \text{ in } \beta)$$

$$\lambda x.(\lambda y.\text{let } \alpha = x\alpha \text{ in } \alpha)(\lambda z.\text{let } \beta = x(\lambda w.w)\beta \text{ in } \beta)$$

$$\lambda x.(\lambda y.\text{let } \alpha = x\alpha \text{ in } \alpha)(\lambda z.\text{let } \beta = x(\lambda w.w)\beta \text{ in } \beta)$$

Nested Term Graphs

$$\lambda x.(\lambda y.\mathsf{let}\ lpha = xlpha\ \mathsf{in}\ lpha)(\lambda z.\mathsf{let}\ eta = x(\lambda w.w)eta\ \mathsf{in}\ eta)$$

$$\lambda x.(\lambda y.\mathsf{let}\ lpha = xlpha\ \mathsf{in}\ lpha)(\lambda z.\mathsf{let}\ eta = x(\lambda w.w)eta\ \mathsf{in}\ eta)$$

implementation

nested scopes \rightarrow nested term graph

Nested Term Graphs

motivation

definitions

bisimulation/nested bisimulation

implementation

nested term graph

n()

gletrec

$$\begin{array}{rcl} \mathsf{n}() &=& \lambda x. \mathsf{f}_1(x) \mathsf{f}_2(x, \mathsf{g}()) \\ \mathsf{f}_1(X_1) &=& \lambda x. \mathrm{let}\, \alpha = X_1 \alpha \,\mathrm{in}\, \alpha \\ \mathsf{f}_2(X_1, X_2) &=& \lambda y. \mathrm{let}\, \beta = X_1(X_2 \beta) \,\mathrm{in}\, \beta \\ \mathsf{g}() &=& \lambda z. z \end{array}$$

in

implementation

nested term graph

A signature for nested term graphs (ntg-signature) is a signature Σ that is partitioned into:

- atomic symbol alphabet Σ_{at}
- *nested* symbol alphabet Σ_{ne}

Additionally used:

- *interface* symbols alphabet $IO = I \cup O$
 - I = {i} with i unary
 - $O = \{o_1, o_2, o_3, \ldots\}$ with o_i nullary

Definition

Let Σ be an ntg-signature.

A recursive graph specification (a rgs) $\mathcal{R} = \langle rec, r \rangle$ consists of:

- specification function

 $rec : \Sigma_{ne} \longrightarrow \mathsf{TG}(\Sigma \cup IO)$ $f/k \longmapsto rec(f) = F \in \mathsf{TG}(\Sigma \cup \{i, o_1, \dots, o_k\})$

where F contains precisely one vertex labeled by i, the root, and one vertex each labeled by o_i , for $i \in \{1, ..., k\}$;

- nullary root symbol $r \in \Sigma_{ne}$.

rooted *dependency* ARS \sim of \mathcal{R} :

- objects: nested symbols in Σ_{ne}
- steps: for all $f, g \in \Sigma_{ne}$:

 $p: f \sim g \iff g$ occurs in the term graph rec(f) at position p

 $\Sigma_{\text{at}} = \big\{ \lambda/1, \, @/2, \, v/0 \big\}, \ \Sigma_{\text{ne}} = \big\{ r_0/0, \, f_2/2, \, g/0 \big\}, \ I = \big\{ i/1 \big\}, \ O = \big\{ o_1/0, o_2/0, \ldots \big\}.$

Definition

Let Σ be an ntg-signature.

A recursive graph specification (a rgs) $\mathcal{R} = (rec, r)$ consists of:

- specification function

 $\begin{aligned} \textit{rec} : \Sigma_{ne} &\longrightarrow \mathsf{TG}(\Sigma \cup \textit{IO}) \\ f/_{\textit{k}} &\longmapsto \textit{rec}(f) = \textit{F} \in \mathsf{TG}(\Sigma \cup \{i, o_1, \dots, o_{\textit{k}}\}) \end{aligned}$

where F contains precisely one vertex labeled by i, the root, and one vertex each labeled by o_i , for $i \in \{1, \dots, k\}$;

- nullary root symbol $r \in \Sigma_{ne}$.

rooted *dependency* ARS \leftarrow of \mathcal{R} :

- objects: nested symbols in Σ_{ne}
- steps: for all $f, g \in \Sigma_{ne}$:

 $p: f \sim g \iff g$ occurs in the term graph rec(f) at position p

nested term graph: intensional definition

Definition

Let Σ be an ntg-signature. A *nested term graph* over Σ is an rgs $\mathcal{N} = \langle rec, r \rangle$ such that the rooted dependency ARS \sim is a tree. defir

definitions

bisimulation/nested bisimulation

implementation

further investigations/aims

nested term graph (intensionally)

Nested Term Graphs

notivation

nested term graph (intensionally)

motivation

nested term graph (intensionally)

infinite λ -term (infinitely nested scopes) Nested Term Graphs

Grabmayer, van Oostrom

motivation

nested term graph (intensionally)

Nested Term Graphs

notivation

nested term graph (intensionally)

further investigations/aims

nested term graph: extensional definition

nested term graph: extensional definition

An *extensional description* of an ntg (an *entg*) over Σ is a term graph over $\Sigma \cup IO$ with vertex set V enriched by:

• in: $V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)

nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup IO$ with vertex set V enriched by:

- in: $V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)
- ▶ out : $V \rightarrow V$, (v with output vertex o_i) \mapsto (*i*-th successor of vertex into which the graph containing v is nested)

nested term graph: extensional definition

An *extensional description* of an ntg (an *entg*) over Σ is a term graph over $\Sigma \cup IO$ with vertex set V enriched by:

- in: $V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)
- *out*: V → V, (v with output vertex o_i) →
 (*i*-th successor of vertex into which the graph containing v is nested)
- anc : $V \rightarrow V^*$ ancestor function:

 $v \mapsto \text{word } anc(v) = v_1 \cdots v_n \text{ of the vertices in which } v \text{ is nested}$

nested term graphs: intensional vs. extensional definition

Proposition

- Every nested term graph has an extensional description.
- For every entg *G* there is a nested term graph for which *G* is the extensional description.

bisimulation

further investigations/aims

bisimulation between f-o term graphs

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related
bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, of <u>both</u> have interface labels, or <u>both</u> have <u>the same</u> atomic label

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, of <u>both</u> have interface labels, or <u>both</u> have <u>the same</u> atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, of <u>both</u> have interface labels, or <u>both</u> have <u>the same</u> atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on <u>nested</u> vertices: interface clause

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, of <u>both</u> have interface labels, or <u>both</u> have <u>the same</u> atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on <u>nested</u> vertices: interface clause

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, of <u>both</u> have interface labels, or <u>both</u> have <u>the same</u> atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on <u>nested</u> vertices: interface clause

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, of <u>both</u> have interface labels, or <u>both</u> have <u>the same</u> atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on <u>nested</u> vertices: interface clause

further investigations/aims

nested bisimulation, and rgs's versus ntgs

nested bisimilarity ${\bf s}^{ne}$ on rgs's

- records nesting behaviour of rgs's via stacks of vertices
- easy: coincides with \leftrightarrow on nested term graphs
- while conceptually finer, actually coincides with \leftrightarrow also on rgs's

nested term graph $\mathcal{N}(\mathcal{R})$ induced by an rgs \mathcal{R} :

 obtained from the tree-unfolding of the dependency ARS by copying shared graph specifications

Theorem

Let Σ_1 and Σ_2 be ntg-signatures with same part Σ_{at} for atomic symbols. For all rgs's \mathcal{R}_1 over Σ_1 , and \mathcal{R}_2 over Σ_2 , the following are equivalent: (i) $\mathcal{R}_1 \nleftrightarrow \mathcal{R}_2$; (ii) $\mathcal{R}_1 \nleftrightarrow^{ne} \mathcal{R}_2$; (iii) $\mathcal{N}(\mathcal{R}_1) \simeq \mathcal{N}(\mathcal{R}_2)$;

nested bisimulation, and rgs's versus ntgs

nested bisimilarity ${\bf s}^{ne}$ on rgs's

- records nesting behaviour of rgs's via stacks of vertices
- easy: coincides with \leftrightarrow on nested term graphs
- \blacktriangleright while conceptually finer, actually coincides with \leftrightarrows also on rgs's

nested term graph $\mathcal{N}(\mathcal{R})$ induced by an rgs \mathcal{R} :

 obtained from the tree-unfolding of the dependency ARS by copying shared graph specifications

Theorem

Let Σ_1 and Σ_2 be ntg-signatures with same part Σ_{at} for atomic symbols. For all rgs's \mathcal{R}_1 over Σ_1 , and \mathcal{R}_2 over Σ_2 , the following are equivalent: (i) $\mathcal{R}_1 \Leftrightarrow \mathcal{R}_2$; (ii) $\mathcal{R}_1 \Leftrightarrow^{ne} \mathcal{R}_2$; (iii) $\mathcal{N}(\mathcal{R}_1) \simeq \mathcal{N}(\mathcal{R}_2)$;

nested bisimulation, and rgs's versus ntgs

nested bisimilarity ${\bf s}^{ne}$ on rgs's

- records nesting behaviour of rgs's via stacks of vertices
- easy: coincides with \leftrightarrow on nested term graphs
- while conceptually finer, actually coincides with \leftrightarrow also on rgs's

nested term graph $\mathcal{N}(\mathcal{R})$ induced by an rgs \mathcal{R} :

 obtained from the tree-unfolding of the dependency ARS by copying shared graph specifications

Theorem

Let Σ_1 and Σ_2 be ntg-signatures with same part Σ_{at} for atomic symbols. For all rgs's \mathcal{R}_1 over Σ_1 , and \mathcal{R}_2 over Σ_2 , the following are equivalent: (i) $\mathcal{R}_1 \nleftrightarrow \mathcal{R}_2$; (ii) $\mathcal{R}_1 \bigstar^{ne} \mathcal{R}_2$; (iii) $\mathcal{N}(\mathcal{R}_1) \simeq \mathcal{N}(\mathcal{R}_2)$;

Theorem

Let Σ be an ntg-signature, and $\Sigma' = \Sigma \cup I \cup \{o/2, i_r/1, o_r/1\}$.

There is a function $T : NG(\Sigma) \rightarrow TG(\Sigma')$ such that:

- (i) T preserves and reflects \Leftrightarrow .
- (ii) *T* is efficiently computable.

- Pre-Processing: constant symbol vertices are linked to additional output vertex per nested vertex; continued outwards until top level;
- Replacement/Adding Backlinks: starting on rec(r), repeatedly replacing, a vertex v with a nested symbol f by the specification rec(f) of f, thereby:
 - directing incoming edges at v to the root v_r of rec(f)
 - replacing output vertices o_i of rec(f) by the binary symbol o with first edge to *i*-th successor of v, the second edge a back-link to v_i.

Theorem

Let Σ be an ntg-signature, and $\Sigma' = \Sigma \cup I \cup \{o/2, i_r/1, o_r/1\}$.

There is a function $T : NG(\Sigma) \rightarrow TG(\Sigma')$ such that:

- (i) T preserves and reflects \Leftrightarrow .
- (ii) *T* is efficiently computable.

- Pre-Processing: constant symbol vertices are linked to additional output vertex per nested vertex; continued outwards until top level;
- Replacement/Adding Backlinks: starting on rec(r), repeatedly replacing, a vertex v with a nested symbol f by the specification rec(f) of f, thereby:
 - directing incoming edges at v to the root v_r of rec(f)
 - replacing output vertices o_i of rec(f) by the binary symbol o with first edge to *i*-th successor of v, the second edge a back-link to v_r.

Theorem

Let Σ be an ntg-signature, and $\Sigma' = \Sigma \cup I \cup \{o/2, i_r/1, o_r/1\}$.

There is a function $T : NG(\Sigma) \rightarrow TG(\Sigma')$ such that:

- (i) T preserves and reflects \Leftrightarrow .
- (ii) *T* is efficiently computable.

- Pre-Processing: constant symbol vertices are linked to additional output vertex per nested vertex; continued outwards until top level;
- Replacement/Adding Backlinks: starting on rec(r), repeatedly replacing, a vertex v with a nested symbol f by the specification rec(f) of f, thereby:
 - directing incoming edges at v to the root v_r of rec(f)
 - replacing output vertices o_i of rec(f) by the binary symbol o with first edge to *i*-th successor of v, the second edge a back-link to v_r.

Theorem

```
Let \Sigma be an ntg-signature, and \Sigma' = \Sigma \cup I \cup \{o/2, i_r/1, o_r/1\}.
```

```
There is a function T : NG(\Sigma) \rightarrow TG(\Sigma') such that:
```

- (i) T preserves and reflects \Rightarrow , and hence \Leftrightarrow .
- ii) *T* is efficiently computable.

- Pre-processing: constant symbol vertices are linked to additional output vertex per nested vertex; continued outwards until top level;
- Replacement/Adding Backlinks: starting on rec(r), repeatedly replacing, a vertex v with a nested symbol f by the specification rec(f) of f, thereby:
 - directing incoming edges at v to the root v_r of rec(f)
 - ▶ replacing output vertices o_i of rec(f) by the binary symbol o with first edge to *i*-th successor of v, the second edge a back-link to v_r .

transfer of results from f-o term graphs

Corollary

Let \mathcal{N} be a nested term graph.

- **(**) \mathcal{N} has, up to isomorphism, a unique nested term graph collapse.
- 2 The bisimulation equivalence class of N (up to isomorphism) forms a complete lattice w.r.t. ≥.

implementation fails for rgs's

implementation fails for rgs's

implementation

further investigations/aims

implementation fails for rgs's

motivation

implementation fails for rgs's

motivation

implementation fails for rgs's

motivation

implementation fails for rgs's

- relation with similar concepts
 - proof nets and proof net reduction
- context-free graph grammars
 - view rgs's as context-free graph grammars
 - recognize rgs-generated nested term graphs as context-free graphs
- monadic formulation
 - nested term graphs as monads over some signature
 - categorically describe the implementation as first-order term graphs
- rewrite theory
 - higher-order terms interpreted as nested term graphs
 - implementation of h-o term rewriting as:
 - 'nested term graph rewriting'
 - then realization by f-o term graph (or port graph) rewriting
 - test-case: λ -calculus

- relation with similar concepts
 - proof nets and proof net reduction
- context-free graph grammars
 - view rgs's as context-free graph grammars
 - recognize rgs-generated nested term graphs as context-free graphs
- monadic formulation
 - nested term graphs as monads over some signature
 - categorically describe the implementation as first-order term graphs
- rewrite theory
 - higher-order terms interpreted as nested term graphs
 - implementation of h-o term rewriting as:
 - 'nested term graph rewriting'
 - then realization by f-o term graph (or port graph) rewriting
 - test-case: λ -calculus

- relation with similar concepts
 - proof nets and proof net reduction
- context-free graph grammars
 - view rgs's as context-free graph grammars
 - recognize rgs-generated nested term graphs as context-free graphs
- monadic formulation
 - nested term graphs as monads over some signature
 - categorically describe the implementation as first-order term graphs
- rewrite theory
 - higher-order terms interpreted as nested term graphs
 - implementation of h-o term rewriting as:
 - 'nested term graph rewriting'
 - then realization by f-o term graph (or port graph) rewriting
 - test-case: λ -calculus

- relation with similar concepts
 - proof nets and proof net reduction
- context-free graph grammars
 - view rgs's as context-free graph grammars
 - recognize rgs-generated nested term graphs as context-free graphs
- monadic formulation
 - nested term graphs as monads over some signature
 - categorically describe the implementation as first-order term graphs
- rewrite theory
 - higher-order terms interpreted as nested term graphs
 - implementation of h-o term rewriting as:
 - 'nested term graph rewriting'
 - then realization by f-o term graph (or port graph) rewriting
 - test-case: λ -calculus

further investigations/aims

further investigations/aims

