Nested Term Graphs (work in progress)

Clemens Grabmayer and Vincent van Oostrom

Computer Science (VU University Amsterdam) and Philosophy (Utrecht University)

TERMGRAPH 2014

13 July 2014

nested

'a group of objects made to fit close together or one within another'

$$
\begin{aligned}
& x=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}} \\
& \text { for } i=0 \text { to } 9 \text { do } \\
& \text { for } j=0 \text { to } 9 \text { do } \\
& \text { for } k=0 \text { to } 9 \text { do } \\
& \text { sum }=\text { sum }+i * 100 \\
& +j * 10+k+1 ;
\end{aligned}
$$

nested term graphs

- motivation
- an implementation of higher-order term graphs as first-order term graphs
- representing nested scope structure of terms in $\boldsymbol{\lambda}$ or in $\boldsymbol{\lambda}_{\text {letrec }}$
- definitions
- intensional definition as: recursive graph specifications
- extensional definition as: enriched first-order term graphs
- bisimulation, and nested bisimulation
- implementation as first-order term graphs
- further investigations and aims

higher-order as first-order term graphs [TERMGRAPH 2013]

$$
\text { let } f=\lambda x .(\lambda y . f x) x \text { in } f
$$

higher-order term graph [Blom '03]

higher-order term graph (abstraction-prefix funct.)

first-order term graph

CG, Jan Rochel:

- Term Graph Representations for Cyclic Lambda Terms, TG 2013.
- Maximal Sharing in the Lambda Calculus with Letrec, ICFP 2014.

higher-order as first-order term graphs [TERMGRAPH 2013]

$$
\text { let } f=\lambda x .(\lambda y . f x) x \text { in } f
$$

higher-order term graph [Blom '03]

higher-order term graph (abstraction-prefix funct.)

first-order term graph

CG, Jan Rochel:

- Term Graph Representations for Cyclic Lambda Terms, TG 2013.
- Maximal Sharing in the Lambda Calculus with Letrec, ICFP 2014.

nested scopes in λ-terms

first-order term graph over $\Sigma=\left\{\lambda_{/ 1}, \varrho_{/ 2}, \mathrm{v} / 0\right\}$

nested scopes in λ-terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$. let $\beta=x(\lambda w . w) \beta$ in $\beta)$

nested scopes in λ-terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$.let $\beta=x(\lambda w . w) \beta$ in $\beta)$

nested scopes in λ-terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$.let $\beta=x(\lambda w . w) \beta$ in $\beta)$

nested scopes in λ-terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$.let $\beta=x(\lambda w . w) \beta$ in $\beta)$

nested scopes in λ-terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$.let $\beta=x(\lambda w . w) \beta$ in $\beta)$

nested scopes in λ-terms

$\lambda x .(\lambda y$. let $\alpha=x \alpha$ in $\alpha)(\lambda z$.let $\beta=x(\lambda w . w) \beta$ in $\beta)$

nested scopes in λ-terms

nested scopes \rightarrow nested term graph

nested term graph

gletrec

$$
\begin{aligned}
\mathrm{n}() & =\lambda x \cdot \mathrm{f}_{1}(x) \mathrm{f}_{2}(x, \mathrm{~g}()) \\
\mathrm{f}_{1}\left(X_{1}\right) & =\lambda x \cdot \operatorname{let} \alpha=X_{1} \alpha \text { in } \alpha \\
\mathrm{f}_{2}\left(X_{1}, X_{2}\right) & =\lambda y . \operatorname{let} \beta=X_{1}\left(X_{2} \beta\right) \text { in } \beta \\
\mathrm{g}() & =\lambda z . z
\end{aligned}
$$

in

$$
\mathrm{n}()
$$

nested term graph

signature

A signature for nested term graphs (ntg-signature) is a signature Σ that is partitioned into:

- atomic symbol alphabet $\Sigma_{\text {at }}$
- nested symbol alphabet $\Sigma_{\text {ne }}$

Additionally used:

- interface symbols alphabet $I O=I \cup O$
- I = \{i\} with i unary
- $O=\left\{\mathrm{o}_{1}, \mathrm{o}_{2}, \mathrm{o}_{3}, \ldots\right\}$ with o_{i} nullary

recursive graph specification

Definition

Let Σ be an ntg-signature.
A recursive graph specification (a rgs) $\mathcal{R}=\langle r e c, r\rangle$ consists of:

- specification function

$$
\begin{aligned}
r e c: & \Sigma_{\mathrm{ne}} \\
& \longrightarrow \mathrm{TG}(\Sigma \cup I O) \\
\quad / / k & \longmapsto r e c(f)=F \in \mathrm{TG}\left(\Sigma \cup\left\{\mathrm{i}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{k}\right\}\right)
\end{aligned}
$$

where F contains precisely one vertex labeled by i , the root, and one vertex each labeled by o_{i}, for $i \in\{1, \ldots, k\}$;

- nullary root symbol $r \in \Sigma_{\text {ne }}$.

```
- objects: nested symbols in 涪
- steps: for all f,g\in\mp@subsup{\Sigma}{ne}{}
```


recursive graph specification

recursive graph specification

Definition

Let Σ be an ntg-signature.
A recursive graph specification (a rgs) $\mathcal{R}=\langle r e c, r\rangle$ consists of:

- specification function

$$
\begin{aligned}
& r e c: \Sigma_{\mathrm{ne}} \\
& \quad \longrightarrow \mathrm{TG}(\Sigma \cup I O) \\
& \quad / / k \longmapsto \operatorname{rec}(f)=F \in \mathrm{TG}\left(\Sigma \cup\left\{\mathrm{i}, \mathrm{o}_{1}, \ldots, \mathrm{o}_{k}\right\}\right)
\end{aligned}
$$

where F contains precisely one vertex labeled by i, the root, and one vertex each labeled by o_{i}, for $i \in\{1, \ldots, k\}$;

- nullary root symbol $r \in \Sigma_{\text {ne }}$.
rooted dependency ARS - of \mathcal{R} :
- objects: nested symbols in $\Sigma_{\text {ne }}$
- steps: for all $f, g \in \Sigma_{\mathrm{ne}}$:
$p: f \circ-g \Longleftrightarrow g$ occurs in the term $\operatorname{graph} \operatorname{rec}(f)$ at position p

recursive graph specification

dependency ARS: $f_{2} \xrightarrow{\circ} r_{0} \circ-g$ is a dag (but not a tree).

nested term graph: intensional definition

Definition

Let Σ be an ntg-signature.
A nested term graph over Σ is an rgs $\mathcal{N}=\langle r e c, r\rangle$ such that the rooted dependency ARS $0-$ is a tree.

nested term graph (intensionally)

nested term graph (intensionally)

dependency ARS: $\quad f_{1} \multimap n \underset{a}{\circ} \sim f_{2} \quad$ is a tree.

nested term graph (intensionally)

nested term graph with infinite nesting
infinite λ-term
(infinitely nested scopes)

nested term graph (intensionally)

infinite λ-term
(infinitely nested scopes)

nested term graph (intensionally)

nested term graph: extensional definition

nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup I O$ with vertex set V enriched by:

- in: $V \rightharpoonup V,(v$ with nested symbol $) \mapsto($ root of graph nested into $v)$

nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup I O$ with vertex set V enriched by:

- in: $V \rightharpoonup V,(v$ with nested symbol $) \mapsto($ root of graph nested into $v)$
- out: $V \sim V,\left(v\right.$ with output vertex $\left.o_{i}\right) \mapsto$ (i-th successor of vertex into which the graph containing v is nested)

nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup I O$ with vertex set V enriched by:

- in: $V \rightharpoonup V,(v$ with nested symbol $) \mapsto($ root of graph nested into $v)$
- out: $V \rightarrow V,\left(v\right.$ with output vertex $\left.o_{i}\right) \mapsto$ (i-th successor of vertex into which the graph containing v is nested)
- anc : $V \rightarrow V^{*}$ ancestor function:

$$
v \mapsto \text { word } a n c(v)=v_{1} \cdots v_{n} \text { of the vertices in which } v \text { is nested }
$$

nested term graphs: intensional vs. extensional definition

Proposition

- Every nested term graph has an extensional description.
- For every entg \mathcal{G} there is a nested term graph for which \mathcal{G} is the extensional description.

bisimulation

bisimulation between f-o term graphs

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

bisimulation between f-o term graphs

progression condition: i-th successors of related vertices must be related

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation ϕ betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, of both have interface labels, or both have the same atomic label

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation ϕ betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, of both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrow \mathcal{N}_{2}$) if there is bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation ϕ betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, of both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrow \mathcal{N}_{2}$) if there is bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation ϕ betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, of both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrow \mathcal{N}_{2}$) if there is bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation ϕ betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, of both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

bisimulation (for intensional ntg-definition)

Let \mathcal{N}_{1} and \mathcal{N}_{2} be nested term graphs. Let V_{1} the disjoint union of the vertices of term graphs in \mathcal{N}_{1}. Similar for V_{2} w.r.t. \mathcal{N}_{2}.
\mathcal{N}_{1} and \mathcal{N}_{2} are bisimilar (denoted by $\mathcal{N}_{1} \leftrightarrows \mathcal{N}_{2}$) if there is bisimulation between \mathcal{N}_{1} and \mathcal{N}_{2}, i.e. a binary relation ϕ betw. V_{1} and V_{2} such that:

- roots are related
- related vertices either both have nested labels, of both have interface labels, or both have the same atomic label
- progression on atomic vertices: as for f-o term graphs
- progression on nested vertices: interface clause

bisimulation (for intensional ntg-definition)

nested bisimulation, and rgs's versus ntgs

nested bisimilarity $\overleftrightarrow{幺}^{\text {ne }}$ on rgs's

- records nesting behaviour of rgs's via stacks of vertices
- easy: coincides with \leftrightarrows on nested term graphs
- while conceptually finer, actually coincides with \leftrightarrows also on rgs's

nested term graph $\mathcal{N}(\mathcal{R})$ induced by an rgs \mathcal{R} :
 - obtained from the tree-unfolding of the dependency ARS by copying shared graph specifications

Thesem
 Let Σ_{1} and Σ_{2} be ntg-signatures with same part $\Sigma_{\text {at }}$ for atomic symbols. For all ros's \mathcal{R}_{1} over Σ_{1}, and \mathcal{R}_{2} over Σ_{2}, the following are equivalent:

nested bisimulation, and rgs's versus ntgs

nested bisimilarity $\overleftrightarrow{\underbrace{}}^{\text {ne }}$ on rgs's

- records nesting behaviour of rgs's via stacks of vertices
- easy: coincides with \leftrightarrows on nested term graphs
- while conceptually finer, actually coincides with \leftrightarrows also on rgs's
nested term graph $\mathcal{N}(\mathcal{R})$ induced by an $\operatorname{rgs} \mathcal{R}$:
- obtained from the tree-unfolding of the dependency ARS by copying shared graph specifications

Let Σ_{1} and Σ_{2} be ntg-signatures with same part $\Sigma_{\text {at }}$ for atomic symbols. For all rgs's \mathcal{R}_{1} over Σ_{1}, and \mathcal{R}_{2} over Σ_{2}, the following are equivalent:

nested bisimulation, and rgs's versus ntgs

nested bisimilarity $\overleftrightarrow{\underbrace{}}^{\text {ne }}$ on rgs's

- records nesting behaviour of rgs's via stacks of vertices
- easy: coincides with \leftrightarrows on nested term graphs
- while conceptually finer, actually coincides with \leftrightarrows also on rgs's
nested term graph $\mathcal{N}(\mathcal{R})$ induced by an $\operatorname{rgs} \mathcal{R}$:
- obtained from the tree-unfolding of the dependency ARS by copying shared graph specifications

Theorem

Let Σ_{1} and Σ_{2} be ntg-signatures with same part $\Sigma_{\text {at }}$ for atomic symbols.
For all rgs's \mathcal{R}_{1} over Σ_{1}, and \mathcal{R}_{2} over Σ_{2}, the following are equivalent:
(i) $\mathcal{R}_{1} \leftrightarrows \mathcal{R}_{2}$;
(ii) $\mathcal{R}_{1} \leftrightarrows^{\text {ne }} \mathcal{R}_{2}$;
(iii) $\mathcal{N}\left(\mathcal{R}_{1}\right) \simeq \mathcal{N}\left(\mathcal{R}_{2}\right)$;

implementation by first-order term graphs

Theorem
Let Σ be an ntg-signature, and $\Sigma^{\prime}=\Sigma \cup I \cup\left\{0 / 2, \mathrm{i}_{\mathrm{r}} / 1, \mathrm{o}_{\mathrm{r}} / 1\right\}$.
There is a function $T: N G(\Sigma) \rightarrow \mathrm{TG}\left(\Sigma^{\prime}\right)$ such that:
(i) T preserves and reflects \leftrightarrows.
(ii) T is efficiently computable.

Proof based on the following definition of T on given nested term graph:

implementation by first-order term graphs

Theorem

Let Σ be an ntg-signature, and $\Sigma^{\prime}=\Sigma \cup I \cup\left\{0 / 2, \mathrm{i}_{\mathrm{r}} / 1, \mathrm{o}_{\mathrm{r}} / 1\right\}$.
There is a function $T: N G(\Sigma) \rightarrow \mathrm{TG}\left(\Sigma^{\prime}\right)$ such that:
(i) T preserves and reflects \leftrightarrows.
(ii) T is efficiently computable.

Proof based on the following definition of T on given nested term graph:
© output vertex per nested vertex; continued outwards until top level
(2) Replacement/Adding Backlinks: starting on rec(r), repeatedly replacing, a vertex v with a nested symbol f by the specification rec (f) of f, thereby
directing incoming edges at v to the root v_{r} of $\operatorname{rec}(f)$
replacing output vertices $\mathrm{o}_{\text {; }}$ of $\operatorname{rec}(f)$ by the binary symbol o with first edge to $i-$-th successor of v, the second edge a back-link to

implementation by first-order term graphs

Theorem

Let Σ be an ntg-signature, and $\Sigma^{\prime}=\Sigma \cup I \cup\left\{0 / 2, \mathrm{i}_{\mathrm{r}} / 1, \mathrm{o}_{\mathrm{r}} / 1\right\}$.
There is a function $T: N G(\Sigma) \rightarrow \mathrm{TG}\left(\Sigma^{\prime}\right)$ such that:
(i) T preserves and reflects \leftrightarrows.
(ii) T is efficiently computable.

Proof based on the following definition of T on given nested term graph:
(1) Pre-Processing: constant symbol vertices are linked to additional output vertex per nested vertex; continued outwards until top level;
(2)
replacing, a vertex v with a nested symbol f by the specification
rec (f) of f, thereby
directing incoming edges at v to the root v_{r} of rec (f)
replacing output vertices $\mathrm{o}_{\text {; }}$ of $\operatorname{rec}(f)$ by the binary symbol o with first edge to i-th successor of v, the second edge a back-link to

implementation by first-order term graph

implementation by first-order term graph

implementation by first-order term graphs

There is a function $T: \mathrm{NG}(\Sigma) \rightarrow \mathrm{TG}\left(\Sigma^{\prime}\right)$ such that:

preserves and reflects \rightarrow, and hence \leftrightarrows
is efficiently computable.
Proof based on the following definition of T on given nested term graph:
(1) Pre-processing: constant symbol vertices are linked to additional output vertex per nested vertex; continued outwards until top level;
(2) Replacement/Adding Backlinks: starting on rec(r), repeatedly replacing, a vertex v with a nested symbol f by the specification $\operatorname{rec}(f)$ of f, thereby:

- directing incoming edges at v to the root v_{r} of $\operatorname{rec}(f)$
- replacing output vertices o_{i} of $r e c(f)$ by the binary symbol o with first edge to i-th successor of v, the second edge a back-link to v_{r}.

implementation by first-order term graph

implementation by first-order term graph

implementation by first-order term graph

transfer of results from f-o term graphs

Corollary

Let \mathcal{N} be a nested term graph.
(1) \mathcal{N} has, up to isomorphism, a unique nested term graph collapse.
(2) The bisimulation equivalence class of \mathcal{N} (up to isomorphism) forms a complete lattice w.r.t. \rightarrow.

implementation fails for rgs's

further investigations and aims

- relation with similar concepts
- proof nets and proof net reduction
- context-free graph grammars
- view rgs's as context-free graph grammars
- recognize rgs-generated nested term graphs as context-free graphs
* monadic formulation
- nested term graphs as monads over some signature
- categorically describe the implementation as first-order term graphs
- rewrite theory
, higher-order terms interpreted as nested term graphs
* implementation of h-o term rewriting as:
- 'nested term graph rewriting'
- then realization by f -o term graph (or port graph) rewriting
" test-case: λ-calculus

further investigations and aims

- relation with similar concepts
- proof nets and proof net reduction
- context-free graph grammars
- view rgs's as context-free graph grammars
- recognize rgs-generated nested term graphs as context-free graphs

- monadic formulation

- nested term graphs as monads over some signature
- categorically describe the implementation as first-order term graphs
- rewrite theory
* higher-order terms interpreted as nested term graphs
* implementation of h-o term rewriting as:
- 'nested term graph rewriting'
- then realization by f -o term graph (or port graph) rewriting
- test-case: λ-calculus

further investigations and aims

- relation with similar concepts
- proof nets and proof net reduction
- context-free graph grammars
- view rgs's as context-free graph grammars
- recognize rgs-generated nested term graphs as context-free graphs
- monadic formulation
- nested term graphs as monads over some signature
- categorically describe the implementation as first-order term graphs
- rewrite theory
- higher-order terms interpreted as nested term graphs
- implementation of $h-o$ term rewriting as:
- 'nested term graph rewriting
- then realization by f-o term graph (or port graph) rewriting
test-case: λ-calculus

further investigations and aims

- relation with similar concepts
- proof nets and proof net reduction
- context-free graph grammars
- view rgs's as context-free graph grammars
- recognize rgs-generated nested term graphs as context-free graphs
- monadic formulation
- nested term graphs as monads over some signature
- categorically describe the implementation as first-order term graphs
- rewrite theory
- higher-order terms interpreted as nested term graphs
- implementation of h-o term rewriting as:
- 'nested term graph rewriting'
- then realization by f-o term graph (or port graph) rewriting
- test-case: λ-calculus

implementation by first-order term graph (via entg)

