
Submitted to:
TERMGRAPH 2014

© C. Grabmayer & V. van Oostrom
This work is licensed under the
Creative Commons Attribution License.

Nested Term Graphs

Clemens Grabmayer
Department of Computer Science

VU University Amsterdam
The Netherlands

C.A.Grabmayer@vu.nl

Vincent van Oostrom
Philosophy

Utrecht University
The Netherlands

V.vanOostrom@uu.nl

We report on work in progress on ‘nested term graphs’ for formalizing higher-order terms (e.g. finite
or infinite λ -terms), including those expressing recursion (e.g. terms in the λ -calculus with letrec).
The idea is to represent the nested scope structure of a higher-order term by a nested structure of
term graphs. Based on a signature that is partitioned into atomic and nested function symbols, we
define nested term graphs both intensionally, as tree-like recursive graph specifications that associate
nested symbols with usual term graphs, and extensionally, as enriched term graph structures. These
definitions induce corresponding notions of bisimulation between nested term graphs. Our main result
states that nested term graphs can be implemented faithfully by first-order term graphs.

Introduction Structures such as strings, terms, and graphs frequently come equipped with additional
structure. In this paper we study the case where this extra structure is a notion of scope, for the particular
case of term graphs. Scopes are abundant in programming and in logic. The guiding intuition is that
the notion of scope corresponds to a notion of context-freeness. We illustrate this first by means of
a string example, which although very simple already illustrates the issues involved. Consider the ad
hoc context free grammar for expressions S ∶∶= 2×T , T ∶∶= 3+1. The obvious intended interpretation
into the natural numbers of T is 4 and that of S is then 2× 4 = 8. The standard observation is that
interpretation does not commute with transformations of the grammar. In particular, substituting 3+1
for T in the definition of S yields S ∶∶= 2×3+1 for which one obtains 6+1 = 7 as interpretation, which
is not exactly the same as 8. A way to prevent such a misinterpretation is to insert parentheses first
to indicate the right scope: S ∶∶= 2×(3+ 1). We turn this observation around by stipulating that the
notion of scope is a phenomenon that is brought about by context-free recursive specifications, for
strings, terms, and graphs alike. An example for terms in programming (Lisp) is unhygienic macro
expansion [5]: (or⟨exp⟩1⟨exp⟩2) ∶∶= (letv[]⟨exp⟩1(if vv[]⟨exp⟩2)). Expanding this macro in (ornilv) yields
(letvnil(if vvv)) which always yields nil due to the inadvertent capturing of v. In this case, a way to
prevent such a misinterpretation is to insert λs, a device from [4] for ending scopes of binders, resulting
in (letv λv.nil(if vv λv.v)) avoiding that the substituted v becomes bound by the letv of the macro by
unbinding the latter by λv. Here we are concerned with the same phenomenon but for term graphs and
their behavorial semantics. As a running example we use the following expression, which expresses a
cyclic λ -term (and thereby a regular infinite λ -term) by means of the Combinatory Reduction System
(CRS) inspired gletrec-notation:

gletrec n() ∶∶= λx.f1(x)f2(x,g())
f1(X1) ∶∶= λx.letα = X1α inα

f2(X1,X2) ∶∶= λy.letβ = X1(X2β) inβ

g() ∶∶= λ z.z
in n()

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Nested Term Graphs

i

λ

@

i i

λ λ

@ @

o1 @

v o1 o2

v i

λ

v

ir

λ

@

i i

λ λ

@ @

o @

v o o

v i

λ

v

o

or

which corresponds to the
pretty printed ‘recursive graph
specification’ on the left (the
graph with scopes indicated
by dotted lines). Our main
result entails that the behavo-
rial semantics of this speci-
fication is the same as that
of the first-order term graph
obtained from it, displayed
on the right here. Note that
in this first-order term graph
additional vertices and edges
between them have been in-
serted to delimit scopes ap-
propriately; they play the
same rôle as the parentheses
in the string example and the

λin the term example. This example belongs to a particularly well-behaved subclass of the recursive
graph specifications, the so-called nested term graphs, where the dependency between the nested symbols
(n, f1, f2, g in the example) is tree-like. In particular, the first-order term graph can be interpreted as a
λ -term graph [3] or a higher-order term graph [1]. However, our results pertain to specifications with
arbitrary dependencies, allowing for both sharing and cyclicity, such as:

gletrec f() ∶∶= λx.g(x)
g(X1) ∶∶= λy.g(y)X1

in f()

Ordinary term graphs. Let Σ be a (first-order) signature for function symbols with arity function
ar ∶ Σ→N. A term graph over Σ (a Σ-term-graph) is a tuple ⟨V, lab,args,root⟩ where V is a set of vertices,
lab ∶V → Σ the (vertex) label function, args ∶V →V∗ the argument function that maps every vertex v to the
word args(v) consisting of the ar(lab(v)) successor vertices of v (hence it holds ∣args(v)∣ = ar(lab(v))),
and root ∈V is the root of the term graph. Such a term graph is called root-connected if every vertex is
reachable from the root by a path that arises by repeatedly going from a vertex to one of its successors. By
TG(Σ) we denote the class of all root-connected term graphs over Σ. Note: By a ‘term graph’ we will
mean by default a root-connected term graph.

A rooted ARS is the extension of an abstract rewriting system (ARS) → by specifying one of its
objects as designated root. A rooted ARS→ with objects A and root a is called a tree if→ is acyclic (there
is no x ∈ A such that x→+ x), co-deterministic (for every x ∈ A there is at most one step of → with target x),
and root-connected (every element x ∈ A is reachable from a via a sequence of steps of →, i.e. a→∗ x).

Nested Term Graphs A signature for nested term graphs (an ntg-signature) is a signature Σ for term
graphs that is partitioned into a part Σat for atomic symbols, and a part Σne for nested symbols, that is,
Σ = Σat∪Σne and Σat∩Σne =∅. In addition to a given signature Σ for nested term graphs we always assume
additional interface symbols from the set IO = I∪O, where I = {i} consists of a single unary input symbol
(symbolizing an input edge into a term graph), and O = {o1,o2,o3, . . .} a countably infinite set of output
symbols with arity zero (symbolizing a numbered output edge from a term graph).

C. Grabmayer & V. van Oostrom 3

r0 n

i

λ

@

f2 f2

v v g

R0

rec0

i

λ

v

Grec0

i

λ

@

@

o1 o2

F2

rec0

rec0
i

λ

@

o1

F1
i

λ

@

f1 f2

v v g

N

rec

rec

rec

rec

Figure 1: Definitions of a recursive graph specificationR0 (Ex. 2), and a nested term graph N (Ex. 4).

Definition 1 (recursive specifications for nested term graphs). Let Σ be a signature for nested term graphs.
A recursive (nested term) graph specification (an rgs) over Σ is a tuple ⟨rec, r⟩, where:

– rec ∶ Σne→ TG(Σ∪ IO) is the specification function that maps a nested function symbol f ∈ Σne with
ar(f) = k to a term graph rec(f) = F ∈ TG(Σ∪{i,o1, . . . ,ok}) that has precisely one vertex labeled
by i, the root, and that contains precisely one vertex labeled by the oi, for each i ∈ {1, . . . ,k};

– r ∈ Σne, a nullary symbol (that is, ar(r) = 0), is the root symbol.

For such an rgsR= ⟨rec, r⟩ over Σ, the rooted dependency ARS⟜ ofR has as objects the nested symbols
in Σne, it has root r, and the following steps: for all f ,g ∈ Σne such that g occurs in the term graph rec(f)
at position p there is a step p ∶ f ⟜ g.

Example 2. Let Σat = {λ/1, @/2, v/0} for expressing λ -terms as term graphs.

(i) Let Σ0,ne = {r0/0, f2/2, g/0}. Then R0 = ⟨rec0, r0⟩, where rec0 ∶ Σ0,ne → TG(Σ∪ IO) is defined by
r0↦ R0, f2↦ F2, and g↦G as shown in Fig. 1, is an rgs.

(ii) Let Σne = {n/0, f1/1, f2/2, g/0}. Then ⟨rec,n⟩, where rec ∶ Σne → TG(Σ∪ IO) is defined by n↦ N,
f1↦ F1, f2↦ F2, and g↦G as shown in Fig. 1, is an rgs.

Definition 3 (nested term graphs). Let Σ be an ntg-signature. A nested term graph (an ntg) over Σ is
an rgs N = ⟨rec, r⟩ such that the rooted dependency ARS⟜ is a tree. By NG(Σ) we denote the class of
nested term graphs over Σ.

Example 4. We first consider the rgs R0 = ⟨rec0, r0⟩ from Ex. 2, (i). Its rooted dependency ARS⟜ is
not a tree, because there are two steps that witness r0 ⟜ f2, namely those that are induced by the two
occurrences of f2 in the term graph R0 = rec0(r0). As a consequence,R0 is not a nested term graph.

But for the rgs N = ⟨rec,n⟩ from Ex. 2, (ii), we find that the rooted dependency ARS⟜ actually is a
tree with root n. Hence N is a nested term graph. For a ‘pretty print’ of N , see the left graph on page 2.

There is an easy correspondence between nested term graphs defined by the intensional definition
above, and ntgs according to an extensional definition as enrichments of ordinary term graphs. An
extensional description of a nested term graph (an entg’s) is a tuple ⟨V, lab,args, in,out,anc,root⟩, where
G0 = ⟨V, lab,args,root⟩ is a (not necessarily root-connected) term graph over Σ∪ IO, in ∶V ⇀V is a partial
function that maps a vertex v labeled by a nested symbol to the root of the term graph nested into v,
out ∶V ⇀V is a partial function that to every output vertex oi assigns the i-th successor of the vertex into
which the term graph containing oi is nested, and anc ∶V →V∗ is the ancestor function that records, and

4 Nested Term Graphs

guarantees, the nesting structure by assigning to every vertex v the word anc(v) = v1⋯vn made up of the
vertices in which v is nested. As an example consider the illustration of an entg representation of the
ntg N in Ex. 4, with names for vertices with nested symbols (right of such vertices), and the values of the
ancestor function indicated in brackets (left of the vertices):

i i n i i

λ λ λ λ

@ @ v @

o1 f1 f2 @

v v g o1 o2

v0(ε)
(v0)

(v0)

(v0)

(v0) (v0)

(v0) (v0) (v0)

(v0v1)

(v0v1)

(v0v1)

(v0v1)

(v0v3)

(v0v3)

(v0v3)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

(v0v2)

v1
v2

v3

in

in

in

in

out
out

out

Nested Bisimulation LetR1 = ⟨rec1, r1⟩ andR2 = ⟨rec2, r2⟩ be rgs’s over signatures Σ1 and Σ2 with the
same atomic symbols. A homomorphism between rgs’sR1 andR2 (denoted byR1→R2) is a function
φ ∶V1→V2 between the set of vertices of the disjoint unions G1 and G2 of the term graphs in the image
of rec1 and rec2, respectively; on the vertices of G1 and G2 labeled with atomic, or interface labels, φ

behaves like an ordinary term graph homomorphism; and on the vertices labeled with nested symbol f1
and f2, the following ‘interface’ clause applies:

G1 G2

f1

1 i n1

i

o1 oi on1

F1

rec1 f2

1 j n2

i

o1 o j on2

F2

rec2

φ φ

φφ

A bisimulation betweenR1 andR2 (denoted byR1↔R2) is an rgsR such thatR1←R→R2.
A nested bisimulation between rgs’sR1 andR2 compares rgs’s in a finer manner by recording also

the nesting behaviour of the rgs’s by means of stacks of vertices. It is defined similarly between prefixed
expressions (v1⋯vk1)v and (w1⋯wk2)w that describe visits of the vertices v1 in G1 and w1 in G2 in the
context of histories of visits as recorded by the stacks v1⋯vk1 and w1⋯wk2 of nested vertices of G1 and
G2. The topmost stack element always indicates the parent nested vertex, enabling a definition by local
progression clauses. We denote bisimilarity by↔ne and functional bisimilarity by→ne.

For an example illustrating these relations on nested term graphs, see Fig. 2. While on rgs’s,→ne is
properly contained in→ , these relations coincide on nested term graphs (due to the tree structure of⟜).
As a consequence, also↔ne and↔ coincide on ntgs. IfR1↔neR2 holds for rgs’sR1 andR2, then the
term graphs N(R1) and N(R2) specified byR1 andR2, respectively, are isomorphic.

Implementation by first-order term graphs Nested term graphs can be implemented in a faithful, and
rather natural way as first-order term graphs. By ‘faithful’ we mean that the interpretation mapping is a
retraction that preserves and reflects homomorphisms, and by ‘natural’ that it can be defined inductively on

C. Grabmayer & V. van Oostrom 5

i

λ

@

o1

c

←(ne)

↔(ne)

/→(ne)

i

λ

@

@

o1

c

←(ne)

↔(ne)

/→(ne)

i

λ

@

@

o1 o2

c

←(ne)

↔(ne)

/→(ne)

i

λ

@

@

o1 o2

c c

Figure 2: Four simple nested term graphs that are related by→ and →ne, and by↔ and↔ne.

the nesting structure. The basic idea is analogous to the interpretation of λ -ho-term-graphs as first-order
λ -term-graphs in [3]. For a nested term graph N = ⟨rec, r⟩ its first-order term graph interpretation T(N)
is defined over Σ

′ = Σ∪ I∪{o/2, ir/1,or/1} by repeatedly replacing, starting on the term graph rec(r), a
vertex v with a nested symbol f by the term graph specification rec(f) of f , thereby directing incoming
edges at v to the root vr of rec(f), and replacing output vertices oi of rec(f) by the binary symbol o with
the first edge targeting the i-th successor of v, and the second edge being a back-link to vr. Beforehand,
the ntg has been pre-processed by replacing vertices with atomic constants by vertices with fresh unary
labels, and with edges to a (per nested symbol) single additional output vertex. Input/output vertices at the
root level get label ir/or. For an example, see page 2 for the interpretation T(N) of the ntg N in Ex. 4.
Theorem 5 (implementation of ntgs by first-order term graphs). Let Σ be an ntg-signature, and Σ

′ =
Σ∪ I∪{o/2, ir/1,or/1}. There are functions T ∶NG(Σ)→ TG(Σ

′) andN ∶ TG(Σ
′)→NG(Σ) between the

classes of ntgs over Σ and term graphs over Σ
′ such thatN ○ T = idNG(Σ), (i.e. T is a retraction ofN , and

N is a section of T) that are efficiently computable, and preserve and reflect functional bisimilarity→.
As a consequence, various well-known results for term graphs can be transferred to nested term graphs.

For instance, that every nested term graphN , has, up to isomorphism, a unique nested term graph collapse,
and that the bisimulation equivalence class of N (up to isomorphism) forms a complete lattice w.r.t.→.

Further aims We are interested in, and have started to investigate, the following further topics:
Context-free graph grammars. We want to view rgs’s as context-free graph grammars in order to recognize
rgs-generated nested term graphs as context-free graphs. We expect to find a close connection.
Monadic formulation. We would like to obtain a categorical semantics via algebras and coalgebras: nested
term graphs as monads over some signature (cf. [2]), in order to isolate the abstract essence of the nested
term graph concept, and, in particular, the implementation of nested term graphs as first-order term graphs.
Rewrite theory for nested term graphs. As higher-order terms have a natural interpretation as nested
term graphs, it is desirable to investigate implementations of higher-order rewriting by nested term graph
rewriting, and eventually, via the correspondence above, by first-order term graph rewriting.

References
[1] S. Blom (2001): Term Graph Rewriting – Syntax and Semantics. Ph.D. thesis, Vrije Universiteit Amsterdam.
[2] N. Ghani, C. Lüth & F. de Marchi (2005): Monads of coalgebras: rational terms and term graphs. Mathematical

Structures in Computer Science 15, pp. 433–451.
[3] C. Grabmayer & J. Rochel (2013): Term Graph Representations for Cyclic Lambda Terms. In: Proceedings of

TERMGRAPH 2013, EPTCS 110, pp. 56–73. Extending report: arXiv:1308.1034.
[4] D. Hendriks & V. van Oostrom (2003): λ. In F. Baader, editor: CADE-19, LNAI 2741, Springer, pp. 136–150.
[5] E. Kohlbecker, D.P. Friedman, M. Felleisen & B. Duba (1986): Hygienic Macro Expansion. In: Proceedings of

the 1986 ACM Conference on LISP and Functional Programming, LFP ’86, ACM, pp. 151–161.

http://arxiv.org/abs/1308.1034

