implement

plementation

Maximal Sharing in the Lambda Calculus with letrec

Clemens Grabmayer

VU University Amsterdam (Dept. of CS)

Jan Rochel Be Sport, Paris (Utrecht University (Dept. of CS))

TCS Seminar, VU University

6 October 2016

L

extensions & applications

maximal sharing: example (fix)

 λf . let r = f(f r) in r

extensions & applications

maximal sharing: example (fix)

 λf . let r = f(f r) in r

L

 λf . let r = f r in r

motivation interp

extensions & applications

extensions & applications

maximal sharing: example (fix)

 λf . let r = f(f r) in r

L

 λf . let r = f r in r

maximal sharing: example (fix)

 λf . let r = f r in r

extensions & applications

motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

we restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

our results:

 ${\scriptstyle \blacktriangleright}$ efficient methods solving questions (1) and (2) for $\lambda_{\sf letrec}$

motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

we restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

our results:

 ${\scriptstyle \blacktriangleright}$ efficient methods solving questions (1) and (2) for $\lambda_{\sf letrec}$

motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

we restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

our results:

 \blacktriangleright efficient methods solving questions (1) and (2) for $\lambda_{\mathsf{letree}}$

motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

we restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

our results:

- efficient methods solving questions (1) and (2) for λ_{letrec}

methods consist of the steps:

interpretation of $\lambda_{ ext{letrec}}$ -terms as term graphs

- higher-order: λ -ho-term-graphs
- first-order: λ -term-graphs

bisimilarity & bisimulation collapse of $\lambda\text{-term-graphs}$

readback of λ -term-graphs as $\lambda_{\mathsf{letrec}}$ -terms

- implementation
- complexity
- extensions and applications

& collapse 👘 n

implementa

mentation c

extensions & applic

- 1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term *L* as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$

collapse rea

implementatio

tation comple

extensions & applications

- 1. term graph interpretation $[\![\cdot]\!]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_T$

& collapse 👘 r

k implement

mentation c

/ extensions & ap

- 1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term *L* as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_T$

& collapse

implementa

nentation cor

extensions & applicat

- 1. term graph interpretation $[\![\cdot]\!]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- bisimulation collapse |↓
 of f-o term graph G into G₀

& collapse

k implement

mentation c

extensions & applic

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term *L* as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- bisimulation collapse |↓
 of f-o term graph G into G₀

& collapse

ck implemen

lementation

extensions & ap

maximal sharing: the method

- 1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term *L* as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- bisimulation collapse ↓ of f-o term graph G into G₀
- 3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$. 2 collapse 🛛 re

implementa

nentation cor

extensions & applicatio

maximal sharing: the method

- 1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term *L* as:
 - a. higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - b. first-order term graph $G = \llbracket L \rrbracket_{\mathcal{T}}$
- bisimulation collapse ↓ of f-o term graph G into G₀
- 3. readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.

conceptually

- reason about syntactically expressed sharing via an adequate term graph semantics
- reduction to problems accessible by standard methods

conceptually

- reason about syntactically expressed sharing via an adequate term graph semantics
- reduction to problems accessible by standard methods

maximal sharing method

- extends 'maximal sharing' from first-order terms to higher-order terms (with binding)
- significantly extends common subexpression elimination
- is targeted at maximizing sharing statically
 - with respect to the unfolding semantics
 - not: organize/maximize sharing dynamically during evaluation

motivation

bisimulation check

collapse re

implementation

complexity

extensions & applications

unfolding equivalence: example

collapse rea

implementatio

unfolding equivalence: example

implementati

 term graph interpretation [[·]]. of λ_{letrec}-term L₁ and L₂ as:

 higher-order term graphs G₁ = [[L₁]]_H
 first-order term graphs G₁ = [[L₁]]_T

- 1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term L_1 and L_2 as:
 - a. higher-order term graphs $\mathcal{G}_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ and $\mathcal{G}_2 = \llbracket L_2 \rrbracket_{\mathcal{H}}$
 - b. first-order term graphs $G_1 = \llbracket L_1 \rrbracket \tau$ and $G_2 = \llbracket L_2 \rrbracket \tau$

- 1. term graph interpretation $\llbracket \cdot \rrbracket$. of λ_{letrec} -term L_1 and L_2 as:
 - a. higher-order term graphs $\mathcal{G}_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ and $\mathcal{G}_2 = \llbracket L_2 \rrbracket_{\mathcal{H}}$
 - b. first-order term graphs $G_1 = \llbracket L_1 \rrbracket T$ and $G_2 = \llbracket L_2 \rrbracket T$
- 2. check bisimilarity

of f-o term graphs G_1 and G_2

running example

graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

interpretation

graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } \mathbf{r} = f \mathbf{r} x \text{ in } \mathbf{r}$

syntax tree
extensions & applications

graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

extensions & applications

graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink, + scopes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink, + scopes, + binding links)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -term-graph $\llbracket L_0 \rrbracket_{\mathcal{T}}$

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

interpretation

interpretation

extensions & applications

graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

syntax tree

graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

extensions & applications

graph interpretation (example 2)

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

syntax tree (+ recursive backlink)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

 λ -higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

interpretation

extensions & applications

graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

 λ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

 $\llbracket L_0 \rrbracket_{\mathcal{T}}$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

 $\llbracket L_1 \rrbracket_{\lambda^\infty} = \llbracket L_2 \rrbracket_{\lambda^\infty} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_2 \rrbracket_{\mathcal{T}}$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$$\llbracket L_1 \rrbracket_{\lambda^\infty} = \llbracket L_2 \rrbracket_{\lambda^\infty} \quad \Longleftrightarrow \quad \llbracket L_1 \rrbracket_{\mathcal{T}} \nleftrightarrow \llbracket L_2 \rrbracket_{\mathcal{T}}$$

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ scope sets)

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ scope sets)

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, Blom [2003])

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, Blom [2003])

interpretation

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with scope sets, + abstraction-prefix function)

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ abstraction-prefix function)

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with abstraction-prefix function)

interpretation

higher-order term graphs (scope sets/abstraction prefixes)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

interpretation

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

first-order term graph (+ scope sets)

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

first-order term graph (+ scope sets)

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)
otivation interpretation

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

first-order term graph (+ abstraction-prefix function)

otivation interpretation

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

higher-order term graph (with abstraction-prefix function)

otivation interpretation

higher-order term graphs (scope sets/abstraction prefixes)

$$L = \lambda x. \lambda f.$$
 let $r = f(f r x) x$ in r

 λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

bisimulation check and collapse

Maximal Sharing in the Lambda Calculus with letrec

bisimulation between λ -term-graphs

implementa

bisimilarity between λ -term-graphs

functional bisimilarity and bisimulation collapse

c implemen

mentation c

extensions & appli

bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \Rightarrow .

 \implies For a λ_{letrec} -term L

the bisimulation collapse of $[\![L]\!]_{\mathcal{T}}$ is again an eager-scope λ -term-graph.

		readback		
readl	back			

		readback		
readba	ack			

Theorem

For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(\mathsf{G}) \simeq \mathsf{G}$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

Theorem For all eager-scope λ -term-graphs G: $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ rb)(G) \simeq G$ The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

idea:

- 1. construct a spanning tree T of G
- 2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

readback

implementation

complexity

extensions & applications

readback

implementation

complexity (

extensions & applications

readback

implementation

complexity

extensions & applications

readback

implementation

complexity

extensions & applications

readback

implementation

complexity

extensions & applications

omplexity exte

extensions & applications

llapse readback

implementation

complexity

extensions & applications

extensions & applications

readback

implementation

complexity

extensions & applications

complexity ext

extensions & applications

readback

omplexity exten

extensions & applications

complexity exte

extensions & applications

readback

complexity exte

extensions & applications

$$(\vec{p} v_{n+1}[B, r = L])r$$

$$(vs(\vec{p}) v_{n+1}) \downarrow r$$

$$(\vec{p} v_{n+1}[B, (r = ?)])L$$

- tool maxsharing on hackage.haskell.org
 - uses Utrecht University Attribute Grammar Compiler (UUAGC)
- uses DFA-minimization instead of bisimulation collapse
 - reason: trace equivalence = bisimilarity for deterministic LTSs
- examples and explanation
 - in accompanying report

implementation

λ -DFAs from λ -term-graphs

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -term-graph $[L_0]_{\mathcal{H}}$

readback

implementation

complexity exte

extensions & applications

λ -DFAs from λ -term-graphs

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

finite-state automaton (missing transitions)

readback

implementation

complexity exte

extensions & applications

λ -DFAs from λ -term-graphs

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

finite-state automaton (missing transitions)

y extensions & appl

λ -DFAs from λ -term-graphs

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

implementation complexity extensions & applications

Demo: console output

```
ian:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
\lambda-letrec-term:
\lambda x. \lambda f. let r = f(f r x) x in r
derivation:
           ---- 0
                       ---- O
           (x f[r]) f (x f[r]) r (x) x
(x f[r]) f (x f[r]) f r x
                                              (X) X
               ---- S
(x f[r]) f (f r x)
                                              (x f[r]) x
                                              .... (d
(x f[r]) f (f r x) x
                                                          (x f[r]) r
                                                                 - let
(x f) let r = f (f r x) x in r
                          _____λ
(x) \lambda f. let r = f(f r x) x in r
                               () \lambda x. \lambda f. let r = f(f r x) x in r
writing DFA to file: running-dfa.pdf
readback of DFA:
\lambda x. \lambda y. let F = y (y F x) x in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
\lambda x. \lambda y. let F = y F x in F
ian:~/papers/maxsharing-ICFP/talks/ICFP-2014>
```

Maximal Sharing in the Lambda Calculus with letrec

extensions & applica

Demo: generated DFAs

$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -DFA for L_0 (without non-accepting transitions)

motivation ir

i bisimulation chec

eck & collapse

back implen

entation complexity

extensions &

maximal sharing: complexity

1. interpretation of λ_{letrec} -term Las λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$. motivation ir

i bisimulation chec

eck & collapse

back implen

entation complexity

extensions &

maximal sharing: complexity

1. interpretation of λ_{letrec} -term Las λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$

2. bisimulation collapse $|\downarrow$ of f-o term graph G into G_0

3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

bisimulation checl

eck & collapse

back imple

lementation

complexity exte

extensions & applications

maximal sharing: complexity

interpretation

 of λ_{letrec}-term L with |L| = n
 as λ-term-graph G = [[L]]_T
 in time O(n²), size |G| ∈ O(n²).

 bisimulation collapse |↓
 of f-o term graph G into G₀
 readback rb

of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

i bisimulation checl

neck & collapse

back imple

lementation

complexity exten

extensions & applications

maximal sharing: complexity

1. interpretation of λ_{letrec} -term *L* with |L| = nas λ -term-graph $G = [L]_{\mathcal{T}}$ ▶ in time $O(n^2)$, size $|G| \in O(n^2)$. 2. bisimulation collapse $|\downarrow\rangle$ of f-o term graph G into G_0 in time $O(|G|\log|G|) = O(n^2 \log n)$ 3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

n bisimulation chec

eck & collapse

back imple

lementation

complexity ext

extensions & applications

maximal sharing: complexity

1. interpretation of λ_{letrec} -term *L* with |L| = nas λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$ ▶ in time $O(n^2)$, size $|G| \in O(n^2)$. 2. bisimulation collapse $|\downarrow\rangle$ of f-o term graph G into G_0 in time $O(|G|\log|G|) = O(n^2 \log n)$ 3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$. in time $O(|G|\log|G|) = O(n^2 \log n)$
motivation ii

bisimulation check

k & collapse

back impler

ementation

complexity exte

extensions & applications

maximal sharing: complexity

1. interpretation of λ_{letrec} -term *L* with |L| = nas λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$ ▶ in time $O(n^2)$, size $|G| \in O(n^2)$. 2. bisimulation collapse $|\downarrow\rangle$ of f-o term graph G into G_0 in time $O(|G|\log|G|) = O(n^2 \log n)$ 3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$. in time $O(|G| \log |G|) = O(n^2 \log n)$

Theorem

Computing a maximally compact form $L_0 = (rb \circ |\downarrow \circ [\![\cdot]\!]_T)(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

unfolding equivalence: complexity

1. interpretation

of
$$\lambda_{\text{letrec}}$$
-term L_1 , L_2

as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

2. check bisimilarity of λ -term-graphs G_1 and G_2

motivation

bisimulation check

< & collapse

oack implem

nentation

complexity exte

extensions & applications

unfolding equivalence: complexity

- 1. interpretation
 - of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.
- 2. check bisimilarity of λ -term-graphs G_1 and G_2

motivation

bisimulation check

& collapse

ack implem

mentation

complexity 😑

extensions & applications

unfolding equivalence: complexity

- 1. interpretation
 - of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.
- 2. check bisimilarity of λ -term-graphs G_1 and G_2
 - in time $O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$

unfolding equivalence: complexity

- 1. interpretation
 - of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.
- 2. check bisimilarity of λ -term-graphs G_1 and G_2
 - in time $O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$

Theorem

Deciding whether λ_{letrec} -terms L_1 and L_2 are unfolding-equivalent requires almost quadratic time $O(n^2 \alpha(n))$ for $n = \max\{|L_1|, |L_2|\}$.

- support for full functional languages
 - work on a Core language with constructors, case statements
 - model these by enriching $\lambda_{ ext{letrec}}$ with function symbols
 - adapt our method to this $\lambda_{ ext{letrec}}$ -extension
- prevent space leaks caused by disadvantageous sharing
 - identify 'sharing-unfit' positions/vertices
 - modify λ-term-graph interpretation in order to constrain the bisimulation collapse
- fully-lazy lambda-lifting
 - necessary analysis is similar
 - ▶ can be implemented as: $rb_{LL} \circ \llbracket \cdot \rrbracket_{\mathcal{T}}$ (with modified readback rb_{LL})

applications

- maximal sharing at run-time
 - repeatedly compactify at run-time
 - possible directly on supercombinator graphs
 - can be coupled with garbage collection
- code improvement
 - detect code duplication
 - provide guidance on how to obtain a more compact form
- function equivalence
 - detecting unfolding equivalence provides partial solution
 - relevant for proof assistants, theorem provers, dependently-typed programming languages

				extensions & applications
resour	rces			

- tool maxsharing on hackage.haskell.org
- papers and reports
 - Maximal Sharing in the Lambda Calculus with Letrec
 - ICFP 2014 paper
 - accompanying report arXiv:1401.1460
 - Term Graph Representations for Cyclic Lambda Terms
 - TERMGRAPH 2013 proceedings
 - extended report arXiv:1308.1034
 - Vincent van Oostrom, CG: Nested Term Graphs
 - TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
 - + Unfolding Semantics of the Untyped λ -Calculus with letrec
 - Ph.D. Thesis, Utrecht University, 2016