Maximal Sharing in the Lambda Calculus with letrec

Clemens Grabmayer
VU University Amsterdam (Dept. of CS)

Jan Rochel
Be Sport, Paris
(Utrecht University (Dept. of CS))

TCS Seminar, VU University
6 October 2016

maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L

maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L
L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

maximal sharing: example (fix)

maximal sharing: example (fix)

$$
\lambda f \text {. let } r=f(f r) \text { in } r
$$

L
L_{0}

$$
\lambda f \text {. let } r=f r \text { in } r
$$

maximal sharing: example (fix)

$$
\lambda f . \text { let } r=f r \text { in } r
$$

maximal sharing: example (fix)

maximal sharing: example (fix)

maximal sharing: example (fix)

motivation, questions, and results

motivation

- desirable: increase sharing in programs
- code that is as compact as possible
- avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

questions

(1): how to maximize sharing in programs?
(2): how to check for unfolding equivalence?
we restrict to $\lambda_{\text {letrec }}$, the λ-calculus with letrec

- as abstraction ℓ syntactical core of functional languages
our results:
- efficient methods solving questions (1) and (2) for

motivation, questions, and results

motivation

- desirable: increase sharing in programs
- code that is as compact as possible
- avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs
questions
(1): how to maximize sharing in programs?
(2): how to check for unfolding equivalence?
we restrict to $\lambda_{\text {letrec }}$, the λ-calculus with
- as abstraction \& syntactical core of functional languages
our results:
- efficient methods solving questions (1) and (2) for

motivation, questions, and results

motivation

- desirable: increase sharing in programs
- code that is as compact as possible
- avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs
questions
(1): how to maximize sharing in programs?
(2): how to check for unfolding equivalence?
we restrict to $\lambda_{\text {letrec }}$, the λ-calculus with letrec
- as abstraction \& syntactical core of functional languages

our results:

* eff:cient methods solving questions (1) and (2) for

motivation, questions, and results

motivation

- desirable: increase sharing in programs
- code that is as compact as possible
- avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs
questions
(1): how to maximize sharing in programs?
(2): how to check for unfolding equivalence?
we restrict to $\lambda_{\text {letrec }}$, the λ-calculus with letrec
- as abstraction \& syntactical core of functional languages
our results:
- efficient methods solving questions (1) and (2) for $\lambda_{\text {letrec }}$

outline

- methods consist of the steps:
interpretation of $\boldsymbol{\lambda}_{\text {letrec }}$-terms as term graphs
- higher-order: λ-ho-term-graphs
- first-order: λ-term-graphs
bisimilarity \& bisimulation collapse of λ-term-graphs
readback of λ-term-graphs as $\boldsymbol{\lambda}_{\text {letrec }}$-terms
- implementation
- complexity
- extensions and applications

maximal sharing: example (fix)

maximal sharing: the method

1. term graph interpretation 【.】. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$

maximal sharing: the method

1. term graph interpretation 【.】. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket \mathcal{T}$

maximal sharing: the method

1. term graph interpretation 【.』. of $\lambda_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket \mathcal{T}$

maximal sharing: the method

1. term graph interpretation 【.』. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket \mathcal{T}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

maximal sharing: the method

1. term graph interpretation 【.』. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket \mathcal{T}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

maximal sharing: the method

1. term graph interpretation 【.】. of $\lambda_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket_{\mathcal{T}}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb of f-o term graph G_{0} yielding program $L_{0}=\mathrm{rb}\left(G_{0}\right)$.

maximal sharing: the method

1. term graph interpretation 【.】. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L as:
a. higher-order term graph $\mathcal{G}=\llbracket L \rrbracket_{\mathcal{H}}$
b. first-order term graph $G=\llbracket L \rrbracket \mathcal{T}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb of f-o term graph G_{0} yielding program $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

contribution

conceptually

- reason about syntactically expressed sharing
via an adequate term graph semantics
- reduction to problems accessible by standard methods

contribution

conceptually

- reason about syntactically expressed sharing
via an adequate term graph semantics
- reduction to problems accessible by standard methods
maximal sharing method
- extends 'maximal sharing'
from first-order terms to higher-order terms (with binding)
- significantly extends common subexpression elimination
- is targeted at maximizing sharing statically
- with respect to the unfolding semantics
- not: organize/maximize sharing dynamically during evaluation

unfolding equivalence: example

λf. let $r=f(f r)$ in r

unfolding equivalence: example

unfolding equivalence: the method

unfolding equivalence: the method

unfolding equivalence: the method

$$
\begin{array}{r}
L_{1} \\
\left.\llbracket \cdot \rrbracket_{\lambda^{\infty}}\right\rfloor ? \\
M \\
\left.\llbracket \cdot \rrbracket_{\lambda^{\infty}}\right\rfloor ? \\
L_{2}
\end{array}
$$

unfolding equivalence: the method

1. term graph interpretation 【.]. of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1} and L_{2} as:
a. higher-order term graphs

$$
\mathcal{G}_{1}=\llbracket L_{1} \rrbracket_{\mathcal{H}}
$$

b. first-order term graphs

$$
G_{1}=\llbracket L_{1} \rrbracket \mathcal{T}
$$

unfolding equivalence: the method

1. term graph interpretation 【.』.
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1} and L_{2} as:
a. higher-order term graphs $\mathcal{G}_{1}=\llbracket L_{1} \rrbracket_{\mathcal{H}}$ and $\mathcal{G}_{2}=\llbracket L_{2} \rrbracket_{\mathcal{H}}$
b. first-order term graphs

$$
G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}} \text { and } G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

unfolding equivalence: the method

1. term graph interpretation 【.].
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1} and L_{2} as:
a. higher-order term graphs

$$
\mathcal{G}_{1}=\llbracket L_{1} \rrbracket_{\mathcal{H}} \text { and } \mathcal{G}_{2}=\llbracket L_{2} \rrbracket_{\mathcal{H}}
$$

b. first-order term graphs

$$
G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}} \text { and } G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

2. check bisimilarity of f-o term graphs G_{1} and G_{2}

interpretation

running example

instead of:
λf. let $r=f(f r)$ in r
we use:
λx. λ. let $r=f(f r x) x$ in $r \quad \longmapsto_{\text {max-sharing }} \quad \lambda x$. λf. let $r=f r x$ in r

L
\longmapsto max-sharing

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

syntax tree (+ recursive backlink, + scopes, + binding links)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-higher-order-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph with scope vertices with backlinks

graph interpretation (example 1)

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

$$
\lambda \text {-term-graph } \llbracket L_{0} \rrbracket_{\mathcal{T}}
$$

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 2)

$L=\lambda x$. λf. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

syntax tree (+ recursive backlink, + scopes)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph with binding backlinks (+ scope sets)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

graph interpretation (example 2)

$L=\lambda x$. λf. let $r=f(f r x) x$ in r

first-order term graph with scope vertices with backlinks (+ scope sets)

graph interpretation (example 2)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

graph interpretation (examples 1 and 2)

$\llbracket L_{0} \rrbracket_{\mathcal{T}}$

$\llbracket L\rfloor \tau$

interpretation $\llbracket \cdot \|_{\mathcal{T}}$: properties (cont.)

interpretation $\boldsymbol{\lambda}_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes

For $\lambda_{\text {letrec }}$-terms L_{1} and L_{2} it holds: Equality of infinite unfolding coincides with bisimilarity of λ-term-graph interpretations:

interpretation $\llbracket \cdot \|_{\mathcal{T}}$: properties (cont.)

interpretation $\lambda_{\text {letrec }}$-term $L \longmapsto \lambda$-term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ-term-graphs: ~ minimal scopes

Theorem

For $\boldsymbol{\lambda}_{\text {letrec }}$-terms L_{1} and L_{2} it holds: Equality of infinite unfolding coincides with bisimilarity of λ-term-graph interpretations:

$$
\llbracket L_{1} \rrbracket_{\lambda^{\infty}}=\llbracket L_{2} \rrbracket_{\lambda^{\infty}} \quad \Longleftrightarrow \quad \llbracket L_{1} \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_{2} \rrbracket_{\mathcal{T}}
$$

higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ scope sets)
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ scope sets)
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, Blom [2003])
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

first-order term graph (+ abstraction-prefix function)
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

higher-order term graph (with abstraction-prefix function)
higher-order term graphs (scope sets/abstraction prefixes)
$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-higher-order-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph (+ scope sets)
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

first-order term graph (+ scope sets)
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with scope sets, Blom [2003])
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) \times$ in r

higher-order term graph (with scope sets, + abstraction-prefix function)
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) \times$ in r

first-order term graph (+ abstraction-prefix function)

higher-order term graphs (scope sets/abstraction prefixes)

$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

higher-order term graph (with abstraction-prefix function)
higher-order term graphs (scope sets/abstraction prefixes)
$L=\lambda x . \lambda f$. let $r=f(f r x) x$ in r

λ-higher-order-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$

bisimulation check and collapse

bisimulation check between λ-term-graphs

$\llbracket L_{0} \rrbracket_{\mathcal{T}}$

$\llbracket L\rfloor T$

bisimulation check between λ-term-graphs

$$
\llbracket L_{0} \rrbracket_{\mathcal{T}}
$$

$\llbracket L \rrbracket_{\mathcal{T}}$

bisimulation check between λ-term-graphs

bisimulation between λ-term-graphs

bisimilarity between λ-term-graphs

$\llbracket L_{0} \rrbracket_{\mathcal{T}}$

$\llbracket L]_{\tau}$

functional bisimilarity and bisimulation collapse

$\llbracket L_{0} \rrbracket_{\mathcal{T}}$

$\llbracket L]_{\tau}$

bisimulation collapse: property

Theorem
The class of eager-scope λ-term-graphs is closed under functional bisimilarity \rightarrow.
\Longrightarrow For a $\lambda_{\text {letrec }}$-term L the bisimulation collapse of $\llbracket L \rrbracket_{\mathcal{T}}$ is again an eager-scope λ-term-graph.

readback

defined with property:
$\underbrace{L}_{r b} \lambda^{G \text { eager-scope }}$
readback
defined with property:

readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \cdot \|_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $[!]_{\mathcal{T}}$ modulo isomorphism \simeq.

readback

defined with property:

Theorem

For all eager-scope λ-term-graphs G :

$$
\left(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathrm{rb}\right)(G) \simeq G
$$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq.
idea:

1. construct a spanning tree T of G
2. using local rules, in a bottom-up traversal of T synthesize $L=\operatorname{rb}(G)$

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

readback: example (fix)

$$
\left(v_{1}[] \cdots v_{n}[]\right) v_{n}
$$

readback: example (fix)

$$
\left(v_{1}[] \cdots v_{n}[] v_{n+1}[r=?]\right) r
$$

readback: example (fix)

readback: example (fix)

$$
\begin{aligned}
& \left(\vec{p} v_{n+1}[B, r=L]\right) r \\
& \left(v s(\vec{p}) v_{n+1}\right) \\
& \left(\vec{p} v_{n+1}[B,(r=?)]\right) L
\end{aligned}
$$

readback: example (fix)

$(\vec{p}) \lambda v_{n}$. let B in L

$\left(\vec{p} v_{n}[B]\right) L$

implementation

- tool maxsharing on hackage.haskell.org
- uses Utrecht University Attribute Grammar Compiler (UUAGC)
- uses DFA-minimization instead of bisimulation collapse
- reason: trace equivalence $=$ bisimilarity for deterministic LTSs
- examples and explanation
- in accompanying report

λ-DFAs from λ-term-graphs

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

λ-term-graph $\llbracket L_{0} \rrbracket_{\mathcal{H}}$

λ-DFAs from λ-term-graphs

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

finite-state automaton (missing transitions)

λ-DFAs from λ-term-graphs

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

finite-state automaton (missing transitions)

λ-DFAs from λ-term-graphs

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

Demo: console output

jan:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l λ-letrec-term:
λx. λf. let $r=f(f r x) x$ in r
derivation:

$(x f[r]) f$	$(x f[r]) f r x$	$(x) x$
$(x f[r]) f(f r x)$		

(x f[r]) f (f r x) x
(x f) let r = f (f r x) x in r
(x) λf. let $r=f(f r x) x$ in r
() λx. λf. let $r=f(f r x) x$ in r
writing DFA to file: running-dfa.pdf
readback of DFA:
λx. λy. let $F=y(y F x) x$ in F
writing minimised DFA to file: running-mindfa.pdf
readback of minimised DFA:
λx. λy. let $F=y ~ F x$ in F
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>

Demo: generated DFAs

λ-DFA

$L_{0}=\lambda x . \lambda f$. let $r=f r x$ in r

maximal sharing: complexity

1. interpretation

$$
\begin{aligned}
& \text { of } \boldsymbol{\lambda}_{\text {letrec }} \text {-term } L \\
& \text { as } \lambda \text {-term-graph } G=\llbracket L \rrbracket_{\mathcal{T}}
\end{aligned}
$$

2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

maximal sharing: complexity

1. interpretation

$$
\begin{aligned}
& \text { of } \boldsymbol{\lambda}_{\text {letrec }} \text {-term } L \\
& \text { as } \lambda \text {-term-graph } G=\llbracket L \rrbracket_{\mathcal{T}}
\end{aligned}
$$

2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}
3. readback rb of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

maximal sharing: complexity

1. interpretation

2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_{0}
3. readback rb of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

maximal sharing: complexity

1. interpretation

$\begin{aligned} & \text { of } \lambda_{\text {letrec-term }} L \text { with }|L|=n \\ & \text { as } \lambda \text {-term-graph } G=\llbracket L \rrbracket_{\mathcal{T}} \\ \text { - } & \text { in time } O\left(n^{2}\right), \text { size }|G| \in O\left(n^{2}\right) .\end{aligned}$
2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb
of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

maximal sharing: complexity

1. interpretation

of $\lambda_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\mid \downarrow$ of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

maximal sharing: complexity

1. interpretation

of $\lambda_{\text {letrec }}$-term L with $|L|=n$
as λ-term-graph $G=\llbracket L \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, size $|G| \in O\left(n^{2}\right)$.

2. bisimulation collapse $\mid \downarrow$
of f-o term graph G into G_{0}

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

3. readback rb of f-o term graph G_{0} yielding $\boldsymbol{\lambda}_{\text {letrec }}$-term $L_{0}=\operatorname{rb}\left(G_{0}\right)$.

- in time $O(|G| \log |G|)=O\left(n^{2} \log n\right)$

Theorem

Computing a maximally compact form $L_{0}=\left(\mathrm{rb} \circ \downarrow \circ \llbracket \cdot \rrbracket_{\mathcal{T}}\right)(L)$ of L for a $\lambda_{\text {letrec }}$-term L requires time $O\left(n^{2} \log n\right)$, where $|L|=n$.

unfolding equivalence: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1}, L_{2}
as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}$ and $G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}$
2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

unfolding equivalence: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec-term }} L_{1}, L_{2}$ with $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}$ and $G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}$ - in time $O\left(n^{2}\right)$, sizes $\left|G_{1}\right|,\left|G_{2}\right| \in O\left(n^{2}\right)$.
2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

unfolding equivalence: complexity

1. interpretation
of $\lambda_{\text {letrec }}$-term L_{1}, L_{2} with $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket_{\mathcal{T}}$ and $G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}$ - in time $O\left(n^{2}\right)$, sizes $\left|G_{1}\right|,\left|G_{2}\right| \in O\left(n^{2}\right)$.
2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

- in time $O\left(\left|G_{i}\right| \alpha\left(\left|G_{i}\right|\right)\right)=O\left(n^{2} \alpha(n)\right)$

unfolding equivalence: complexity

1. interpretation
of $\boldsymbol{\lambda}_{\text {letrec }}$-term L_{1}, L_{2} with $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ as λ-term-graphs $G_{1}=\llbracket L_{1} \rrbracket \mathcal{T}$ and $G_{2}=\llbracket L_{2} \rrbracket_{\mathcal{T}}$

- in time $O\left(n^{2}\right)$, sizes $\left|G_{1}\right|,\left|G_{2}\right| \in O\left(n^{2}\right)$.

2. check bisimilarity
of λ-term-graphs G_{1} and G_{2}

- in time $O\left(\left|G_{i}\right| \alpha\left(\left|G_{i}\right|\right)\right)=O\left(n^{2} \alpha(n)\right)$

Theorem

Deciding whether $\boldsymbol{\lambda}_{\text {letrec }}$-terms L_{1} and L_{2} are unfolding-equivalent requires almost quadratic time $O\left(n^{2} \alpha(n)\right)$ for $n=\max \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$.

extensions

- support for full functional languages
- work on a Core language with constructors, case statements
- model these by enriching $\boldsymbol{\lambda}_{\text {letrec }}$ with function symbols
- adapt our method to this $\boldsymbol{\lambda}_{\text {letrec }}$-extension
- prevent space leaks caused by disadvantageous sharing
- identify 'sharing-unfit' positions/vertices
- modify λ-term-graph interpretation
in order to constrain the bisimulation collapse
- fully-lazy lambda-lifting
- necessary analysis is similar
- can be implemented as: $\mathrm{rb}_{L L} \circ \llbracket \cdot \rrbracket_{\mathcal{T}}$ (with modified readback $\mathrm{rb} b_{L L}$)

applications

- maximal sharing at run-time
- repeatedly compactify at run-time
- possible directly on supercombinator graphs
- can be coupled with garbage collection
- code improvement
- detect code duplication
- provide guidance on how to obtain a more compact form
- function equivalence
- detecting unfolding equivalence provides partial solution
- relevant for proof assistants, theorem provers, dependently-typed programming languages

resources

- tool maxsharing on hackage.haskell.org
- papers and reports
- Maximal Sharing in the Lambda Calculus with Letrec
- ICFP 2014 paper
- accompanying report arXiv:1401.1460
- Term Graph Representations for Cyclic Lambda Terms
- TERMGRAPH 2013 proceedings
- extended report arXiv:1308.1034
- Vincent van Oostrom, CG: Nested Term Graphs
- TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
- Unfolding Semantics of the Untyped λ-Calculus with letrec
- Ph.D. Thesis, Utrecht University, 2016

