

Maximal Sharing in the Lambda Calculus with letrec

Clemens Grabmayer

Jan Rochel

VU University Amsterdam (Dept. of CS)

ICFP 2014

September 1-3, 2014

motivation interpretation

bisimulation check

readback 00 plementation

nplexity extension 00

motivation, questions, and results

motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

we restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

our results:

• efficient methods solving questions (1) and (2) for λ_{letrec}

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
0€000	000000		00	000	00	00
outlin	е					

methods consist of the steps:

interpretation of $\lambda_{ ext{letrec}}$ -terms as term graphs

- higher-order: λ -ho-term-graphs
- first-order: λ -term-graphs

bisimilarity & bisimulation collapse of $\lambda\text{-term-graphs}$

readback of λ -term-graphs as $\boldsymbol{\lambda}_{\mathsf{letrec}}$ -terms

- implementation
- complexity
- extensions and applications

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00€00	000000	000	00	000	00	00
contri	bution					

conceptually

- reason about syntactically expressed sharing via an adequate term graph semantics
- reduction to problems accessible by standard methods

maximal sharing method

- extends 'maximal sharing' from first-order terms to higher-order terms (with binding)
- significantly extends common subexpression elimination
- is targeted at maximizing sharing statically
 - with respect to the unfolding semantics
 - not: organize/maximize sharing dynamically during evaluation

maximal sharing: example (fix)

 λf . let r = f(f r) in r

L

maximal sharing: example (fix)

 λf . let r = f(f r) in r

 L_0

L

 λf . let r = f r in r

Maximal Sharing in the Lambda Calculus with letrec

motivation
000000interpretation
000000bisimulation check & collapse
000readback
000implementation
000complexity
000extensions & applications
00

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 000000
 000000
 000
 000
 000
 000
 00
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00
 000
 00
 00

maximal sharing: the method

 λf . let r = f(f r) in r

 L_0

L

 λf . let r = f r in r

 λf . let r = f r in r

motivation						
00000	000000	000	00	000	00	00

 motivation 000●0
 interpretation 00000
 bisimulation check & collapse 000
 readback 00
 implementation 000
 complexity 00
 extensions & applications

maximal sharing: the method

 $L \longmapsto \mathcal{G}$

- term graph interpretation [[·]].
 of λ_{letrec}-term L as:
 - higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$

 motivation 000●0
 interpretation 000000
 bisimulation check & collapse 000
 readback 00
 implementation 000
 complexity 000
 extensions & applications

$$L \longmapsto \overset{\llbracket \cdot \rrbracket_{\mathcal{H}}}{\longmapsto} \mathcal{G} \longmapsto \mathcal{G}$$

- term graph interpretation $[\cdot]$. of λ_{letrec} -term *L* as:
 - higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - **()** first-order term graph $G = \llbracket L \rrbracket_T$

 motivation 000●0
 interpretation 00000
 bisimulation check & collapse 000
 readback 00
 implementation 000
 complexity 00
 extensions & applications

- term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - **(b)** first-order term graph $G = \llbracket L \rrbracket_T$

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applicatio

 000●0
 000000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 0
 0
 0</t

- term graph interpretation [[·]]. of λ_{letrec}-term L as:
 a) higher-order term graph
 - Ingher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - **()** first-order term graph $G = \llbracket L \rrbracket_T$
- isimulation collapse ↓ of f-o term graph G into G₀

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applicatio

 000●0
 000000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

- term graph interpretation [[·]].
 of λ_{letrec}-term L as:
 - higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - **()** first-order term graph $G = \llbracket L \rrbracket_T$
- **bisimulation collapse** ↓ of f-o term graph G into G₀

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions

 000●0
 000000
 000
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

maximal sharing: the method

- term graph interpretation [[·]]. of λ_{letrec}-term L as:
 - higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - **()** first-order term graph $G = \llbracket L \rrbracket_T$
- isimulation collapse ↓ of f-o term graph G into G₀

readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.
 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions &

 000●0
 000000
 000
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

maximal sharing: the method

- term graph interpretation [[·]].
 of λ_{letrec}-term L as:
 - higher-order term graph $\mathcal{G} = \llbracket L \rrbracket_{\mathcal{H}}$
 - **(b)** first-order term graph $G = \llbracket L \rrbracket_T$
- isimulation collapse ↓ of f-o term graph G into G₀
- readback rb

of f-o term graph G_0 yielding program $L_0 = rb(G_0)$.
 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 00000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

unfolding equivalence: example

 L_1 unfold $\sqrt{?}$ Munfold $\sqrt{?}$ L_2

unfolding equivalence: example

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 0000
 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 0
 0
 0</td

$$\begin{array}{c} L_1 \\ \llbracket \cdot \rrbracket_{\lambda^{\infty}} \bigvee ? \\ M \\ \llbracket \cdot \rrbracket_{\lambda^{\infty}} \bigwedge ? \\ L_2 \end{array}$$

motivation 00000 n bisimulation (000 readbac 00 plementation

mplexity O extensions & applications

unfolding equivalence: the method

 term graph interpretation [[·]]. of λ_{letrec}-term L₁ and L₂ as:
 higher-order term graphs G₁ = [[L₁]]_H
 first-order term graphs G₁ = [[L₁]]_T motivation 00000 bisimulation o

llapse rea

implementatio

complexity 00 extensions & applications

- term graph interpretation [[·]].
 of λ_{letrec}-term L₁ and L₂ as:
 - higher-order term graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{H}}$
 - **5** first-order term graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

motivation 00000 bisimulation 000 se readb 00 plementation

mplexity o O

extensions & applications 00

unfolding equivalence: the method

- term graph interpretation [[·]]. of λ_{letrec}-term L₁ and L₂ as:
 - higher-order term graphs $\mathcal{G}_1 = \llbracket L_1 \rrbracket_{\mathcal{H}}$ and $\mathcal{G}_2 = \llbracket L_2 \rrbracket_{\mathcal{H}}$
 - **5 first-order** term graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

Check bisimilarity

of f-o term graphs G_1 and G_2

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	•00000		00	000	00	00

interpretation

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	○●○○○○		00	000	00	OO

running example

instead of: $\lambda f. \operatorname{let} r = f(fr) \operatorname{in} r \qquad \longmapsto_{\operatorname{max-sharing}} \qquad \lambda f. \operatorname{let} r = fr \operatorname{in} r$ we use: $\lambda x. \lambda f. \operatorname{let} r = f(frx) x \operatorname{in} r \qquad \longmapsto_{\operatorname{max-sharing}} \qquad \lambda x. \lambda f. \operatorname{let} r = frx \operatorname{in} r$ $L \qquad \longmapsto_{\operatorname{max-sharing}} \qquad L_0$

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

 $L_0 = \lambda x. \lambda f. \text{ let } \mathbf{r} = f \mathbf{r} x \text{ in } \mathbf{r}$

syntax tree

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

syntax tree (+ recursive backlink, + scopes)

 $L_0 = \lambda x. \lambda f.$ let r = f r x in r

syntax tree (+ recursive backlink, + scopes, + binding links)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -higher-order-term-graph $\llbracket L_0 \rrbracket_{\mathcal{H}}$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph with scope vertices with backlinks

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -term-graph $\llbracket L_0 \rrbracket_{\mathcal{T}}$

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 000
 000000
 000
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 0

graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } \mathbf{r} = f(f \mathbf{r} x) x \text{ in } \mathbf{r}$

syntax tree

 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions &

 0
 000000
 000
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</

graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

 $L = \lambda x. \lambda f.$ let r = f(frx)x in r

interpretation 000000

syntax tree (+ recursive backlink)

titivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications 0000 000 000 000 000 000 000 000

graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

syntax tree (+ recursive backlink, + scopes)

graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

first-order term graph with binding backlinks (+ scope sets)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

 λ -higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

first-order term graph with scope vertices with backlinks (+ scope sets)

 λ -term-graph $\llbracket L \rrbracket_T$

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \stackrel{\textup{tr}}{\Longrightarrow} \llbracket L_2 \rrbracket_{\mathcal{T}}$

motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications 00000 000 000 000 000 000 000

interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $\llbracket L \rrbracket_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: ~ minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$\llbracket L_1 \rrbracket_{\lambda^\infty} = \llbracket L_2 \rrbracket_{\lambda^\infty} \quad \Longleftrightarrow \quad \llbracket L_1 \rrbracket_{\mathcal{T}} \leftrightarrows \llbracket L_2 \rrbracket_{\mathcal{T}}$

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	•00	00	000	00	00

bisimulation check and collapse

		bisimulation check & collapse				
00000	000000	000	00	000	00	00

		bisimulation check & collapse				
00000	000000	000	00	000	00	00

00000 00000 0●0 00 000 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 00 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	○●○	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 00 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

		bisimulation check & collapse				
00000	000000	000	00	000	00	00

00000 00000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 00000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 00000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

		bisimulation check & collapse				
00000	000000	000	00	000	00	00

		bisimulation check & collapse				
00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 00000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 00000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

00000 000000 000 00 00 00 00			bisimulation check & collapse				
	00000	000000	000	00	000	00	00

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	○●○	00	000	00	00

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	○●○	00	000	00	00

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	O●O	00	000	00	00

	terpretation	bisimulation check & collapse				
00000 0	00000	000	00	000	00	00

	erpretation bisi	imulation check & collapse r				
00000 00	00000 00	0	00	000	00	00

bisimilarity between λ -term-graphs

Maximal Sharing in the Lambda Calculus with letrec

	pretation bisimulation	n check & collapse read				
00000 000	000 000		000) 00	00	

functional bisimilarity and bisimulation collapse

		bisimulation check & collapse				
00000	000000	000	00	000	00	00

bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \Rightarrow .

 \implies For a $\lambda_{ ext{letrec}} ext{-term}$ m L

the bisimulation collapse of $[\![L]\!]_T$ is again an eager-scope λ -term-graph.

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	000	●O	000	00	00
readba	ack					

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000		O●	000	00	00
readh	ack					

motivation 00000	interpretation 000000	bisimulation check & collapse	readback O●	implementation 000	complexity 00	extensions & applications OO
readba	nck					

motivation 00000	interpretation 000000	bisimulation check & collapse 000	readback O●	implementation 000	complexity 00	extensions & applications 00	
readba	ack						

Theorem

For all eager-scope λ -term-graphs G:

 $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

motivation 00000	interpretation 000000	bisimulation check & collapse 000	readback O●	implementation 000	complexity 00	extensions & applications 00	
readba	ack						

Theorem For all eager-scope λ -term-graphs G: $(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ rb)(G) \simeq G$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

main idea:

- **(**) construct a spanning tree T of G
- **2** using local rules, in a bottom-up traversal of T synthesize L = rb(G)

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000		00	●00	00	00

implementation

- tool maxsharing on hackage.haskell.org
 - uses Utrecht University Attribute Grammar Compiler (UUAGC)
- examples and explanation
 - in accompanying report

				implementation		
00000	000000	000	00	000	00	00

Demo: console output

jan:~/papers/ma λ-letrec-term: λx. λf. let r =	xsharing-ICFP/talks/ICFP-201 f (f r x) x in r	4> maxsharing runn	ing.l	
derivation:	0 (x f[r]) f (x f[r]) r (x f[r]) f r	0 (x) x S (x f[r]) x		
(x f[r]) f	(x f[r]) f r x	@	0 (x) x	
(x f[r]) f (f r	x)	@	(x f[r]) x	
(x f[r]) f (f r	x) x		(d	(x f[r]) r
(x f) let $r = f$	(frx) x in r			tet
(x) λf. let r =	f (f r x) x in r			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
() λx. λf. let	r = f (f r x) x in r			····· /
writing DFA to	file: running-dfa.pdf			
readback of DFA λx. λy. let F =	: y (y F x) x in F			
writing minimis	ed DFA to file: running-mind	fa.pdf		
readback of min λx . λy . let F = ian:~/papers/ma	imised DFA: y F x in F xsharing-ICEP/talks/ICEP-201	4>		
Maximal Sharing in t	he Lambda Calculus with letrec			Grabmayer, Rochel

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000		00	00●	00	OO

Demo: generated DFAs

maximal sharing: complexity

- interpretation of λ_{letrec} -term *L* as λ -term-graph *G* = $\llbracket L \rrbracket_{\mathcal{T}}$
- isimulation collapse ↓ of f-o term graph G into G₀
- I readback rb
 - of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

maximal sharing: complexity

- interpretation of λ_{letrec} -term *L* as λ -term-graph *G* = $\llbracket L \rrbracket_{\mathcal{T}}$
- isimulation collapse ↓ of f-o term graph G into G₀
- I readback rb
 - of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 00000
 000
 000
 000
 000
 00
 00

maximal sharing: complexity

- interpretation of λ_{letrec} -term L with |L| = n
 - as λ -term-graph $G = \llbracket L \rrbracket_T$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- e bisimulation collapse ↓ of f-o term graph G into G₀
- I readback rb
 - of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

maximal sharing: complexity

interpretation of λ_{letrec} -term *L* with |L| = nas λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$ ▶ in time $O(n^2)$, size $|G| \in O(n^2)$. bisimulation collapse |↓ 2 of f-o term graph G into G_0 in time $O(|G|\log|G|) = O(n^2 \log n)$ readback rb of f-o term graph G_0 vielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

maximal sharing: complexity

interpretation of λ_{letrec} -term *L* with |L| = nas λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$ ▶ in time $O(n^2)$, size $|G| \in O(n^2)$. bisimulation collapse |↓ 2 of f-o term graph G into G_0 in time $O(|G|\log|G|) = O(n^2 \log n)$ readback rb of f-o term graph G_0 vielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$. in time $O(|G|\log|G|) = O(n^2 \log n)$

maximal sharing: complexity

interpretation of λ_{letrec} -term *L* with |L| = nas λ -term-graph $G = \llbracket L \rrbracket_{\mathcal{T}}$ ▶ in time $O(n^2)$, size $|G| \in O(n^2)$. bisimulation collapse |↓ of f-o term graph G into G_0 in time $O(|G|\log|G|) = O(n^2 \log n)$ readback rb of f-o term graph G_0 vielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$. in time $O(|G|\log|G|) = O(n^2 \log n)$

Theorem

Computing a maximally compact form $L_0 = (rb \circ |\downarrow \circ [\cdot]_T)(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

Maximal Sharing in the Lambda Calculus with letrec

unfolding equivalence: complexity

• interpretation of λ_{letrec} -term L_1 , L_2

as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$

check bisimilarity of λ -term-graphs G_1 and G_2
 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 00000
 0000
 000
 000
 000
 000
 00
 00

unfolding equivalence: complexity

interpretation

of λ_{letrec}-term L₁, L₂ with
n = max {|L₁|, |L₂|}
as λ-term-graphs G₁ = [[L₁]]_T and G₂ = [[L₂]]_T
in time O(n²), sizes |G₁|, |G₂| ∈ O(n²).

check bisimilarity

of λ-term-graphs G₁ and G₂

 motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 00000
 000000
 000
 000
 00
 00
 00
 00

unfolding equivalence: complexity

interpretation of λ_{letrec} -term L_1 , L_2 with $n = \max \{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$ in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$. check bisimilarity of λ -term-graphs G_1 and G_2

• in time $O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$
motivation
 interpretation
 bisimulation check & collapse
 readback
 implementation
 complexity
 extensions & applications

 00000
 000000
 000
 000
 000
 00
 00
 00

unfolding equivalence: complexity

Theorem

Deciding whether λ_{letrec} -terms L_1 and L_2 are unfolding-equivalent requires almost quadratic time $O(n^2 \alpha(n))$ for $n = \max\{|L_1|, |L_2|\}$.

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	000	00	000	00	●O

extensions

- support for full functional languages
 - work on a Core language with constructors, case statements
 - model these by enriching λ_{letrec} with function symbols
 - adapt our method to this $\lambda_{ ext{letrec}}$ -extension
- prevent space leaks caused by disadvantageous sharing
 - identify 'sharing-unfit' positions/vertices
 - modify λ-term-graph interpretation in order to constrain the bisimulation collapse

motivation	interpretation	bisimulation check & collapse	readback	implementation	complexity	extensions & applications
00000	000000	000	00	000	00	○●
applic	ations					

- maximal sharing at run-time
 - repeatedly compactify at run-time
 - possible directly on supercombinator graphs
 - can be coupled with garbage collection
- code improvement
 - detect code duplication
 - provide guidance on how to obtain a more compact form
- function equivalence
 - detecting unfolding equivalence provides partial solution
 - relevant for proof assistants, theorem provers, dependently-typed programming languages