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motivation, questions, and results

motivation

▸ desirable: increase sharing in programs
▸ code that is as compact as possible
▸ avoid duplication of reduction work at run-time

▸ useful: check equality of unfolding semantics of programs

questions

(1): how to maximize sharing in programs?

(2): how to check for unfolding equivalence?

we restrict to λletrec, the λ-calculus with letrec

▸ as abstraction & syntactical core of functional languages

our results:

▸ efficient methods solving questions (1) and (2) for λletrec
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outline

▸ methods consist of the steps:

interpretation of λletrec-terms as term graphs

▸ higher-order: λ-ho-term-graphs

▸ first-order: λ-term-graphs

bisimilarity & bisimulation collapse of λ-term-graphs

readback of λ-term-graphs as λletrec-terms

▸ implementation

▸ complexity

▸ extensions and applications
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contribution

conceptually

▸ reason about syntactically expressed sharing
via an adequate term graph semantics

▸ reduction to problems accessible by standard methods

maximal sharing method

▸ extends ‘maximal sharing’
from first-order terms to higher-order terms (with binding)

▸ significantly extends common subexpression elimination

▸ is targeted at maximizing sharing statically

▸ with respect to the unfolding semantics

▸ not: organize/maximize sharing dynamically during evaluation
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maximal sharing: example (fix)
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maximal sharing: the method

L

G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf . let r = f (f r) in r

λf . let r = f r in r

λ

@

0

λf . f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L

G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf . let r = f (f r) in r

λf . let r = f r in r

λ

@

0

λf . f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L

G

G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf . let r = f (f r) in r

λ

@

0 @

0

λf . let r = f r in r

λ

@

0

λf . f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf . let r = f (f r) in r

λ

@

0 @

0

λf . let r = f r in r

λ

@

0

λf . f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf . let r = f (f r) in r

λ

@

0 @

0

λf . let r = f r in r

λ

@

0

λf . f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

λf . let r = f (f r) in r

λ

@

0 @

0

λf . let r = f r in r

λ

@

0

λf . f (f (. . . ))

J⋅Kλ∞

readback

J⋅KT

J⋅Kλ∞

J⋅KT

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G

G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G G

M

L0 G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G G

M

L0

G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

maximal sharing: the method

L G G

M

L0 G0 G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH

J⋅KT

J⋅KH

rb

J⋅KT

interpret

collapse

readback

unfold

unfold

interpret

1. term graph interpretation J⋅K⋅
of λletrec-term L as:

a. higher-order term graph
G = JLKH

b. first-order term graph G = JLKT

2. bisimulation collapse |↓
of f-o term graph G into G0

3. readback rb

of f-o term graph G0

yielding program L0 = rb(G0).

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

unfolding equivalence: example
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running example

instead of:

λf . let r = f (f r) in r z→max-sharing λf . let r = f r in r

we use:

λx . λf . let r = f (f r x) x in r z→max-sharing λx . λf . let r = f r x in r

L z→max-sharing L0
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graph interpretation (example 1)

L0 = λx . λf . let r = f r x in r

λ-DFA
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graph interpretation (example 1)
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graph interpretation (example 1)
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graph interpretation (example 1)

L0 = λx . λf . let r = f r x in r

λx

λf

@

@

f

x

syntax tree (+ recursive backlink, + scopes, + binding links)

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel



motivation interpretation bisimulation check & collapse readback implementation complexity extensions & applications

graph interpretation (example 1)
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graph interpretation (example 1)
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graph interpretation (example 2)

L = λx . λf . let r = f (f r x) x in r

λ-DFA
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graph interpretation (example 2)
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graph interpretation (example 2)
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graph interpretation (example 2)

L = λx . λf . let r = f (f r x) x in r
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first-order term graph with scope vertices with backlinks (+ scope sets)
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graph interpretation (example 2)

L = λx . λf . let r = f (f r x) x in r
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graph interpretation (examples 1 and 2)
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interpretation J⋅KT : properties (cont.)

interpretation λletrec-term L z→ λ-term-graph JLKT
▸ defined by induction on structure of L

▸ similar analysis as fully-lazy lambda-lifting

▸ yields eager-scope λ-term-graphs: ∼ minimal scopes

Theorem

For λletrec-terms L1 and L2 it holds: Equality of infinite unfolding
coincides with bisimilarity of λ-term-graph interpretations:

JL1Kλ∞ = JL2Kλ∞ ⇐⇒ JL1KT ↔ JL2KT
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bisimulation check and collapse

L1 G1

L2 G2

interpret
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check

L G

L0 G0

interpret

readback
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bisimulation check between λ-term-graphs
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bisimulation check between λ-term-graphs
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bisimulation check between λ-term-graphs
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bisimulation check between λ-term-graphs
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bisimulation check between λ-term-graphs
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bisimulation check between λ-term-graphs
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bisimulation between λ-term-graphs
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bisimilarity between λ-term-graphs
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functional bisimilarity and bisimulation collapse
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bisimulation collapse: property

Theorem

The class of eager-scope λ-term-graphs
is closed under functional bisimilarity →.

Ô⇒ For a λletrec-term L

the bisimulation collapse of JLKT is again an eager-scope λ-term-graph.
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readback

L G

L0 G0

interpret

readback

collapse
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readback

defined with property:

L

G0

G

rb

J⋅KT

eager-scope

Theorem

For all eager-scope λ-term-graphs G :

(J⋅KT ○ rb)(G) ≃ G

The readback rb is a right-inverse of J⋅KT
modulo isomorphism ≃.

main idea:

1. construct a spanning tree T of G

2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)
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implementation

▸ tool maxsharing on hackage.haskell.org

▸ uses Utrecht University Attribute Grammar Compiler (UUAGC)

▸ examples and explanation
▸ in accompanying report

Maximal Sharing in the Lambda Calculus with letrec Grabmayer, Rochel

hackage.haskell.org
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Demo: console output
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Demo: generated DFAs
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maximal sharing: complexity

L

G

G

M

L0

G0

G0

J⋅Kλ∞

J⋅Kλ∞

J⋅KH HT

J⋅KT

J⋅KH HT

rb

J⋅KT

1. interpretation

of λletrec-term L

with ∣L∣ = n

as λ-term-graph G = JLKT

▶ in time O(n2), size ∣G ∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G ∣ log ∣G ∣) = O(n2 log n)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G ∣ log ∣G ∣) = O(n2 log n)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT )(L) of L

for a
λletrec-term L requires time O(n2 log n), where ∣L∣ = n.
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as λ-term-graph G = JLKT
▶ in time O(n2), size ∣G ∣ ∈ O(n2).

2. bisimulation collapse |↓
of f-o term graph G into G0

▶ in time O(∣G ∣ log ∣G ∣) = O(n2 log n)

3. readback rb

of f-o term graph G0

yielding λletrec-term L0 = rb(G0).

▶ in time O(∣G ∣ log ∣G ∣) = O(n2 log n)

Theorem

Computing a maximally compact form L0 = (rb ○ |↓ ○ J⋅KT )(L) of L for a
λletrec-term L requires time O(n2 log n), where ∣L∣ = n.
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unfolding equivalence: complexity
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J⋅Kλ∞ ?
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J⋅KH HT

?
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1. interpretation

of λletrec-term L1, L2

with
n = max{∣L1∣, ∣L2∣}

as λ-term-graphs G1 = JL1KT and G2 = JL2KT

▶ in time O(n2), sizes ∣G1∣, ∣G2∣ ∈ O(n
2).

2. check bisimilarity

of λ-term-graphs G1 and G2

▶ in time O(∣Gi ∣α(∣Gi ∣)) = O(n
2 α(n))

Theorem

Deciding whether λletrec-terms L1 and L2 are unfolding-equivalent

requires almost quadratic time O(n2α(n)) for n = max{∣L1∣, ∣L2∣}.
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extensions

▸ support for full functional languages
▸ work on a Core language with constructors, case statements

▸ model these by enriching λletrec with function symbols

▸ adapt our method to this λletrec-extension

▸ prevent space leaks caused by disadvantageous sharing
▸ identify ‘sharing-unfit’ positions/vertices

▸ modify λ-term-graph interpretation
in order to constrain the bisimulation collapse
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applications

▸ maximal sharing at run-time
▸ repeatedly compactify at run-time

▸ possible directly on supercombinator graphs

▸ can be coupled with garbage collection

▸ code improvement
▸ detect code duplication

▸ provide guidance on how to obtain a more compact form

▸ function equivalence
▸ detecting unfolding equivalence provides partial solution

▸ relevant for proof assistants, theorem provers,
dependently-typed programming languages
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