Term Graph Representations for Cyclic Lambda-Terms

Clemens Grabmayer Jan Rochel

Department of Philosophy Utrecht University The Netherlands clemens@phil.uu.nl

Department of Computing Sciences Utrecht University The Netherlands jan@rochel.info

23rd March 2013

- functional programming languages
- untyped λ -calculus with letrec ($\lambda_{\mathsf{letrec}}$)
- sharing in $\lambda_{ ext{letrec}}$

Motivation

Example

$$\lambda x.$$
 let rec $f = x f \text{ in } f \twoheadrightarrow_{\nabla} \lambda x. x (x (x...))$

Example

$$\lambda x.$$
 letrec $f = x(xf)$ in $f \twoheadrightarrow_{\nabla} \lambda x.x(x(x...))$

Efficient methods for determining

- whether two $\lambda_{ ext{letrec}}$ -terms have the same unfolding
- the maximally shared form of a $\lambda_{ ext{letrec}}$ -term

On the theoretical side:

- a notion of maximal sharing
- a sharing preorder

Example

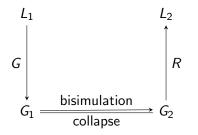
 λx .letrec f = x f in $f \ge \lambda x$.letrec f = x (x f) in f

To reason about unfolding equivalence and sharing we want to abstract over:

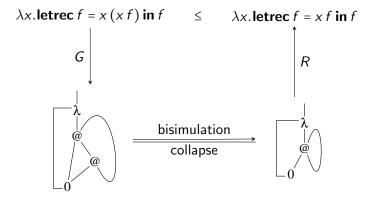
- order of letrec-bindings
- position of binding groups
- names of recursion- and λ -variables

 \implies work with graph representations of λ_{letrec} -terms that faithfully represent the sharing that occurs in a λ_{letrec} -term.

Bisimulation ~ unfolding equivalence. Functional bisimulation ~ compactification. *G* computes the graph representation of a term. *R* is a 'readback'. G is a left inverse of R: $G \circ R = id$



Computing the maximally shared form of a term

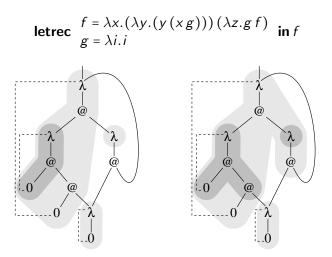


We study various graph formalisms and show how they relate:

- λ-higher-order-term-graphs: first-order term graphs + a scope function (based on 'higher-order term graphs' [Blom, 2001])
- abstraction-prefix based λ-higher-order-term-graphs first-order term graphs + an abstraction prefix function (motivated by [G&R, 2012])
- + λ -term-graphs with scope delimiters: plain first-order term graphs with scope delimiter vertices

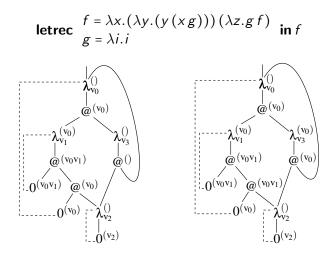
We want to establish correspondences between the formalisms to show that one can be implemented in terms of the other.

 λ -higher-order-term-graphs

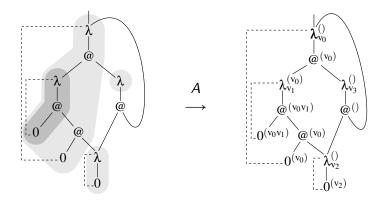


The scope function assigns to each abstraction node a set of nodes

abstraction-prefix based λ -higher-order-term-graphs



An isomorphic correspondence

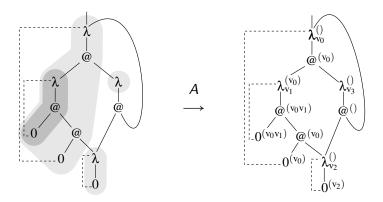


A preserves

the sharing order:

• $G_1 \Rightarrow G_2 \implies A(G_1) \Rightarrow A(G_2)$

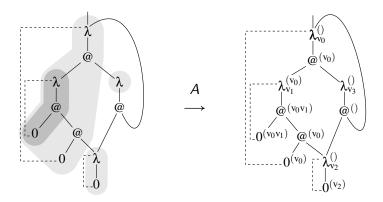
An isomorphic correspondence



A preserves and reflects the sharing order:

•
$$G_1 \Rightarrow G_2 \iff A(G_1) \Rightarrow A(G_2)$$

An isomorphic correspondence

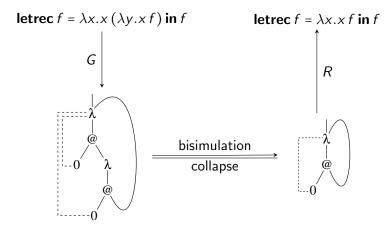


A preserves and reflects the sharing order:

•
$$G_1
ightarrow G_2 \iff A(G_1)
ightarrow A(G_2)$$

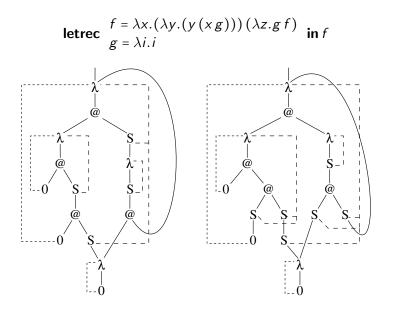
•
$$A^{-1}(G_1)
ightarrow A^{-1}(G_2) \iff G_1
ightarrow G_2$$

Scopes are important

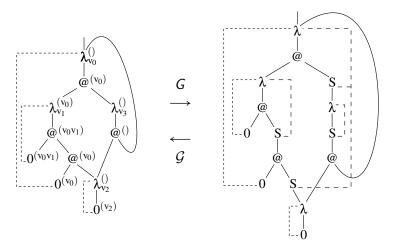


If scoping information is omitted, bisimulation would relate terms with different unfoldings.

λ -term-graphs with scope delimiters

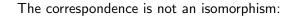


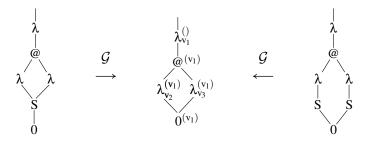
A correspondence



 ${\cal G}$ and ${\cal G}$ also preserve and reflect the sharing order

A correspondence

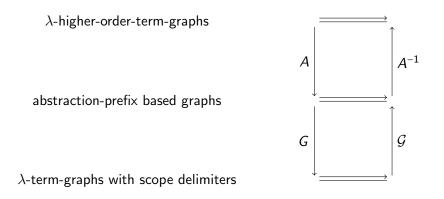




 \mathcal{G} is not injective because of S-sharing $\implies \mathcal{G} \neq G^{-1}$ But:

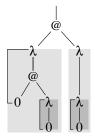
G ∘ G = id
 G ∘ G(g) ⇒^S g
 G is a left-inverse of G up to S-sharing)

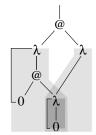
Correspondences yield implementations



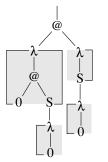
Closedness-Issues: variable backlinks

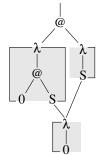
Closedness-Issues: eager scope-closure



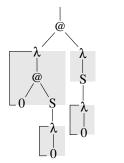


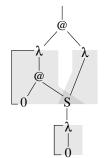
Closedness-Issues: eager scope-closure





Closedness-Issues: *S* – *backlinks*





 $\lambda\text{-term-graphs}$ are closed under unrestricted functional bisimulation if they have:

- scope delimiters
- delimiter backlinks
- variable backlinks
- eager placement of delimiters

What have we gained?

 Practical: Implementation of maximal sharing through bisimulation collapse

- Theoretical: Transfer of properties known for first-order term graphs to the higher-order term graphs
 - E.g. for all graphs g from the classes:
 - λ -higher-order-term-graphs
 - ▶ abstraction-prefix based λ -higher-order-term-graphs it holds: $\langle [g]_{\stackrel{1}{\Longrightarrow}, \stackrel{2}{\rightarrow} \rangle$ is a complete lattice.
- Easy generalisation: e.g. to higher-order term graphs representing iCRS-terms (instead of infinite λ-terms).