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Area of Research

▸ functional programming languages

▸ untyped λ-calculus with letrec (λletrec)

▸ sharing in λletrec



Motivation

Example

λx .letrec f = x f in f ↠↠▽ λx .x (x (x . . .))

Example

λx .letrec f = x (x f ) in f ↠↠▽ λx .x (x (x . . .))

Efficient methods for determining

▸ whether two λletrec-terms have the same unfolding

▸ the maximally shared form of a λletrec-term

On the theoretical side:

▸ a notion of maximal sharing

▸ a sharing preorder

Example

λx .letrec f = x f in f ≥ λx .letrec f = x (x f ) in f



λ-graphs

To reason about unfolding equivalence and sharing we want to
abstract over:

▸ order of letrec-bindings

▸ position of binding groups

▸ names of recursion- and λ-variables

Ô⇒ work with graph representations of λletrec-terms that
faithfully represent the sharing that occurs in a λletrec-term.

Bisimulation ∼ unfolding equivalence.
Functional bisimulation ∼ compactification.



Computing the maximally shared form of a term

G computes the graph representation of a term. R is a ‘readback’.
G is a left inverse of R: G ○ R = id
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Computing the maximally shared form of a term

λx .letrec f = x (x f ) in f λx .letrec f = x f in f
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Overview

We study various graph formalisms and show how they relate:

▸ λ-higher-order-term-graphs: first-order term graphs + a scope
function (based on ‘higher-order term graphs’ [Blom, 2001])

▸ abstraction-prefix based λ-higher-order-term-graphs first-order
term graphs + an abstraction prefix function (motivated by
[G&R, 2012])

▸ λ-term-graphs with scope delimiters: plain first-order term
graphs with scope delimiter vertices

We want to establish correspondences between the formalisms to
show that one can be implemented in terms of the other.



λ-higher-order-term-graphs

letrec
f = λx .(λy .(y (x g))) (λz .g f )
g = λi .i in f
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The scope function assigns to each abstraction node a set of nodes



abstraction-prefix based λ-higher-order-term-graphs

letrec
f = λx .(λy .(y (x g))) (λz .g f )
g = λi .i in f
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An isomorphic correspondence

λ

@

λ

@

0 @

0 λ

0

λ

@

A
Ð→

λ
()
v0

@
(v0)

λ
(v0)
v1

@
(v0v1)

0
(v0v1) @

(v0)

0
(v0) λ

()
v2

0
(v2)

@
()

λ

λ
()
v3

A preserves

and reflects

the sharing order:

▸ G1 → G2 Ô⇒ A(G1)→ A(G2)

▸ A−1(G1)→ A−1(G2) ⇐⇒ G1 → G2



An isomorphic correspondence
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A preserves and reflects the sharing order:

▸ G1 → G2 ⇐⇒ A(G1)→ A(G2)

▸ A−1(G1)→ A−1(G2) ⇐⇒ G1 → G2



An isomorphic correspondence
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A preserves and reflects the sharing order:

▸ G1 → G2 ⇐⇒ A(G1)→ A(G2)
▸ A−1(G1)→ A−1(G2) ⇐⇒ G1 → G2



Scopes are important

letrec f = λx .x (λy .x f ) in f letrec f = λx .x f in f
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If scoping information is omitted, bisimulation would relate terms
with different unfoldings.



λ-term-graphs with scope delimiters

letrec
f = λx .(λy .(y (x g))) (λz .g f )
g = λi .i in f
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A correspondence
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G and G also preserve and reflect the sharing order



A correspondence

The correspondence is not an isomorphism:
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G is not injective because of S-sharing Ô⇒ G /= G−1

But:

▸ G ○ G = id (G is a left-inverse of G )

▸ G ○ G(g)→S g (G is a left-inverse of G up to S-sharing)



Correspondences yield implementations

λ-higher-order-term-graphs

abstraction-prefix based graphs

λ-term-graphs with scope delimiters
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Closedness-Issues: variable backlinks
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Closedness-Issues: eager scope-closure
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Closedness-Issues: eager scope-closure
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Closedness-Issues: S − backlinks
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Closedness

λ-term-graphs are closed under unrestricted functional bisimulation
if they have:

▸ scope delimiters

▸ delimiter backlinks

▸ variable backlinks

▸ eager placement of delimiters



What have we gained?
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▸ Practical: Implementation of maximal sharing
through bisimulation collapse

▸ Theoretical: Transfer of properties known
for first-order term graphs to the higher-order term graphs

▸ E.g. for all graphs g from the classes:
▸ λ-higher-order-term-graphs
▸ abstraction-prefix based λ-higher-order-term-graphs

it holds: ⟨[g]↔,→⟩ is a complete lattice.

▸ Easy generalisation: e.g. to higher-order term graphs
representing iCRS-terms (instead of infinite λ-terms).


