Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete

Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions

Computer Science Seminar GSSI July 27, 2022

Process semantics of regular expressions [[·]] P (Milner, 1984)

- $0 \quad \stackrel{\llbracket \cdot \rrbracket_{\mathsf{P}}}{\longmapsto} \quad \text{deadlock } \delta, \text{ no termination}$
- $1 \quad \stackrel{\llbracket \cdot \rrbracket_{P}}{\longmapsto} \quad \text{empty-step process } \epsilon \text{, then terminate}$
- $a \xrightarrow{\|\cdot\|_{\mathbf{P}}}$ atomic action a, then terminate

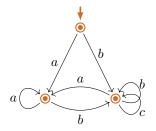
$$e + f \xrightarrow{[]]P} (choice) \text{ execute } [\![e]\!]_P \text{ or } [\![f]\!]_P$$

$$e \cdot f \xrightarrow{[]]P} (sequentialization) \text{ execute } [\![e]\!]_P, \text{ then } [\![f]\!]_P$$

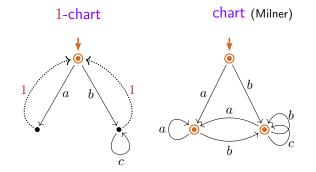
$$e^* \xrightarrow{[]]P} (iteration) \text{ repeat (terminate or execute } [\![e]\!]_P)$$

 $\llbracket e \rrbracket_{\mathbf{P}} := \llbracket \mathcal{C}(e) \rrbracket_{\leftrightarrow} \quad \text{(bisimilarity equivalence class of chart } \mathcal{C}(e) \text{)}$

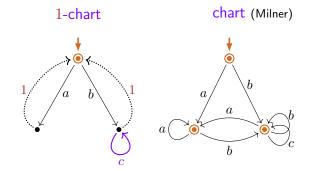
chart (Milner)



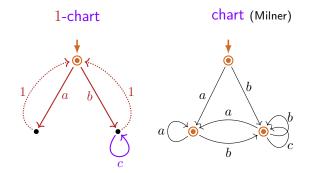
$$\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$



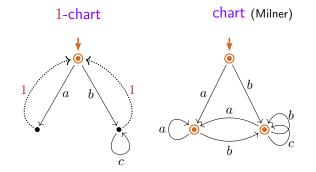
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$



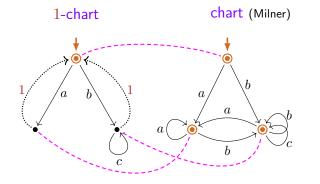
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$



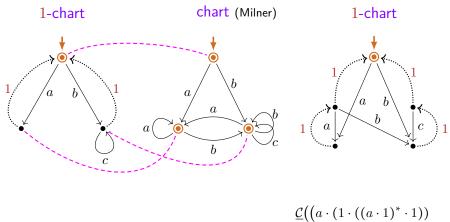
$$\underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*) \qquad \underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$



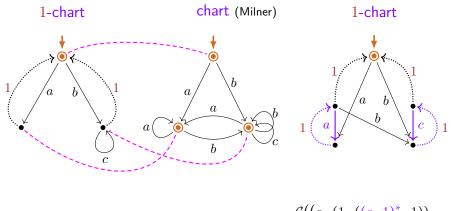
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$



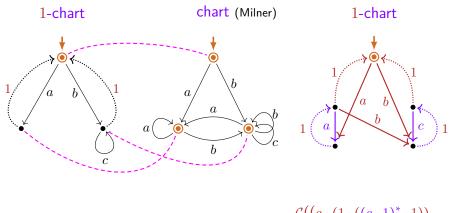
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$



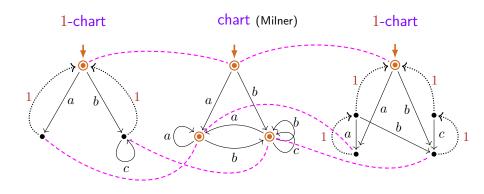
 $\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1) + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$



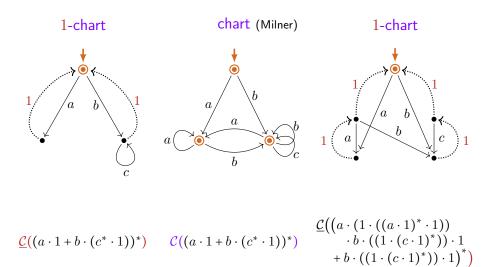
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1) + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$

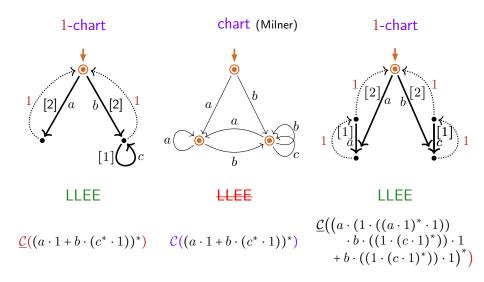


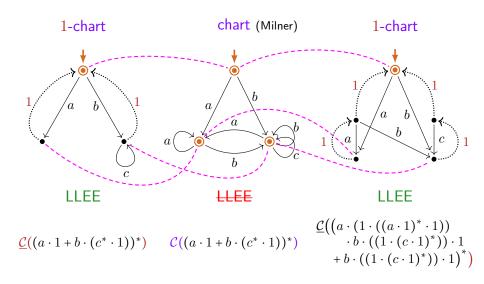
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\underline{\mathcal{C}}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) \\ b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1) \\ + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*$$

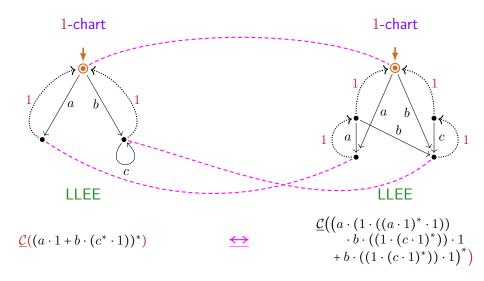


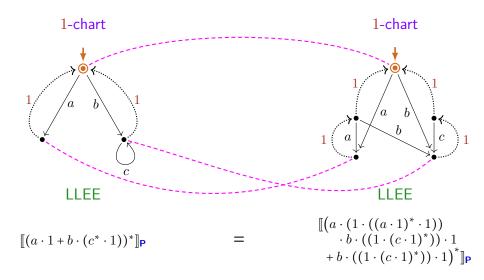
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$

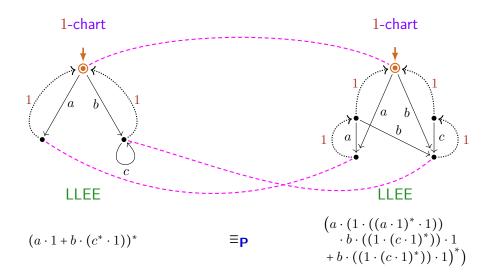












Milner's proof system Mil

Axioms :

$$\begin{array}{ll} (A1) & e + (f+g) = (e+f) + g & (A7) & e = 1 \cdot e \\ (A2) & e+0 = e & (A8) & e = e \cdot 1 \\ (A3) & e+f = f+e & (A9) & 0 = 0 \cdot e \\ (A4) & e+e = e & (A10) & e^* = 1 + e \cdot e^* \\ (A5) & e \cdot (f \cdot g) = (e \cdot f) \cdot g & (A11) & e^* = (1+e)^* \\ (A6) & (e+f) \cdot g = e \cdot g + f \cdot g \\ \end{array}$$

Inference rules : rules of equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \operatorname{RSP}^* (\text{if } f \text{ does not} \\ \operatorname{terminate immediately})$$

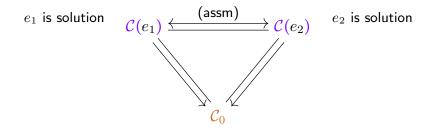
Milner's question (1984) Is Mil complete with respect to $\equiv_{\mathbf{P}}$? (Does $e \equiv_{\mathbf{P}} f \implies e =_{\mathsf{Mil}} f$ hold?)

_

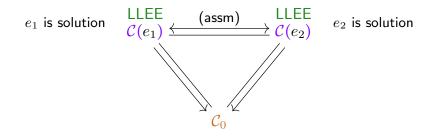
For 1-free regular expressions e_1 and e_2 :

$$e_1$$
 is solution $\mathcal{C}(e_1) \xleftarrow{(assm)} \mathcal{C}(e_2) = e_2$ is solution

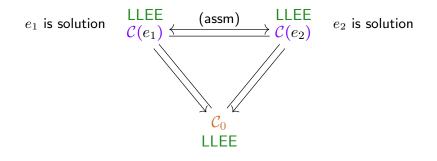
For 1-free regular expressions e_1 and e_2 :

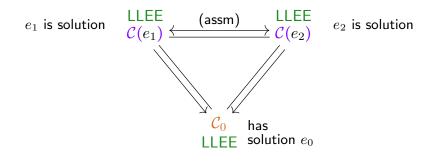


For 1-free regular expressions e_1 and e_2 :

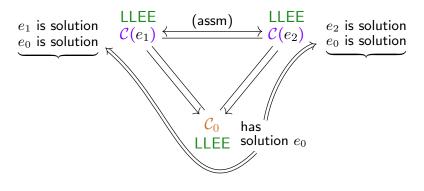


For 1-free regular expressions e_1 and e_2 :

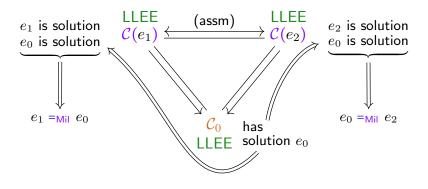




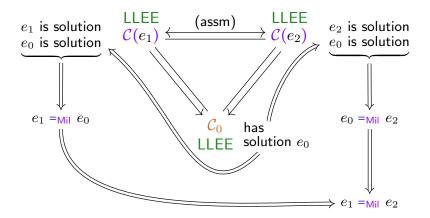
 $e_1 = Mil e_2$



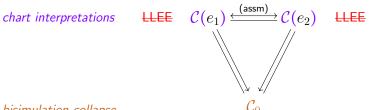
 $e_1 = Mil e_2$



 $e_1 = Mil e_2$

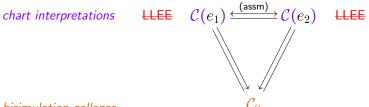


Problem 1

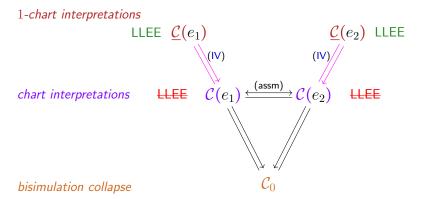


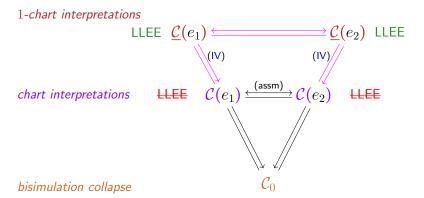
bisimulation collapse

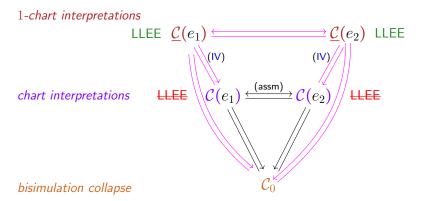
Remedy for Problem 1 (G, TERMGRAPH 2020)

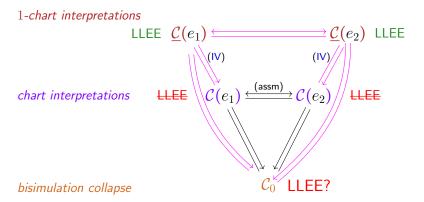


bisimulation collapse

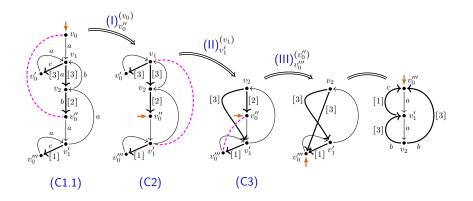








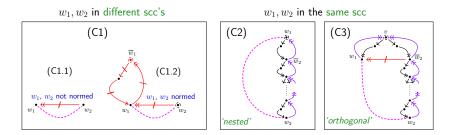
LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS'20) (no 1-transitions!)



Lemma

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

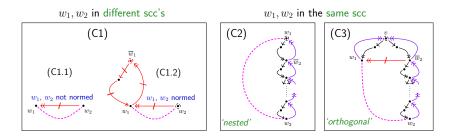
Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!) (G/Fokkink, LICS'20)



Lemma

Every not collapsed LLEE-chart contains bisimilar vertices $w_1 \neq w_2$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy $\langle w_1, w_2 \rangle$):

Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!) (G/Fokkink, LICS'20)

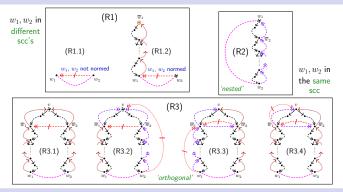


Lemma

Every not collapsed LLEE-chart contains bisimilar vertices $w_1 \neq w_2$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy $\langle w_1, w_2 \rangle$):

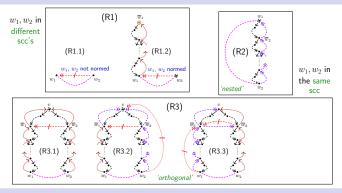
Lemma

Every reduced bisimilarity redundancy in a LLEE-chart can be eliminated LLEE-preservingly.



Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy $\langle w_1, w_2 \rangle$) of kind (R1), (R2), (R3).

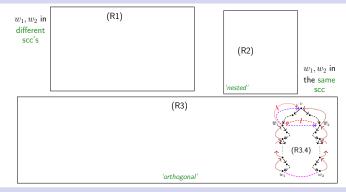


Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy $\langle w_1, w_2 \rangle$) of kind (R1), (R2), (R3).

Lemma

Every simple reduced 1*-bisimilarity redundancies in a* LLEE-1*-chart can be eliminated* LLEE*-preservingly.*



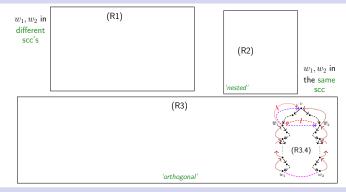
Lemma

Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3).

Stumbling Block

How to LLEE-preservingly eliminate reduced 1-bisimilarity redundancies of kind (R3.4)?

Clemens Grabmayer Milner's Proof System for Regular Expressions Mod. Bisimilarity is Complete



Lemma

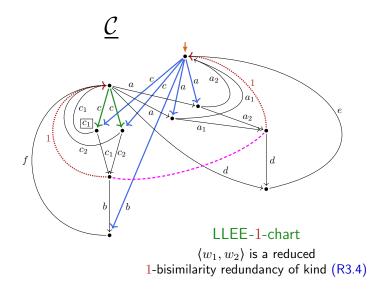
Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3).

Stumbling Block

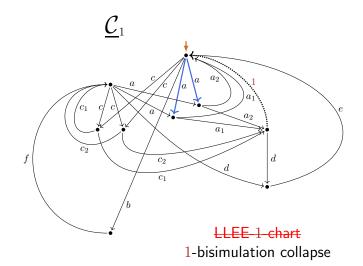
How to LLEE-preservingly eliminate precrystalline reduced 1-bisimilarity redundancies?

Clemens Grabmayer Milner's Proof System for Regular Expressions Mod. Bisimilarity is Complete

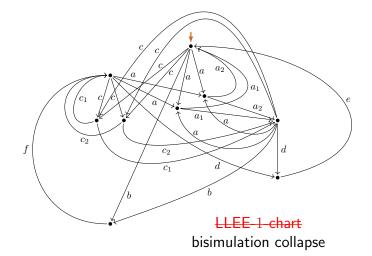
Counterexample LLEE-preserving collapse



Counterexample LLEE-preserving collapse

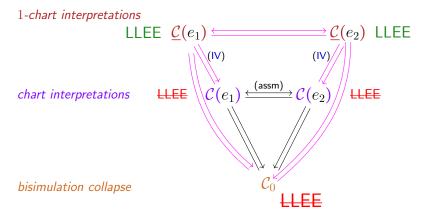


Counterexample LLEE-preserving collapse



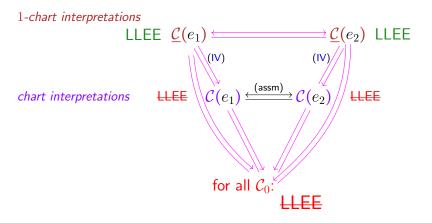
Bisimulation collapse proof strategy (general case)

Problem 2: There are regular expressions e_1 and e_2 such that:

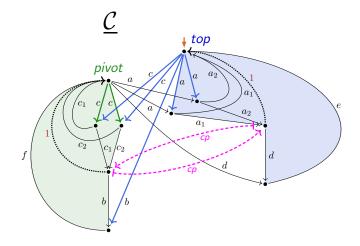


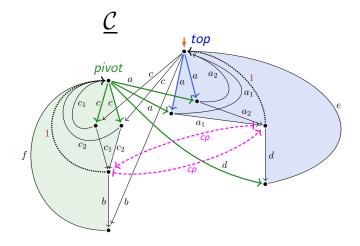
Bisimulation collapse proof strategy (general case)

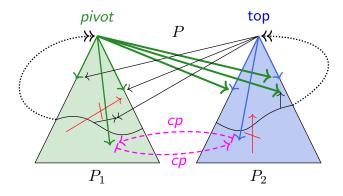
Problem 2: There are regular expressions e_1 and e_2 such that:

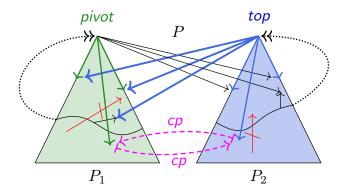


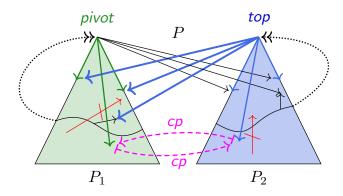
 $C(e_1)$, $C(e_2)$, $\underline{C}(e_1)$ and $\underline{C}(e_2)$ are **not** LLEE-preservingly jointly minimizable under bisimilarity.





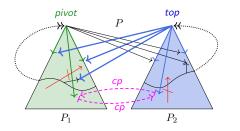






Provable solutions of twin-crystals are complete: they can be transferred to their bisimulation collapses

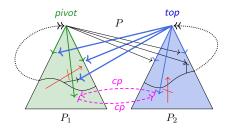
Crystallization



twin-crystal

Crystallized 1-charts = LLEE-1-charts that are collapsed apart from some scc's that are twin-crystals.

Crystallization

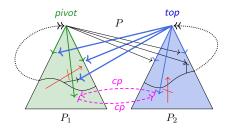


twin-crystal

Crystallized 1-charts = LLEE-1-charts that are collapsed apart from some scc's that are twin-crystals.

(CR) Crystallization: Every LLEE-1-chart can be reduced under bisimilarity to a bisimilar crystallized 1-chart.

Crystallization



twin-crystal

Crystallized 1-charts = LLEE-1-charts that are collapsed apart from some scc's that are twin-crystals.

(CR) Crystallization: Every LLEE-1-chart can be reduced under bisimilarity to a bisimilar crystallized 1-chart.

(CC) Every provable solution of a crystallized 1-chart gives rise to provable solution on the bisimulation collapse.

process semantics examples Milner's system collapse proof strategy LLEE counterexample twin-crystals crystallization completeness proof outlook

Completeness proof of Mil (structure)

chart interpretations

$$\mathcal{C}(e_1) \xrightarrow{(\mathsf{assm})} \mathcal{C}(e_2)$$

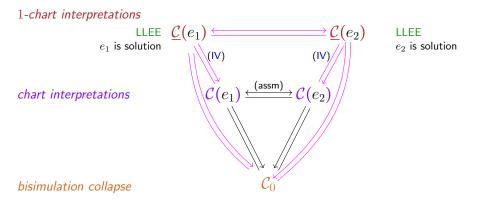
$$\stackrel{?}{\Longrightarrow} \qquad e_1 =_{\mathsf{Mil}} e_2$$

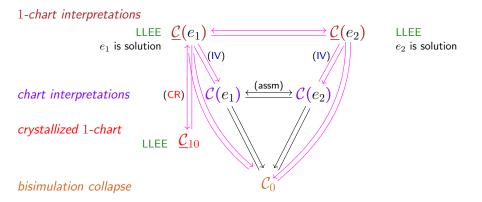
process semantics examples Milner's system collapse proof strategy LLEE counterexample twin-crystals crystallization completeness proof outlook

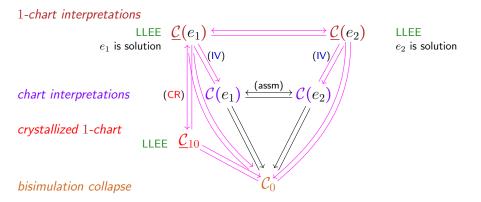
Completeness proof of Mil (structure)

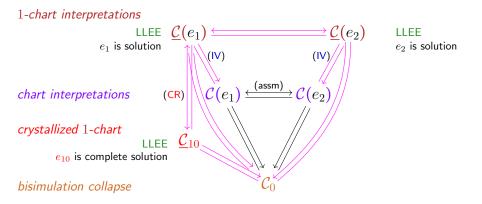
chart interpretations

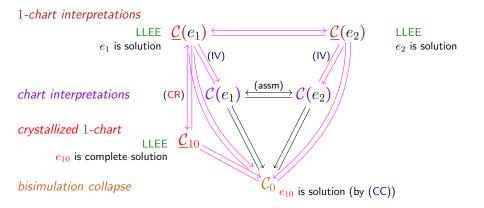
$$\mathcal{C}(e_1) \stackrel{(\text{assm})}{\longleftrightarrow} \mathcal{C}(e_2)$$

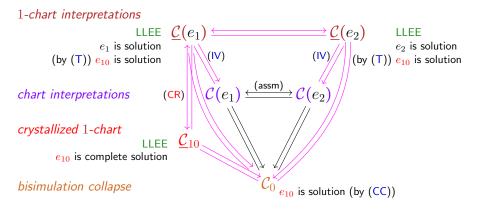


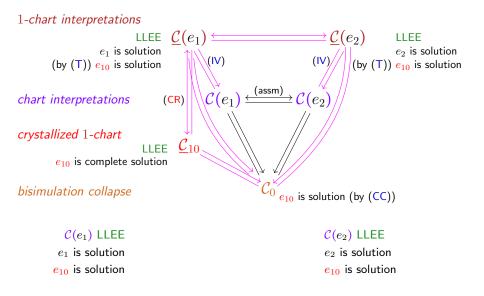


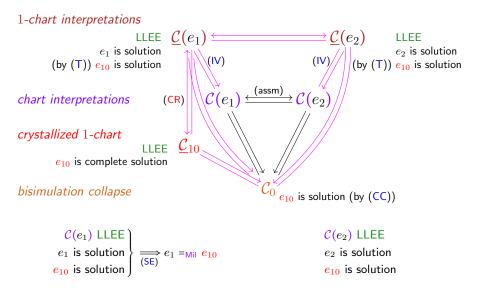


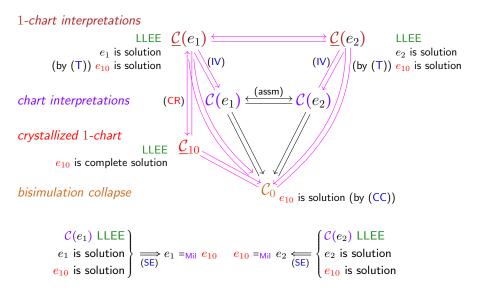


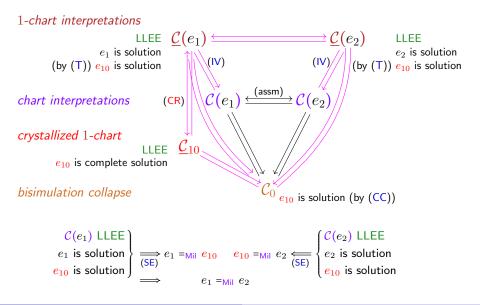


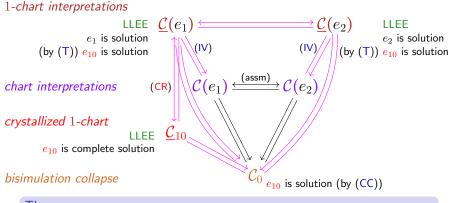












Theorem

Milner's proof system Mil is complete for process semantics equivalence $\equiv_{\mathbf{P}}$ of regular expressions.

Since: $e_1 \equiv_{\mathbf{P}} e_2 \Longrightarrow \llbracket e_1 \rrbracket_{\mathbf{P}} = \llbracket e_2 \rrbracket_{\mathbf{P}} \Longrightarrow \mathcal{C}(e_1) \nleftrightarrow \mathcal{C}(e_1) \Longrightarrow e_1 =_{\mathsf{Mil}} e_2$.

Outlook

poster presentation

tomorrow, 10–10.30

next steps and projects

- monograph project: proof in fine-grained detail
- computation/animation tool for crystallization
- use crystallization for recognition problem

resources on Github:

- https://github.com/clegra/crystallization/blob/main
 - > article (after rebuttal): /cryst-article.pdf
 - > poster: /poster-lics2022.pdf
 - > presentation: /presentation-lics2022.pdf

acknowledgment & thanks to:

Wan Fokkink (for long collaboration)

Thank you for your attention!