A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity

Clemens Grabmayer and Wan Fokkink

Departments of Computer Science

L'Aquila, Italy, and Amsterdam, The Netherlands

LICS 2020
July 8-11, 2020

Overview

- 1-free regular (star) expressions
- Milner's process interpretation
- axiomatization question (1984) for system Mil
- proof system BBP (Bergstra-Bethke-Ponse) for 1-free star expr's

Overview

- 1-free regular (star) expressions
- Milner's process interpretation
- axiomatization question (1984) for system Mil
- proof system BBP (Bergstra-Bethke-Ponse) for 1-free star expr's
- classical proof approach for completeness fails
- new approach: structure-constrained process graphs
- (layered) loop existence and elimination (LLEE)

Overview

- 1-free regular (star) expressions
- Milner's process interpretation
- axiomatization question (1984) for system Mil
- proof system BBP (Bergstra-Bethke-Ponse) for 1-free star expr's
- classical proof approach for completeness fails
- new approach: structure-constrained process graphs
- (layered) loop existence and elimination (LLEE)
- lemmas
- preservation of LLEE under bisimulation collapse
- completeness proof

Regular Expressions

Definition (Kleene, 1951)
Regular expressions over alphabet A with binary Kleene star:

$$
e, f::=\mathbf{0}|\mathbf{1}| \boldsymbol{a}|e+f| e \cdot f \mid e^{\circledast} f \quad(\text { for } a \in A) .
$$

Regular Expressions

Definition (Kleene, 1951, Copi-Elgot-Wright, 1958)
Regular expressions over alphabet A with binary / unary Kleene star:

$$
\begin{array}{lll}
e, f::=0|1| a|e+f| e \cdot f \mid e^{\circledast} f & (\text { for } a \in A) . \\
e, f::=0 \mid & a|e+f| e \cdot f \mid e^{*} & (\text { for } a \in A) .
\end{array}
$$

- with unary Kleene star *: 1 is definable as 0^{*}

Regular Expressions

Definition (Kleene, 1951, Copi-Elgot-Wright, 1958)
Regular expressions over alphabet A with binary/unary Kleene star:

$$
\begin{array}{lll}
e, f::=0|1| a|e+f| e \cdot f \mid e^{\circledast} f & (\text { for } a \in A) . \\
e, f::=0 \mid & \boldsymbol{a}|e+f| e \cdot f \mid e^{*} & (\text { for } a \in A) .
\end{array}
$$

- with unary Kleene star *: 1 is definable as 0^{*}
- with binary Kleene star ${ }^{\oplus}$: 1 is not definable (in its absence)

Regular Expressions

Definition (Kleene, 1951, Copi-Elgot-Wright, 1958)
Regular expressions over alphabet A with binary / unary Kleene star:

$$
\begin{array}{lll}
e, f::=0|1| a|e+f| e \cdot f \mid e^{\circledast} f & (\text { for } a \in A) . \\
e, f::=0 \mid & \boldsymbol{a}|e+f| e \cdot f \mid e^{*} & (\text { for } a \in A) .
\end{array}
$$

- with unary Kleene star *: 1 is definable as 0^{*}
- with binary Kleene star ${ }^{\oplus}$: 1 is not definable (in its absence)

Definition

1-free regular (star) expressions over alphabet A :

$$
e, f::=0|a| e+f|e \cdot f| e^{\circledast} f \quad(\text { for } a \in A) .
$$

Process semantics $\llbracket \cdot \rrbracket_{P} \quad($ Milner, 1984)

$0 \xrightarrow{\llbracket \cdot \rrbracket_{p}}$ deadlock δ, no termination
$1 \xrightarrow{\stackrel{\|}{\square} \mathbb{D}_{P}}$ empty process ϵ, then terminate
$a \xrightarrow{\Vdash \|_{P}}$ atomic action a, then terminate
$e+f \xrightarrow{\llbracket!\rrbracket_{P}}$ alternative composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e \cdot f \xrightarrow{\llbracket \rrbracket_{P}}$ sequential composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e^{*} \xrightarrow{\llbracket \rrbracket_{p}}$ unbounded iteration of $\llbracket e \rrbracket_{p}$, option to terminate

Process semantics $\llbracket \cdot \rrbracket_{P}$ (Milner, 1984, Bergstra, Bethke, Ponse, 1994)

$0 \stackrel{\| \Vdash \mathbb{P}_{\rho}}{\longrightarrow}$ deadlock δ, no termination
$a \xrightarrow{\Vdash} \|$ atomic action a, then terminate
$e+f \xrightarrow{\llbracket} \xrightarrow{\llbracket}$ alternative composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e \cdot f \xrightarrow{\llbracket} \mathbb{I}_{p}$ sequential composition of $\llbracket e \rrbracket_{P}$ and $\llbracket f \rrbracket_{P}$
$e^{\otimes} f \xrightarrow{\|!\|_{p}}$ unbounded iteration of $\llbracket e \rrbracket_{p}$, option to continue with $\llbracket f \rrbracket_{P}$

Process semantics $\llbracket \rrbracket_{P}$ (examples)

$$
\llbracket\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0 \rrbracket_{P}
$$

Process semantics $\llbracket \rrbracket_{P}$ (examples)

$$
\llbracket\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0 \rrbracket_{P}
$$

Process semantics $\llbracket \rrbracket_{P}$ (examples)

$$
\llbracket\left(a \cdot\left((a \cdot(b+b \cdot a))^{\otimes} c\right)\right)^{\otimes} 0 \rrbracket_{P}
$$

Process semantics $\llbracket \rrbracket_{P}$ (examples)

$$
\llbracket\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0 \rrbracket_{P}
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\otimes} c\right)\right)^{\otimes 0}\right)
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0\right)
$$

$$
\llbracket a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right) \rrbracket_{P}
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0\right)
$$

$$
\llbracket a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right) \rrbracket_{P}
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0\right)
$$

$$
\llbracket a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right) \rrbracket_{P}
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0\right)
$$

$$
\llbracket a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right) \rrbracket_{P}
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0\right)
$$

$$
\llbracket a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right) \rrbracket_{P}
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\mathcal{C}\left(\left(a \cdot\left((a \cdot(b+b \cdot a))^{\oplus} c\right)\right)^{\oplus} 0\right)
$$

$$
\mathcal{C}\left(a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\oplus} b\right)^{\oplus} 0\right)\right)
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\leftrightarrows \mathcal{C}\left(a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right)\right)
$$

Process chart semantics $\llbracket \cdot \rrbracket_{P}=\mathcal{C}(\cdot)$ (examples)

$$
\overleftrightarrow{\mathrm{S}}_{P} a \cdot\left(\left(c \cdot a+a \cdot\left(b \cdot a \cdot\left((c \cdot a)^{\oplus} a\right)\right)^{\otimes} b\right)^{\oplus} 0\right)
$$

Properties of $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $\llbracket \cdot \rrbracket_{p}$-expressible modulo \leftrightarrows.

Properties of $\llbracket \cdot \rrbracket_{P}$

- Not every finite-state process is $\llbracket \cdot \rrbracket_{p}$-expressible modulo \leftrightarrows.
- Fewer identities hold for \leftrightarrows_{P} than for $=_{L}: \quad \leftrightarrows_{P} \varsubsetneqq=L$.

Complete axiomatization \mathbf{F}_{1} of $=L \quad$ (Aanderaa/Salomaa, 1965/66)

Axioms:
(A1) $e+(f+g)=(e+f)+g$
(A7) $e \cdot 1=e$
(A2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(A8) $e \cdot 0=0$
(A3) $\quad e+f=f+e$
(A9) $e+0=e$
(A4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(UKS1) $\quad e^{*}=1+e \cdot e^{*}$
(A5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(UKS2) $\quad e^{*}=(1+e)^{*}$
(A6)

$$
e+e=e
$$

Inference rules: equational logic plus

Sound and unsound axioms with respect to \leftrightarrows_{P}

Axioms:

(A1) $e+(f+g)=(e+f)+g$
(A7) $e \cdot 1=e$
(A2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(A8) $e \cdot 0=0$
(A3) $\quad e+f=f+e$
(A9) $e+0=e$
(A4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(UKS1) $\quad e^{*}=1+e \cdot e^{*}$
(A5) $e \cdot(f+g)=e \cdot f+e \cdot g$
(UKS2) $\quad e^{*}=(1+e)^{*}$
(A6)
$e+e=e$

Inference rules: equational logic plus

$$
\begin{aligned}
& \frac{e=f \cdot e+g}{e=f^{*} \cdot g} \text { FIX (if } \underbrace{\{\epsilon\} \notin \llbracket f \rrbracket_{L}}_{\text {non-empty-word }} \text {) } \\
& \text { property }
\end{aligned}
$$

Adaptation Mil for $\overleftrightarrow{\leftrightarrows}_{P}$ (Milner, 1984)

Axioms:
(A1) $e+(f+g)=(e+f)+g$
(A7) $e \cdot 1=e$
(A2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(A8)' $\quad 0 \cdot e=0$
(A3) $\quad e+f=f+e$
(A9) $e+0=e$
(A4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(UKS1) $\quad e^{*}=1+e \cdot e^{*}$
(UKS2) $\quad e^{*}=(1+e)^{*}$
(A6)

$$
e+e=e
$$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*}(\text { if } \underbrace{\text { property }}_{\text {non-empty-word }} \boldsymbol{\{ \epsilon \} \notin \llbracket f \rrbracket _ { L }})
$$

Adaptation Mil for \leftrightarrows_{P} (Milner, 1984)

Axioms:
(A1) $e+(f+g)=(e+f)+g$
(A7) $e \cdot 1=e$
(A2) $\quad(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(A8)' $\quad 0 \cdot e=0$
(A3)
$e+f=f+e$
(A9) $e+0=e$
(A4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(UKS1) $\quad e^{*}=1+e \cdot e^{*}$
(UKS2) $\quad e^{*}=(1+e)^{*}$
(A6) $\quad e+e=e$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{*} \cdot g} \mathrm{RSP}^{*} \text { (if } \underbrace{\text { property }}_{\text {non-empty-word }} \boldsymbol{\{ \epsilon \} \notin \llbracket f \rrbracket _ { L }} \text {) }
$$

Adaptation BBP for \leftrightarrows_{P} on 1-free star expr's (Bergstra, Bethke, Ponse)

Axioms:
(A1) $e+(f+g)=(e+f)+g$
(A2) $(e \cdot f) \cdot g=e \cdot(f \cdot g)$
(A8) $\quad 0 \cdot e=0$
(A3) $\quad e+f=f+e$
(A4) $(e+f) \cdot g=e \cdot g+f \cdot g$
(A9) $e+0=e$
(BKS1) $\quad e^{\otimes} f=e \cdot\left(e^{\otimes} f\right)+f$
(BKS2) $\left(e^{\circledast} f\right) \cdot g=e^{\circledast}(f \cdot g)$
(A6) $e+e=e$

Inference rules: equational logic plus

$$
\frac{e=f \cdot e+g}{e=f^{\oplus} g} \mathrm{RSP}^{\otimes}
$$

Not expressible \Rightarrow not solvable

chart

$$
\begin{aligned}
& X_{1}=a_{1} \cdot X_{2}+a_{2} \cdot X_{3} \\
& X_{2}=b_{1} \cdot X_{1}+b_{2} \cdot X_{3} \\
& X_{3}=c_{1} \cdot X_{1}+c_{2} \cdot X_{2}
\end{aligned}
$$

not expressible modulo \leftrightarrows

Not expressible \Rightarrow not solvable

chart

not expressible modulo \leftrightarrows
equational specification

$$
\begin{aligned}
& X_{1}=a_{1} \cdot X_{2}+a_{2} \cdot X_{3} \\
& X_{2}=b_{1} \cdot X_{1}+b_{2} \cdot X_{3} \\
& X_{3}=c_{1} \cdot X_{1}+c_{2} \cdot X_{2}
\end{aligned}
$$

not solvable in BBP nor in Mil

Why Salomaa's proof approach does not work for BBP

$\llbracket(a \cdot(a+b)+b)^{\oplus 0} 0 \rrbracket_{P}$

$$
\llbracket(a+b \cdot(a+b))^{\oplus} 0 \rrbracket_{P}
$$

Why Salomaa's proof approach does not work for BBP

Why Salomaa's proof approach does not work for BBP

Why Salomaa's proof approach does not work for BBP

bisimulation collapse

Why Salomaa's proof approach does not work for BBP

New proof idea

bisimulation collapse $\llbracket(a+b)^{\oplus} 0 \rrbracket_{P}$

New proof idea

bisimulation collapse $\llbracket(a+b)^{\otimes} 0 \rrbracket_{P}$

Can a solution always be extracted directly?

New proof idea

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1),(L2)

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1),(L2)

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1), (L2)
(L1),(L2),(L3)

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1),(L2)
(L1),(L2),(L3)

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1), (L2)

(L1),(L2),(L3)

loop chart

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

> (L1),(L2)
(L1),(L2),(L3)
loop chart

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1), (L2)

(L1),(L2),(L3)

loop chart

loop chart

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1), (L2)

(L1),(L2),(L3)

loop chart

loop chart

Loop chart

Definition

A chart is a loop chart if:
(L1) There is an infinite path from the start vertex.
(L2) Every infinite path from the start vertex returns to it.
(L3) Termination is not possible.

(L1), (L2)

(L1),(L2),(L3)

loop chart

loop subchart

Loop existence and elimination

LEE

Definition

A chart \mathcal{C} satisfies LEE (loop existence and elimination) if:

$$
\left.\begin{array}{rl}
\exists \mathcal{C}_{0}(\mathcal{C} & \Longrightarrow
\end{array} \quad{ }_{\text {elim }} \mathcal{C}_{0} \xlongequal[\text { elim }]{\not} \quad \wedge \mathcal{C}_{0} \text { permits no infinite path }\right) .
$$

LEE

Definition

A chart \mathcal{C} satisfies LEE (loop existence and elimination) if:

$$
\exists \mathcal{C}_{0}\left(\mathcal{C} \Longrightarrow{ }_{\text {elim }}^{*} \mathcal{C}_{0} \not \Longrightarrow{ }_{\text {elim }}\right.
$$

$\wedge \mathcal{C}_{0}$ permits no infinite path).

ᄀLEE

LEE

LEE

LEE

LEE

Layered LEE witness and LLEE-charts

Layered LEE witness and LLEE-charts

Lemmas

(C) The bisimulation collapse of a LLEE-chart is again a LLEE-chart.
(I, SI) The chart interpretation $\mathcal{C}(e)$ of a 1 -free star expression e

- is a LLEE-chart,
- has a provable solution with start value e.
(E) From every LLEE-chart \mathcal{C} a provable solution can be extracted.
(SE) All provable solutions of a LLEE-chart are provably equal.
(P) If $\mathcal{C}_{1} \xrightarrow{ } \mathcal{C}_{2}$, then every provable solution of \mathcal{C}_{2} can be pulled back to obtain a provable solution of \mathcal{C}_{1} with the same start value.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s e_{1}, e_{2} [$\left.e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows \mathrm{P} e_{2}\right]$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{p} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ":

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \overleftrightarrow{\mathrm{P}}_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

$$
\mathcal{C}\left(e_{1}\right) \longleftrightarrow \mathcal{C}\left(e_{2}\right)
$$

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{P} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(I) For every 1-free star expression e, the chart interpretation $\mathcal{C}(e)$ of e is a LLEE-chart.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

bisimulation collapse \mathcal{C}_{0}
(I) For every 1-free star expression e, the chart interpretation $\mathcal{C}(e)$ of e is a LLEE-chart.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.
LLEE

LLEE
bisimulation collapse \mathcal{C}_{0}
(I) For every 1-free star expression e, the chart interpretation $\mathcal{C}(e)$ of e is a LLEE-chart.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.
LLEE

LLEE
bisimulation collapse \mathcal{C}_{0}
(SI) For every 1-free star expression e,
e is start value of a provable solution of $\mathcal{C}(e)$.

Completeness of BBP

Theorem
 Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s e_{1}, e_{2} [$e_{1}=$ BBP $\left.e_{2} \Longleftrightarrow e_{1} \leftrightarrows \boldsymbol{P} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

LLEE
(SI) For every 1-free star expression e,
e is start value of a provable solution of $\mathcal{C}(e)$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(SI) For every 1-free star expression e,
e is start value of a provable solution of $\mathcal{C}(e)$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

(C) The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(C) The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(E) From every LLEE-chart \mathcal{C} a provable solution can be extracted.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(E) From every LLEE-chart \mathcal{C} a provable solution can be extracted.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

(P) If $\mathcal{C}_{1} \xrightarrow{\rightarrow} \mathcal{C}_{2}$, then every provable solution of \mathcal{C}_{2} can be pulled back to obtain a provable solution of \mathcal{C}_{1} with the same start value.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

(P) If $\mathcal{C}_{1} \xrightarrow{\rightarrow} \mathcal{C}_{2}$, then every provable solution of \mathcal{C}_{2} can be pulled back to obtain a provable solution of \mathcal{C}_{1} with the same start value.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(P) If $\mathcal{C}_{1} \xrightarrow{\rightarrow} \mathcal{C}_{2}$, then every provable solution of \mathcal{C}_{2} can be pulled back to obtain a provable solution of \mathcal{C}_{1} with the same start value.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(SE) All provable solutions of a LLEE-chart are provably equal.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(SE) All provable solutions of a LLEE-chart are provably equal.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

(SE) All provable solutions of a LLEE-chart are provably equal.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrows \mathcal{C}\left(e_{2}\right)$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\mathcal{C}\left(e_{1}\right) \leftrightarrow \mathcal{C}\left(e_{2}\right)$.

LLEE

$\mathcal{C}\left(e_{1}\right)$
e_{1} is solution e_{0} is solution $\Longrightarrow e_{1}=\operatorname{BBP} e_{0}$
bisimulation collapse \mathcal{C}_{0}

$$
\begin{aligned}
& \text { LLEE } \\
& e_{0} \text { is solution }
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow e_{1} & =\mathrm{BBP} e_{0}=\mathrm{BBP} e_{2} \\
& \Longrightarrow e_{1}=\mathrm{BBP} e_{2}
\end{aligned}
$$

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $\llbracket e_{1} \rrbracket_{\boldsymbol{P}} \leftrightarrows \llbracket e_{2} \rrbracket_{P}$.

LLEE

$\mathcal{C}\left(e_{1}\right)$
e_{1} is solution e_{0} is solution $\Longrightarrow e_{1}=\operatorname{BBP} e_{0}$
bisimulation collapse \mathcal{C}_{0}

$$
\begin{aligned}
& \text { LLEE } \\
& e_{0} \text { is solution }
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow e_{1} & =\mathrm{BBP} e_{0}=\mathrm{BBP} e_{2} \\
& \Longrightarrow e_{1}=\mathrm{BBP}
\end{aligned} e_{2}
$$

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $e_{1} \leftrightarrows_{p} e_{2}$.

Completeness of BBP

Theorem

BBP is sound and complete for \leftrightarrows_{P} of 1-free star expressions:
For all 1-free star expr.'s $e_{1}, e_{2}\left[e_{1}=\mathrm{BBP} e_{2} \Longleftrightarrow e_{1} \leftrightarrows_{\mathrm{P}} e_{2}\right]$.
Proof of " \Leftarrow ": Let e_{1} and e_{2} be 1-free star expr.'s with $e_{1} \leftrightarrows_{p} e_{2}$.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Corollary

A chart is expressible by a 1-free star expression modulo \leftrightarrows if and only if its bisimulation collapse is a LLEE-chart.

Summary and outlook

We have obtained a partial solution for Milner's problem:

- BBP: adaptation of Milner's system Mil to 1-free star expr's
- graph property: loop existence and elimination (LLEE)
- guarantees solvability via extraction (E)
- holds for chart interpretations of 1-free star expressions (I)
- is preserved under bisimulation collapse (C)
- BBP is complete for $\overleftrightarrow{\leftrightarrows}_{P}$ on 1 -free star expressions

Summary and outlook

We have obtained a partial solution for Milner's problem:

- BBP: adaptation of Milner's system Mil to 1-free star expr's
- graph property: loop existence and elimination (LLEE)
- guarantees solvability via extraction (E)
- holds for chart interpretations of 1-free star expressions (I)
- is preserved under bisimulation collapse (C)
- BBP is complete for $\overleftrightarrow{\leftrightarrows}_{P}$ on 1 -free star expressions

Obstacle for extension to Mil:

- properties (I) and (C) do not hold for all star expressions:

is $\llbracket\left(\left(\left(1 \cdot a^{*}\right) \cdot\left(b \cdot c^{*}\right)\right) \cdot\left(a^{*} \cdot\left(b \cdot c^{*}\right)\right)^{*} \rrbracket_{p}\right.$, which is a bisimulation collapse, does not satisfy LLEE.

Summary and outlook

We have obtained a partial solution for Milner's problem:

- BBP: adaptation of Milner's system Mil to 1-free star expr's
- graph property: loop existence and elimination (LLEE)
- guarantees solvability via extraction (E)
- holds for chart interpretations of 1-free star expressions (I)
- is preserved under bisimulation collapse (C)
- BBP is complete for $\overleftrightarrow{\leftrightarrows}_{P}$ on 1 -free star expressions

Obstacle for extension to Mil:

- properties (I) and (C) do not hold for all star expressions:

is $\llbracket\left(\left(\left(1 \cdot a^{*}\right) \cdot\left(b \cdot c^{*}\right)\right) \cdot\left(a^{*} \cdot\left(b \cdot c^{*}\right)\right)^{*} \rrbracket_{p}\right.$, which is a bisimulation collapse, does not satisfy LLEE.
- Possible workaround: use 1-charts (with explicit 1-transitions)

Resources

report version of article

- CG \& Wan Fokkink: A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity, arXiv:2004.12740, May 2020.
extended abstract (1-charts)
- CG: Structure-Constrained Process Graphs for the Process Interpretation of Regular Expressions, TERMGRAPH 2020, July 5, 2020. http://www.termgraph.org.uk/2020/.

Resources

report version of article

- CG \& Wan Fokkink: A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity, arXiv:2004.12740, May 2020.
extended abstract (1-charts)
- CG: Structure-Constrained Process Graphs for the Process Interpretation of Regular Expressions, TERMGRAPH 2020, July 5, 2020. http://www.termgraph.org.uk/2020/.

Thank you for your attention!

