Regularity Preserving but not Reflecting Encodings

Jörg Endrullis

Clemens Grabmayer

Dimitri Hendriks

Department of Computer Science VU University Amsterdam

LICS 2015

Kyoto, July 9, 2015

problem			
The pr	oblem		

problem			
The prob	olem		

Does there exist a bijective encoding $f : \Sigma^* \to \Gamma^*$ (Σ , Γ finite alphabets) such that

problem			
The prob	olem		

Does there exist a bijective encoding $f: \Sigma^* \to \Gamma^*$ (Σ, Γ finite alphabets) such that

▶ the image function *f*[_] of *f* preserves language regularity:

 $\forall L \subseteq \Sigma^* (L \text{ is regular } \implies f[L] \text{ is regular}),$

problem			
The prob	olem		

Does there exist a bijective encoding $f: \Sigma^* \to \Gamma^*$ (Σ, Γ finite alphabets) such that

▶ the image function *f*[_] of *f* preserves language regularity:

$$\forall L \subseteq \Sigma^* (L \text{ is regular } \implies f[L] \text{ is regular}),$$

• but the image function $f^{-1}[\cdot]$ for the inverse function f^{-1} does not:

 $\exists L' \subseteq \Gamma^*(L' \text{ is regular } \land f^{-1}[L] \text{ is not regular})$?

	outline		
Outline			

- the problem
 - more motivation: number encodings and c-automaticity
- the solution
 - main theorem
 - encoding, and extension lemmas
 - proof sketch/idea
- consequences for comparing models of computation
- summary

solution (proof)

comparing moc'

summary

c-automatic functions

outline

a number encoding $c: \mathbb{N} \to \Gamma^*$

solution (proof)

comparing moc's

summary

c-automatic functions

outline

a number encoding $c : \mathbb{N} \to \Gamma^*$

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic

c-automatic function

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

c-automatic function

computable by a DFA

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

c-automatic function \triangleq infinite sequence

computable by a DFA

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

c-automatic function

- \triangleq infinite sequence
- \triangleq subset of \mathbb{N}

 $\mathbb{N} \xrightarrow{\qquad \mathbf{C} \qquad \mathbf{C}} \mathsf{\Gamma}^{*}$ $h \downarrow \qquad \downarrow h^{c}$ $\{0,1\} \xrightarrow{\qquad id \qquad \{0,1\}}$

С

computable by a DFA

solution (resu

solution (proof)

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

c-automatic function

- \triangleq infinite sequence
- \triangleq subset of \mathbb{N}

computable by a DFA \triangleq regular language

solution (resul

solution (proof)

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

Gives rise to a *subsumption pre-order* \leq :

 $c \leq d$ if all *c*-automatic functions are *d*-automatic.

solution (resul

solution (proof)

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

Gives rise to a subsumption pre-order \leq : $c \leq d$ if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c, d such that $c \leq d$?

solution (resul

solution (proof)

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

Gives rise to a subsumption pre-order \leq : $c \leq d$ if all *c*-automatic functions are *d*-automatic.

Q: How to characterize number encodings c, d such that $c \leq d$?

A: For *bijective* number encodings c and d: $c \le d \iff (d \circ c^{-1})[_]$ preserves regularity

solution (result

solution (proof)

comparing

summary

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

Gives rise to a subsumption pre-order \leq : $c \leq d$ if all *c*-automatic functions are *d*-automatic.

Q: How to characterize number encodings c, d such that $c \leq d$?

A: For *bijective* number encodings c and d: $c \leq d \iff (d \circ c^{-1})[_-]$ preserves regularity

Q: Does \leq induce a proper hierarchy? $\exists c, d. \ c \leq d \land d \leq c$?

solution (result

solution (proof)

comparing

summary

c-automatic functions

outline

For a number encoding $c : \mathbb{N} \to \Gamma^*$, a function $h : \mathbb{N} \to \{0, 1\}$ is *c*-automatic if there is a DFA-computable $h^c : \Gamma^* \to \{0, 1\}$ such that:

Gives rise to a subsumption pre-order \leq : $c \leq d$ if all *c*-automatic functions are *d*-automatic.

Q: How to characterize number encodings c, d such that $c \leq d$?

A: For *bijective* number encodings c and d: $c \le d \iff (d \circ c^{-1})[.]$ preserves regularity

Q: Does \leq induce a proper hierarchy? $\exists c, d. \ c \leq d \land d \leq c$?

A: For *bijective* encodings: Yes, if answer to the initial problem is yes!

	solution (results)		

Solution

		solution (results)		
Main t	heorem			
Mair	n Theorem			

Let Σ , Γ be finite alphabets, with $|\Gamma| \ge 2$. For every countable class C of languages over Σ , there exists a bijective encoding $g : \Sigma^* \to \Gamma^*$ such that: $\forall L \in C (g[L] \text{ is regular}).$

Regularity Preserving but not Reflecting Encodings

Main theorem	

Main Theorem

Let Σ , Γ be finite alphabets, with $|\Gamma| \ge 2$. For every countable class C of languages over Σ , there exists a bijective encoding $g : \Sigma^* \to \Gamma^*$ such that: $\forall L \in C (g[L] \text{ is regular}).$

Thus the answer to the initial problem is 'Yes!', because for C = Rec:

		solution (results)		
Main t	heorem			

Main Theorem

Let Σ , Γ be finite alphabets, with $|\Gamma| \ge 2$. For every countable class C of languages over Σ , there exists a bijective encoding $g : \Sigma^* \to \Gamma^*$ such that: $\forall L \in C (g[L] \text{ is regular}).$

Thus the answer to the initial problem is 'Yes!', because for C = Rec:

Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings) Let Σ , Γ alphabets with $|\Gamma| \ge 2$. Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that:

 $\forall L \in \mathcal{C} (f[L] \text{ is relatively regular in } f[\Sigma^*])$

solution (pro

Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings)

Let Σ , Γ alphabets with $|\Gamma| \ge 2$. Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that:

 $\forall L \in \mathcal{C} (f[L] \text{ is relatively regular in } f[\Sigma^*])$

We say that *L* is relatively regular in *M* if $L = M \cap R$ for some regular language *R*. (if a finite automaton can decide $w \in L$ for all $w \in M$).

solution (pro

Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings)

Let Σ , Γ alphabets with $|\Gamma| \ge 2$. Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that:

 $\forall L \in \mathcal{C} (f[L] \text{ is relatively regular in } f[\Sigma^*])$

We say that *L* is relatively regular in *M* if $L = M \cap R$ for some regular language *R*. (if a finite automaton can decide $w \in L$ for all $w \in M$).

Extension Lemma (from injective to bijective encodings) For every injection $f : \Sigma^* \to \Gamma^*$ there is a bijection $g : \Sigma^* \to \Gamma^*$ s.th.: $\forall L \subseteq \Sigma^* (f[L] \text{ is relatively regular in } f[\Sigma^*] \implies g[L] \text{ is regular})$

Encoding Lemma (injective encodings) Let Σ , Γ be an alphabet with $|\Gamma| \ge 2$. Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that: $\forall L \in C (f[L] \text{ is relatively regular in } f[\Sigma^*])$

Encoding Lemma (injective encodings) Let Σ , Γ be an alphabet with $|\Gamma| \ge 2$. Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that: $\forall L \in C (f[L] \text{ is relatively regular in } f[\Sigma^*])$

Proof.

Let $L_1, L_2, L_3, L_4, \ldots$ be an enumeration of C, and w_1, w_2, w_3, \ldots of Σ^* .

Encoding Lemma (injective encodings)

```
Let \Sigma, \Gamma be an alphabet with |\Gamma| \geq 2.
```

Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that:

 $\forall L \in \mathcal{C} (f[L] \text{ is relatively regular in } f[\Sigma^*])$

Proof.

Let $L_1, L_2, L_3, L_4, \ldots$ be an enumeration of C, and w_1, w_2, w_3, \ldots of Σ^* . Suppose $\{0, 1\} \subseteq \Gamma$, and define L(w) = 1 if $w \in L$, and else L(w) = 0.

Encoding Lemma (injective encodings)

```
Let \Sigma, \Gamma be an alphabet with |\Gamma| \geq 2.
```

Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that:

 $\forall L \in \mathcal{C} (f[L] \text{ is relatively regular in } f[\Sigma^*])$

Proof.

Let $L_1, L_2, L_3, L_4, ...$ be an enumeration of C, and $w_1, w_2, w_3, ...$ of Σ^* . Suppose $\{0, 1\} \subseteq \Gamma$, and define L(w) = 1 if $w \in L$, and else L(w) = 0. Define $f : \Sigma^* \to \Gamma^*$ by: $f(w_1) = L_1(w_1)$ $f(w_2) = L_1(w_2) L_2(w_2)$ $f(w_3) = L_1(w_3) L_2(w_3) L_3(w_3)$ $f(w_4) = L_1(w_4) L_2(w_4) L_3(w_4) L_4(w_4)$ \vdots

Encoding Lemma (injective encodings)

```
Let \Sigma, \Gamma be an alphabet with |\Gamma| \geq 2.
```

Then for every countable class C of languages over Σ , there exists an encoding $f : \Sigma^* \to \Gamma^*$ such that:

 $\forall L \in \mathcal{C} (f[L] \text{ is relatively regular in } f[\Sigma^*])$

Proof.

Let $L_1, L_2, L_3, L_4, \ldots$ be an enumeration of \mathcal{C} , and w_1, w_2, w_3, \ldots of Σ^* . Suppose $\{0, 1\} \subseteq \Gamma$, and define L(w) = 1 if $w \in L$, and else L(w) = 0. Define $f : \Sigma^* \to \Gamma^*$ by: $f(w_1) = L_1(w_1)$ $f(w_2) = L_1(w_2) L_2(w_2)$ $f(w_3) = L_1(w_3) L_2(w_3) L_3(w_3)$ $f(w_4) = L_1(w_4) L_2(w_4) L_3(w_4) L_4(w_4)$ \vdots For almost all $u \in f[\Sigma^*]$: $u \in f[L_1] \iff u \in \Gamma^{n-1} \Gamma^*$

For almost all $u \in f[\Sigma^*]$: $u \in f[L_n] \iff u \in \Gamma^{n-1}\mathbf{1}\Gamma^*$.

		solution (proof)	
_	 C · · ·		

Extension Lemma (from injective to bijective encodings)

Let Σ^* be a countably infinite set. For every injection $f : \Sigma^* \to \Gamma^*$ there is a bijection $g : \Sigma^* \to \Gamma^*$ s.th.:

 $\forall L \subseteq \Sigma^* (f[L] \text{ is relatively regular in } f[\Sigma^*] \implies g[L] \text{ is regular})$

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that:

the language whose image is accepted by A_n is changed only at finitely many words (preserving relative regularity in the limit)

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that:
▶ w₁ needs to be part of the image

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- w₁ needs to be part of the image
- we pick the arrow $v_2 \rightarrow w_2$

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- w_1 needs to be part of the image
- we pick the arrow $v_2 \rightarrow w_2$
- we redirect this arrow to target w₁

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that:
▶ w₂ needs to be part of the image

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- w_2 needs to be part of the image
- we take into account acceptance of the automaton A₁

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- w_2 needs to be part of the image
- we take into account acceptance of the automaton A₁
- we pick the first arrow whose target has equal acceptance to w₂ (accepted by A₁)

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- w_2 needs to be part of the image
- we take into account acceptance of the automaton A₁
- we pick the first arrow whose target has equal acceptance to w₂ (accepted by A₁)
- ▶ we redirect the arrow to w₂

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that: *w*₃ needs to be part of the image

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- ▶ w₃ needs to be part of the image
- we take into account acceptance of A₁ and A₂

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- ▶ *w*₃ needs to be part of the image
- we take into account acceptance of A₁ and A₂
- we pick the first arrow whose target has equal acceptance to w₃ (accepted by A₁ and rejected by A₂)

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

- ▶ w₃ needs to be part of the image
- we take into account acceptance of A₁ and A₂
- ▶ we pick the first arrow whose target has equal acceptance to w₃ (accepted by A₁ and rejected by A₂)
- we redirect the arrow to w₃

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that: ... and so forth.

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that:
In the (n + 1)-th step, we make w_{n+1} part of the image
▶ without altering acceptance of language images by A₁, A₂,..., A_n.

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that:

In the (n + 1)-th step, we make w_{n+1} part of the image

• without altering acceptance of language images by A_1, A_2, \ldots, A_n .

Thus the language whose image is accepted by A_n is only disturbed with respect to finitely many words.

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Idea: Change arrows such that every element is in the image, but so that:

In the (n + 1)-th step, we make w_{n+1} part of the image

• without altering acceptance of language images by A_1, A_2, \ldots, A_n .

(Relative) regularity is preserved in steps and in the limit!

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Complication

What if in the induction step there is no arrow to a target with the same acceptance behavior as w_{n+1} for A_1, \ldots, A_n ?

- Let v_1, v_2, v_3, \ldots be an enumeration of all words Σ^* .
- Let w_1, w_2, w_3, \ldots be an enumeration of all words Γ^* .
- Let A_1, A_2, A_3, \ldots an enumeration of all finite automata over Γ .

We start with an injective function f:

Complication

What if in the induction step there is no arrow to a target with the same acceptance behavior as w_{n+1} for A_1, \ldots, A_n ?

▶ We show that, if not, A_n can be changed (once) to A'_n with almost the same acceptance behavior such that the choice is possible.

Consequences for comparing models of computation

solution (resu

solution (proc

comparing moc's

summary

Comparing computational power via encodings

Simulation of models of computation $\mathcal{M}_1 = \langle D_1, \mathcal{F}_1 \rangle$, $\mathcal{M}_2 = \langle D_2, \mathcal{F}_2 \rangle$:

blem outline

solution (result

solution (proof

comparing moc's

summary

Comparing computational power via encodings

Simulation of functions:

function f_2 simulates function f_1 via encoding ρ if:

▶ Simulation of models of computation $\mathcal{M}_1 = \langle D_1, \mathcal{F}_1 \rangle$, $\mathcal{M}_2 = \langle D_2, \mathcal{F}_2 \rangle$:

Simulation of functions:

function f_2 simulates function f_1 via encoding ρ if:

Simulation of models of computation M₁ = ⟨D₁, F₁⟩, M₂ = ⟨D₂, F₂⟩:
 M₂ can simulate M₁ via ρ (M₁ ≤_ρ M₂), if:

Simulation of functions:

function f_2 simulates function f_1 via encoding ρ if:

$$\mathcal{M}_{1} \qquad \forall f_{1} \in \mathcal{F}_{1} \qquad \begin{array}{c} D_{1} & \stackrel{\rho}{\longrightarrow} & D_{2} \\ & & \downarrow \\ f_{1} & \downarrow & \downarrow \\ D_{1} & \stackrel{\rho}{\longrightarrow} & D_{2} \end{array} \qquad \qquad \mathcal{M}_{2}$$

Simulation of models of computation M₁ = ⟨D₁, F₁⟩, M₂ = ⟨D₂, F₂⟩:
 M₂ can simulate M₁ via ρ (M₁ ≤_ρ M₂), if:

Simulation of functions:

function f_2 simulates function f_1 via encoding ρ if:

$$\mathcal{M}_{1} \qquad \forall f_{1} \in \mathcal{F}_{1} \qquad \begin{array}{c} D_{1} & \stackrel{\rho}{\longrightarrow} & D_{2} \\ & & \downarrow \\ f_{1} & \downarrow & \downarrow \\ D_{1} & \stackrel{\rho}{\longrightarrow} & D_{2} \end{array}$$

Simulation of models of computation M₁ = ⟨D₁, F₁⟩, M₂ = ⟨D₂, F₂⟩:
 M₂ can simulate M₁ via ρ (M₁ ≤_ρ M₂), if:

Simulation of functions:

function f_2 simulates function f_1 via encoding ρ if:

$$\mathcal{M}_{1} \qquad \forall f_{1} \in \mathcal{F}_{1} \qquad \begin{array}{c} D_{1} & \stackrel{\rho}{\longrightarrow} & D_{2} \\ & & \downarrow f_{1} \\ & & \downarrow f_{2} \\ & & \downarrow f_{2} \\ D_{1} & \stackrel{\rho}{\longrightarrow} & D_{2} \end{array}$$

Simulation of models of computation M₁ = ⟨D₁, F₁⟩, M₂ = ⟨D₂, F₂⟩:
 M₂ can simulate M₁ via ρ (M₁ ≤_ρ M₂), if:

$$\forall f_1 \in \mathcal{F}_1 \exists f_2 \in \mathcal{F}_2 (f_2 \text{ simulates } f_1 \text{ via } \rho)$$

comparing moc's

solution (proof

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Boker/Dershowitz: want a 'robust definition that does not itself depend on the notion of computability', and therefore suggest as encodings:

solution (res

solution (pro

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- informally computable/effective/mechanizable in principle
- ▶ *computable* with respect to a specific model (Turing machine, ...)

Boker/Dershowitz: want a 'robust definition that does not itself depend on the notion of computability', and therefore suggest as encodings:

- (i) *injective* functions
- (ii) *bijective* functions

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

- informally computable/effective/mechanizable in principle
- computable with respect to a specific model (Turing machine, ...)

Boker/Dershowitz: want a 'robust definition that does not itself depend on the notion of computability', and therefore suggest as encodings:

- (i) *injective* functions
- (ii) *bijective* functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M₁ ≤ M₂ if: there is an injective ρ such that M₁ ≤_ρ M₂
(ii) M₁ ≤_{bijective} M₂ if: there is a bijective ρ such that M₁ ≤_ρ M₂

solution (proof)

Anomalies for decision models

Our main result implies anomalies of these definitions.

 $\mathcal{M} = \langle D, \mathcal{F} \rangle \text{ is a decision model if } \{0,1\} \subseteq D, \ \, \forall f \in \mathcal{F} \, (f[D] \subseteq \{0,1\}).$

solution

solution (proo

summary

Anomalies for decision models

Our main result implies anomalies of these definitions.

 $\mathcal{M} = \langle D, \mathcal{F} \rangle$ is a *decision model* if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Corollary (of Main Theorem) Let Σ and Γ with $\{0,1\} \subseteq \Sigma, \Gamma$ be alphabets. Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds: $\mathcal{M} \lesssim \mathsf{DFA}(\Gamma) \qquad \mathcal{M} \lesssim_{\mathsf{bijective}} \mathsf{DFA}(\Gamma)$ solution

solution (proof

comparing moc's

summary

Anomalies for decision models

Our main result implies anomalies of these definitions.

 $\mathcal{M} = \langle D, \mathcal{F} \rangle$ is a *decision model* if $\{0, 1\} \subseteq D$, $\forall f \in \mathcal{F} (f[D] \subseteq \{0, 1\})$.

Corollary (of Main Theorem) Let Σ and Γ with $\{0,1\} \subseteq \Sigma$, Γ be alphabets. Then for every countable decision model $\mathcal{M} = \langle \Sigma^*, \mathcal{F} \rangle$, it holds: $\mathcal{M} \lesssim \mathsf{DFA}(\Gamma) \qquad \mathcal{M} \lesssim_{\text{bijective}} \mathsf{DFA}(\Gamma)$

 $\mathsf{TMD}(\Sigma)\colon\mathsf{class}$ of Turing machine deciders with input alphabet Σ

Anomaly (example)

 $\mathsf{TMD}(\Sigma) \lesssim_{\mathrm{bijective}} \mathsf{DFA}(\Gamma)$

Anomaly (example)

 $\mathsf{TMD}(\Sigma) \lesssim_{\mathrm{bijective}} \mathsf{DFA}(\Gamma)$

This anomaly for two decision models via bijective encodings:

can be extended to some moc's with unbounded output domain,

Anomaly (example)

 $\mathsf{TMD}(\Sigma) \leq_{\text{bijective}} \mathsf{DFA}(\Gamma)$

This anomaly for two decision models via bijective encodings:

- can be extended to some moc's with unbounded output domain,
 - but:

 $\mathsf{TM}(\Sigma) \not \lesssim_{\text{bijective}} (2-)\mathsf{FST}(\Sigma)$

Turing machines (2-way) finite-state transducers

```
Anomaly (example)
```

 $\mathsf{TMD}(\Sigma) \lesssim_{\mathrm{bijective}} \mathsf{DFA}(\Gamma)$

This anomaly for two decision models via bijective encodings:

can be extended to some moc's with unbounded output domain,

depends on uncomputable encodings,

```
Anomaly (example)
```

 $\mathsf{TMD}(\Sigma) \lesssim_{\mathrm{bijective}} \mathsf{DFA}(\Gamma)$

This anomaly for two decision models via bijective encodings:

can be extended to some moc's with unbounded output domain,

- depends on uncomputable encodings,
- highlights that uncomputable encodings must be excluded.

```
Anomaly (example)
```

 $\mathsf{TMD}(\Sigma) \lesssim_{\mathrm{bijective}} \mathsf{DFA}(\Gamma)$

This anomaly for two decision models via bijective encodings:

can be extended to some moc's with unbounded output domain,

- depends on uncomputable encodings,
- highlights that uncomputable encodings must be excluded.
 - Sometimes the structure of the models M₁ and M₂ excludes uncomputable, bijective encodings ρ such that M₁ ≤_ρ M₂.
 - ▶ We give a sufficient condition for this, extending work by Shapiro (1982).

			summary
Summ	ary		

we solved a problem in language theory:

 there exist bijective word encodings that are regularity preserving, but not reflecting.

by showing:

For all countable sets C of languages, there is a bijective encoding g such that g[L] is regular for all L ∈ C.

some consequences:

- for comparing models of computation via encodings:
 - use of unrestricted bijective encodings leads to anomalies
- ▶ in the paper: for *c*-automatic sequences