
problem outline solution (results) solution (proof) comparing moc’s summary

Regularity Preserving but not Reflecting Encodings

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Department of Computer Science
VU University Amsterdam

LICS 2015

Kyoto, July 9, 2015

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

The problem

An encoding is an injective word function f : A→ Γ∗.

Does there exist a bijective encoding f : Σ∗ → Γ∗ (Σ, Γ finite alphabets)
such that

I the image function f [] of f preserves language regularity:

∀L ⊆ Σ∗(L is regular =⇒ f [L] is regular) ,

I but the image function f −1[·] for the inverse function f −1 does not:

∃L′ ⊆ Γ∗(L′ is regular ∧ f −1[L] is not regular) ?

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

The problem

An encoding is an injective word function f : A→ Γ∗.

Does there exist a bijective encoding f : Σ∗ → Γ∗ (Σ, Γ finite alphabets)
such that

I the image function f [] of f preserves language regularity:

∀L ⊆ Σ∗(L is regular =⇒ f [L] is regular) ,

I but the image function f −1[·] for the inverse function f −1 does not:

∃L′ ⊆ Γ∗(L′ is regular ∧ f −1[L] is not regular) ?

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

The problem

An encoding is an injective word function f : A→ Γ∗.

Does there exist a bijective encoding f : Σ∗ → Γ∗ (Σ, Γ finite alphabets)
such that

I the image function f [] of f preserves language regularity:

∀L ⊆ Σ∗(L is regular =⇒ f [L] is regular) ,

I but the image function f −1[·] for the inverse function f −1 does not:

∃L′ ⊆ Γ∗(L′ is regular ∧ f −1[L] is not regular) ?

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

The problem

An encoding is an injective word function f : A→ Γ∗.

Does there exist a bijective encoding f : Σ∗ → Γ∗ (Σ, Γ finite alphabets)
such that

I the image function f [] of f preserves language regularity:

∀L ⊆ Σ∗(L is regular =⇒ f [L] is regular) ,

I but the image function f −1[·] for the inverse function f −1 does not:

∃L′ ⊆ Γ∗(L′ is regular ∧ f −1[L] is not regular) ?

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Outline

I the problem
I more motivation: number encodings and c-automaticity

I the solution
I main theorem

I encoding, and extension lemmas

I proof sketch/idea

I consequences for comparing models of computation

I summary

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For

a number encoding c : N→ Γ∗

, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function

, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For

a number encoding c : N→ Γ∗

, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function

, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic

if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function

, infinite sequence
, subset of N

h

hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function

, infinite sequence
, subset of N

h hc
computable by a DFA

, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence

, subset of N

h hc
computable by a DFA

, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA

, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

c-automatic functions

For a number encoding c : N→ Γ∗, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function
, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Solution

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Main theorem

Main Theorem

Let Σ, Γ be finite alphabets, with |Γ| ≥ 2.

For every countable class C of languages over Σ,
there exists a bijective encoding g : Σ∗ → Γ∗ such that:

∀L ∈ C
(
g [L] is regular

)
.

Thus the answer to the initial problem is ‘Yes!’, because for C = Rec :

g []

P(Σ∗)
Rec

Reg

P(Γ∗)
Rec

Reg

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Main theorem

Main Theorem

Let Σ, Γ be finite alphabets, with |Γ| ≥ 2.

For every countable class C of languages over Σ,
there exists a bijective encoding g : Σ∗ → Γ∗ such that:

∀L ∈ C
(
g [L] is regular

)
.

Thus the answer to the initial problem is ‘Yes!’, because for C = Rec :

g []

P(Σ∗)
Rec

Reg

P(Γ∗)
Rec

Reg

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Main theorem

Main Theorem

Let Σ, Γ be finite alphabets, with |Γ| ≥ 2.

For every countable class C of languages over Σ,
there exists a bijective encoding g : Σ∗ → Γ∗ such that:

∀L ∈ C
(
g [L] is regular

)
.

Thus the answer to the initial problem is ‘Yes!’, because for C = Rec :

g []

P(Σ∗)
Rec

Reg

P(Γ∗)
Rec

Reg

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings)

Let Σ, Γ alphabets with |Γ| ≥ 2.
Then for every countable class C of languages over Σ,

there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)

We say that L is relatively regular in M
if L = M ∩ R for some regular language R.
(if a finite automaton can decide w ∈ L for all w ∈ M).

Extension Lemma (from injective to bijective encodings)

For every injection f : Σ∗ → Γ∗ there is a bijection g : Σ∗ → Γ∗ s.th.:

∀L ⊆ Σ∗
(
f [L] is relatively regular in f [Σ∗] =⇒ g [L] is regular

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings)

Let Σ, Γ alphabets with |Γ| ≥ 2.
Then for every countable class C of languages over Σ,

there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)
We say that L is relatively regular in M

if L = M ∩ R for some regular language R.
(if a finite automaton can decide w ∈ L for all w ∈ M).

Extension Lemma (from injective to bijective encodings)

For every injection f : Σ∗ → Γ∗ there is a bijection g : Σ∗ → Γ∗ s.th.:

∀L ⊆ Σ∗
(
f [L] is relatively regular in f [Σ∗] =⇒ g [L] is regular

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings)

Let Σ, Γ alphabets with |Γ| ≥ 2.
Then for every countable class C of languages over Σ,

there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)
We say that L is relatively regular in M

if L = M ∩ R for some regular language R.
(if a finite automaton can decide w ∈ L for all w ∈ M).

Extension Lemma (from injective to bijective encodings)

For every injection f : Σ∗ → Γ∗ there is a bijection g : Σ∗ → Γ∗ s.th.:

∀L ⊆ Σ∗
(
f [L] is relatively regular in f [Σ∗] =⇒ g [L] is regular

)
Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding lemma: proof

Encoding Lemma (injective encodings)

Let Σ, Γ be an alphabet with |Γ| ≥ 2.

Then for every countable class C of languages over Σ,
there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)

Proof.

Let L1, L2, L3, L4, . . . be an enumeration of C, and w1,w2,w3, . . . of Σ∗.
Suppose {0, 1} ⊆ Γ, and define L(w) = 1 if w ∈ L, and else L(w) = 0.
Define f : Σ∗ → Γ∗ by: f (w1) = L1(w1)

f (w2) = L1(w2) L2(w2)

f (w3) = L1(w3) L2(w3) L3(w3)

f (w4) = L1(w4) L2(w4) L3(w4) L4(w4)
...

For almost all u ∈ f [Σ∗]: u ∈ f [Ln] ⇐⇒ u ∈ Γn−11Γ∗.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding lemma: proof

Encoding Lemma (injective encodings)

Let Σ, Γ be an alphabet with |Γ| ≥ 2.

Then for every countable class C of languages over Σ,
there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)
Proof.

Let L1, L2, L3, L4, . . . be an enumeration of C, and w1,w2,w3, . . . of Σ∗.

Suppose {0, 1} ⊆ Γ, and define L(w) = 1 if w ∈ L, and else L(w) = 0.
Define f : Σ∗ → Γ∗ by: f (w1) = L1(w1)

f (w2) = L1(w2) L2(w2)

f (w3) = L1(w3) L2(w3) L3(w3)

f (w4) = L1(w4) L2(w4) L3(w4) L4(w4)
...

For almost all u ∈ f [Σ∗]: u ∈ f [Ln] ⇐⇒ u ∈ Γn−11Γ∗.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding lemma: proof

Encoding Lemma (injective encodings)

Let Σ, Γ be an alphabet with |Γ| ≥ 2.

Then for every countable class C of languages over Σ,
there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)
Proof.

Let L1, L2, L3, L4, . . . be an enumeration of C, and w1,w2,w3, . . . of Σ∗.
Suppose {0, 1} ⊆ Γ, and define L(w) = 1 if w ∈ L, and else L(w) = 0.

Define f : Σ∗ → Γ∗ by: f (w1) = L1(w1)

f (w2) = L1(w2) L2(w2)

f (w3) = L1(w3) L2(w3) L3(w3)

f (w4) = L1(w4) L2(w4) L3(w4) L4(w4)
...

For almost all u ∈ f [Σ∗]: u ∈ f [Ln] ⇐⇒ u ∈ Γn−11Γ∗.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding lemma: proof

Encoding Lemma (injective encodings)

Let Σ, Γ be an alphabet with |Γ| ≥ 2.

Then for every countable class C of languages over Σ,
there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)
Proof.

Let L1, L2, L3, L4, . . . be an enumeration of C, and w1,w2,w3, . . . of Σ∗.
Suppose {0, 1} ⊆ Γ, and define L(w) = 1 if w ∈ L, and else L(w) = 0.
Define f : Σ∗ → Γ∗ by: f (w1) = L1(w1)

f (w2) = L1(w2) L2(w2)

f (w3) = L1(w3) L2(w3) L3(w3)

f (w4) = L1(w4) L2(w4) L3(w4) L4(w4)
...

For almost all u ∈ f [Σ∗]: u ∈ f [Ln] ⇐⇒ u ∈ Γn−11Γ∗.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Encoding lemma: proof

Encoding Lemma (injective encodings)

Let Σ, Γ be an alphabet with |Γ| ≥ 2.

Then for every countable class C of languages over Σ,
there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)
Proof.

Let L1, L2, L3, L4, . . . be an enumeration of C, and w1,w2,w3, . . . of Σ∗.
Suppose {0, 1} ⊆ Γ, and define L(w) = 1 if w ∈ L, and else L(w) = 0.
Define f : Σ∗ → Γ∗ by: f (w1) = L1(w1)

f (w2) = L1(w2) L2(w2)

f (w3) = L1(w3) L2(w3) L3(w3)

f (w4) = L1(w4) L2(w4) L3(w4) L4(w4)
...

For almost all u ∈ f [Σ∗]: u ∈ f [Ln] ⇐⇒ u ∈ Γn−11Γ∗.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea

Extension Lemma (from injective to bijective encodings)

Let Σ∗ be a countably infinite set.
For every injection f : Σ∗ → Γ∗ there is a bijection g : Σ∗ → Γ∗ s.th.:

∀L ⊆ Σ∗
(
f [L] is relatively regular in f [Σ∗] =⇒ g [L] is regular

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:

I the language whose image is accepted by An is changed
only at finitely many words (preserving relative regularity in the limit)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:

I the language whose image is accepted by An is changed
only at finitely many words (preserving relative regularity in the limit)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w1 needs to be part of the image

I we pick the arrow v2 → w2

I we redirect this arrow to target w1

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w1 needs to be part of the image
I we pick the arrow v2 → w2

I we redirect this arrow to target w1

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w1 needs to be part of the image
I we pick the arrow v2 → w2

I we redirect this arrow to target w1

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w2 needs to be part of the image

I we take into account acceptance of the automaton A1

I we pick the first arrow whose target has equal acceptance to w2

(accepted by A1)
I we redirect the arrow to w2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w2 needs to be part of the image
I we take into account acceptance of the automaton A1

I we pick the first arrow whose target has equal acceptance to w2

(accepted by A1)
I we redirect the arrow to w2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w2 needs to be part of the image
I we take into account acceptance of the automaton A1

I we pick the first arrow whose target has equal acceptance to w2

(accepted by A1)

I we redirect the arrow to w2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1

w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w2 needs to be part of the image
I we take into account acceptance of the automaton A1

I we pick the first arrow whose target has equal acceptance to w2

(accepted by A1)
I we redirect the arrow to w2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w3 needs to be part of the image

I we take into account acceptance of A1 and A2

I we pick the first arrow whose target has equal acceptance to w3

(accepted by A1 and rejected by A2)
I we redirect the arrow to w3

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w3 needs to be part of the image
I we take into account acceptance of A1 and A2

I we pick the first arrow whose target has equal acceptance to w3

(accepted by A1 and rejected by A2)
I we redirect the arrow to w3

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w3 needs to be part of the image
I we take into account acceptance of A1 and A2

I we pick the first arrow whose target has equal acceptance to w3

(accepted by A1 and rejected by A2)

I we redirect the arrow to w3

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2

w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
I w3 needs to be part of the image
I we take into account acceptance of A1 and A2

I we pick the first arrow whose target has equal acceptance to w3

(accepted by A1 and rejected by A2)
I we redirect the arrow to w3

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:
. . . and so forth.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:

In the (n + 1)-th step, we make wn+1 part of the image

I without altering acceptance of language images by A1,A2, . . . ,An.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:

In the (n + 1)-th step, we make wn+1 part of the image

I without altering acceptance of language images by A1,A2, . . . ,An.

Thus the language whose image is accepted by An is only disturbed with
respect to finitely many words.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Idea: Change arrows such that every element is in the image, but so that:

In the (n + 1)-th step, we make wn+1 part of the image

I without altering acceptance of language images by A1,A2, . . . ,An.

(Relative) regularity is preserved in steps and in the limit!

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Complication

What if in the induction step there is no arrow to a target with the same
acceptance behavior as wn+1 for A1, . . . ,An ?

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Complication

What if in the induction step there is no arrow to a target with the same
acceptance behavior as wn+1 for A1, . . . ,An ?

I We show that, if not, An can be changed (once) to A′n with almost
the same acceptance behavior such that the choice is possible.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Consequences for

comparing models of computation

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1

∀f1 ∈ F1

f1 f2

∃f2 ∈ F2

M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:

M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1

∀f1 ∈ F1

f1 f2

∃f2 ∈ F2

M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:

M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1

∀f1 ∈ F1

f1 f2

∃f2 ∈ F2

M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:
M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1 ∀f1 ∈ F1 f1 f2

∃f2 ∈ F2

M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:
M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1 ∀f1 ∈ F1 f1 f2 ∃f2 ∈ F2 M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:
M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1 ∀f1 ∈ F1 f1 f2 ∃f2 ∈ F2 M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:
M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

I informally computable/effective/mechanizable in principle

I computable with respect to a specific model (Turing machine, . . .)

Boker/Dershowitz: want a ‘robust definition that does not itself depend on the
notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M1 .M2 if: there is an injective ρ such that M1 .ρM2

(ii) M1 .bijectiveM2 if: there is a bijective ρ such that M1 .ρM2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

I informally computable/effective/mechanizable in principle

I computable with respect to a specific model (Turing machine, . . .)

Boker/Dershowitz: want a ‘robust definition that does not itself depend on the
notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M1 .M2 if: there is an injective ρ such that M1 .ρM2

(ii) M1 .bijectiveM2 if: there is a bijective ρ such that M1 .ρM2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

I informally computable/effective/mechanizable in principle

I computable with respect to a specific model (Turing machine, . . .)

Boker/Dershowitz: want a ‘robust definition that does not itself depend on the
notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M1 .M2 if: there is an injective ρ such that M1 .ρM2

(ii) M1 .bijectiveM2 if: there is a bijective ρ such that M1 .ρM2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

I informally computable/effective/mechanizable in principle

I computable with respect to a specific model (Turing machine, . . .)

Boker/Dershowitz: want a ‘robust definition that does not itself depend on the
notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M1 .M2 if: there is an injective ρ such that M1 .ρM2

(ii) M1 .bijectiveM2 if: there is a bijective ρ such that M1 .ρM2

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Anomalies for decision models

Our main result implies anomalies of these definitions.

M = 〈D,F〉 is a decision model if {0, 1} ⊆ D, ∀f ∈F (f [D]⊆ {0, 1}).

Corollary (of Main Theorem)

Let Σ and Γ with {0, 1} ⊆ Σ, Γ be alphabets.

Then for every countable decision model M = 〈Σ∗,F〉, it holds:

M . DFA(Γ) M .bijective DFA(Γ)

TMD(Σ) : class of Turing machine deciders with input alphabet Σ

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Anomalies for decision models

Our main result implies anomalies of these definitions.

M = 〈D,F〉 is a decision model if {0, 1} ⊆ D, ∀f ∈F (f [D]⊆ {0, 1}).

Corollary (of Main Theorem)

Let Σ and Γ with {0, 1} ⊆ Σ, Γ be alphabets.

Then for every countable decision model M = 〈Σ∗,F〉, it holds:

M . DFA(Γ) M .bijective DFA(Γ)

TMD(Σ) : class of Turing machine deciders with input alphabet Σ

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Anomalies for decision models

Our main result implies anomalies of these definitions.

M = 〈D,F〉 is a decision model if {0, 1} ⊆ D, ∀f ∈F (f [D]⊆ {0, 1}).

Corollary (of Main Theorem)

Let Σ and Γ with {0, 1} ⊆ Σ, Γ be alphabets.

Then for every countable decision model M = 〈Σ∗,F〉, it holds:

M . DFA(Γ) M .bijective DFA(Γ)

TMD(Σ) : class of Turing machine deciders with input alphabet Σ

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extensions and moral of these anomalies

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

This anomaly for two decision models via bijective encodings:

I can be extended to some moc’s with unbounded output domain,

I but: TM(Σ)︸ ︷︷ ︸
Turing machines

/.bijective (2-)FST(Σ)︸ ︷︷ ︸
(2-way) finite-state transducers

I depends on uncomputable encodings,

I highlights that uncomputable encodings must be excluded.

I Sometimes the structure of the models M1 and M2 excludes
uncomputable, bijective encodings ρ such that M1 .ρ M2.

I We give a sufficient condition for this, extending work by Shapiro (1982).

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extensions and moral of these anomalies

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

This anomaly for two decision models via bijective encodings:

I can be extended to some moc’s with unbounded output domain,

I but: TM(Σ)︸ ︷︷ ︸
Turing machines

/.bijective (2-)FST(Σ)︸ ︷︷ ︸
(2-way) finite-state transducers

I depends on uncomputable encodings,

I highlights that uncomputable encodings must be excluded.

I Sometimes the structure of the models M1 and M2 excludes
uncomputable, bijective encodings ρ such that M1 .ρ M2.

I We give a sufficient condition for this, extending work by Shapiro (1982).

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extensions and moral of these anomalies

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

This anomaly for two decision models via bijective encodings:

I can be extended to some moc’s with unbounded output domain,

I but: TM(Σ)︸ ︷︷ ︸
Turing machines

/.bijective (2-)FST(Σ)︸ ︷︷ ︸
(2-way) finite-state transducers

I depends on uncomputable encodings,

I highlights that uncomputable encodings must be excluded.

I Sometimes the structure of the models M1 and M2 excludes
uncomputable, bijective encodings ρ such that M1 .ρ M2.

I We give a sufficient condition for this, extending work by Shapiro (1982).

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extensions and moral of these anomalies

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

This anomaly for two decision models via bijective encodings:

I can be extended to some moc’s with unbounded output domain,

I but: TM(Σ)︸ ︷︷ ︸
Turing machines

/.bijective (2-)FST(Σ)︸ ︷︷ ︸
(2-way) finite-state transducers

I depends on uncomputable encodings,

I highlights that uncomputable encodings must be excluded.

I Sometimes the structure of the models M1 and M2 excludes
uncomputable, bijective encodings ρ such that M1 .ρ M2.

I We give a sufficient condition for this, extending work by Shapiro (1982).

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Extensions and moral of these anomalies

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

This anomaly for two decision models via bijective encodings:

I can be extended to some moc’s with unbounded output domain,

I but: TM(Σ)︸ ︷︷ ︸
Turing machines

/.bijective (2-)FST(Σ)︸ ︷︷ ︸
(2-way) finite-state transducers

I depends on uncomputable encodings,

I highlights that uncomputable encodings must be excluded.

I Sometimes the structure of the models M1 and M2 excludes
uncomputable, bijective encodings ρ such that M1 .ρ M2.

I We give a sufficient condition for this, extending work by Shapiro (1982).

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

problem outline solution (results) solution (proof) comparing moc’s summary

Summary

we solved a problem in language theory:

I there exist bijective word encodings
that are regularity preserving, but not reflecting.

by showing:

I for all countable sets C of languages,
there is a bijective encoding g

such that g [L] is regular for all L ∈ C.

some consequences:

I for comparing models of computation via encodings:
I use of unrestricted bijective encodings leads to anomalies

I in the paper: for c-automatic sequences

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks

	The Problem
	Outline
	The Solution (Outline)
	The solution (proof)
	Comparing models of computation
	Summary

