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The problem

An encoding is an injective word function f : A→ Γ∗.

Does there exist a bijective encoding f : Σ∗ → Γ∗ (Σ, Γ finite alphabets)
such that

I the image function f [ ] of f preserves language regularity:

∀L ⊆ Σ∗( L is regular =⇒ f [L] is regular ) ,

I but the image function f −1[·] for the inverse function f −1 does not:

∃L′ ⊆ Γ∗( L′ is regular ∧ f −1[L] is not regular ) ?
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c-automatic functions

For

a number encoding c : N→ Γ∗

, a function h : N→ {0, 1} is c-automatic
if there is a DFA-computable hc : Γ∗ → {0, 1} such that:

N Γ∗

{0, 1} {0, 1}

c

id

c-automatic function

, infinite sequence
, subset of N

h hc
computable by a DFA
, regular language

Gives rise to a subsumption pre-order ≤ :
c ≤ d if all c-automatic functions are d-automatic.

Q: How to characterize number encodings c , d such that c ≤ d ?

A: For bijective number encodings c and d :

c ≤ d ⇐⇒ (d ◦ c−1)[ ] preserves regularity

Q: Does ≤ induce a proper hierarchy? ∃c , d . c ≤ d ∧ d 6≤ c ?

A: For bijective encodings: Yes, if answer to the initial problem is yes!
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Solution
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Main theorem

Main Theorem

Let Σ, Γ be finite alphabets, with |Γ| ≥ 2.

For every countable class C of languages over Σ,
there exists a bijective encoding g : Σ∗ → Γ∗ such that:

∀L ∈ C
(
g [L] is regular

)
.

Thus the answer to the initial problem is ‘Yes!’, because for C = Rec :

g [ ]

P(Σ∗)
Rec

Reg

P(Γ∗)
Rec

Reg
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Encoding and extension lemmas

Encoding Lemma (weakening main theorem to injective encodings)

Let Σ, Γ alphabets with |Γ| ≥ 2.
Then for every countable class C of languages over Σ,

there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)

We say that L is relatively regular in M
if L = M ∩ R for some regular language R.
(if a finite automaton can decide w ∈ L for all w ∈ M).

Extension Lemma (from injective to bijective encodings)

For every injection f : Σ∗ → Γ∗ there is a bijection g : Σ∗ → Γ∗ s.th.:

∀L ⊆ Σ∗
(
f [L] is relatively regular in f [Σ∗] =⇒ g [L] is regular

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks
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Encoding lemma: proof

Encoding Lemma (injective encodings)

Let Σ, Γ be an alphabet with |Γ| ≥ 2.

Then for every countable class C of languages over Σ,
there exists an encoding f : Σ∗ → Γ∗ such that:

∀L ∈ C
(
f [L] is relatively regular in f [Σ∗]

)

Proof.

Let L1, L2, L3, L4, . . . be an enumeration of C, and w1,w2,w3, . . . of Σ∗.
Suppose {0, 1} ⊆ Γ, and define L(w) = 1 if w ∈ L, and else L(w) = 0.
Define f : Σ∗ → Γ∗ by: f (w1) = L1(w1)

f (w2) = L1(w2) L2(w2)

f (w3) = L1(w3) L2(w3) L3(w3)

f (w4) = L1(w4) L2(w4) L3(w4) L4(w4)
...

For almost all u ∈ f [Σ∗]: u ∈ f [Ln] ⇐⇒ u ∈ Γn−11Γ∗.

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks
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Extension lemma: proof idea

Extension Lemma (from injective to bijective encodings)

Let Σ∗ be a countably infinite set.
For every injection f : Σ∗ → Γ∗ there is a bijection g : Σ∗ → Γ∗ s.th.:

∀L ⊆ Σ∗
(
f [L] is relatively regular in f [Σ∗] =⇒ g [L] is regular

)

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks



problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2
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. . . and so forth.
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Idea: Change arrows such that every element is in the image, but so that:

In the (n + 1)-th step, we make wn+1 part of the image

I without altering acceptance of language images by A1,A2, . . . ,An.
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Thus the language whose image is accepted by An is only disturbed with
respect to finitely many words.
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(Relative) regularity is preserved in steps and in the limit!
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Complication

What if in the induction step there is no arrow to a target with the same
acceptance behavior as wn+1 for A1, . . . ,An ?

Regularity Preserving but not Reflecting Encodings Endrullis, Grabmayer, Hendriks



problem outline solution (results) solution (proof) comparing moc’s summary

Extension lemma: proof idea
I Let v1, v2, v3, . . . be an enumeration of all words Σ∗.
I Let w1,w2,w3, . . . be an enumeration of all words Γ∗.
I Let A1,A2,A3, . . . an enumeration of all finite automata over Γ.

We start with an injective function f :

w1 w2 w3

v1 v2 v3 v4 v5 . . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

0

1

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

A1

A2

Complication

What if in the induction step there is no arrow to a target with the same
acceptance behavior as wn+1 for A1, . . . ,An ?

I We show that, if not, An can be changed (once) to A′n with almost
the same acceptance behavior such that the choice is possible.
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Consequences for

comparing models of computation
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Comparing computational power via encodings

I Simulation of functions:

function f2 simulates function f1 via encoding ρ if:

D1 D2

D1 D2

ρ

ρ

M1

∀f1 ∈ F1

f1 f2

∃f2 ∈ F2

M2

I Simulation of models of computation M1 = 〈D1,F1〉, M2 = 〈D2,F2〉:

M2 can simulate M1 via ρ (M1 .ρM2), if:

∀f1 ∈ F1 ∃f2 ∈ F2

(
f2 simulates f1 via ρ

)
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Weak requirements on encodings (Boker/Dershowitz)

Traditional requirements on encodings are:

I informally computable/effective/mechanizable in principle

I computable with respect to a specific model (Turing machine, . . . )

Boker/Dershowitz: want a ‘robust definition that does not itself depend on the
notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M1 .M2 if: there is an injective ρ such that M1 .ρM2

(ii) M1 .bijectiveM2 if: there is a bijective ρ such that M1 .ρM2
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Boker/Dershowitz: want a ‘robust definition that does not itself depend on the
notion of computability’, and therefore suggest as encodings:

(i) injective functions

(ii) bijective functions

Definition (power subsumption pre-order [Boker/Dershowitz 2006])

(i) M1 .M2 if: there is an injective ρ such that M1 .ρM2
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Anomalies for decision models

Our main result implies anomalies of these definitions.

M = 〈D,F〉 is a decision model if {0, 1} ⊆ D, ∀f ∈F (f [D]⊆ {0, 1}).

Corollary (of Main Theorem)

Let Σ and Γ with {0, 1} ⊆ Σ, Γ be alphabets.

Then for every countable decision model M = 〈Σ∗,F〉, it holds:

M . DFA(Γ) M .bijective DFA(Γ)

TMD(Σ) : class of Turing machine deciders with input alphabet Σ

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)
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Extensions and moral of these anomalies

Anomaly (example)

TMD(Σ) .bijective DFA(Γ)

This anomaly for two decision models via bijective encodings:

I can be extended to some moc’s with unbounded output domain,

I but: TM(Σ)︸ ︷︷ ︸
Turing machines

/.bijective (2-)FST(Σ)︸ ︷︷ ︸
(2-way) finite-state transducers

I depends on uncomputable encodings,

I highlights that uncomputable encodings must be excluded.

I Sometimes the structure of the models M1 and M2 excludes
uncomputable, bijective encodings ρ such that M1 .ρ M2.

I We give a sufficient condition for this, extending work by Shapiro (1982).
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Summary

we solved a problem in language theory:

I there exist bijective word encodings
that are regularity preserving, but not reflecting.

by showing:

I for all countable sets C of languages,
there is a bijective encoding g

such that g [L] is regular for all L ∈ C.

some consequences:

I for comparing models of computation via encodings:
I use of unrestricted bijective encodings leads to anomalies

I in the paper: for c-automatic sequences
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