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Abstract

We show that a rewriting system for unfolding terms in the λ-calculus with letrec is
confluent. This system is from previous work, where we formulate letrec-unfolding as a
Combinatory Reduction System (CRS). We prove confluence by applying the decreasing
diagrams method to a partitioning of the parallel rewriting relation into relations that are
induced by parallel steps in which a given rule contracts redexes at a given letrec-depth.

In [1] (see also [2])1 we study infinite λ-terms and present two characterisations of those
λ-terms that are expressible in the λ-calculus with letrec (λletrec), in the sense that they can
be obtained as the infinite unfoldings of a λletrec-term. One characterisation is by a structural
analysis of the term: a term is λletrec-expressible if and only if there it has no infinite ‘binding–
capturing chains’. The other characterisation is via the concept of ‘strong regularity’: a term is
λletrec-expressible if and only if it is strongly regular.

We define a Combinatory Reduction System (CRS) for unfolding λletrec-terms. In the paper
confluence of the CRS is important since it guarantees that the unfolding of a term is unique.
We think however, that the proof itself is of independent interest. For simplicity we use in this
extended abstract an informal formulation of λletrec-terms and the unfolding rewriting system
instead. The set of λletrec-terms Ter(λletrec) is inductively defined by the following grammar:

(term) L ∶∶= λx.L (abstraction)
∣ LL (application)
∣ x (variable)
∣ letrecB inL (letrec)

(binding group) B ∶∶= f1 = L . . . fn = L (equations)

On this set we describe letrec-unfolding in the rewriting system R▽ as follows. The names of the
first four rules are chosen to reflect the kind of term that resides directly inside of the in-part of
the letrec-term, which helps to see that the rules are complete in the sense that every term of
the form letrecB inL is a redex.

(%@
▽
) ∶ letrecB inL0L1 → (letrecB inL0) (letrecB inL1)

(%λ
▽
) ∶ letrecB in λx.L0 → λx.letrecB inL0

(%letrec
▽

) ∶ letrecB0 in letrecB1 inL → letrecB0,B1 inL

(%rec
▽

) ∶ letrecB in fi → letrecB inLi (if B is f1 = L1 . . . fn = Ln)

(%nil
▽

) ∶ letrec inL → L

(%red
▽

) ∶ letrec f1 = L1 . . . fn = Ln inL → letrec fj1 = Lj1 . . . fjn′ = Ljn′ inL
(if fj1 , . . . , fjn′ are the recursion variables reachable from L)

‘Reachable’ from L in the last rule refers to recursion variables that either occur in L or on
the right hand side of any equation that is reachable from L. Thus, the condition on the rule
ensures that only superfluous equations are removed from the binding group.

1In [2] (to appear) we consider the simpler case of expressibility in the λ-calculus with µ.
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Theorem. R▽ is confluent.

Proof sketch. First all, we cannot use Newman’s Lemma to prove the theorem, since R▽ is
not terminating. To show confluence of R▽ we use the method of ‘decreasing diagrams’ [4,
Sec. 2.3] [3, Sec. 14.2]. We use it however not to prove confluence of R▽ directly, but of the
abstract reduction system A = (Ter(λletrec),{ ∣∣Ð→ρd ∣ (d, ρ) ∈ N ×R}) with R as the set of rules
of R▽ where ∣∣Ð→ρd denotes the parallel rewriting relation on Ter(λletrec) induced by rule ρ at
letrec-depth d. As a precedence order we take the order induced by the letrec-depth:

ρd ≥ σd′ ⇐⇒ d ≥ d′

The letrec-depth of a redex in λletrec-term denotes the number of letrec-nodes passed on the
path from the root of the term tree to the corresponding position. We write →ρd to denote the
relation induced by applying rule ρ contracting a redex at letrec-depth d.

Let us denote the rewriting relation induced by A by →A:

→A = ⋃{ ∣∣Ð→ρd ∣ (d, ρ) ∈ N ×R}

If →A is confluent then the rewriting relation →▽ induced by R▽ is confluent because it
holds: →▽ ⊆ →A ⊆ ↠▽ or equivalently ↠A = ↠▽ (see also [4, Lemma 2.2.5]).

We use the approach with the parallel steps because the preceding attempt to prove confluence
of R▽-steps by decreasing diagrams more directly was unsuccessful. As a precedent order we
considered an ordering on the rules and lexicographic extensions of such orderings with the
letrec-depth of the contracted redex. We came to the conclusion that no such order could ensure
decreasingness of the elementary diagrams of both the critical pairs as well as the strictly nested
redexes. This was due to redex duplication induced by the diverging steps, so that joining the
diagram required a multi-step that disrupted decreasingness. In order to resolve this problem we
considered parallel steps as above such that the problematic multi-step would become a single
parallel step. This led to more intricate diagrams but turned out to be a viable solution.

We will prove confluence of →A by showing that two diverging parallel steps in R▽ can be
joined in an elementary diagram of the following form with d ≤ e.

∣∣
ρd

=σe

∣∣
σe−1

∣∣
ρd

=σe

=σe−1
(1)

With the precedence as above the diagram is decreasing. Note that in all the diagrams we
implicitly assume the reflexive closure for all arrows. The rest of the proof is structured as
follows. To justify the diagram we distinguish the cases d = e and d < e, for which we construct
diagrams that are instances of (1).
Case 1. For d = e we need to consider parallel diverging steps contracting redexes at the same
letrec-depth d. We construct the diagram below which is an instance of the diagram above where
the diverging parallel steps are in sequentialised form. We write terms as fillings of a multihole
context C with all its holes at letrec-depth d such that the contracted ρd- and σd-redexes are
filled into these holes. In this way we can make explicit at which position a step takes place, i.e.
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at the root of the context hole fillings. The topmost row and the leftmost column are respective
sequentialisations of the parallel diverging ρd- and σd-steps into single steps.

C[L0, . . . , Ln] C[L q
0, L1 . . . , Ln] C[L q

0, L
q
1, L2 . . . , Ln] . . . C[L q

0, . . . , L
q
n]

C[L c
0, L1, . . . , Ln] C[L⊙0 , L1, . . . , Ln] C[L⊙0 , L

q
1, L2, . . . , Ln] . . . C[L⊙0 , L

q
1, . . . , L

q
n]

C[L c
0, L

c
1, L2, . . . , Ln] C[L⊙0 , L

c
1, L2, . . . , Ln] C[L⊙0 , L⊙1 , L2, . . . , Ln] . . . C[L⊙0 , L⊙1 , L

q
2, . . . , L

q
n]

⋮ ⋮ ⋮ ⋱ ⋮

C[L c
0, . . . , L

c
n] C[L⊙0 , L

c
1, . . . , L

c
n] C[L⊙0 , L⊙1 , L

c
2, . . . , L

c
n] . . . C[L⊙0 , . . . , L⊙n]

ρd ρd ρd ρd

∣∣
ρd ρd ρd ρd

∣∣
ρd

∣∣
ρd ρd ρd

∣∣
ρd

∣∣
ρd

∣∣
ρd

∣∣
ρd

σd =σd =σd =σd

σd σd =σd =σd

σd σd σd =σd

σd σd σd =σd

Only the tiles on the diagonal require closer attention because for all other tiles the vertical
and horizontal steps take place in different holes of the context, therefore they are disjoint and
consequently commute. In the tiles on the diagonal the diverging steps may be either due to
a critical pair or to identical steps. In the latter case the diagram is easily joined. In case of
a critical pair, since all steps take place at the same letrec-depth any such critical pair must
arise from a root overlap. An exhaustive scrutiny of all these critical pairs reveals that they can
be joined in a way that conforms to the tiles on the diagonal. Below two exemplary cases are
shown. Note that the letrec-depths of the steps have to be increased by d according to the lifting
into a context with its hole at letrec-depth d.

letrec inLP (letrec inL) (letrec in P )

LP LP

@0

nil0 =nil0

letrecB inLP
(letrecB inL)
(letrecB in P )

letrecB′ inLP
(letrecB′ inL)
(letrecB′ in P )

@0

red0 =red0

@0

Case 2. For d < e we use the same approach as for d = e, the diagram is however more involved.
Again, we use a context C with context holes at letrec-depth d. But since e > d, more than one
σe-contraction may take place in one such hole. Therefore a per-hole partitioning of the vertical
steps requires a sequence of parallel steps.

The diagram below fits the scheme of the elementary diagram (1) when interleaving the
σe-steps with the σe−1-steps in the rightmost column such that steps at depth e preceed those at
depth e− 1. Similarly for the bottommost row where the ρe−1-steps have to preceed the σd-steps.
These reorderings are possible since the segments represent contractions within different holes of
C. As in the previous diagram the tiles which do not lie on the diagonal are unproblematic,
which leaves us to complete the proof by constructing the tiles on the diagonal.
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C[L0, . . . , Ln] C[L q
0, L1 . . . , Ln] C[L q

0, L
q
1, L2 . . . , Ln] . . . C[L q

0, . . . , L
q
n]

C[L c
0, L1, . . . , Ln] C[L⊙0 , L1, . . . , Ln] C[L⊙0 , L

q
1, L2, . . . , Ln] . . . C[L⊙0 , L

q
1, . . . , L

q
n]

C[L c
0, L

c
1, L2, . . . , Ln] C[L⊙0 , L

c
1, L2, . . . , Ln] C[L⊙0 , L⊙1 , L2, . . . , Ln] . . . C[L⊙0 , L⊙1 , L

q
2, . . . , L

q
n]

⋮ ⋮ ⋮ ⋱ ⋮

C[L c
0, . . . , L

c
n] C[L⊙0 , L

c
1, . . . , L

c
n] C[L⊙0 , L⊙1 , L

c
2, . . . , L

c
n] . . . C[L⊙0 , . . . , L⊙n]

ρd ρd ρd ρd

σe−1 ∣∣
ρd ρd ρd ρd

σe−1 ∣∣
ρd σe−1 ∣∣

ρd ρd ρd

σe−1 ∣∣
ρd σe−1 ∣∣

ρd

=σe

=σe

=σe−1

=σe

=σe−1

=σe

=σe−1

=σe =σe

=σe

=σe−1

=σe

=σe−1

=σe =σe =σe

=σe

=σe−1

=σe =σe =σe

=σe

=σe−1

Every hole on the diagonal is filled with at most one ρd-redex (at the root of the context
hole fillings) but because of d < e with possibly many σe-redexes (properly inside of the fillings).
There may or may not be an overlap between the ρd-step and a σe-step, but there can be at
most one, which is due to the rules of R▽.

d

e

Therefore σe contracts either an overlap and a number
of nested redexes, or only nested redexes without an
overlap. These constellations are depicted on the
figure on the left. There is one ρd-redex and three
σe-redexes. On the left, one of the σe-redexes overlaps
with the ρd-redex while on the right all σe-redexes
are strictly nested inside the ρd-redex.

For the critical pairs due to a non-root overlap, and for all situations with nested redexes,
we construct diagrams of the following shape, respectively:

ρ0

σ1

σ0
∣∣
ρ0

σ0

(2)

ρ0

σe

ρ0

σe′ e′ ∈ {e, e − 1}

(3)
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When lifted into a context of letrec-depth d both of the diagrams comply to the shape
necessary for the diagonal tiles, but we need to be able to handle situations as on the left of the
above figure, where both nested redexes as well as the overlapping redex are contracted. Firstly,
since all σ-redexes occur at the same letrec-depth, it must hold that d = 0 and e = 1, which is due
to the rules of R▽. Secondly, none of the involved redex contractions affect any of the nested
redexes except for duplicating or erasing them, which means that the residuals of the σ-steps
after these steps are part of a parallel σe′ -step (mind that we assume the reflexive closure of all
steps). Or in a diagram:

⋮

ρ0

=σ1

σ1

ρ0

σ0

σ0
∣∣
ρ0

=σe1

=σen ei ∈ {0,1}

The diagram is composed from the previous two diagrams. A parallel version of (3) constitutes
the top part, while the bottom part is an exact replica of (2). The top part settles the portion
arising from the nested redexes, the bottom part settles the portion arising from the overlapping
redex.

At last in order to fit that diagram into the scheme of the diagonal tiles the steps on the
right have to be reordered such that σei-steps with ei = 1 preceed σei-steps with ei = 0. The
reordering is viable because every σei-step takes place in its own residual of the σ1-step from
the left.

We conclude the proof by a comprehensive analysis of all critical pairs that arise from
non-root overlaps in R▽ as well as the diagrams for joining nested redexes. Below, one critical
pair is shown for each case. See [1] for an exhaustive scrutinisation.

letrecB in letrecC inLP letrecB C inLP

letrecB in
(letrecC inL)
(letrecC in P )

(letrecB in letrecC inL)
(letrecB in letrecC in P )

(letrecB C inL)
(letrecB C in P )

letrec0

@1

@0

@0

∣∣
letrec0

letrecB inL0L1
(letrecB inL0)
(letrecB inL1)

letrecB′ inL′0L
′

1
(letrecB′ inL′0)
(letrecB′ inL′1)

@0

σe =σe

@0
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A generalisation of the proof to obtain a theorem is still very much work in progress. Below
are preliminary propositions that are to capture the essential properties of R▽ that made the
above approach possible.

The following lemma requires the rewriting steps to be partitioned in a way such that
diverging parallel steps cannot be ‘intertwined’, permitting the construction of a decreasing
diagram using parallel steps as in the proof above.

Lemma 1. Let A be an ARS (A,{→α ∣ α ∈ I}) that is induced by a TRS/CRS/HRS, where
the index set I is equipped with a well-founded partial order. The steps Φ of A are equipped
with respective indices from I as well as with the position (pos ∶ Φ→ N) of the contracted redex.
Indexed single steps →α induce indexed parallel steps ∣∣Ð→α (for all α ∈ I). If the following
conditions are met, then →I = ⋃i∈I →i is confluent.

1. There do not exist α,β ∈ I, two α-steps ρ1, ρ2, and two β-steps σ1, σ2 such that it holds:

pos(ρ1) ∣∣ pos(ρ2) ∧ pos(σ1) ∣∣ pos(σ2)

pos(ρ1) < pos(σ1) ∧ pos(ρ2) > pos(σ2)
Here we use ∣∣ for incomparable (‘parallel’) positions: p ∣∣ q⇔ p /≤ q ∧ q /≤ p.

2. A diverging α-step at position p and a parallel β-step with positions q1, . . . , qn below p
(∀i ∈ {1, . . . , n} ∶ p ≤ qi) can be joined by a diagram of the following form:

α

=β

< β
∣∣
α < βor < α

< α

=β

< βor < α

Thereby all closing steps need to take place below p, i.e. at positions ≥ p.

A second specialised lemma is to be more concrete and easier to apply. It includes in the
index a notion of depth (cf. letrec-depth), to which the order on the index is linked, such that
condition 1 of Lemma 1 is met. Furthermore we stipulate properties of the rewriting relation,
that allow for an order-respecting context embedding of rewriting steps. This will simplify
condition 2 of Lemma 1 such that the diagram has only to be constructed for critical overlaps
at the root of a term.
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