
Confluent Let-Floating

Clemens Grabmayer1 and Jan Rochel2

1 Department of Philosophy, Utrecht University
clemens@phil.uu.nl

2 Department of Computing Sciences, Utrecht University
jan@rochel.info

Abstract

We develop a rewrite analysis for floating (moving) let-bindings in expressions of λletrec,
the λ-calculus with the construct letrec that is denoted by let (as in the programming
language Haskell). In particular we consider a HRS (higher-order rewrite system) for let-
lifting, which moves let-bindings upward, and another HRS for let-sinking, which moves
let-bindings downward. We show confluence and termination of the let-lifting and let-sin-
king rewrite systems, yielding the existence of unique normal forms. Our confluence proofs
use a critical pair analysis and the critical pair theorem to establish local confluence, and
the termination of these systems to obtain confluence by applying Newman’s Lemma.

Let-floating is an operation employed by transformations that simplify and optimize program
code as part of compilers of functional languages. For example the lambda-lifting transformation
of functional programs into supercombinators contains a step called ‘let-floating’ [4, 15.5.4]
or ‘block-floating’ [1], in which let-bindings are floated out (upward, we call it ‘let-lifting’).
Lambda-lifting transforms a let-block-structured program into a set of recursive equations whose
right-hand sides are supercombinators. This transformation has an inverse called lambda-drop-
ping [1], which contains the step ‘block-sinking’ in which let-bindings are floated in (downward,
we call it ‘let-sinking’). The use of let-floating operations in either direction for optimizing and
fine-tuning the execution behavior of compiled functional programs has been studied in [8].

As a more general concept, let-floating acts on expressions of λletrec, the λ-calculus with the
construct letrec for formulating recursion and explicit substitution. We denote letrec as let like in
the programming language Haskell (no confusion should arise with the non-recursive explicit-
substitution construct let), but keep the symbol λletrec. In our terminology, ‘floating’ stands for
movements in either direction, whereas ‘lifting’ and ‘sinking’ indicate upward and downward
shifts in the syntax tree, respectively. Let-floating manipulates the structure of let-bindings in
λletrec-expressions, but preserves the unfolding semantics of the expressions (the denoted infinite
λ-terms). A let-binding-group B can be lifted up toward the innermost λ-abstraction that
has a free variable occurrence in B. A group of n interdependent let-bindings f⃗ = F⃗ (f⃗) with
f⃗ = ⟨f1, . . . , fn⟩ can be sunk until an applicative term is encountered where both in its function
subterm and in its argument subterm some recursion variable fi with i ∈ {1, . . . , n} occurs.

Our interest in let-floating stems from an investigation of the relationship between λletrec-ex-
pressions and term graph representations for cyclic λ-terms [3]. Translations of λletrec-expressions
into representing term graphs typically ignore the precise positioning of the let-bindings, and
instead extract the cyclic structure of the term. Therefore such translations map λletrec-expres-
sions that are related by let-floating to the same term graph. For the definition of (left-)inverses
of such translations, it is desirable to obtain natural representatives of let-floating equivalence
classes by restricting the direction of let-floating operations to upward or downward.

We develop a rewrite analysis of let-floating. When decomposed into locally applicable
rewrite steps on λletrec-expression, let-floating operations typically move let-bindings upward or
downward over applications and abstractions, or merge different let-binding groups, given that
such steps do not interfere with the structure of the λ-bindings. We formalize λletrec-expressions

1



as higher-order rewriting system (HRS) terms [10], and define two HRSs that describe different
kinds of let-floating transformations as rewrite systems: let-lifting for moving let-bindings up-
ward, and let-sinking for moving them downward. In both cases let-bindings are split whenever
necessary for moves, and merged whenever possible. We show confluence and termination of
the let-lifting and let-sinking rewrite systems, and by that, unique normalization.

1 Let-lifting

We formulate expressions in (untyped) λletrec as HRS-terms [10] over the signature {abs, app} ∪
{letn in ∣ n ∈ N}, where abs ∶ (trm→ trm)→ trm, app ∶ trm→ trm→ trm, and for all n ∈ N, letn in ∶
(trmn → trmn+1)→ trm over the base type trm. As an example, consider the λletrec-term:

λx. let f = g, g = x in f x abs(x. let2 in(fg. (g, x, app(f, x))))

in familiar (first-order) notation and in a formulation as HRS-term. Here the index 2 in the
symbol let2 in indicates the number of bindings in the binding group of the let-expression. While
building on this HRS-formulation, we will generally use the familiar syntax for let-expressions.

We consider five schemes of rules for lifting let-bindings, see below. A step according to a
rule from (let↗@0) or (let↗@1) lifts a let-binding-group over an application. In steps according
to rules from (let↗λ), a let-binding-group immediately below an abstraction is either lifted over
the abstraction in its entirety, or it is split into a part that is lifted and a part that stays behind.
Steps according to rules in (let-in let↗) merge the binding-groups of two let-expressions where
one forms the in-part of the other. A step according to rules from (let let↗) lifts, out of its
position, the binding-group B′ of a let-expression that defines a recursive variable g in a let-bin-
ding-group B, merges B with B′, and adapts the definition of g accordingly. Sequences of steps
due to (exchange)-rules can rearrange the order in which let-bindings occur in a binding-group.

(let↗@0) (let f⃗ = F⃗ (f⃗) in E0(f⃗))E1 → let f⃗ = F⃗ (f⃗) in E0(f⃗)E1

(let↗@1) E0 (let f⃗ = F⃗ (f⃗) in E1(f⃗)) → let f⃗ = F⃗ (f⃗) in E0E1(f⃗)

(let↗λ) λx. let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗, x) in E(f⃗ , g⃗, x)

→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

let f⃗ = F⃗ (f⃗) in λx.E(f⃗ , x) if g⃗ is empty

let f⃗ = F⃗ (f⃗) in λx. let g⃗ = G⃗(f⃗ , g⃗, x) in E(f⃗ , g⃗, x) if neither f⃗
nor g⃗ are empty

(let-in let↗) let f⃗ = F⃗ (f⃗) in let g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗)
→ let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗)

(let let↗) let f⃗ = F⃗ (f⃗ , g), g = let h⃗ = H⃗(f⃗ , g, h⃗) in G(f⃗ , g, h⃗) in E(f⃗ , g)
→ let f⃗ = F⃗ (f⃗ , g), g = G(f⃗ , g, h⃗), h⃗ = H⃗(f⃗ , g, h⃗) in E(f⃗ , g)

(exchange) let B0, fi = Fi(f⃗), fi+1 = Fi+1(f⃗), B1 in E(f⃗)
→ let B0, fi+1 = Fi+1(f⃗), fi = Fi(f⃗), B1 in E(f⃗)

Here we have used the familiar syntax of let-expressions instead of the underlying HRS-syntax.1

1E.g. app((letn in(y⃗. (x1(y⃗), . . . , xn(y⃗), z0(y⃗)))), z1) → letn in(y⃗. (x1(y⃗), . . . , xn(y⃗), app(z0(y⃗), z1))) are the
rules of scheme (let↗@0) in HRS-notation with the leading abstractions x1 . . . xnz0z1. on either side kept implicit.

2



Note that an alternative formulation of (let↗λ) that only can lift a let-binding-group over
an abstraction in its entirety, but that does not allow to split it, has a drawback. In order to
obtain the same let-lifting rewrite relation, also a rule for splitting binding-groups is required,
for example the converse of (let-in let↗). But then together with the rule (let-in let↗) itself,
which is needed for confluence, avoidable non-termination is introduced in the let-lifting system
(which is of a different kind than the non-termination caused by (exchange)-steps alone).

By Rletd we denote the HRS consisting of the first five rules above. By Rletdex we denote the
HRS consisting of all six rules above, thus the extension of Rletd with the rule (exchange). The
rewrite relations of Rletd and Rletdex are denoted by letd and letdex, respectively. The rewrite
relation →ex is induced by steps according to the rule (exchange), and =ex is the convertibility
relation with respect to →ex. The let-lifting rewrite relation let↗ on λletrec-terms is defined as
the rewrite relation letd modulo =ex, that is (see below), by let↗ ∶= =ex ⋅ letd ⋅ =ex. For example:

λx. (let f = let g = x in g in f)x let↗ λx. (let f = g, g = x in f)x let↗ λx. let f = g, g = x in f x

is a let↗-rewrite sequence (and even a letd-rewrite sequence) to a normal form. Another final

let↗-step here yields the =ex-equivalent term λx. let g = x, f = g in f x. Therefore let↗ is not
confluent. However, it will turn out that let↗ is ‘confluent modulo’ =ex.

An abstract equational rewrite system A = ⟨A,→, ∼⟩ is an abstract rewrite system ⟨A,→⟩
that is endowed with an equivalence relation ∼ on A. The rewrite relation →/∼/ of → modulo ∼ is
defined as →/∼/ ∶= ∼ ⋅→ ⋅ ∼. The class rewrite relation →[∼] of → with respect to ∼ is induced by
→/∼/ on the ∼ -equivalence classes on A by: for all a, b ∈ A, [a]∼ →[∼] [b]∼ if and only if a→/∼/ b.

The rewrite relation → is called locally confluent modulo ∼ (resp. confluent modulo ∼) if
it holds: ← ⋅ → ⊆ ↠ ⋅ ∼ ⋅↞ (resp. ↞ ⋅ ↠ ⊆ ↠ ⋅ ∼ ⋅↞). The lemma below reduces confluence
properties for →/∼/ and →[∼] to corresponding properties of a rewrite relation subsumed by →/∼/.

Lemma 1. Let ⟨A,→, ∼⟩ be an abstract equational rewrite system with ∼ = ↔∗

∼
for a rewrite

relation →∼ on A. Then it holds: if ∼ ⋅ → ∪ →∼ is locally confluent (confluent), then →/∼/ is
locally confluent modulo ∼ (confluent modulo ∼), and →[∼] is locally confluent (confluent).

The let-lifting rewrite relation [let]↗ on =ex-equivalence classes of λletrec-terms is defined as
the class rewrite relation [let]↗ ∶= letd[=ex]

(note that let↗ = letd/=ex/
):

[L]=ex [let]↗ [L′]=ex ∶⇐⇒ L let↗ L′ (for all λletrec-terms L, L′) .

Lemma 2. let↗ is locally confluent modulo =ex, and [let]↗ is locally confluent.

Proof (Outline). We define a HRS Rlet↗ex with =ex ⋅ letd ∪ →ex as its rewrite relation, by
extending Rletdex through adding, for each rule ρ in Rletd, all variant rules ρφ with respect
to =ex-permutation steps =φex on the left-hand sides of the pattern of ρ. In this way each rule
scheme (σ) of Rletd gives rise to a rule scheme (σ)

=ex
of Rlet↗ex. Then every step =φex ⋅→ρ for

the rewrite relation =ex ⋅ let↗, where →ρ is a step according to a rule ρ of scheme (σ) in Rletd,
is a step →ρφ according to a variant rule ρφ of scheme (σ)

=ex
in Rlet↗ex.

Now it can be checked that all critical pairs of Rlet↗ex are joinable. For example, solving a
critical overlap between rules (let↗@0) in (let↗@0)=ex and (let↗@1) in (let↗@1)=ex :

(let f⃗ = F (f⃗) in E0(f⃗)) (let g⃗ = G(g⃗) in E1(g⃗)) let f⃗ = F (f⃗) in E0(f⃗) let g⃗ = G(g⃗) in E1(g⃗)

let g⃗ = G(g⃗) in (let f⃗ = F (f⃗) in E0(f⃗))E1(g⃗) let f⃗ = F (f⃗) in let g⃗ = G(g⃗) in E0(f⃗)E1(g⃗)

let g⃗ = G(g⃗) in let f⃗ = F (f⃗) in E0(f⃗)E1(g⃗) let g⃗ = G(g⃗), f⃗ = F (f⃗) in E0(f⃗)E1(g⃗)

(let↗@0)
(let↗@1) (let↗@1)

(let-in let↗) ⋅ =ex(let↗@0)

(let-in let↗)

3



Then the critical pair theorem for HRSs [6] [10, Thm. 11.6.44] (note that the possibility to find
all critical pairs for a HRS is based on a matching algorithm for HRS first described in [6]) yields
that =ex ⋅ letd ∪ →ex is locally confluent. From this, it follows by Lemma 1 that let↗ = letd/=ex/

is locally confluent modulo =ex, and that [let]↗ is locally confluent. ◻

Remark 3. This proof (or actually that of Theorem 6) could also be based on an HRS-analogue
of a critical pair theorem by Petersen and Stickel [7, Thm. 9.3] for TRSs that are endowed with
an equational theory. Other versions of critical pair theorems for TRSs that are based on ‘critical
→-pairs modulo ∼’ (e.g. Jouannaud [5]) suppose that → is ∼-coherent : if t ∼ s and t→+ t1, then
there there exist t′1 and s′ with t1 ↠ t′1 and s →+ s′ such that t′1 ∼ s′. Yet the relation letg
here is not =ex-coherent: while λx. let f = λy. y, g = x in f g admits an letd-step according to a
rule of (let↗λ), the =ex-equivalent term λx. let g = x, f = λy. y in f g is a letd-normal form. In
order to apply (an HRS-analogue of) such a theorem, the system has to be extended to one with
rewrite relation =ex ⋅ letd by introducing variant rules as in the proof above (also done in [7]).

Proposition 4. let↗ and [let]↗ are terminating.

Proposition 5. In every let↗-normal form, subterms starting with let occur only at the root
or below λ-abstractions. The same holds for every term representing a [let]↗-normal form.

Theorem 6. [let]↗ is confluent and terminating, and has the unique normalization property.

Proof. From Lemma 2 and Proposition 4 by Newman’s Lemma [10, Thm. 1.2.1]. ◻

2 Let-sinking

A candidate for a rewrite system for sinking let-bindings is the HRS that arises from the let-lif-
ting HRS Rlet↗ by reversing all of its rules. Unfortunately the resulting system is not confluent.
The problem is that the splitting rules for binding-groups, the converses of rules in (let-in let↗),
allow to sink, for a let-binding-group with two independent parts, each part into the other, so
that, in many situations, the results cannot be joined again. We note that adding (let-in let↗)
would remedy the situation, but at the cost of yielding a non-terminating let-sinking system.

Here we disallow the splitting rules for let-binding-groups altogether, but keep their converses
from (let-in let↗), yet now call the scheme (let↘ let ). Yet we integrate the splitting rules
into those let-binding-movement rules for which sinking of entire binding-groups is not always
possible, namely rules for sinking let-bindings into the left or right subterm of an application,
see the rule schemes (let↗@0) and (let↗@1) below. As reflected in rules from (let↘λ), let-bin-
ding-groups can always be sunk into a λ-abstraction. The rule (let let↘) is the converse of
(let let↗). So we consider the following five rule schemes for sinking let-bindings:

(let↗@0) let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E0(f⃗ , g⃗)E1(f⃗)

→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(let g⃗ = G⃗(g⃗) in E0(g⃗))E1 if f⃗ is empty

let f⃗ = F⃗ (f⃗) in (let g⃗ = G⃗(f⃗ , g⃗) in E0(f⃗ , g⃗))E1(f⃗) if neither f⃗
nor g⃗ are empty

(let↗@1) let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E0(f⃗)E1(f⃗ , g⃗)

→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E0 (let g⃗ = G⃗(g⃗) in E1(g⃗)) if f⃗ is empty

let f⃗ = F⃗ (f⃗) in E0(f⃗) (let g⃗ = G⃗(f⃗ , g⃗) in E1(f⃗ , g⃗)) if neither f⃗
nor g⃗ are empty

(let↘λ) let f⃗ = F⃗ (f⃗) in λx.E(f⃗ , x) → λx. let f⃗ = F⃗ (f⃗) in E(f⃗ , x)
4



(let↘ let ) let f⃗ = F⃗ (f⃗) in let g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗) → let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗)

(let let↘) let f⃗ = F⃗ (f⃗ , g), g = G(f⃗ , g, h⃗), h⃗ = H⃗(f⃗ , g, h⃗) in E(f⃗ , g)
→ let f⃗ = F⃗ (f⃗ , g), g = let h⃗ = H⃗(f⃗ , g, h⃗) in G(f⃗ , g, h⃗) in E(f⃗ , g)

and additionally, the rules of the scheme (exchange) from Rlet↗. By Rletg we denote the HRS
consisting of the five rules above, and by Rletgex its extension with the rule (exchange). The
rewrite relations of Rletg and Rletgex are denoted by letg and letgex, respectively.

Since the binding-group merge rules with induced rewrite relation →merge are part of both
Rletd and Rletg (in the schemes (let-in let↗) in Rletd and (let↘ let ) in Rletg), the induced
let-lifting and let-sinking rewrite relations are not precisely each other’s converse. See e.g.:

λx. let f = x, g1 = g2 f, g2 = g1 f in g1 g2
/letg

elet
λx. let f = x in let g1 = g2 f, g2 = g1 f in g1 g2

Observe that the term on the left is a letg-normal form, and that the elet-step is a ←merge-step.
This example also shows that let-sinking does not always stack let-bindings as deeply as possible.
This, however, is consistent with the definition of ‘lambda-dropping’ and ‘block-sinking’ in [1].

Proposition 7. Every letg-step is either a →merge-step or the converse of a letd-step followed
by at most one →merge-step. Every letd-step is either a →merge-step or the converse of a letg-step
followed by at most one →merge-step.

The let-sinking rewrite relation let↘ on λletrec-terms is defined as the rewrite relation letg
modulo =ex, that is, by: let↘ ∶= letg/=ex/

= =ex ⋅ letg ⋅ =ex. The let-sinking rewrite relation [let]↘
on =ex-equivalence classes of λletrec-terms is defined as the class rewrite relation [let]↘ ∶= let↘[=ex]

.

As an example we consider the following let↘-rewrite sequence (it is actually a letg-rewrite
sequence) to normal form (this is the converse of the example above for let↗):

λx. let f = g, g = x in f x let↘ λx. (let f = g, g = x in f)x let↘ λx. (let f = let g = x in g in f)x

For similar (trivial) reasons as explained for let↗, also let↘ is not confluent. But while let↗
is confluent modulo =ex, this is not the case for let↘, and neither is [let]↘ confluent, yet. In
order to see this, consider the following forking let↘-steps:

λx.λy. (let f = λz. z in x) y ↙let λx.λy. let f = λz. z in xy let↘ λx.λy. x (let f = λz. z in y)

Here the =ex-equivalence classes of the reducts (obtained by rules in (let↗@0) and (let↗@1)
respectively) cannot be joined, because the redundant let-binding f = λz. z cannot be removed.
Therefore we extend the system by two rules for removing redundant and empty let-bindings:

(reduce) let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E(f⃗) → let f⃗ = F⃗ (f⃗) in E(f⃗)

(nil) let in L → L

which can be called rules for garbage collection (in analogy with literature on explicit substitu-
tion). The rewrite relation →gc is induced by steps according to the rules (reduce) and (nil).
The let-sinking/reduce rewrite relation let↘gc is defined as the rewrite relation letg∪→gc modulo
=ex, that is, by: let↘gc ∶= (letg ∪→gc)/=ex/ = =ex ⋅ (letg ∪→gc) ⋅ =ex And the let-sinking/reduce

rewrite relation [let]↘[gc] on =ex-equivalence classes of λletrec-terms is defined as the class rewrite
relation [let]↘[gc] ∶= let↘gc

[=ex]
.

Using these relations we can join the forking steps from above as follows:

λx.λy. (let f = λz. z in x) y ↠gc λx.λy. x y ↞gc λx.λy. x (let f = λz. z in y)

5



Remark 8. In [2, 9] we introduce and study a rewrite system (formalized as a Combinatory
Reduction System) for unfolding λletrec-terms into infinite λ-terms. This system contains a rule
scheme that enables more general steps than those of the scheme (reduce), namely:

(%reduce
▽

) ∶ letrec f1 = L1 . . . fn = Ln inL → letrec fj1 = Lj1 . . . fjn′ = Ljn′ inL

(if fj1 , . . . , fjn′ are the recursion variables that are reachable from L)

However, due to the presence of the rule scheme (exchange) in the systems we consider here,
every step according to a rule of (%reduce

▽
) can be simulated by a number of →ex-steps followed

by a step according to a rule of (reduce). Thus the syntactically easier rules of (reduce) suffice
here. The availability of the rules of (exchange) also enables the use of the rules (let↗λ) and
(let↘@i) (i ∈ {0,1}) in which a call graph analysis is enforced by a pattern of rather easy form.

Lemma 9. let↘gc is locally confluent modulo =ex, and [let]↘[gc] is locally confluent.

Proof (Idea). Similarly as in the proof of Lemma 2, a critical-pair analysis is carried out
for a HRS Rlet↘gc with →ex ∪ =ex ⋅ (letg ∪→gc) as its rewrite relation. Here the analysis is
more laborious (two more rules), and considerably more tedious (for three schemes, (let↗@0),
(let↗@1), and (let let↘), the rule patterns create splits of let-binding-groups, which in order
to join critical steps requires a careful analysis of the possible call graphs between let-bindings
in their source term). The lemma folows by the Critical Pair Theorem of [6] and Lemma 1. ◻
Proposition 10. let↘gc and [let]↘[gc] are terminating.

Theorem 11. [let]↘[gc] is confluent, terminating, and has the unique normalization property.

The properties stated for [let]↘[gc] in Thm. 11 and for [let]↗ in Thm. 6 can also be shown

for the extension [let]↗[gc] of the let-lifting rewrite relation [let]↗ by incorporating →gc-steps.
Finally, a comprehensive HRS for let-floating in both upward and downward direction, and for
reducing binding-groups can be obtained by gathering all rules underlying let↗ and let↘gc.

Acknowledgement. We want to thank the reviewers for their valuable comments and suggestions.

References

[1] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: transforming recursive equations into
programs with block structure. Theoretical Computer Science, 248(1-2):243 – 287, 2000. PEPM’97.

[2] Clemens Grabmayer and Jan Rochel. Expressibility in the Lambda-Calculus with Letrec. Technical
Report arXiv:1208.2383, arxiv.org, August 2012. http://arxiv.org/abs/1208.2383.

[3] Clemens Grabmayer and Jan Rochel. Term Graph Representations for Cyclic Lambda Terms. In
Proc. of TERMGRAPH 2013, number 110 in EPTCS, 2013. http://arxiv.org/abs/1302.6338v1.

[4] Simon Peyton Jones. The Implementation of Functional Progr. Languages. Prentice-Hall, 1987.

[5] Jean-Pierre Jouannaud. Confluent and coherent equational term rewriting systems application to
proofs in abstract data types. In Giorgio Ausiello and Marco Protasi, editors, CAAP’83, volume
159 of Lecture Notes in Computer Science, pages 269–283. Springer Berlin Heidelberg, 1983.

[6] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192(1):3–29, 1998.

[7] Gerald E. Peterson and Mark E. Stickel. Complete Sets of Reductions for Some Equational
Theories. JACM, 28(2):233–264, 1981.

[8] Simon Peyton Jones, Will Partain, and André Santos. Let-floating: moving bindings to give faster
programs. In Proceedings of the first ACM SIGPLAN international conference on Functional
programming, ICFP ’96, pages 1–12, New York, NY, USA, 1996. ACM.

[9] Jan Rochel and Clemens Grabmayer. Confluent unfolding in the λ-calculus with letrec. In Pro-
ceedings of IWC 2013 (2nd International Workshop on Confluence), 2013.

[10] Terese. Term Rewriting Systems. Cambridge University Press, 2003.
6

arxiv.org
http://arxiv.org/abs/1208.2383
http://arxiv.org/abs/1302.6338v1

	Let-lifting
	Let-sinking

