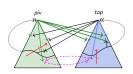
Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete

Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions

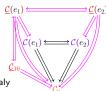


Clemens Grabmayer

G S GRAN SASSO SCIENCE INSTITUTE

Department of Computer Science, GSSI, L'Aquila, Italy

Scuola Universitaria Superiore



Computer Science Seminar GSSI

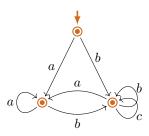
July 27, 2022

Process semantics of regular expressions [] (Milner, 1984)

```
0 \stackrel{\|\cdot\|_{P}}{\longmapsto} \text{deadlock } \delta, no termination
       1 \stackrel{\llbracket \cdot \rrbracket_P}{\longmapsto} empty-step process \epsilon, then terminate
       a \stackrel{\llbracket \cdot \rrbracket_{\mathbb{P}}}{\longmapsto} atomic action a, then terminate
e + f \mapsto (choice) \text{ execute } [e]_{\mathbf{P}} \text{ or } [f]_{\mathbf{P}}
 e \cdot f \xrightarrow{\|\cdot\|_{\mathbf{P}}}  (sequentialization) execute \|e\|_{\mathbf{P}}, then \|f\|_{\mathbf{P}}
     e^* \stackrel{\|\cdot\|_{\mathbf{P}}}{\longmapsto} (iteration) repeat (terminate or execute [\![e]\!]_{\mathbf{P}})
  [e]_{\mathbf{P}} := [\mathcal{C}(e)]_{\leftrightarrow} (bisimilarity equivalence class of chart \mathcal{C}(e))
```

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

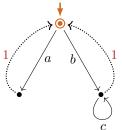
chart (Milner)

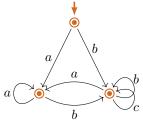


$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

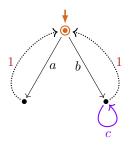
1-chart

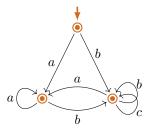




$$\underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$

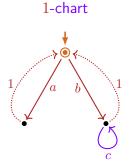
1-chart

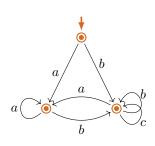




$$\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$
 $\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$

1-chart chart (Milner)

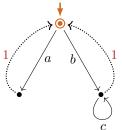


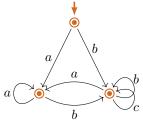


$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$

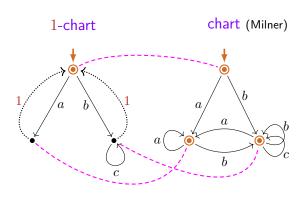
Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

1-chart

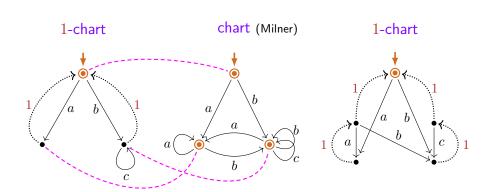




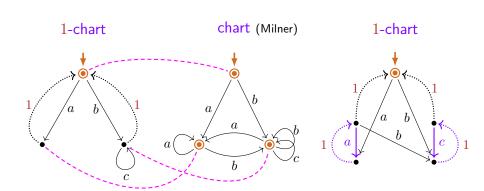
$$\underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$



$$\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$
 $\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$

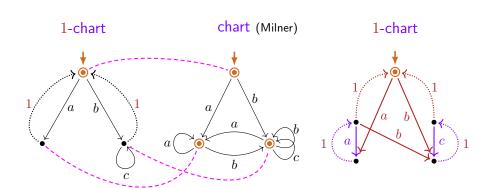


$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot (a \cdot 1)^* \cdot 1)) \qquad b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 \\ + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$



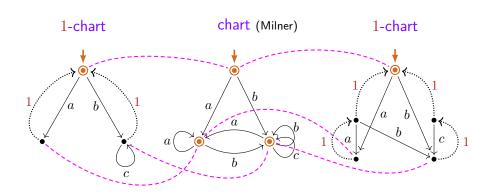
$$\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*) \qquad \underline{\mathcal{C}}((a \cdot 1 \cdot (c^* \cdot 1))^*) \qquad b \cdot ((a \cdot 1 + b \cdot (c^* \cdot 1))^*)$$

$$\underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) \cdot b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$



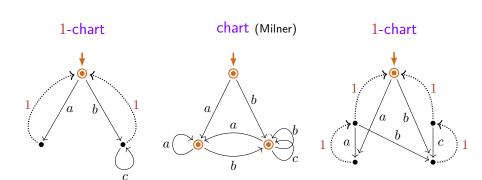
$$\underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*)\qquad \mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)$$

$$\underline{C}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) \\ b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 \\ + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)$$



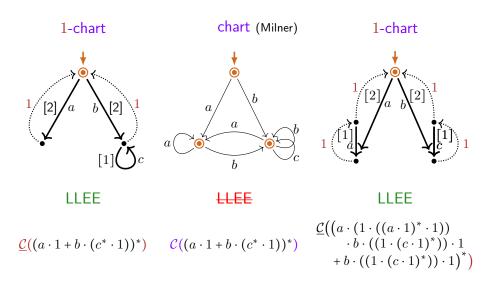
$$\underline{\underline{\mathcal{C}}((a\cdot 1+b\cdot (c^*\cdot 1))^*)} \qquad \underline{\mathcal{C}((a\cdot 1+b\cdot (c^*\cdot 1))^*)} \qquad \underline{\underline{\mathcal{C}}((a\cdot (1\cdot ((a\cdot 1)^*\cdot 1)) \\ \qquad \qquad \cdot b\cdot ((1\cdot (c\cdot 1)^*))\cdot 1 \\ \qquad \qquad + b\cdot ((1\cdot (c\cdot 1)^*))\cdot 1)^*)}$$

Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

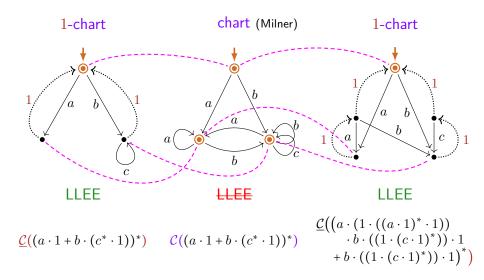


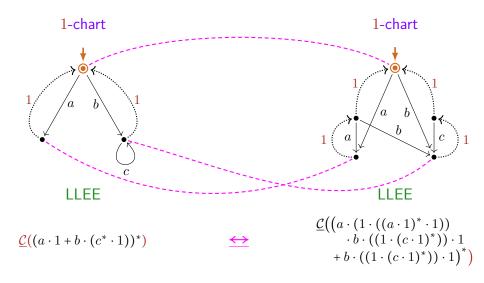
$$\underline{\underline{\mathcal{C}}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)} \qquad \underline{\mathcal{C}((a \cdot 1 + b \cdot (c^* \cdot 1))^*)} \qquad \underline{\underline{\mathcal{C}}((a \cdot (1 \cdot ((a \cdot 1)^* \cdot 1)) \cdot b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1 + b \cdot ((1 \cdot (c \cdot 1)^*)) \cdot 1)^*)}$$

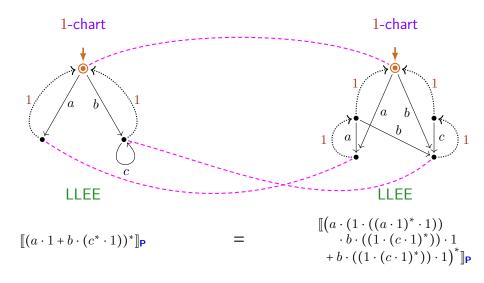
Process semantics $[\cdot]_P$ (examples, bisimulation collapse)

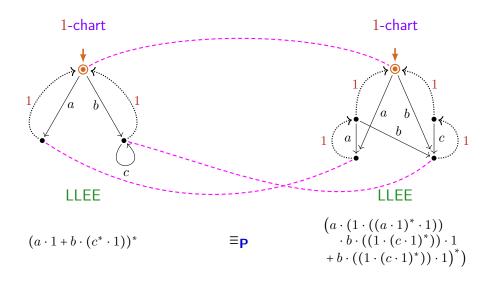


Process semantics [] (examples, bisimulation collapse)









Milner's proof system Mil

Axioms:

(A1)
$$e + (f + g) = (e + f) + g$$
 (A7) $e = 1 \cdot e$
(A2) $e + 0 = e$ (A8) $e = e \cdot 1$
(A3) $e + f = f + e$ (A9) $0 = 0 \cdot e$
(A4) $e + e = e$ (A10) $e^* = 1 + e \cdot e^*$
(A5) $e \cdot (f \cdot g) = (e \cdot f) \cdot g$ (A11) $e^* = (1 + e)^*$
(A6) $(e + f) \cdot g = e \cdot g + f \cdot g$
But: $e \cdot (f + g) \neq e \cdot f + e \cdot g$ But: $e \cdot 0 \neq 0$

Inference rules: rules of equational logic plus

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* \text{ (if } f \text{ does not terminate immediately)}$$

But: $e \cdot 0 \neq 0$

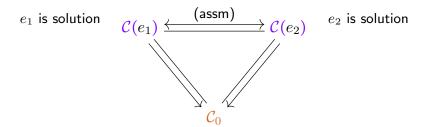
Milner's question (1984)

Is Mil complete with respect to $\equiv_{\mathbf{P}}$? (Does $\equiv_{\mathbf{P}} \subseteq =_{Mil}$ hold?)

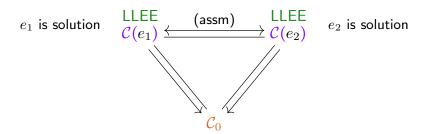
For 1-free regular expressions e_1 and e_2 :

$$e_1$$
 is solution $\mathcal{C}(e_1) \xleftarrow{\qquad \qquad } \mathcal{C}(e_2) \qquad e_2$ is solution

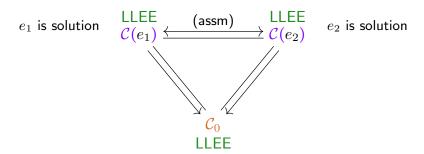
For 1-free regular expressions e_1 and e_2 :



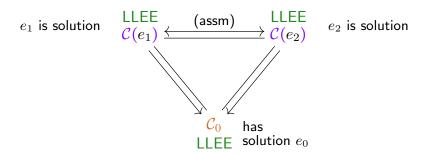
For 1-free regular expressions e_1 and e_2 :



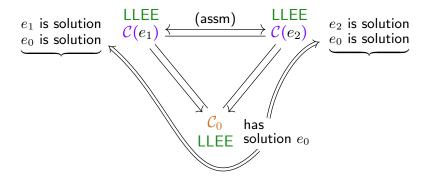
For 1-free regular expressions e_1 and e_2 :



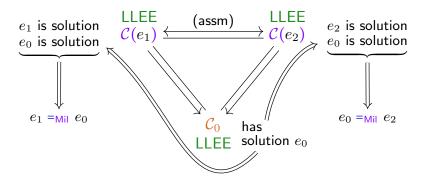
For 1-free regular expressions e_1 and e_2 :



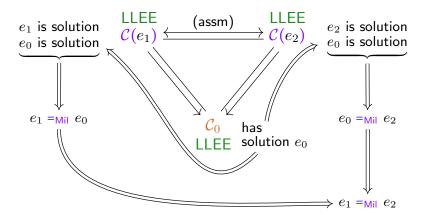
For 1-free regular expressions e_1 and e_2 :



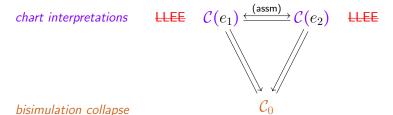
For 1-free regular expressions e_1 and e_2 :



For 1-free regular expressions e_1 and e_2 :

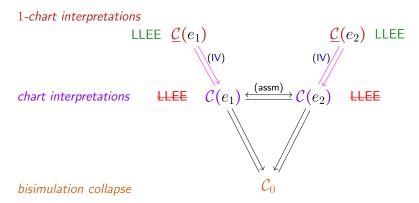


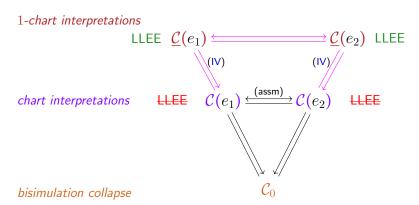
Problem 1

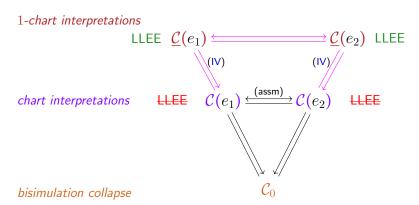


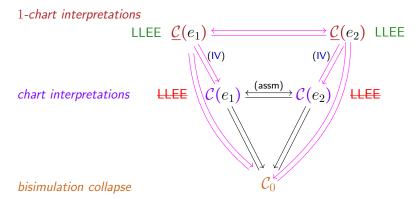
Remedy for Problem 1 (G, TERMGRAPH 2020)

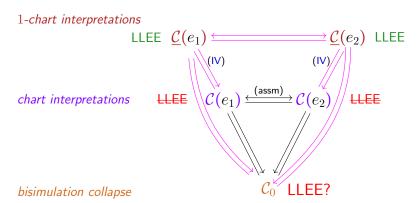
chart interpretations $\qquad \qquad \bigsqcup \mathcal{C}(e_1) \stackrel{(assm)}{\longleftrightarrow} \mathcal{C}(e_2) \qquad \bigsqcup \mathcal{C}(e_3)$ bisimulation collapse



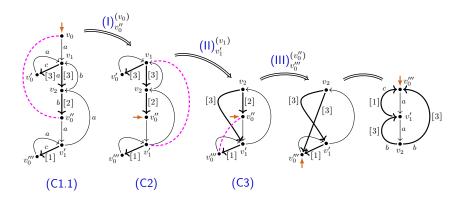








LLEE-preserving collapse of LLEE-charts (G/Fokkink, LICS'20) (no 1-transitions!)



Lemma

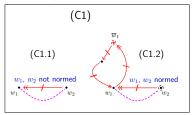
The bisimulation collapse of a LLEE-chart is again a LLEE-chart.

Reduced bisimilarity redundancies in LLEE-charts (no 1-trans.!) (G/Fokkink, LICS'20)

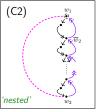
Lemma

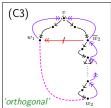
Every not collapsed LLEE-chart contains bisimilar vertices $w_1 \neq w_2$ of kind (C1), (C2), or (C3) (a reduced bisimilarity redundancy (w_1, w_2)):

 w_1, w_2 in different scc's



 w_1, w_2 in the same scc



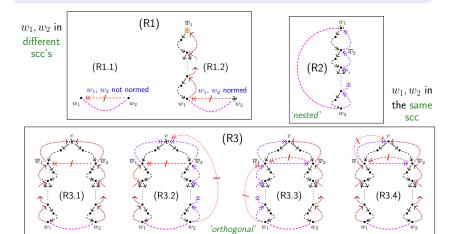


Lemma

Every reduced bisimilarity redundancy in a LLEE-chart can be eliminated LLEE-preservingly.

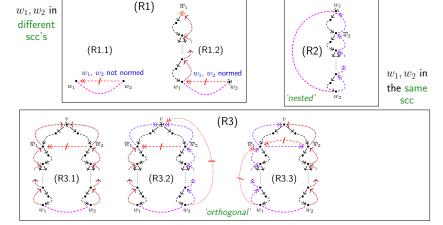
Lemma

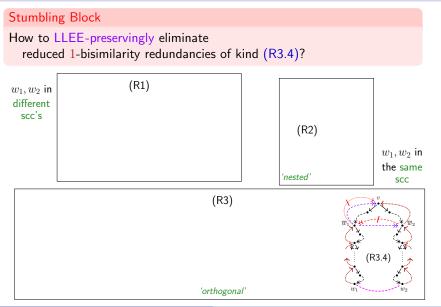
Every not collapsed LLEE-1-chart contains 1-bisimilar vertices $w_1 \neq w_2$ (a reduced 1-bisimilarity redundancy (w_1, w_2)) of kind (R1), (R2), (R3):



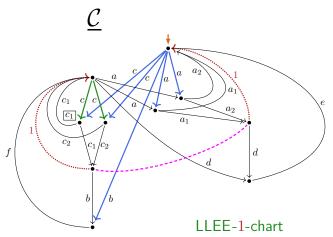
Lemma

Every simple reduced 1-bisimilarity redundancies in a LLEE-1-chart can be eliminated LLEE-preservingly.

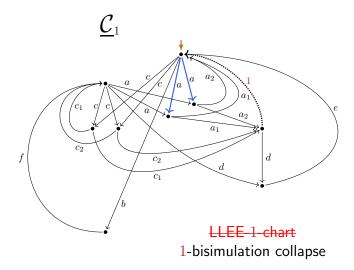


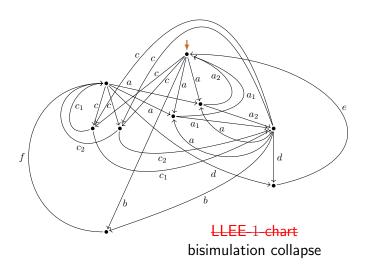


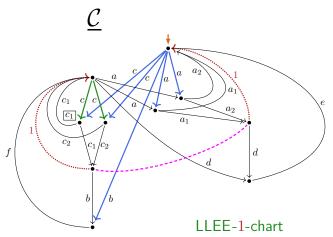
Stumbling Block How to LLEE-preservingly eliminate precrystalline reduced 1-bisimilarity redundancies? (R1) w_1, w_2 in different scc's (R2) w_1, w_2 in the same 'nested' SCC (R3) (R3.4) 'orthogonal'



 $\langle w_1, w_2 \rangle$ is a reduced 1-bisimilarity redundancy of kind (R3.4)





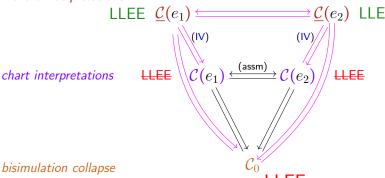


 $\langle w_1, w_2 \rangle$ is a reduced 1-bisimilarity redundancy of kind (R3.4)

Bisimulation collapse proof strategy (general case)

Problem 2: There are regular expressions e_1 and e_2 such that:

1-chart interpretations



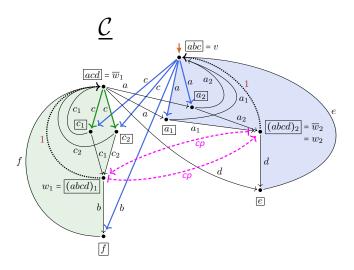
bisimulation collapse

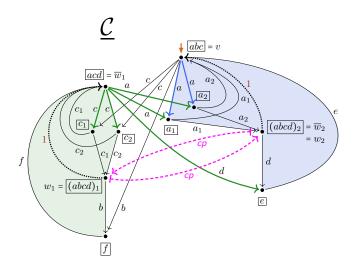
Bisimulation collapse proof strategy (general case)

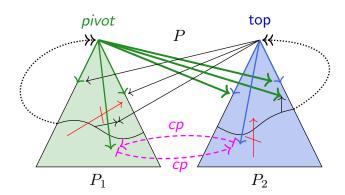
Problem 2: There are regular expressions e_1 and e_2 such that:

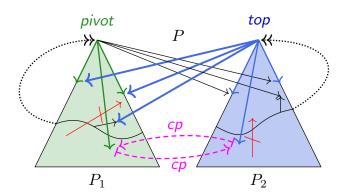
1-chart interpretations

 $\mathcal{C}(e_1)$, $\mathcal{C}(e_2)$, $\underline{\mathcal{C}}(e_1)$ and $\underline{\mathcal{C}}(e_2)$ are **not** LLEE-preservingly jointly minimizable under bisimilarity.

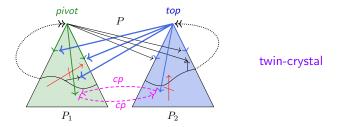






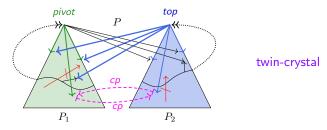


Crystallization



Crystallized 1-charts = LLEE-1-charts that are collapsed apart from strongly connected components of twin-crystal form.

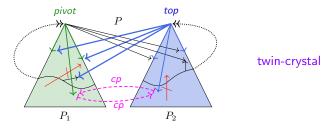
Crystallization



Crystallized 1-charts = LLEE-1-charts that are collapsed apart from strongly connected components of twin-crystal form.

(CR) Crystallization: Every LLEE-1-chart can be reduced under bisimilarity to a 1-bisimilar crystallized 1-chart.

Crystallization



- Crystallized 1-charts = LLEE-1-charts that are collapsed apart from strongly connected components of twin-crystal form.
- (CR) Crystallization: Every LLEE-1-chart can be reduced under bisimilarity to a 1-bisimilar crystallized 1-chart.
- (CC) Every Mil-provable solution of a crystallized 1-chart give rise to Mil-provable solution on the bisimulation collapse.

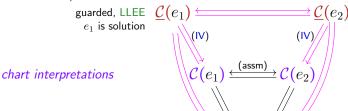
chart interpretations

$$\mathcal{C}(e_1) \stackrel{\mathsf{(assm)}}{\longleftarrow} \mathcal{C}(e_2)$$

chart interpretations

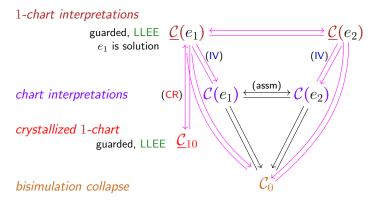
$$\mathcal{C}(e_1) \stackrel{\mathsf{(assm)}}{\longleftrightarrow} \mathcal{C}(e_2)$$

1-chart interpretations

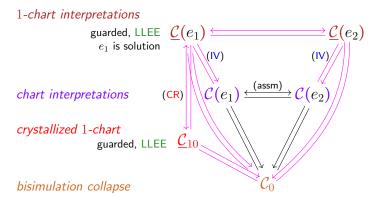


LLEE, guarded e_2 is solution

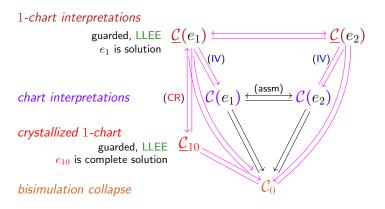
bisimulation collapse



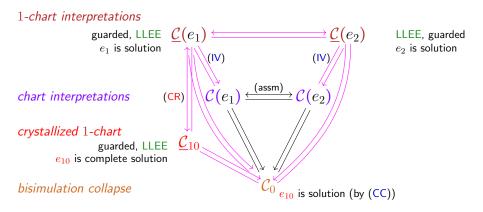
LLEE, guarded e_2 is solution

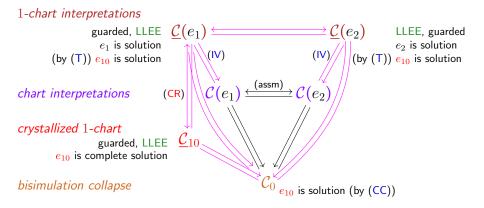


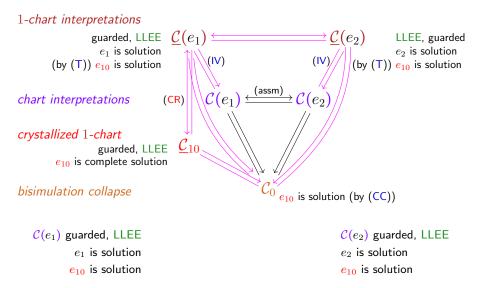
LLEE, guarded e_2 is solution

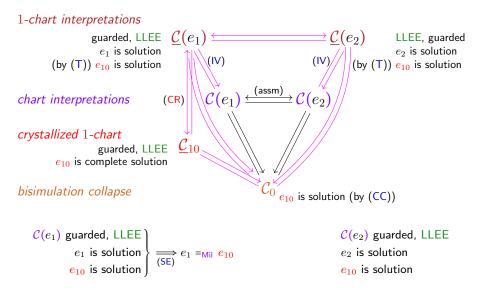


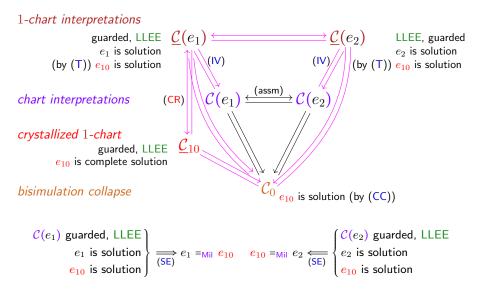
LLEE, guarded e_2 is solution

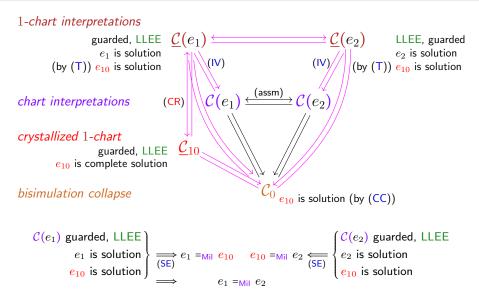












1-chart interpretations guarded, LLEE $\underline{\mathcal{C}}(e_1)$ $\underline{\underline{\mathsf{c}}}$ $\mathcal{C}(e_2)$ LLEE, guarded e_2 is solution e_1 is solution (by (T)) $\tilde{e_{10}}$ is solution (by (T)) e_{10} is solution (CR) chart interpretations crystallized 1-chart guarded, LLEE e₁₀ is complete solution bisimulation collapse e_{10} is solution (by (CC))

Theorem

Milner's proof system Mil is complete for process semantics equivalence ≡_P of regular expressions.

Since:
$$e_1 \equiv_{\mathbf{P}} e_2 \Longrightarrow \llbracket e_1 \rrbracket_{\mathbf{P}} = \llbracket e_2 \rrbracket_{\mathbf{P}} \Longrightarrow \mathcal{C}(e_1) \leftrightarrows \mathcal{C}(e_1) \Longrightarrow e_1 =_{\mathsf{Mil}} e_2$$
.

Outlook

poster presentation

▶ tomorrow, 10–10.30

next steps and projects

- monograph project: proof in fine-grained detail
- computation/animation tool for crystallization
- use crystallization for recognition problem

resources on Github:

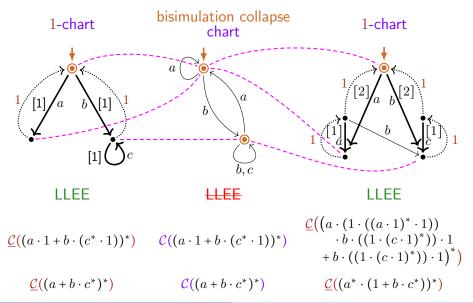
- ▶ https://github.com/clegra/crystallization/blob/main
 - ▶ article (after rebuttal): /cryst-article.pdf
 - poster: /poster-lics2022.pdf
 - presentation: /presentation-lics2022.pdf

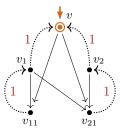
acknowledgment & thanks to:

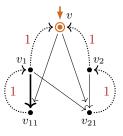
Wan Fokkink (for long collaboration)

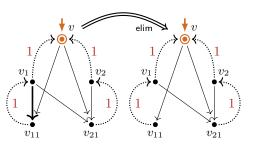
Thank you for your attention!

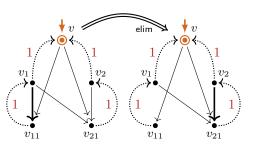
Process semantics [•] Proces

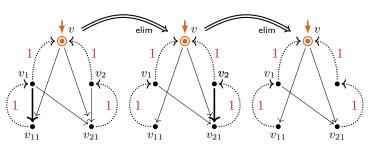


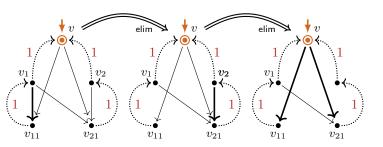


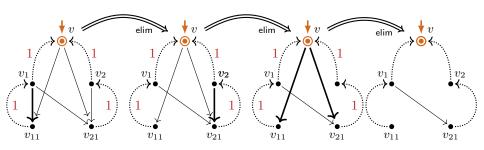


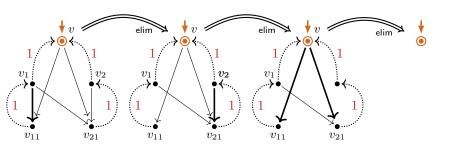


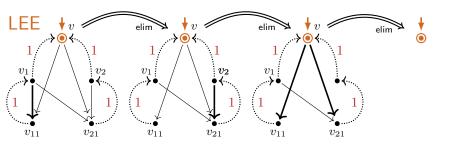


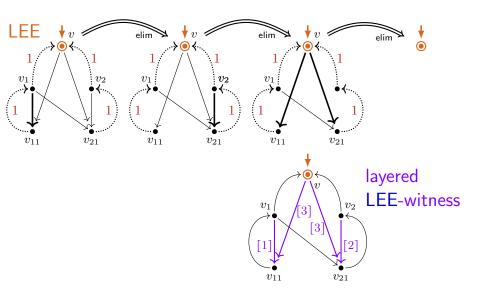


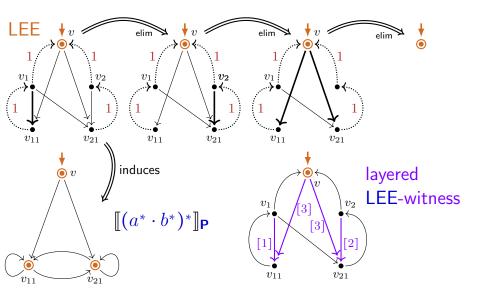




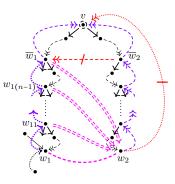






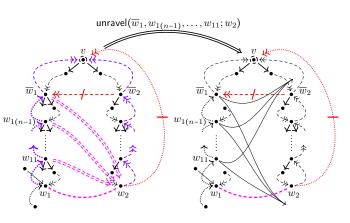


Eliminating reduced 1-bisimilarity redundancies (example)



reduced 1-bisimilarity redundancy of kind (R3.2)

Eliminating reduced 1-bisimilarity redundancies (example)



reduced 1-bisimilarity redundancy of kind (R3.2)

result of unravelling loop vertices $\overline{w}_1, w_{1(n-1)}, \dots, w_{11}$

Eliminating reduced 1-bisimilarity redundancies (example)

