On the Star Height of Regular Expressions Under Bisimulation

J.C.M. Baeten ${ }^{1}$
F. Corradini ${ }^{2}$
C. Grabmayer ${ }^{3}$

${ }^{1}$ Technische Universiteit Eindhoven
josb@win.tue.nl
${ }^{2}$ Universitá di Camerino
flavio.corradini@unicam.it
${ }^{3}$ Vrije Universiteit Amsterdam
clemens@cs.vu.nl
August 26, 2006 / EXPRESS'06

Overview

(9) Introduction

2 Solution of the Star Height Problem
(3) Alternative Proof of Milner's Star-Height Conjecture

4 Summary

Overview

(9) Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications

Solution of the Star Height Problem

- Star Height of Well-Behaved Specifications
- Refined Definability, Solvability, and Reducibility Lemmas
- The Algorithm CSH
- Correctness of the Algorithm CSH

Alternative Proof of Milner's Star-Height Conjecture

- Milner's Conjecture on Star-Height
- Alternative Proof of Milner's Conjecture

Summary

The Process Interpretation P (Milner)

$0 \stackrel{P}{\longmapsto}$ deadlock δ
$1 \stackrel{P}{\longmapsto}$ empty process ϵ
$a \stackrel{P}{\longmapsto}$ atomic action a
$e+f \quad \stackrel{P}{\longmapsto} \quad$ alternative composition between $P(e)$ and $P(f)$
$e \cdot f \quad \stackrel{P}{\longmapsto}$ sequential composition of $P(e)$ and $P(f)$
$e^{*} \quad \stackrel{P}{\longmapsto}$ unbounded iteration of $P(e)$

Milner's Process Interpretation

The Process Interpretation P

$$
P\left(a \cdot(a \cdot(b+b \cdot a))^{*} \cdot 0\right) \quad P\left(\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0\right)
$$

Milner's Process Interpretation

The Process Interpretation P

$\boldsymbol{P}\left(\mathbf{a} \cdot(\mathbf{a} \cdot(b+b \cdot a))^{*} \cdot 0\right) \quad \boldsymbol{P}\left(\left(a \cdot a \cdot(b \cdot a)^{*} \cdot b\right)^{*} \cdot 0\right)$

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Regular Expressions under Bisimulation

$P\left(a(a(b+b a))^{*} \cdot 0\right) \quad \Leftrightarrow \quad P\left(\left(a a(b a)^{*} a\right)^{*} \cdot 0\right)$

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Regular Expressions under Bisimulation

$$
\left(a(a(b+b a)) * \cdot 0 \quad \bigsqcup_{P} \quad(a a(b a) * a)^{*} \cdot 0\right.
$$

Milner's Process Interpretation

The Process Interpretation P (Transition System)

$$
\begin{array}{rc}
P(a) \xrightarrow{a} \mathbf{1} & \mathbf{1} \downarrow \\
\frac{P(e) \xrightarrow{a} P\left(e^{\prime}\right)}{P(e+f) \xrightarrow{a} P\left(e^{\prime}\right)} & \frac{P(e) \downarrow}{P(e+f) \downarrow}
\end{array}
$$

The Process Interpretation P (Transition System)

$$
\begin{array}{cc}
\bar{P}(a) \xrightarrow{a} \mathbf{1} & \overline{\mathbf{1} \downarrow} \\
\frac{P(e) \xrightarrow{a} P\left(e^{\prime}\right)}{\boldsymbol{P}(e+f) \xrightarrow{a} P\left(e^{\prime}\right)} & \frac{P(e) \downarrow}{P(e+f) \downarrow} \\
\frac{P(f) \xrightarrow{a} P\left(f^{\prime}\right)}{P(e+f) \xrightarrow{a} P\left(f^{\prime}\right)} \quad \frac{P(f) \downarrow}{P(e+f) \downarrow} & \frac{P(e) \downarrow}{P(e \cdot f) \downarrow} \\
\frac{P(e) \xrightarrow{a} P\left(e^{\prime}\right)}{P(e \cdot f) \xrightarrow{a} P\left(e^{\prime} \cdot f\right)} & \frac{P(e) \downarrow}{P(e \cdot f) \xrightarrow{a} P\left(f^{\prime}\right)} \\
\frac{P(e) \xrightarrow{a} P\left(e^{\prime}\right)}{P\left(e^{*}\right) \xrightarrow{a} P\left(e^{\prime} \cdot e^{*}\right)} & \frac{P}{P\left(e^{*}\right) \downarrow}
\end{array}
$$

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Regular Expressions under Bisimulation

Properties of the Process Interpretation P

- There are finite transition graphs that are not isomorpic to any process graph $P(e)$ in the image of P.
- What is more: there are finite transition graphs that are not bisimilar to any process graph $P(e)$ in the image of P.
- Identities $e \leftrightarrows_{P} f$ under P also hold as identities $e==_{L} f$ under the language intepretation L. The converse is false:

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

(1) Is a variant of Salomaa's axiomatisation for language equality complete for \leftrightarrows_{p} ?

- To my knowledge: Yet unsolved. (Partial \& related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
(2) What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
this is decidable ([BCG05]).
(3) Does "minimal star height" over single-letter alphabets define a hierarchy modulo \leftrightarrows_{P} ?

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

(1) Is a variant of Salomaa's axiomatisation for language equality complete for \leftrightarrows_{p} ?

- To my knowledge: Yet unsolved. (Partial \& related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
(2) What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
\qquad
(3) Does "minimal star height" over single-letter alphabets define a hierarchy modulo \leftrightarrows_{P} ?
- Yes! (Hirshfeld and Moller, 1999).

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

(1) Is a variant of Salomaa's axiomatisation for language equality complete for \leftrightarrows_{p} ?

- To my knowledge: Yet unsolved. (Partial \& related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
(2) What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P ?
- Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
(3) Does "minimal star height" over single-letter alphabets define a hierarchy modulo \leftrightarrows_{P} ?
- Yes! (Hirshfeld and Moller, 1999).

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

(1) Is a variant of Salomaa's axiomatisation for language equality complete for \leftrightarrows_{p} ?

- To my knowledge: Yet unsolved. (Partial \& related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
(2) What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P ?
- Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
© Does "minimal star height" over single-letter alphabets define a hierarchy modulo \leftrightarrows_{P} ?
- Yes! (Hirshfeld and Moller, 1999).

Summary

Milner's Process Interpretation

Star Height, and Star Height of Regular Languages

The star height $\operatorname{sh}(e)$ of a regular expression e is the maximum number of nested stars in e.

For example: $\operatorname{sh}((a+b) c)=0, \operatorname{sh}\left(\left(a(b a)^{*} a\right)^{*} d c^{*}\right)=2$.

Definition

The (restricted) star height $\operatorname{sh}(L)$ of a regular language L is the least natural number n such that $s h(e)=n$ for some regular expression e that represents L.

Generalised Star Height: concerning generalised regular expressions in which complementation and intersection may occur.

Summary

Classical Results on (Restricted) Star Height

© Every regular language over a single-letter alphabet has star height 1 at most.
(2) There are regular languages with any preassigned star height (Eggan, 1963);
... even over a two-letter alphabet (McNaughton, 1965, Dejean/Schützenberger, 1966);
(3) There exists an algorithm for computing the star height of the regular language given by a regular expression (Hashiguchi, 1983).
(The (Restricted) Star Height Problem is solvable).

Minimal Star Height under P

Definition
 The minimal star height $m s h(e)$ (under P) of a regular expression e is the least natural number n such that there exists a regular expression $e_{\min }$ with $s h\left(e_{\min }\right)=n$ and $e_{\min } \leftrightarrows_{P} e$.

Remark. For all $e \in$ RegExps it holds: $\operatorname{sh}(L(e)) \leq m s h(e)$.

Results for Minimal Star Height under P?

(1) For every $n \in \mathbb{N}$, there exists a regular expression f_{n} over the single-letter alphabet such that the minimal star height of f_{n} is n (Hirshfeld/Moller, 2000).
(2) Consequently: For the set regular expressions over a non-empty alphabet, "minimal star height under P" defines a proper hierarchy.
(3) Is the Star-Height Problem under P solvable?

The Star Height Problem under P
Instance: e $\in \operatorname{Reg} \operatorname{Exps}(\Sigma)$
Question: What is the minimal star height of e under P ?

Well-Behaved Specifications (Motivation): A Correspondence Theorem

Theorem ([BC05])

Expressibility as a regular expression under P is equivalent to
definability by a well-behaved specification:
For all processes p,

$$
\begin{aligned}
& (\exists e \in \operatorname{Reg} \operatorname{Exps})[p \leftrightarrows P(e)] \\
& \quad \Leftrightarrow \quad(\exists \mathcal{E} \in W B S p e c s)[p \text { is a solution of } \mathcal{E}]
\end{aligned}
$$

Milner's Process Interpretation

Star Height of Regular Languages

Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Well-Behaved Specifications (Example)

$$
\begin{aligned}
X_{\lambda} & =1 \cdot X_{0}+1 \cdot X_{1} \\
X_{0} & =\boldsymbol{a} \cdot X_{00} \\
X_{00} & =\boldsymbol{a} \cdot X_{000} \\
X_{000} & =1 \cdot X_{0000}+1 \cdot X_{0001} \\
X_{0000} & =b \cdot X_{00000} \\
X_{00000} & =a \cdot X_{000} \\
X_{0001} & =\boldsymbol{a} \cdot X_{\lambda} \\
X_{1} & =0
\end{aligned}
$$

$P\left(\left(a \boldsymbol{a}(b a)^{*} \boldsymbol{a}\right)^{*} .0\right)$

Well-Behaved Specifications (Some Intuition, I)

$X_{\xi}, X_{\lambda} \ldots$ well-behaved variables (X_{ξ} "does not return" to a recursion variable above itself)
X_{σ} is a cycling variable (Some recursion variable below X_{σ} "returns to" X_{σ})

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation
Well-Behaved Specifications

Well-Behaved Specifications (Some Intuition, II)

$X_{\sigma}, X_{\rho} \ldots$ cycling variables
X_{ξ} cycles back to X_{σ}
(The nearest return of X_{ξ}
to a rec.var. above is to X_{σ})
X_{σ} cycles back to X_{ρ}

Summary

Definability Lemma

Lemma (Definability by well-behaved spec's [BC05])

The processes represented by regular expressions under P are definable by well-behaved specifications.
Moreover: there is an effectively computable mapping
Spec $: \operatorname{Reg} \operatorname{Exps}(\Sigma) \rightarrow W B S p e c s(\Sigma)$ such that

for all $e \in \operatorname{Reg} \operatorname{Exps}(\Sigma), \quad P(e)$ is a solution of $\operatorname{Spec}(e)$.

Summary

Solvability Lemma

Lemma (Solvability of well-behaved spec's [BC05])

Every well-behaved specification is solved by a process represented by a regular expression.
Moreover: there is an effectively computable mapping
$\mathcal{R}: \operatorname{WBSpecs}(\Sigma) \rightarrow \operatorname{Reg} \operatorname{Exps}(\Sigma)$ such that

$P(\mathcal{R}(\mathcal{E}))$ is a solution of \mathcal{E}, \quad for all $\mathcal{E} \in W B S p e c s(\Sigma))$.

The Correspondence Theorem

Theorem ([BC05])

Expressibility as a regular expression under \mathbf{P} is equivalent to
definability by a well-behaved specification:
For all processes p,

$$
\begin{aligned}
(\exists e \in \operatorname{Reg} \operatorname{Exps}) & {[p \leftrightarrows \boldsymbol{P}(e)] } \\
\Leftrightarrow & (\exists \mathcal{E} \in W B S p e c s)[p \text { is a solution of } \mathcal{E}]
\end{aligned}
$$

Milner's Process Interpretation
Star Height of Regular Languages
Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Reducible Well-Behaved Specifications (Example)

$$
\left\langle X_{\sigma} \mid \mathcal{E}\right\rangle \leftrightarrows\left\langle X_{\sigma_{0}} \mid \mathcal{E}\right\rangle
$$

$X_{\sigma}, X_{\sigma_{0}}$ are well-behaved

Summary

Reducibility Lemma, Decidability Theorem

Lemma (Reducibility of well-behaved spec's [BCG05])
Let \mathcal{E} be a well-behaved specification that has a finite-state process p with n states and maximal branching degree k as a solution.
Then \mathcal{E} is equivalent to a well-behaved specification $\mathcal{E}_{\text {red }}$ with

- depth less or equal to $(n+1)^{3} \cdot 2^{3 k}$, and
- less or equal to k summands in each defining equation.

Theorem ([BCG05])

Expressibility by a regular expression under the process interpretation is decidable.

Overview

Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications
(2) Solution of the Star Height Problem
- Star Height of Well-Behaved Specifications
- Refined Definability, Solvability, and Reducibility Lemmas
- The Algorithm CSH
- Correctness of the Algorithm CSH

Alternative Proof of Milner's Star-Height Conjecture

- Milner's Conjecture on Star-Height
- Alternative Proof of Milner's Conjecture

Summary

Solution of the Star Height Problem

Four Steps:

(1) Introduction of the notion "star height" for well-behaved specifications.
(2) Refined versions of the Definability, Solvability, and Reducibility Lemmas.
(3) The algorithm CSH for computing the minimal star height under P of a regular expression.
(0) Correctness Proof for the algorithm CSH.

Star Height of Well-Behaved Specifications

Definition

The star height $\operatorname{sh}(\mathcal{E})$ of a well-behaved specification \mathcal{E} is the maximum number of nested cycling variables in \mathcal{E}.

$\operatorname{sh}\left(\mathcal{E}_{1}\right)=1$

$$
\operatorname{sh}\left(\varepsilon_{2}\right)=2
$$

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

Refined Definability Lemma

Lemma (Definability by well-behaved spec's)

There is an effectively computable mapping
Spec: RegExps \rightarrow WBSpecs such that

$$
\text { for all } \mathcal{E} \in W B S \text { pecs },
$$

$P(e)$ is a solution of $\operatorname{Spec}(e)$,

$$
\text { and } \operatorname{sh}(\operatorname{Spec}(e))=\operatorname{sh}(e),
$$

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

Refined Solvability Lemma

Lemma (Solvability of well-behaved spec's)

There is an effectively computable mapping
$\mathcal{R}:$ WBSpecs \rightarrow RegExps such that

$P(\mathcal{R}(\mathcal{E}))$ is a solution of \mathcal{E},

$$
\text { and } \operatorname{sh}(\mathcal{R}(\mathcal{E}))=\operatorname{sh}(\mathcal{E}) \text {, }
$$

$$
\text { for all } \mathcal{E} \in W B S \text { pecs } .
$$

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas

Refined Reducibility Lemma

Lemma (Reducibility of well-behaved spec's)
Let \mathcal{E} be a well-behaved specification that has a finite-state process p with n states and maximal branching degree k as a solution.
Then \mathcal{E} is equivalent to a well-behaved specification $\mathcal{E}_{\text {red }}$ with

- depth less or equal to $(n+1)^{3} \cdot 2^{3 k}$,
- less or equal to k summands in each defining equation,
- and $\operatorname{sh}\left(\mathcal{E}_{\text {red }}\right) \leq \operatorname{sh}(\mathcal{E})$.

The Algorithm CSH (Step CSH1)

$\boldsymbol{P}(e)$ solves $\mathcal{E}, \operatorname{sh}(\mathcal{E})=\operatorname{sh}(e)$
(by the Ref.Def.Lemma)

The Algorithm CSH (Step CSH2)

$P(e)$ solves $\mathcal{E}, \operatorname{sh}(\mathcal{E})=\operatorname{sh}(e)$
(by the Ref.Def.Lemma)
$P(e): n$ states, $\leq k$ branch.degr.

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH

Correctness of the Algorithm CSH

The Algorithm CSH (Step CSH3)

$\boldsymbol{P}\left(e_{\text {min }}\right)$ solves $\mathcal{E}_{\text {min }}, \operatorname{sh}\left(\boldsymbol{e}_{\text {min }}\right)=\boldsymbol{P}(e)$ solves $\mathcal{E}, \operatorname{sh}(\mathcal{E})=\operatorname{sh}(e)$
$=\operatorname{sh}\left(\mathcal{E}_{\text {min }}\right)$ (by the Ref.Solv.Lemma)

$$
e_{\min } \leftrightarrows_{P} e
$$

min. star height of $e=\operatorname{sh}\left(e_{\text {min }}\right)=n_{0}$

$$
\mathcal{E}_{\min } \sim \mathcal{E}, \operatorname{sh}\left(\mathcal{E}_{\min }\right)=\min !
$$

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in$ RegExps be arbitrary with $f \leftrightarrows_{P} e$. Then it follows for $\mathcal{F}=\operatorname{Spec}(f)$ by the Ref.Def.Lem.: $\operatorname{sh}(\mathcal{F})=\operatorname{sh}(f), P(f)$ and
also $P(e)$ are solutions of \mathcal{F}. By the Ref.Red.Lem., a reduced
specification $\mathcal{F}_{\text {red }}$ exists with solution $P(e)$ and
$\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{0}\right)$. Then by the choice of $\mathcal{E}_{\text {min }}$ and $e_{\text {min }}$ it follows:
$\quad \operatorname{sh}(f)=\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{\text {red }}\right) \geq \operatorname{sh}\left(\mathcal{E}_{\text {min }}\right)=\operatorname{sh}\left(e_{\text {min }}\right)=n_{0}$.
\square

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in \operatorname{Reg}$ Exps be arbitrary with $f \leftrightarrows_{P} e$. Then it follows for $\mathcal{F}=\operatorname{Spec}(f)$ by the Ref.Def.Lem.: $\operatorname{sh}(\mathcal{F})=\operatorname{sh}(f), \boldsymbol{P}(f)$ and also $P(e)$ are solutions of \mathcal{F}. By the Ref.Red.Lem., a reduced specification $\mathcal{F}_{\text {red }}$ exists with solution $P(e)$ and

Summary

Correctness of the Algorithm CSH

Let $f \in \operatorname{Reg}$ Exps be arbitrary with $f \leftrightarrows_{P} e$. Then it follows for $\mathcal{F}=\operatorname{Spec}(f)$ by the Ref.Def.Lem.: $\operatorname{sh}(\mathcal{F})=\operatorname{sh}(f), P(f)$ and also $P(e)$ are solutions of \mathcal{F}. By the Ref.Red.Lem., a reduced specification $\mathcal{F}_{\text {red }}$ exists with solution $P(e)$ and $\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{0}\right)$.

Summary

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in \operatorname{Reg}$ Exps be arbitrary with $f \leftrightarrows_{P} e$. Then it follows for $\mathcal{F}=\operatorname{Spec}(f)$ by the Ref.Def.Lem.: $\operatorname{sh}(\mathcal{F})=\operatorname{sh}(f), P(f)$ and also $P(e)$ are solutions of \mathcal{F}. By the Ref.Red.Lem., a reduced specification $\mathcal{F}_{\text {red }}$ exists with solution $P(e)$ and $\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{0}\right)$. Then by the choice of $\mathcal{E}_{\text {min }}$ and $e_{\text {min }}$ it follows:

$$
\operatorname{sh}(f)=\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{r e d}\right) \geq \operatorname{sh}\left(\mathcal{E}_{\text {min }}\right)=\operatorname{sh}\left(e_{\text {min }}\right)=n_{0} .
$$

Summary

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in \operatorname{Reg}$ Exps be arbitrary with $f \leftrightarrows_{P} e$. Then it follows for $\mathcal{F}=\operatorname{Spec}(f)$ by the Ref.Def.Lem.: $\operatorname{sh}(\mathcal{F})=\operatorname{sh}(f), \boldsymbol{P}(f)$ and also $P(e)$ are solutions of \mathcal{F}. By the Ref.Red.Lem., a reduced specification $\mathcal{F}_{\text {red }}$ exists with solution $P(e)$ and $\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{0}\right)$. Then by the choice of $\mathcal{E}_{\text {min }}$ and $e_{\text {min }}$ it follows:

$$
\operatorname{sh}(f)=\operatorname{sh}(\mathcal{F}) \geq \operatorname{sh}\left(\mathcal{F}_{r e d}\right) \geq \operatorname{sh}\left(\mathcal{E}_{\text {min }}\right)=\operatorname{sh}\left(e_{\text {min }}\right)=n_{0} .
$$

Hence: $n_{0}=\operatorname{sh}\left(e_{\min }\right)=m s h(e)$.

The Star Height Problem is Solvable

Theorem
 The star-height problem for the process interpretation is solvable: there is an algorithm that, for all regular expressions e, on input e computes the minimal star height of e.

Remark. This is a theoretical result, which (on its own) does not allow to show a better than double-exponential time bound on a naive decision algorithm extracted from the proof.

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH
Correctness of the Algorithm CSH

The Star Height Problem is Solvable

> Theorem
> The star-height problem for the process interpretation is solvable: there is an algorithm that, for all regular expressions e, on input e computes the minimal star height of e.

Remark. This is a theoretical result, which (on its own) does not allow to show a better than double-exponential time bound on a naive decision algorithm extracted from the proof.

Overview

(1) Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications

Solution of the Star Height Problem

- Star Height of Well-Behaved Specifications
- Refined Definability, Solvability, and Reducibility Lemmas
- The Algorithm CSH
- Correctness of the Algorithm CSH
(3) Alternative Proof of Milner's Star-Height Conjecture
- Milner's Conjecture on Star-Height
- Alternative Proof of Milner's Conjecture

Summary

Milner's Conjecture on Star-Height

Let the sequence $\left\{f_{n}\right\}_{n}$ be defined as

$$
f_{1}=a^{*} \quad f_{n+1}=\left(f_{n} \cdot a\right)^{*} .
$$

Then $\boldsymbol{P}\left(f_{1}\right), \boldsymbol{P}\left(f_{2}\right), \boldsymbol{P}\left(f_{3}\right), \boldsymbol{P}\left(f_{4}\right)$ are of the forms:

Conjecture (Milner). The minimal star height of f_{n} is n.

Well-Behaved Spec's with solutions $P\left(f_{1}\right), P\left(f_{2}\right), P\left(f_{3}\right)$

$X_{\lambda}^{(1)}=1 \cdot X_{0}^{(1)}+1 \cdot X_{1}^{(1)}$
$X_{0}^{(1)}=a \cdot X_{\lambda}^{(\lambda)}$
$X_{1}^{(1)}=1$

Alternative Proof of Milner's Conjecture (I)

> Theorem (Hirshfeld and Moller, 2000)
> For every n, there exists a regular expression f_{n} over the single-letter alphabet $\{a\}$ such that the minimal star height of f_{n} under the process interpretation is n. This is witnessed by the sequence $\left\{f_{n}\right\}_{n}$ in Milner's Conjecture.

Alternative Proof of Milner's Conjecture (I)

Theorem (Hirshfeld and Moller, 2000)

For every n, there exists a regular expression f_{n} over the single-letter alphabet $\{a\}$ such that the minimal star height of f_{n} under the process interpretation is n. This is witnessed by the sequence $\left\{f_{n}\right\}_{n}$ in Milner's Conjecture.

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $P\left(f_{n}\right)$ as a solution, $\operatorname{sh}(\mathcal{E}) \geq n$ holds.

Hint at the Proof.

A careful analysis of well-behaved specifications \mathcal{E} that have $P\left(f_{n}\right)$ as a solution.

Alternative Proof of Milner's Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $P\left(f_{n}\right)$ as a solution, $s h(\mathcal{E}) \geq n$ holds.
(Alternative) Proof of the Theorem.
Let $n \in \mathbb{N} \backslash\{0\}$ arbitrary. It suffices to show that $\operatorname{sh}\left(f_{n}\right)=n$.
Let $e \in \operatorname{Reg} \operatorname{Exps}(\{a\})$ such that $e \leftrightarrows_{P} f_{n}$. Then by the
Ref.Def.Lemma there exists a well-behaved specification \mathcal{E} with $\operatorname{sh}(\mathcal{E})=\operatorname{sh}(e)$ such that $P(e)$, and also $P(f)$ is a solution of \mathcal{E}. By the Lemma follows, entailing Hence the minimal star height of f_{n} is

Alternative Proof of Milner's Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $P\left(f_{n}\right)$ as a solution, $s h(\mathcal{E}) \geq n$ holds.

(Alternative) Proof of the Theorem.

Let $n \in \mathbb{N} \backslash\{0\}$ arbitrary. It suffices to show that $\operatorname{sh}\left(f_{n}\right)=n$.
Let $e \in \operatorname{Reg} \operatorname{Exps}(\{a\})$ such that $e \leftrightarrow_{P} f_{n}$. Then by the Ref.Def.Lemma there exists a well-behaved specification \mathcal{E} with $\operatorname{sh}(\mathcal{E})=\operatorname{sh}(e)$ such that $P(e)$, and also $P(f)$ is a solution of \mathcal{E}. By the Lemma $\operatorname{sh}(\varepsilon) \geq n$ follows, entailing Hence the minimal star height of f_{n} is

Alternative Proof of Milner's Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $P\left(f_{n}\right)$ as a solution, $s h(\mathcal{E}) \geq n$ holds.

(Alternative) Proof of the Theorem.

Let $n \in \mathbb{N} \backslash\{0\}$ arbitrary. It suffices to show that $\operatorname{sh}\left(f_{n}\right)=n$.
Let $e \in \operatorname{Reg} \operatorname{Exps}(\{a\})$ such that $e_{P} f_{n}$. Then by the Ref.Def.Lemma there exists a well-behaved specification \mathcal{E} with $\operatorname{sh}(\mathcal{E})=\operatorname{sh}(e)$ such that $P(e)$, and also $P(f)$ is a solution of \mathcal{E}. By the Lemma $\operatorname{sh}(\mathcal{E}) \geq n$ follows, entailing $s h(e) \geq n$. Hence the minimal star height of f_{n} is n.

Overview

(1) Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications
(2) Solution of the Star Height Problem
- Star Height of Well-Behaved Specifications
- Refined Definability, Solvability, and Reducibility Lemmas
- The Algorithm CSH
- Correctness of the Algorithm CSH
(3) Alternative Proof of Milner's Star-Height Conjecture
- Milner's Conjecture on Star-Height
- Alternative Proof of Milner's Conjecture

4 Summary

Summary

We consider regular expressions under Milner's process interpretation.
We use the correspondence with "well-behaved" specifications from [BC05] to show:

- The Star Height Problem for Regular Expressions under Milner's Process Interpretation is solvable. (Using the reducibility lemma for well-behaved spec's from [BCG05].)
- For regular expressions over a single-letter alphabet, minimal star height w.r.t. the process interpretation defines a proper hierarchy (Hirshfeld/Moller, 2000).

Questions for Further Research

(1) How could a better algorithm for the star-height problem look like?
(2) Is there a relationship with known decision algorithms for the (restricted) star-height problem for regular languages?
(3) Are there appealing interpretations for (generalised) regular expressions (allowing complementation and intersection operators) in process theory?
(9) Is it possible, to find, for all $e \in$ RegExps an $e_{\text {min }} \in$ RegExps of minimal star height such that $e_{\text {min }} \leftrightarrow_{p} e$ and $e_{\text {min }}=e$ is provable in Milner's adaptation for P of Salomaa's axiomatisation for L ?

Example: $\operatorname{Spec}\left(a\left(a^{*} b+c\right)+\left(c^{*}+a^{*} b\right)^{*}+a\right)$

Example: Canonical Solution of $\operatorname{Spec}\left(a\left(a^{*} b+c\right)+\ldots\right)$

References I

J.C.M. Baeten and F. Corradini

Regular Expressions in Process Algebra.
Proceedings of LICS 2005, 2005.
E J.C.M. Baeten, F. Corradini, and C. Grabmayer A Characterization of Regular Expressions under Bisimulation.
Research Report, Techn. Univ. Eindhoven, Oct. 2005.
R R. Milner
A Complete Inference System for a Class of Regular Behaviours.
Journal of Comp. and Syst. Sciences, 28:439-466, 1984.

References II

Y. Hirshfeld and F. MollerOn the Star Height of Unary Regular Behaviours. In: Proof, Language, Interaction: Essays in honour of Robin Milner, MIT Press, 2000.

