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The Process Interpretation P (Milner)

0 P7−→ deadlock δ

1 P7−→ empty process ε

a P7−→ atomic action a

e + f P7−→ alternative composition between P(e) and P(f )

e · f P7−→ sequential composition of P(e) and P(f )

e∗ P7−→ unbounded iteration of P(e)
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The Process Interpretation P (Transition System)

P(a)
a→ 1 1↓

P(e)
a→ P(e′)

P(e + f ) a→ P(e′)

P(e)↓
P(e + f )↓

P(f ) a→ P(f ′)

P(e + f ) a→ P(f ′)

P(f )↓
P(e + f )↓

P(e)↓ P(f )↓
P(e · f )↓

P(e)
a→ P(e′)

P(e · f ) a→ P(e′ · f )

P(e)↓ P(f ) a→ P(f ′)

P(e · f ) a→ P(f ′)

P(e)
a→ P(e′)

P(e∗)
a→ P(e′ · e∗) P(e∗)↓
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Properties of the Process Interpretation P

There are finite transition graphs that are not isomorpic to
any process graph P(e) in the image of P.

What is more: there are finite transition graphs that are
not bisimilar to any process graph P(e) in the image of P.

Identities e -P f under P also hold as identities e =L f
under the language intepretation L. The converse is false:
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Milner’s Questions (1984)

1 Is a variant of Salomaa’s axiomatisation for language
equality complete for -P ?

– To my knowledge: Yet unsolved. (Partial & related results
by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)

2 What structural property characterises the finite-state
proc’s that are bisimilar to proc’s in the image of P ?

– Definiability by “well-behaved” specifications ([BC05]);
this is decidable ([BCG05]).

3 Does “minimal star height” over single-letter alphabets
define a hierarchy modulo -P?

– Yes! (Hirshfeld and Moller, 1999).
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Star Height, and Star Height of Regular Languages

The star height sh(e) of a regular expression e is the maximum
number of nested stars in e.

For example: sh( (a + b)c ) = 0 , sh( (a(ba)∗a)∗dc∗ ) = 2 .

Definition
The (restricted) star height sh(L) of a regular language L is the
least natural number n such that sh(e) = n for some regular
expression e that represents L.

Generalised Star Height : concerning
generalised regular expressions in which
complementation and intersection may occur.
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Classical Results on (Restricted) Star Height

1 Every regular language over a single-letter alphabet has
star height 1 at most.

2 There are regular languages with any preassigned star
height (Eggan, 1963);
. . . even over a two-letter alphabet (McNaughton, 1965,

Dejean/Schützenberger, 1966);

3 There exists an algorithm for computing the star height of
the regular language given by a regular expression
(Hashiguchi, 1983).
(The (Restricted) Star Height Problem is solvable).
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Minimal Star Height under P

Definition
The minimal star height msh(e) (under P) of a regular
expression e is the least natural number n such that there exists
a regular expression emin with sh(emin) = n and emin -P e .

Remark. For all e ∈ RegExps it holds: sh(L(e)) ≤ msh(e) .
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Results for Minimal Star Height under P ?

1 For every n ∈ N , there exists a regular expression f n over
the single-letter alphabet such that the minimal star height
of f n is n (Hirshfeld/Moller, 2000).

2 Consequently: For the set regular expressions
over a non-empty alphabet, “minimal star height under P”
defines a proper hierarchy.

3 Is the Star-Height Problem under P solvable?

The Star Height Problem under P
Instance: e ∈ RegExps(Σ)
Question: What is the minimal star height of e under P ?
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Well-Behaved Specifications (Motivation):
A Correspondence Theorem

Theorem ([BC05])
Expressibility as a regular expression under P

is equivalent to
definability by a well-behaved specification:

For all processes p ,

(∃e ∈ RegExps)
[

p - P(e)
]

⇔ (∃ E ∈ WBSpecs)
[

p is a solution of E
]
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Well-Behaved Specifications (Example)
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Xλ

X1X0

X00

X000

X00000

a
X0000 X0001

a

a

a

b

P((aa(ba)∗a)∗.0)

Xλ = 1 · X0 + 1 · X1

X0 = a · X00

X00 = a · X000

X000 = 1 · X0000 + 1 · X0001

X0000 = b · X00000

X00000 = a · X000

X0001 = a · Xλ

X1 = 0
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Well-Behaved Specifications (Some Intuition, I)

Xσ0 Xσ1

Xλ

1 1

Exit PartLoop Part

Xσ

Xξ
Xξ, Xλ . . . well-behaved variables
(Xξ “does not return” to a
recursion variable above itself)

Xσ is a cycling variable
(Some recursion variable below Xσ

“returns to” Xσ)
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Well-Behaved Specifications (Some Intuition, II)

Xσ0 Xσ1

1 1

11

Xρ0 Xρ1

Xλ

Loop Part Exit Part

Exit PartLoop Part

Xρ

Xσ

Xξ

Xσ, Xρ . . . cycling variables

Xξ cycles back to Xσ

(The nearest return of Xξ

to a rec.var. above is to Xσ)
Xσ cycles back to Xρ
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Definability Lemma

Lemma (Definability by well-behaved spec’s [BC05])
The processes represented by regular expressions under P are
definable by well-behaved specifications.
Moreover: there is an effectively computable mapping
Spec : RegExps(Σ) → WBSpecs(Σ) such that

����

����

Spec(e)

RegExps

(Ps)RegSpecs

WBSpecs

e

Spec

for all e ∈ RegExps(Σ) , P(e) is a solution of Spec(e).
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Solvability Lemma

Lemma (Solvability of well-behaved spec’s [BC05])
Every well-behaved specification is solved by a process
represented by a regular expression.
Moreover: there is an effectively computable mapping
R : WBSpecs(Σ) → RegExps(Σ) such that
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RegExps

(Ps)RegSpecs

WBSpecs

E
R(E)

R

P(R(E)) is a solution of E , for all E ∈ WBSpecs(Σ)) .
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The Correspondence Theorem

Theorem ([BC05])
Expressibility as a regular expression under P

is equivalent to
definability by a well-behaved specification:

For all processes p ,

(∃e ∈ RegExps)
[

p - P(e)
]

⇔ (∃ E ∈ WBSpecs)
[

p is a solution of E
]
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Reducible Well-Behaved Specifications (Example)
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Xσ

Xσ, Xσ0 are well-behaved

Xλ Xλ

E E ′

〈Xσ |E〉 - 〈Xσ0 |E〉
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Reducibility Lemma, Decidability Theorem

Lemma (Reducibility of well-behaved spec’s [BCG05])
Let E be a well-behaved specification that has a finite-state
process p with n states and maximal branching degree k as a
solution.

Then E is equivalent to a well-behaved specification Ered with
depth less or equal to (n + 1)3 · 23k , and
less or equal to k summands in each defining equation.

Theorem ([BCG05])
Expressibility by a regular expression under the process
interpretation is decidable.
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Solution of the Star Height Problem

Four Steps:

1 Introduction of the notion “star height” for
well-behaved specifications.

2 Refined versions of the Definability, Solvability,
and Reducibility Lemmas.

3 The algorithm CSH for computing the minimal star height
under P of a regular expression.

4 Correctness Proof for the algorithm CSH.
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Star Height of Well-Behaved Specifications

Definition
The star height sh(E) of a well-behaved specification E is the
maximum number of nested cycling variables in E .
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X00

sh(E1) = 1 sh(E2) = 2
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X00000

X0 Xλ
Xλ

E2

X0000

X0000 X0001X000

E1

X1

X000

X0
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Refined Definability Lemma

Lemma (Definability by well-behaved spec’s)
There is an effectively computable mapping
Spec : RegExps → WBSpecs such that

����

����

Spec(e)

RegExps

(Ps)RegSpecs

WBSpecs

e

Spec

for all E ∈ WBSpecs ,
P(e) is a solution of Spec(e),

and sh(Spec(e)) = sh(e) ,
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Refined Solvability Lemma

Lemma (Solvability of well-behaved spec’s)
There is an effectively computable mapping
R : WBSpecs → RegExps such that
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E
R(E)

R

P(R(E)) is a solution of E ,
and sh(R(E)) = sh(E) ,

for all E ∈ WBSpecs .
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Refined Reducibility Lemma

Lemma (Reducibility of well-behaved spec’s)
Let E be a well-behaved specification that has a finite-state
process p with n states and maximal branching degree k as a
solution.

Then E is equivalent to a well-behaved specification Ered with

depth less or equal to (n + 1)3 · 23k ,

less or equal to k summands in each defining equation,

and sh(Ered) ≤ sh(E) .
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The Algorithm CSH (Step CSH1)
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WBSpecsRegExps

Spec

E = Spec(e)

finitely many spec’s
with depth ≤ (n + 1)3 · 23k

and ≤ k summands

e

P(e) solves E , sh(E) = sh(e)

(by the Ref.Def.Lemma)

Baeten, Corradini, Grabmayer Star Height of Regular Expressions under Bisimulation



Introduction
Solution of the Star Height Problem

Alternative Proof of Milner’s Star-Height Conjecture
Summary

Star Height of Well-Behaved Specifications
Refined Definability, Solvability, and Reducibility Lemmas
The Algorithm CSH
Correctness of the Algorithm CSH

The Algorithm CSH (Step CSH2)
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WBSpecsRegExps

Spec

sol. P(e)E = Spec(e)

finitely many spec’s
with depth ≤ (n + 1)3 · 23k

and ≤ k summands

e

P(e) solves E , sh(E) = sh(e)

(by the Ref.Def.Lemma)
P(e) : n states, ≤ k branch.degr.
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The Algorithm CSH (Step CSH3)
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Emin

WBSpecsRegExps

Spec

R

sol. P(e)E = Spec(e)

emin = R(Emin)

and ≤ k summands

finitely many spec’s
with depth ≤ (n + 1)3 · 23k

e

P(emin) solves Emin, sh(emin) =

= sh(Emin) (by the Ref.Solv.Lemma)
emin -P e

min. star height of e = sh(emin) = n0

P(e) solves E , sh(E) = sh(e)

(by the Ref.Def.Lemma)
P(e) : n states, ≤ k branch.degr.

Emin ∼ E , sh(Emin) = min!
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WBSpecsRegExps

Spec

Fred

e

Eminemin = R(Emin)

f

F = Spec(f )
R

Spec
sol. P(e)E = Spec(e)

Let f ∈ RegExps be arbitrary with f -P e . Then it follows for
F = Spec(f ) by the Ref.Def.Lem.: sh(F) = sh(f ) , P(f ) and
also P(e) are solutions of F . By the Ref.Red.Lem., a reduced
specification Fred exists with solution P(e) and
sh(F) ≥ sh(F0) . Then by the choice of Emin and emin it follows:

sh(f ) = sh(F) ≥ sh(Fred) ≥ sh(Emin) = sh(emin) = n0 .

Hence: n0 = sh(emin) = msh(e) .
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The Star Height Problem is Solvable

Theorem
The star-height problem for the process interpretation is
solvable: there is an algorithm that, for all regular expressions
e, on input e computes the minimal star height of e.

Remark. This is a theoretical result, which (on its own) does
not allow to show a better than double-exponential time bound
on a naive decision algorithm extracted from the proof.
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Milner’s Conjecture on Star-Height

Let the sequence {fn}n be defined as

f1 = a∗ fn+1 = (fn · a)∗ .

Then P(f1), P(f2), P(f3), P(f4) are of the forms:

Y (2)
2

Y (2)
1

Y (4)
4

Y (4)
3

Y (4)
1

Y (4)
2

Y (3)
3

Y (3)
2

Y (3)
1

Y (1)
1

a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

Conjecture (Milner). The minimal star height of fn is n.
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Well-Behaved Spec’s with solutions P(f1), P(f2), P(f3)

X (2)
0 X (2)

1

X (2)
00 X (2)

01

X (3)
0 X (3)

1

X (3)
00

X (3)
001X (3)

000

X (3)
01

a

a a

a a

a

1 1

1 1

1 1

1 1

1 1

11

X (3)
λX (2)

λX (1)
λ

X (1)
0 X (1)

1

X (1)
λ = 1 · X (1)

0 + 1 · X (1)
1

X (1)
0 = a · X (λ)

λ

X (1)
1 = 1

. . . . . .
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Milner’s Conjecture on Star-Height
Alternative Proof of Milner’s Conjecture

Alternative Proof of Milner’s Conjecture (I)

Theorem (Hirshfeld and Moller, 2000)
For every n, there exists a regular expression fn over the
single-letter alphabet {a} such that the minimal star height of fn
under the process interpretation is n. This is witnessed by the
sequence {fn}n in Milner’s Conjecture.

Lemma (Main Lemma)

For every well-behaved specification E that has P(fn) as a
solution, sh(E) ≥ n holds.

Hint at the Proof.
A careful analysis of well-behaved specifications E that have
P(fn) as a solution.

Baeten, Corradini, Grabmayer Star Height of Regular Expressions under Bisimulation



Introduction
Solution of the Star Height Problem

Alternative Proof of Milner’s Star-Height Conjecture
Summary

Milner’s Conjecture on Star-Height
Alternative Proof of Milner’s Conjecture

Alternative Proof of Milner’s Conjecture (I)

Theorem (Hirshfeld and Moller, 2000)
For every n, there exists a regular expression fn over the
single-letter alphabet {a} such that the minimal star height of fn
under the process interpretation is n. This is witnessed by the
sequence {fn}n in Milner’s Conjecture.

Lemma (Main Lemma)

For every well-behaved specification E that has P(fn) as a
solution, sh(E) ≥ n holds.

Hint at the Proof.
A careful analysis of well-behaved specifications E that have
P(fn) as a solution.

Baeten, Corradini, Grabmayer Star Height of Regular Expressions under Bisimulation



Introduction
Solution of the Star Height Problem

Alternative Proof of Milner’s Star-Height Conjecture
Summary

Milner’s Conjecture on Star-Height
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Alternative Proof of Milner’s Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification E that has P(fn) as a
solution, sh(E) ≥ n holds.

(Alternative) Proof of the Theorem.

Let n ∈ N \ {0} arbitrary. It suffices to show that sh(fn) = n .

Let e ∈ RegExps({a}) such that e -P fn . Then by the
Ref.Def.Lemma there exists a well-behaved specification E with
sh(E) = sh(e) such that P(e), and also P(f ) is a solution of E .
By the Lemma sh(E) ≥ n follows, entailing sh(e) ≥ n .

Hence the minimal star height of fn is n.
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Summary

We consider regular expressions under Milner’s process
interpretation.

We use the correspondence with “well-behaved” specifications
from [BC05] to show:

The Star Height Problem for Regular Expressions under
Milner’s Process Interpretation is solvable. (Using the
reducibility lemma for well-behaved spec’s from [BCG05].)

For regular expressions over a single-letter alphabet,
minimal star height w.r.t. the process interpretation defines
a proper hierarchy (Hirshfeld/Moller, 2000).
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Questions for Further Research

1 How could a better algorithm for the star-height problem
look like?

2 Is there a relationship with known decision algorithms for
the (restricted) star-height problem for regular languages?

3 Are there appealing interpretations for (generalised)
regular expressions (allowing complementation and
intersection operators) in process theory?

4 Is it possible, to find, for all e ∈ RegExps an
emin ∈ RegExps of minimal star height such that
emin -P e and emin = e is provable in Milner’s adaptation
for P of Salomaa’s axiomatisation for L ?
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Example: Spec
(
a(a∗b + c) + (c∗ + a∗b)∗ + a

)

X0

Xε

aa

c

X00

X10

c

X1

X11

X1100

c

X110

X101

X1010

ba

X1011

X10110

X100

X1001

c

X01

X2

X10000 X10100

X001

b

X0010

X000

a

X0000

X111

X1000
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Example: Canonical Solution of Spec
(
a(a∗b + c) + . . .

)

X0

Xε

aa

c

X00

X10

X1

X11

X1100

X110

X101

X1010 X1011

X10110

X100

X1001

X01

X2

X10000 X10100

X001

X0010

X000

X0000

X111

X1000

ba

c

a bc

c

c

c

a

b

c

c

c

c

ba

c

c

aa b
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