On the Star Height of Regular Expressions Under Bisimulation

J.C.M. Baeten¹ F. Corradini² C. Grabmayer³

¹Technische Universiteit Eindhoven josb@win.tue.nl

²Universitá di Camerino flavio.corradini@unicam.it

³Vrije Universiteit Amsterdam clemens@cs.vu.nl

August 26, 2006 / EXPRESS'06

Overview

Introduction

Alternative Proof of Milner's Star-Height Conjecture

4 Summary

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Overview

- Milpor's Process Inter
- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications
- 2 Solution of the Star Height Problem
 - Star Height of Well-Behaved Specifications
 - Refined Definability, Solvability, and Reducibility Lemmas
 - The Algorithm CSH
 - Correctness of the Algorithm CSH
- 3 Alternative Proof of Milner's Star-Height Conjecture
 - Milner's Conjecture on Star-Height
 - Alternative Proof of Milner's Conjecture

4 Summary

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

The Process Interpretation **P** (Milner)

- $\mathbf{0} \stackrel{\mathbf{P}}{\longmapsto} \operatorname{deadlock} \delta$
- 1 $\stackrel{P}{\longmapsto}$ empty process ϵ
- $a \stackrel{P}{\longmapsto}$ atomic action a
- $e + f \longrightarrow$ alternative composition between P(e) and P(f)
 - $e \cdot f \mapsto sequential composition of P(e) and P(f)$
 - $e^* \xrightarrow{P}$ unbounded iteration of P(e)

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary

Milner's Process Interpretation

Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

The Process Interpretation P

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary

Milner's Process Interpretation

Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

The Process Interpretation P

Star Height of Regular Expressions under Bisimulation

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation Star Height of Regular Languages

Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Regular Expressions under Bisimulation

 $P(a(a(b+ba))^* \cdot 0) \quad \Leftrightarrow \quad P((aa(ba)^*a)^* \cdot 0)$

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation

Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Regular Expressions under Bisimulation

Milher's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

The Process Interpretation *P* (Transition System)

P (<i>a</i>	$a) \xrightarrow{a} 1$	1↓	
$\frac{\boldsymbol{P}(e) \stackrel{a}{\rightarrow} \boldsymbol{P}(e')}{\boldsymbol{P}(e+f) \stackrel{a}{\rightarrow} \boldsymbol{P}(e')}$		$\frac{\boldsymbol{P}(e)\downarrow}{\boldsymbol{P}(e+f)\downarrow}$	
$oldsymbol{P}(f) \stackrel{a}{ ightarrow} oldsymbol{P}(f')$	P (f)↓	P (<i>e</i>)↓	
${m P}({m e}+{m f}) \stackrel{a}{ ightarrow} {m P}({m f}')$	$P(e+f)\downarrow$	P (e	• <i>f</i>)↓
$oldsymbol{P}(oldsymbol{e}) \stackrel{a}{ ightarrow} oldsymbol{P}(oldsymbol{e}')$	P (<i>e</i>)	$\downarrow \qquad \mathbf{P}(f) \stackrel{a}{\rightarrow}$	P (f')
${m P}({m e} \cdot f) \stackrel{a}{ ightarrow} {m P}({m e}' \cdot f)$		$\mathbf{P}(\boldsymbol{e}\cdot\boldsymbol{f})\stackrel{a}{ ightarrow}\mathbf{P}(\boldsymbol{a})$	f')
$egin{aligned} egin{aligned} egi$. ,	P (e*)↓	

Star Height of Regular Expressions under Bisimulation

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

The Process Interpretation *P* (Transition System)

-	<i>P</i> (<i>a</i>) ^{<i>a</i>} → 1	1↓		
$P(e) \stackrel{a}{\rightarrow} P(e')$		$P(e) \downarrow$		
$P(e+f) \stackrel{a}{\rightarrow} P(e') \qquad P(e+f)\downarrow$				
$oldsymbol{P}(f) \stackrel{a}{ ightarrow} oldsymbol{P}(f')$	P (f)↓	P (e)↓	P (<i>f</i>)↓	
$P(e+f) \stackrel{a}{ ightarrow} P(f')$	P (e + f)↓	₽ (c •	f)↓	
$oldsymbol{P}(e) \stackrel{a}{ ightarrow} oldsymbol{P}(e')$) P ($e)\downarrow \qquad P(f) \stackrel{a}{\rightarrow}$	P (f')	
${m P}({m e} \cdot f) \stackrel{a}{ ightarrow} {m P}({m e}'$	• <i>f</i>)	$P(e \cdot f) \stackrel{a}{\rightarrow} P(f)$	f ′)	
	$) \xrightarrow{a} \mathbf{P}(e')$	P (e*)↓		
$P(e^{*})$	$\stackrel{a}{\rightarrow} \boldsymbol{P}(\boldsymbol{e}' \boldsymbol{\cdot} \boldsymbol{e}^{*})$	- (•)+		

Star Height of Regular Expressions under Bisimulation

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation

Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Regular Expressions under Bisimulation

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Properties of the Process Interpretation P

- There are finite transition graphs that are *not isomorpic* to any process graph *P*(*e*) in the image of *P*.
- What is more: there are finite transition graphs that are not bisimilar to any process graph P(e) in the image of P.
- Identities $e \Leftrightarrow_{P} f$ under *P* also hold as identities $e =_{L} f$ under the language intepretation *L*. The converse is false:

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatisation for language equality complete for ⇔_P ?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of **P**?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?
 - Yes! (Hirshfeld and Moller, 1999).

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatisation for language equality complete for ⇔_P ?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of **P**?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?
 - Yes! (Hirshfeld and Moller, 1999).

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatisation for language equality complete for ⇔_P ?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?
 - Yes! (Hirshfeld and Moller, 1999).

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Milner's Questions (1984)

- Is a variant of Salomaa's axiomatisation for language equality complete for ⇔_P ?
 - To my knowledge: Yet unsolved. (Partial & related results by Sewell; Fokkink; Corradini/De Nicola/Labella; C.G.)
- What structural property characterises the finite-state proc's that are bisimilar to proc's in the image of P?
 - Definiability by "well-behaved" specifications ([BC05]); this is decidable ([BCG05]).
- Ooes "minimal star height" over single-letter alphabets define a hierarchy modulo ⇔_P?

- Yes! (Hirshfeld and Moller, 1999).

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Star Height, and Star Height of Regular Languages

The star height sh(e) of a regular expression e is the maximum number of nested stars in e.

For example: sh((a+b)c) = 0, $sh((a(ba)^*a)^*dc^*) = 2$.

Definition

The *(restricted) star height* sh(L) of a regular language *L* is the least natural number *n* such that sh(e) = n for some regular expression *e* that represents *L*.

Generalised Star Height: concerning generalised regular expressions in which complementation and intersection may occur.

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Classical Results on (Restricted) Star Height

- Every regular language over a single-letter alphabet has star height 1 at most.
- There are regular languages with any preassigned star height (Eggan, 1963);
 - ... even over a two-letter alphabet (McNaughton, 1965,

Dejean/Schützenberger, 1966);

 There exists an algorithm for computing the star height of the regular language given by a regular expression (Hashiguchi, 1983).
 (The (Restricted) Star Height Problem is solvable).

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Minimal Star Height under P

Definition

The *minimal star height* msh(e) (*under* P) of a regular expression e is the least natural number n such that there exists a regular expression e_{min} with $sh(e_{min}) = n$ and $e_{min} \Leftrightarrow_P e$.

Remark. For all $e \in RegExps$ it holds: $sh(L(e)) \leq msh(e)$.

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Results for Minimal Star Height under P?

- For every $n \in \mathbb{N}$, there exists a regular expression f_n over the single-letter alphabet such that the minimal star height of f_n is n (Hirshfeld/Moller, 2000).
- Consequently: For the set regular expressions over a non-empty alphabet, "minimal star height under P" defines a proper hierarchy.
- Is the Star-Height Problem under P solvable?

The Star Height Problem under **P** Instance: $e \in RegExps(\Sigma)$ Question: What is the minimal star height of *e* under **P**?

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Well-Behaved Specifications (Motivation): A Correspondence Theorem

Theorem ([BC05])

Expressibility as a regular expression under **P** is equivalent to definability by a <u>well-behaved</u> specification:

For all processes p,

$$(\exists e \in RegExps) [p \nleftrightarrow P(e)] \Leftrightarrow (\exists \mathcal{E} \in WBSpecs) [p \text{ is a solution of } \mathcal{E}]$$

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Well-Behaved Specifications (Example)

 $X_{\lambda} = 1 \cdot X_0 + 1 \cdot X_1$ $X_0 = \boldsymbol{a} \cdot X_{00}$ $X_{00} = \boldsymbol{a} \cdot X_{000}$ $X_{000} = 1 \cdot X_{0000} + 1 \cdot X_{0001}$ $X_{0000} = b \cdot X_{00000}$ $X_{00000} = a \cdot X_{000}$ $X_{0001} = \boldsymbol{a} \cdot \boldsymbol{X}_{\lambda}$ $X_1 = 0$

 $P((aa(ba)^*a)^*.0)$

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Well-Behaved Specifications (Some Intuition, I)

 $X_{\xi}, X_{\lambda} \dots$ well-behaved variables $(X_{\xi} \text{ "does not return" to a recursion variable above itself})$

X_{σ} is a cycling variable

(Some recursion variable below X_{σ} "returns to" X_{σ})

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Well-Behaved Specifications (Some Intuition, II)

 $X_{\sigma}, X_{\rho} \ldots$ cycling variables

 X_{ξ} cycles back to X_{σ}

(The nearest return of X_{ξ} to a rec.var. above is to X_{σ}) X_{σ} cycles back to X_{ρ}

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Definability Lemma

Lemma (Definability by well-behaved spec's [BC05])

The processes represented by regular expressions under **P** are definable by well-behaved specifications. Moreover: there is an effectively computable mapping $Spec : RegExps(\Sigma) \rightarrow WBSpecs(\Sigma)$ such that

Baeten, Corradini, Grabmayer

Star Height of Regular Expressions under Bisimulation

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Solvability Lemma

Lemma (Solvability of well-behaved spec's [BC05])

Every well-behaved specification is solved by a process represented by a regular expression. Moreover: there is an effectively computable mapping \mathcal{R} : WBSpecs(Σ) \rightarrow RegExps(Σ) such that

Baeten, Corradini, Grabmayer

Star Height of Regular Expressions under Bisimulation

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

The Correspondence Theorem

Theorem ([BC05])

Expressibility as a regular expression under **P** is equivalent to definability by a <u>well-behaved</u> specification:

For all processes p,

 $(\exists e \in RegExps) [p \Rightarrow P(e)]$ $\Leftrightarrow (\exists \mathcal{E} \in WBSpecs) [p \text{ is a solution of } \mathcal{E}]$

Solution of the Star Height Problem Alternative Proof of Milner's Star-Height Conjecture Summary Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Reducible Well-Behaved Specifications (Example)

 $\langle X_{\sigma} | \mathcal{E} \rangle \simeq \langle X_{\sigma_0} | \mathcal{E} \rangle$ X_{σ}, X_{σ_0} are well-behaved

Milner's Process Interpretation Star Height of Regular Languages Minimal Star Height under the Process Interpretation Well-Behaved Specifications

Reducibility Lemma, Decidability Theorem

Lemma (Reducibility of well-behaved spec's [BCG05])

Let \mathcal{E} be a well-behaved specification that has a finite-state process p with n states and maximal branching degree k as a solution.

Then \mathcal{E} is equivalent to a well-behaved specification \mathcal{E}_{red} with

- depth less or equal to $(n + 1)^3 \cdot 2^{3k}$, and
- less or equal to k summands in each defining equation.

Theorem ([BCG05])

Expressibility by a regular expression under the process interpretation is decidable.

 Introduction
 Star Height of Well-Behaved Specifications

 Solution of the Star Height Problem
 Refined Definability, Solvability, and Reducibility Lemmas

 Alternative Proof of Milner's Star-Height Conjecture
 The Algorithm CSH

 Summary
 Correctness of the Algorithm CSH

Overview

Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications
- 2 Solution of the Star Height Problem
 - Star Height of Well-Behaved Specifications
 - Refined Definability, Solvability, and Reducibility Lemmas
 - The Algorithm CSH
 - Correctness of the Algorithm CSH
- 3 Alternative Proof of Milner's Star-Height Conjecture
 - Milner's Conjecture on Star-Height
 - Alternative Proof of Milner's Conjecture

4 Summary

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

Solution of the Star Height Problem

Four Steps:

- Introduction of the notion "star height" for well-behaved specifications.
- Refined versions of the Definability, Solvability, and Reducibility Lemmas.
- The algorithm CSH for computing the minimal star height under *P* of a regular expression.
- Orrectness Proof for the algorithm CSH.

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

Star Height of Well-Behaved Specifications

Definition

The *star height* $sh(\mathcal{E})$ of a well-behaved specification \mathcal{E} is the maximum number of nested cycling variables in \mathcal{E} .

Baeten, Corradini, Grabmayer

Star Height of Regular Expressions under Bisimulation

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

Refined Definability Lemma

Lemma (Definability by well-behaved spec's)

There is an effectively computable mapping $Spec: RegExps \rightarrow WBSpecs$ such that

Star Height of Regular Expressions under Bisimulation

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

Refined Solvability Lemma

Lemma (Solvability of well-behaved spec's)

There is an effectively computable mapping \mathcal{R} : WBSpecs $\rightarrow ReqExps$ such that

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

Refined Reducibility Lemma

Lemma (Reducibility of well-behaved spec's)

Let \mathcal{E} be a well-behaved specification that has a finite-state process p with n states and maximal branching degree k as a solution.

Then \mathcal{E} is equivalent to a well-behaved specification \mathcal{E}_{red} with

- depth less or equal to $(n + 1)^3 \cdot 2^{3k}$,
- less or equal to k summands in each defining equation,
- and $sh(\mathcal{E}_{red}) \leq sh(\mathcal{E})$.

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

The Algorithm CSH (Step CSH1)

P(e) solves \mathcal{E} , $sh(\mathcal{E}) = sh(e)$ (by the Ref.Def.Lemma)

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH

Correctness of the Algorithm CSH

The Algorithm CSH (Step CSH2)

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH

Correctness of the Algorithm CSH

The Algorithm CSH (Step CSH3)

min. star height of $e = sh(e_{min}) = n_0$ $\mathcal{E}_{min} \sim \mathcal{E}, sh(\mathcal{E}_{min}) = min!$

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH

Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in RegExps$ be arbitrary with $f \Leftrightarrow_{\mathbf{P}} \mathbf{e}$. Then it follows for $\mathcal{F} = Spec(f)$ by the Ref.Def.Lem.: $sh(\mathcal{F}) = sh(f)$, $\mathbf{P}(f)$ and also $\mathbf{P}(\mathbf{e})$ are solutions of \mathcal{F} . By the Ref.Red.Lem., a reduced specification \mathcal{F}_{red} exists with solution $\mathbf{P}(\mathbf{e})$ and $sh(\mathcal{F}) \geq sh(\mathcal{F}_0)$. Then by the choice of \mathcal{E}_{min} and \mathbf{e}_{min} it follows: $sh(f) = sh(\mathcal{F}) \geq sh(\mathcal{F}_{red}) \geq sh(\mathcal{E}_{min}) = sh(\mathbf{e}_{min}) = n_0$.

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH

Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in RegExps$ be arbitrary with $f \Leftrightarrow_{\mathbf{P}} \mathbf{e}$. Then it follows for $\mathcal{F} = Spec(f)$ by the Ref.Def.Lem.: $sh(\mathcal{F}) = sh(f)$, $\mathbf{P}(f)$ and also $\mathbf{P}(\mathbf{e})$ are solutions of \mathcal{F} . By the Ref.Red.Lem., a reduced specification \mathcal{F}_{red} exists with solution $\mathbf{P}(\mathbf{e})$ and $sh(\mathcal{F}) \geq sh(\mathcal{F}_0)$. Then by the choice of \mathcal{E}_{min} and \mathbf{e}_{min} it follows: $sh(f) = sh(\mathcal{F}) \geq sh(\mathcal{F}_{red}) \geq sh(\mathcal{E}_{red}) \geq sh(\mathcal{E}_{min}) = sh(\mathbf{e}_{min}) = n_0$.

Hence: $n_0 = sh(e_{min}) = msh(e)$

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH

Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in RegExps$ be arbitrary with $f \Leftrightarrow_{\mathbf{P}} \mathbf{e}$. Then it follows for $\mathcal{F} = Spec(f)$ by the Ref.Def.Lem.: $sh(\mathcal{F}) = sh(f)$, $\mathbf{P}(f)$ and also $\mathbf{P}(\mathbf{e})$ are solutions of \mathcal{F} . By the Ref.Red.Lem., a reduced specification \mathcal{F}_{red} exists with solution $\mathbf{P}(\mathbf{e})$ and $sh(\mathcal{F}) \geq sh(\mathcal{F}_0)$. Then by the choice of \mathcal{E}_{min} and \mathbf{e}_{min} it follows: $sh(f) = sh(\mathcal{F}) \geq sh(\mathcal{F}_{red}) \geq sh(\mathcal{E}_{min}) = sh(\mathbf{e}_{min}) = n_0$.

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Carrothopes of the Algorithm CSH

Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in RegExps$ be arbitrary with $f \Leftrightarrow_{\mathbf{P}} \mathbf{e}$. Then it follows for $\mathcal{F} = Spec(f)$ by the Ref.Def.Lem.: $sh(\mathcal{F}) = sh(f)$, $\mathbf{P}(f)$ and also $\mathbf{P}(\mathbf{e})$ are solutions of \mathcal{F} . By the Ref.Red.Lem., a reduced specification \mathcal{F}_{red} exists with solution $\mathbf{P}(\mathbf{e})$ and $sh(\mathcal{F}) \geq sh(\mathcal{F}_0)$. Then by the choice of \mathcal{E}_{min} and \mathbf{e}_{min} it follows: $sh(f) = sh(\mathcal{F}) \geq sh(\mathcal{F}_{red}) \geq sh(\mathcal{E}_{min}) = sh(\mathbf{e}_{min}) = n_0$.

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

Correctness of the Algorithm CSH

Let $f \in RegExps$ be arbitrary with $f \Leftrightarrow_{\mathbf{P}} \mathbf{e}$. Then it follows for $\mathcal{F} = Spec(f)$ by the Ref.Def.Lem.: $sh(\mathcal{F}) = sh(f)$, $\mathbf{P}(f)$ and also $\mathbf{P}(\mathbf{e})$ are solutions of \mathcal{F} . By the Ref.Red.Lem., a reduced specification \mathcal{F}_{red} exists with solution $\mathbf{P}(\mathbf{e})$ and $sh(\mathcal{F}) \geq sh(\mathcal{F}_0)$. Then by the choice of \mathcal{E}_{min} and \mathbf{e}_{min} it follows: $sh(f) = sh(\mathcal{F}) \geq sh(\mathcal{F}_{red}) \geq sh(\mathcal{E}_{min}) = sh(\mathbf{e}_{min}) = n_0$. Hence: $n_0 = sh(\mathbf{e}_{min}) = msh(\mathbf{e})$.

Baeten, Corradini, Grabmayer

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

The Star Height Problem is Solvable

Theorem

The star-height problem for the process interpretation is solvable: there is an algorithm that, for all regular expressions e, on input e computes the minimal star height of e.

Remark. This is a theoretical result, which (on its own) does not allow to show a better than double-exponential time bound on a naive decision algorithm extracted from the proof.

Star Height of Well-Behaved Specifications Refined Definability, Solvability, and Reducibility Lemmas The Algorithm CSH Correctness of the Algorithm CSH

The Star Height Problem is Solvable

Theorem

The star-height problem for the process interpretation is solvable: there is an algorithm that, for all regular expressions e, on input e computes the minimal star height of e.

Remark. This is a theoretical result, which (on its own) does not allow to show a better than double-exponential time bound on a naive decision algorithm extracted from the proof.

Milner's Conjecture on Star-Height Alternative Proof of Milner's Conjecture

Overview

Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications
- 2 Solution of the Star Height Problem
 - Star Height of Well-Behaved Specifications
 - Refined Definability, Solvability, and Reducibility Lemmas
 - The Algorithm CSH
 - Correctness of the Algorithm CSH
- 3 Alternative Proof of Milner's Star-Height Conjecture
 - Milner's Conjecture on Star-Height
 - Alternative Proof of Milner's Conjecture
 - Summary

Milner's Conjecture on Star-Height Alternative Proof of Milner's Conjecture

Milner's Conjecture on Star-Height

Let the sequence $\{f_n\}_n$ be defined as

 $f_1 = a^* \qquad f_{n+1} = (f_n \cdot a)^*$.

Then $P(f_1)$, $P(f_2)$, $P(f_3)$, $P(f_4)$ are of the forms:

Conjecture (Milner). The minimal star height of f_n is n.

Baeten, Corradini, Grabmayer

Star Height of Regular Expressions under Bisimulation

Milner's Conjecture on Star-Height Alternative Proof of Milner's Conjecture

Well-Behaved Spec's with solutions $P(f_1)$, $P(f_2)$, $P(f_3)$

Alternative Proof of Milner's Conjecture (I)

Theorem (Hirshfeld and Moller, 2000)

For every *n*, there exists a regular expression f_n over the single-letter alphabet $\{a\}$ such that the minimal star height of f_n under the process interpretation is *n*. This is witnessed by the sequence $\{f_n\}_n$ in Milner's Conjecture.

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $\mathbf{P}(f_n)$ as a solution, $sh(\mathcal{E}) \geq n$ holds.

Hint at the Proof.

A careful analysis of well-behaved specifications \mathcal{E} that have $P(f_n)$ as a solution.

Baeten, Corradini, Grabmayer Star Height of Regular Expressions under Bisimulation

Alternative Proof of Milner's Conjecture (I)

Theorem (Hirshfeld and Moller, 2000)

For every *n*, there exists a regular expression f_n over the single-letter alphabet $\{a\}$ such that the minimal star height of f_n under the process interpretation is *n*. This is witnessed by the sequence $\{f_n\}_n$ in Milner's Conjecture.

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $\mathbf{P}(f_n)$ as a solution, $sh(\mathcal{E}) \ge n$ holds.

Hint at the Proof.

A careful analysis of well-behaved specifications \mathcal{E} that have $P(f_n)$ as a solution.

Milner's Conjecture on Star-Height Alternative Proof of Milner's Conjecture

Alternative Proof of Milner's Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $\mathbf{P}(f_n)$ as a solution, $sh(\mathcal{E}) \ge n$ holds.

(Alternative) Proof of the Theorem.

Let $n \in \mathbb{N} \setminus \{0\}$ arbitrary. It suffices to show that $sh(f_n) = n$.

Let $e \in RegExps(\{a\})$ such that $e \Leftrightarrow_{P} f_{n}$. Then by the Ref.Def.Lemma there exists a well-behaved specification \mathcal{E} with $sh(\mathcal{E}) = sh(e)$ such that P(e), and also P(f) is a solution of \mathcal{E} . By the Lemma $sh(\mathcal{E}) \ge n$ follows, entailing $sh(e) \ge n$.

Hence the minimal star height of f_n is n.

Milner's Conjecture on Star-Height Alternative Proof of Milner's Conjecture

Alternative Proof of Milner's Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $\mathbf{P}(f_n)$ as a solution, $sh(\mathcal{E}) \ge n$ holds.

(Alternative) Proof of the Theorem.

Let $n \in \mathbb{N} \setminus \{0\}$ arbitrary. It suffices to show that $sh(f_n) = n$.

Let $e \in RegExps(\{a\})$ such that $e \Leftrightarrow_{P} f_{n}$. Then by the Ref.Def.Lemma there exists a well-behaved specification \mathcal{E} with $sh(\mathcal{E}) = sh(e)$ such that P(e), and also P(f) is a solution of \mathcal{E} . By the Lemma $sh(\mathcal{E}) \ge n$ follows, entailing $sh(e) \ge n$.

Hence the minimal star height of f_n is n.

Milner's Conjecture on Star-Height Alternative Proof of Milner's Conjecture

Alternative Proof of Milner's Conjecture (II)

Lemma (Main Lemma)

For every well-behaved specification \mathcal{E} that has $\mathbf{P}(f_n)$ as a solution, $sh(\mathcal{E}) \ge n$ holds.

(Alternative) Proof of the Theorem.

Let $n \in \mathbb{N} \setminus \{0\}$ arbitrary. It suffices to show that $sh(f_n) = n$.

Let $e \in RegExps(\{a\})$ such that $e \Leftrightarrow_{P} f_{n}$. Then by the Ref.Def.Lemma there exists a well-behaved specification \mathcal{E} with $sh(\mathcal{E}) = sh(e)$ such that P(e), and also P(f) is a solution of \mathcal{E} . By the Lemma $sh(\mathcal{E}) \ge n$ follows, entailing $sh(e) \ge n$.

Hence the minimal star height of f_n is n.

Overview

Introduction

- Milner's Process Interpretation
- Star Height of Regular Languages
- Minimal Star Height under the Process Interpretation
- Well-Behaved Specifications
- 2 Solution of the Star Height Problem
 - Star Height of Well-Behaved Specifications
 - Refined Definability, Solvability, and Reducibility Lemmas
 - The Algorithm CSH
 - Correctness of the Algorithm CSH
- 3 Alternative Proof of Milner's Star-Height Conjecture
 - Milner's Conjecture on Star-Height
 - Alternative Proof of Milner's Conjecture

Summary

Summary

We consider regular expressions under Milner's process interpretation.

We use the correspondence with "well-behaved" specifications from [BC05] to show:

- The Star Height Problem for Regular Expressions under Milner's Process Interpretation is solvable. (Using the reducibility lemma for well-behaved spec's from [BCG05].)
- For regular expressions over a single-letter alphabet, minimal star height w.r.t. the process interpretation defines a proper hierarchy (Hirshfeld/Moller, 2000).

Questions for Further Research

- How could a better algorithm for the star-height problem look like?
- Is there a relationship with known decision algorithms for the (restricted) star-height problem for regular languages?
- Are there appealing interpretations for (generalised) regular expressions (allowing *complementation and intersection* operators) in process theory?
- Is it possible, to find, for all *e* ∈ *RegExps* an
 e_{min} ∈ *RegExps* of minimal star height such that
 e_{min} ⇔_{*P*} *e* and *e_{min}* = *e is provable* in Milner's adaptation for *P* of Salomaa's axiomatisation for *L* ?

Example: $Spec(a(a^*b + c) + (c^* + a^*b)^* + a)$

Baeten, Corradini, Grabmayer

Star Height of Regular Expressions under Bisimulation

Example: Canonical Solution of $Spec(a(a^*b+c)+...)$

Baeten, Corradini, Grabmayer

Star Height of Regular Expressions under Bisimulation

References I

J.C.M. Baeten and F. Corradini Regular Expressions in Process Algebra. *Proceedings of LICS 2005*, 2005.

J.C.M. Baeten, F. Corradini, and C. Grabmayer A Characterization of Regular Expressions under Bisimulation.

Research Report, Techn. Univ. Eindhoven, Oct. 2005.

R. Milner

A Complete Inference System for a Class of Regular Behaviours.

Journal of Comp. and Syst. Sciences, 28:439-466, 1984.

Anhang

References II

Y. Hirshfeld and F. Moller On the Star Height of Unary Regular Behaviours. In: Proof, Language, Interaction: Essays in honour of Robin Milner, MIT Press, 2000.