
Math. Struct. in Comp. Science (2007), vol. 17, pp. 439–484. c© 2007 Cambridge University Press

doi:10.1017/S0960129507006111 Printed in the United Kingdom

A duality between proof systems for cyclic

term graphs

CLEMENS GRABMAYER†

Department of Computer Science, Vrije Universiteit Amsterdam, de Boelelaan 1081a,

1081 HV Amsterdam, the Netherlands

Email: clemens@cs.vu.nl.

Received 1 September 2005; revised 4 September 2006

This paper presents a proof-theoretic observation about two kinds of proof systems for

bisimilarity between cyclic term graphs.

First we consider proof systems for demonstrating that µ-term specifications of cyclic term

graphs have the same tree unwinding. We establish a close connection between adaptations

for µ-terms over a general first-order signature of the coinductive axiomatisation of

recursive type equivalence by Brandt and Henglein (Brandt and Henglein 1998) and of a

proof system by Ariola and Klop (Ariola and Klop 1995) for consistency checking. We show

that there exists a simple duality by mirroring between derivations in the former system and

formalised consistency checks, which are called ‘consistency unfoldings’, in the latter. This

result sheds additional light on the axiomatisation of Brandt and Henglein: it provides an

alternative soundness proof for the adaptation considered here.

We then outline an analogous duality result that holds for a pair of similar proof systems

for proving that equational specifications of cyclic term graphs are bisimilar.

1. Introduction

Proof systems for regular cyclic objects have a long tradition in both logic and computer

science. Well-known examples are the axiomatisations of regular expression equivalence

by Salomaa (Salomaa 1966), of bisimilarity between regular behaviours by Milner (Milner

1984), of the equivalence and subtyping relations between recursive types by Amadio and

Cardelli (Amadio and Cardelli 1993) and of bisimilarity between cyclic term graphs by

Ariola and Klop (Ariola and Klop 1995). These systems are essentially algebraic in

character, with the rules of equational logic, including composition (congruence), being

part of their logical apparatus, and with induction being an important tool for proving

soundness and completeness.

More recently, proof systems with a coalgebraic background have been formulated

in which proofs are able to employ circular reasoning, exploiting the fact that many

† This paper was written while the author was employed on the NWO-project GeoProc – ‘Geometry of

Processes’, Nr. 612.000.313. (NWO=Nederlandse Organisatie voor Wetenschappelijk Onderzoek.)

C. Grabmayer 440

equivalence problems allow reformulations in terms of the existence of finite or finitely

representable bisimulations. in addition to their coinductive foundations, such systems

were first introduced by Brandt and Henglein for recursive type equivalence and subtyping

(Brandt and Henglein 1998). Hüttel and Stirling had earlier given a system with a similar

form for bisimilarity of normed recursive processes over the process algebra BPA but

without an explicit coinductive motivation (Hüttel and Stirling 1991). These systems,

and a number of similar ones, have in common the presence of inference rules with

applications in which assumptions of the form of the conclusion may be discharged. Such

inferences allow us, roughly speaking, to detect that a bisimulation-building process that

is formalised by a derivation has reached a subtask that it has already solved before.

Completeness of such coalgebraic systems can often be shown by proving appropriate

coinduction principles and by linking derivations with bisimulations.

Ariola and Klop presented a third kind of proof system for bisimilarity between cyclic

term graphs (Ariola and Klop 1995). Here the focus is on consistency with the system:

an equation between equational specifications of two cyclic term graphs can be added

consistently if and only if the term graphs are bisimilar. The most prominent feature of

this system is a decomposition rule, which allows us to compare the inner structure of the

terms on either side of an equation. An application of this rule on the premise of a term

equation F(s1, . . . , sn) = F(t1, . . . , tn) (where F is an n-ary function symbol) syntactically

matches, for i ∈ {1, . . . , n}, a subterm si of the term on the left-hand side of the equation

with the corresponding subterm ti of the term on the right-hand side, that is, it allows us

to infer si = ti. This feature of the decomposition rule has led Ariola and Klop to call

their proof system a ‘syntactic-matching’ system.

Proving that an equation is consistent with a syntactic-matching system amounts to

showing that, assuming the equation, it is not possible to derive a ‘contradiction’, an

equation between terms that have different leading symbols. However, because there are

usually infinitely many possible derivations from a given equation, it is, in general, not

possible to decide the consistency of a given equation by a naive search procedure

that successively generates all possible derivations and checks their conclusions for

contradictions. But in the case of syntactic-matching systems for regular cyclic objects,

which by successive decompositions give rise to only a finite number of reachable objects,

decidability of consistency with the system can often be shown. This is because in such

a situation it is easier to analyse the termination behaviour of a consistency-deciding

procedure that first generates a systematic overview of all possible derivations from a

given equation until looping occurs, and then: if a contradiction is generated in the

course of an execution, we have shown the inconsistency of the equation; if the systematic

overview is completed and no contradiction is found, we have proved its consistency.

Such a loop-check procedure for derivations in a syntactic-matching system can actually

be linked to the detection of a finite bisimulation with a circular structure between the

objects (for example terms) on either side of a given equation. Procedures of a similar kind

are used in inference rules and in concrete implementations of the concept of ‘circular

coinduction’ that has been introduced and developed in a sequence of papers by Goguen

and Rosu, starting with Rosu and Goguen (2001).

A duality between proof systems for cyclic term graphs 441

o

o

o

Figure 1. The bisimilar term graphs G1 and H1, where the label o is a unary function symbol.

Figure 2. A looping consistency-check in the system of Ariola and Klop (on the left) and a closely

related proof in the system of Brandt and Henglein (on the right).

Klop noted (Klop 2000) that there exists, on the syntactic level, a conspicuous similarity

between:

(a) trying to find a derivation for an equation in the system of Brandt and Henglein; and

(b) trying to demonstrate the consistency of the same equation in a related syntactic-

matching system by using a loop-check procedure.

This observation was the starting point for a detailed investigation into the proof-theoretic

connection between the Brandt–Henglein and Ariola–Klop (syntactic-matching) systems,

which led to the results presented in this paper. As a motivation, we can illustrate the

relationship mentioned above using a simple example.

Let G1 and H1 be the term graphs shown in Figure 1, which can be represented by

the equational specifications g1 = 〈 α | α = o(α) 〉 and h1 = 〈 β | β = o(o(β)) 〉, respectively.

G1 and H1 are bisimilar in an intuitive way: a bisimulation is specified by the broken

lines in Figure 1, adhering to the definition of bisimilarity for term graphs due to Ariola

and Klop (Ariola and Klop 1995). (Here o is a unary function symbol and α and β are

recursion variables.) Moreover, g1 and h1 possess the same tree unwinding: the infinite

unary tree in which every node is labelled by the unary function symbol o.

We now look at a proof, illustrated on the left-hand side in Figure 2, showing that

g1 and h1 are bisimilar by means of a looping consistency check in a syntactic-matching

C. Grabmayer 442

system. This proof presupposes two things:

1 a syntactic-matching system in which the only inference rules are decomposition, and

expanding variables in equational specifications according to their definition at the

outermost position; and

2 a correspondence result of bisimilarity between term graphs with consistency relative

to the syntactic-matching system.

An explanation of this graphical proof is given below.

Assuming that g1 and h1 are bisimilar leads us to adopt the equation α = β between

the leading variables α and β of the term graph specifications g1 and h1 (see this equation

in the top box on the left of Figure 2). By applying the rule for expanding the definitions

for α and β in g1 and h1 at the outermost positions, we can derive the equations o(α) = β ,

α = o(o(β)) and o(α) = o(o(β)). Since o(α) = o(o(β)) is the only formula the decomposition

rule (the second rule in the system) can be applied to, it is the only one we have included

at the bottom of the topmost box, as it is the only relevant formula here (a box contains

formulas derivable by inferences that do not change the represented term graphs). From

this formula, an application of the decomposition rule DECOMP strips off the leftmost

occurrences of the function symbol o, resulting in the equation α = o(β) in the box below.

Expanding the definition of α in g1 then leads to o(α) = o(β). Finally, a second application

of DECOMP gives us back the equation α = β from which we started as an assumption.

In this way we have shown that all long enough derivations from α = β in the syntactic-

matching system are circular and loop back to this same equation. Since we do not

encounter any ‘contradictions’ (that is, no equations between terms with different leading

symbols) during any of these derivations, the equation α = β is consistent with the system.

Hence, the ‘deduction graph’ on the left-hand side of Figure 1 can be viewed as a

looping consistency-check that witnesses the consistency of the equation α = β with the

syntactic-matching system. It follows, by the presupposed correspondence result, that the

represented term graphs G1 and H1 are bisimilar. It is also noticeable that we can quite

easily extract the bisimulation indicated in Figure 1 from the cycling derivations.

Now it turns out that the looping consistency-check on the left-hand side of Figure 1

is closely related to a derivation in a Brandt–Henglein proof system: by mirroring the

‘deduction graph’ on the left in a horizontal line, a cyclic deduction graph with bottommost

formula α = β is reached. By subsequently turning the arrows around, a cyclic derivation

is obtained in a proof system that contains two rules: a composition rule COMP and

a rule for shortening equations by applying the definitions of the recursion variables

in equational specifications at the outermost positions. At this point we observe that

in a Brandt–Henglein system we can get a circular composition rule c-COMP with an

application of the form

[o(α) = o(o(α))]u

D1

α = o(α)
c-COMP, u

o(α) = o(o(α))

(1.1)

(here u acts as an assumption marker, indicating that the set of yet undischarged

assumptions (o(α) = o(o(α)))u carrying this marker from the top is discharged at the

A duality between proof systems for cyclic term graphs 443

F

F F

F

Figure 3. The bisimilar term graphs G2 and H2, where the label F is a binary function symbol.

Figure 4. Determining bisimilarity of the term graphs represented as 〈 α | α = F(F(α, α), α) 〉 and as

〈 β | β = F(β, F(β, β)) 〉 by a loop-check procedure using decomposition steps.

application of c-COMP at the bottom). Assumptions of the form of the conclusion may

be discharged at such an application. By using an application of the form (1.1), we

obtain the Brandt–Henglein derivation on the right-hand side of Figure 2: we remove the

outgoing deduction from the bottom box, but place a second copy of the bottom box

on the top, from which the box in the middle is reachable by a COMP application, and

we replace the COMP application between the lower two boxes by an application of the

circular decomposition rule c-COMP at which the assumption o(α) = o(o(α)) is discharged.

As a second example, consider the bisimilar term graphs G2 and H2 in Figure 3,

which can be represented by the equational specifications g2 = 〈 α | α = F(F(α, α), α) 〉
and h2 = 〈 β | β = F(β, F(β, β)) 〉. A looping consistency check for this pair of graphs

is shown in Figure 4. We can again obtain a derivation in a Brandt–Henglein proof

system in this case by mirroring the consistency check in a horizontal line upwards, by

changing applications of decomposition rules into applications of composition rules, by

adding a set of additional boxes and by discharging the assumptions arising at circular

decomposition rules below. (Such a Brandt–Henglein derivation, but formalised for µ-term

representations of the term graphs G2 and H2, will be encountered later in Figure 12.)

In this paper, starting from the observation described above, we extract a proof-theoretic

result that links the Ariola–Klop and Brandt–Henglein systems: there exists a duality

via mirroring between ‘consistency unfoldings’ (formalisations of successful consistency

C. Grabmayer 444

checks) in the Ariola–Klop system and derivations in the Brandt–Henglein system. While

we are pincipally concerned with proof systems for µ-term representations of cyclic term

graphs (Sections 3–5 and 7), we also outline an analogous result for proof systems con-

cerned with equational specifications of cyclic term graphs (Section 7.5, using Section 6).

The relevance of our results

It is well known that there is a duality between algebra and coalgebra in the sense that

statements in an algebraic setting have counterparts in a coalgebraic setting, and vice versa ,

by merely turning the arrows around in statements in the framework of category theory

(and in illustrative diagrams). However, we feel that it is not well known that this duality

in category theory and the connection with bisimilarity find an expression in the fact that

Brandt–Henglein proofs are the exact mirror image of proofs in a bisimulation-based

proof search using decomposition (Ariola–Klop proofs).

In particular, we want to emphasise the following four aspects of the duality results

proved here:

1 They can explain the a priori counter-intuitive, circular Brandt–Henglein proofs in

terms of the more intuitive notion of bisimilarity.

2 They reveal an intimate link between the soundness and completeness of the Brandt

and Henglein and Ariola and Klop systems.

3 They exhibit the duality between composition and decomposition rules, thus corrobor-

ating the fundamental perception between constructing and deconstructing operations,

and between algebra and coalgebra.

4 They capture an algebra/coalgebra duality in a different way from the turning around

of arrows in the step between algebraic to coalgebraic formulations in category theory.

Previous work

A first account of duality results as reported in this article was given in a paper presented

at the TERMGRAPH 2002 Workshop, Barcelona, October 7, 2002 (Grabmayer 2002a).

There, and in a superseding technical report (Grabmayer 2002b), the duality is formulated

for a pair of proof systems for recursive type equivalence, establishing a direct link from

the coinductive axiomatisation for this relation by Brandt and Henglein to a syntactic-

matching system. In the context of an investigation devoted exclusively to proof-theoretic

connections between proof systems for recursive type equivalence, duality statements are

presented in Chapter 6 of the thesis Grabmayer (2005).

Overview of this paper

Basic definitions for µ-terms over a general signature and canonical specifications of cyclic

term graphs are gathered together in Section 2.

In Section 3, we define an adaptation of tree unwinding equivalence on µ-terms for the

coinductive axiomatisation due to Brandt and Henglein, and we formulate a soundness

and completeness theorem for this system.

A duality between proof systems for cyclic term graphs 445

In Section 4, we give an adaptation of tree unwinding equivalence on µ-terms for the

syntactic-matching system due to Ariola and Klop. We define a concept of consistency

with respect to this system, and formulate a correspondence theorem that links consistency

with respect to the system to tree unwinding equivalence.

In Section 5, we introduce variants of these two proof systems that have stronger proof-

theoretic properties, but facilitate the same completeness and correspondence results. We

also define an extension of the variant Brandt–Henglein system with more coinductive

rules.

In Section 6, we define a pair of similar proof systems concerned with bisimilarity on

equational specifications of cyclic term graphs.

The duality results are developed in Section 7. We introduce the concept of ‘consistency

unfolding’ in the variant Ariola–Klop system, and define ‘mirroring functions’ that map

consistency unfoldings into derivations in the extended variant Brandt–Henglein system,

and vice versa . Following these preparations, we prove that the mirroring functions define

a bijective correspondence between consistency unfoldings in the variant Ariola–Klop

system and derivations in the extended variant Brandt–Henglein system. As an application,

we give an alternative soundness proof of the variant Brandt–Henglein system. We outline

an analogous duality result linking the proof systems from Section 6 that is concerned

with bisimilarity on equational specifications of cyclic term graphs.

Finally, in Section 8, we report on generalisations of our results and put a number of

questions for further research.

2. Preliminaries

In this section we introduce some basic definitions concerning µ-term representations (in

Section 2.1) and canonical term graph specifications of cyclic term graphs (in Section 2.2),

but we begin by fixing some global notation.

We use ω to mean the set {0, 1, 2, 3, . . .}. For a finite set A, an alphabet , we use

A∗ to denote the set of (finite) words over A. The empty word is designated by ε.

Concatenation of words w and w′ is denoted multiplicatively as w.w′. Let A and B be

sets. We use f : A→ B to denote a (total) function, and f : A ⇀ B to denote a partial

function between A and B. For a partial function f : A ⇀ B, we use f(a)↓ and f(a)↑ to

abbreviate the statements ‘f is defined for a’ and ‘f is undefined for a’, respectively, and

use dom(f) =def {x ∈ A | f(x)↓} to denote the domain of f.

A signature Σ is a non-empty set of function symbols that is equipped with a function

arity : Σ → ω that to every function symbol F ∈ Σ assigns its arity . Function symbols

with arity zero are called constants . We will use capital letters F , G, H for function

symbols, and C , D for constants. For a signature Σ and all n ∈ ω, we use Σn to denote

the subset of Σ containing all function symbols of arity n.

2.1. Preliminaries for µ-terms

In this section we gather together the basic definitions for µ-terms over a given signature,

which will be used in the proof systems investigated in Sections 3–5 and 7. We define

C. Grabmayer 446

the set of µ-terms over a given signature, the concepts of the ‘leading symbol’ and ‘tree

unwinding’ of a µ-term, and the ‘tree unwinding equivalence’ relation. We define a concept

of bisimulation between µ-terms based on rewrite relations for µ-terms such as ‘unfolding’

and ‘decomposition’, and relate it to tree unwinding equivalence by means of a ‘finite

bisimulation principle’ for proving that µ-terms have the same tree unwinding.

We begin with the definition of the set of µ-terms over a given signature.

Definition 2.1. Let Var be a countably infinite set of variables and Σ be a signature. The

set Terµ(Σ) of µ-terms over Σ (and Var) is defined inductively by the following three

clauses:

(i) For all variables α ∈ Var, α ∈ Terµ(Σ).

(ii) For all n-ary function symbols F in Σ, if t1, . . . , tn ∈ Terµ(Σ), then F(t1, . . . , tn) ∈ Terµ(Σ)

also.

(iii) For all α ∈ Var, if t ∈ Terµ(Σ), then µα. t ∈ Terµ(Σ) also.

For all s, t ∈ Terµ(Σ), we say that s is a subterm of t (notation s � t) if and only if s is t

or if s precedes t in the formation of t according to the definition above.

The set Var of variables will always be treated as given implicitly and its presence

underlying this definition is therefore not reflected in the notation Terµ(Σ). We use small

Greek letters α, β, γ (which may be indexed, primed, and so on) as syntactical variables

for variables, and letters t, s, r (which may be indexed, primed, and so on) as syntactical

variables for µ-terms.

µ is a binder: occurrences of α in t within µα. t are bound. An occurrence of a variable

α in a µ-term t that is not in the scope of a µ-binder is called free; otherwise it is called

bound . We adopt the practice of working modulo renaming of bound variables (that is,

we work implicitly with renaming equivalence classes of µ-terms). We use the symbol ≡
to denote syntactic equality of µ-terms up to the renaming of bound variables. We use

µα1α2 . . . αn. t as an abbreviated notation for µ-terms like µα1. µα2. . . . µαn. t.

For all α ∈ Var and s, t ∈ Terµ(Σ), a substitution expression t[s/α] denotes the result of

substituting s for all free occurrences of α in t. Some care has to be taken while performing

substitutions in order to avoid the capture of free variables: bound variables will need to

be renamed sometimes before carrying out a substitution.

Let [] be a constant, called a context-hole, such that [] /∈ Σ. A context C over Σ is

a µ-term in Terµ(Σ ∪ {[]}) with precisely one occurrence of [] in it. Contexts are not

considered modulo renaming. For a context C over Σ, and a µ-term t ∈ Terµ(Σ), we use

C[t] to denote the result of replacing [] in C by t (free variables in t may get bound).

The signature Σ will be considered as a parameter for all definitions and statements

given here, and it will be carried along in the notation, as, for example, for the set Terµ(Σ)

of µ-terms over Σ. Except when a signature Σ is specified locally (as some concrete set or

as obeying some particular conditions), definitions and statements should be understood

to apply for all possible choices of signature Σ.

Making use of the fact that µ-bindings can be used to describe back-pointers in cyclic

term graphs, µ-terms can be viewed as term specifications of cyclic term graphs. An

explicit translation G of µ-terms into cyclic term graphs was described in Ariola and

A duality between proof systems for cyclic term graphs 447

Klop (1995). For example, the term graphs G1 and H1 in Figure 1 are the images under

G of the µ-terms µα. o(α) and µβ. o(o(β)), respectively; and the term graphs G2 and H2

in Figure 3 are the images under G of the µ-terms µα. F(F(α, α), α) and µβ. F(β, F(β, β)).

There is the notable fact, shown by Blom, that the image of the translation G can be

characterised as the class of cyclic term graphs without ‘horizontal sharing’ (Blom 2001).

The translation G, however, is not a total function because there are µ-terms such as µα. α

and µαβγ. β that do not correspond to cyclic term graphs.

Relying on the translation G and on the well-known concept of ‘tree unwinding’ for

cyclic term graphs, it is possible to assign to each µ-term its ‘tree unwinding’, which is a

potentially infinite labelled term tree. Although the ‘tree unwinding’ concept for µ-terms

can also be introduced formally in this way, we give a more direct definition here for two

reasons:

1 We want to base the definition on a syntactic characterisation of those µ-terms that

do not represent cyclic term graphs (that is, on which the translation G is undefined).

2 The specific definition of the ‘tree unwinding’ of a µ-term given below will be needed

later in the proof of the ‘finite bisimulation principle’.

In preparation for the definition of ‘tree unwinding’, we define the ‘leading symbol’ of a

µ-term t, which is intended to denote the symbol that labels the root of the tree unwinding

of t (this relationship is stated formally in Proposition 2.4). The leading symbol function

will be left undefined for µ-terms like µα. α and µαβγ. β, which do not represent cyclic

term graphs under the translation G.

The leading symbol (partial) function L : Terµ(Σ) ⇀ Σ ∪ Var is defined by induction

on the structure of µ-terms over Σ by the clauses

L(α) =def α

L(F(t1, . . . , tn)) =def F

L(µα. t) =def

{
↑ . . . L(t)↑ or L(t) = α

L(t) . . . L(t)↓ and L(t) �= α

(for all α ∈ Var, n ∈ ω, F ∈ Σn, and t, t1, . . . , tn ∈ Terµ(Σ)). If L(t)↓, for t ∈ Terµ(Σ), then

L(t) is called the leading symbol of t and we say that t has a defined leading symbol ;

otherwise we say that the leading symbol of t is undefined. For example, the leading

symbol of µαβ. F(α, β) is the binary function symbol F , and the leading symbol of both

of the µ-terms µα. α and µαβγ. β is undefined.

The set of µ-terms in Terµ(Σ) with undefined leading symbol can be characterised by

the following proposition, which is not difficult to prove.

Proposition 2.2. For all t ∈ Terµ(Σ),

L(t)↑ ⇐⇒ (∃ n ∈ ω) (∃ α0, α1, . . . , αn ∈ Var)

(∃ j ∈ {0, 1, . . . , n})
[
t ≡ µα0α1 . . . αn. αj

]
.

Remark 2.3. Note that µ-terms with undefined leading symbol are related, via a well-

known translation of µ-terms into the λ-calculus, to unsolvable λ-terms, that is, λ-terms

C. Grabmayer 448

that do not possess a head normal form. Assuming a chosen fixed-point combinator Y ,

this translation interprets µ-bindings ‘µ(·)’ by ‘Y λ(·)’, that is, a λ-binding that is given to Y

as an application. More precisely, a translation T from Terµ(Σ) to λ-terms with function

symbols from Σ is inductively defined by the clauses

T(α) =def α

T(F(t1, . . . , tn)) =def F(T(t1), . . . ,T(tn))

T(µα. t) =def Y λα.T(t)

(for all α ∈ Var, n ∈ ω, F ∈ Σn, and t, t1, . . . , tn ∈ Terµ(Σ)), where Y is a fixed-point

combinator. It is not difficult to prove for this translation that for all t ∈ Terµ(Σ), the

leading symbol of t is undefined if and only if T(t) is unsolvable, that is, if T(t) does not

possess a head normal form.

Since we are interested in µ-terms as specifications of cyclic term graphs, from now on

we will not consider µ-terms t for which the leading symbol of t or of one of its subterms

is undefined. In other words, we restrict our attention to the set

Tµ(Σ) =def {t ∈ Terµ(Σ) | (∀s ∈ Terµ(Σ), s � t) [L(s)↓]}

of all those µ-terms t in Terµ(Σ) for which each subterm has a defined leading symbol.

By definition, the set Tµ(Σ) is closed under the subterm relation. It can be shown that

Tµ(Σ) is precisely the subset of Terµ(Σ) consisting of all those µ-terms over Σ for which

the translation G to cyclic term graphs is defined.

As a prerequisite for the definition of the ‘tree unwinding’ of a µ-term, we need a

formalisation of, possibly infinite, term trees. For this, we define a term tree over Σ to be

a partial function T : ω∗ ⇀ Σ ∪ Var with the property that the domain of T , the set

Acc(T) =def dom(T) of access paths or nodes of T , fulfills two properties:

(i) Acc(T) is non-empty, and prefix-closed.

(ii) The arity of the symbol T (p) that labels a node p in T determines the number of

successors of p in T (variables are assumed to have zero arity).

We use �(Σ) to denote the set of all term trees over Σ.

For all T ∈ �(Σ) and for all p ∈ Acc(t), the subtree T |p of T determined by p is the

partial function T |p : ω∗ ⇀ Σ ∪ Var defined by T |p(p̃) =def T (p.p̃) for all p̃ ∈ ω∗. It is

easy to verify that subtrees of term trees are again term trees.

Now we define the ‘tree unwinding’ of a µ-term over Σ. The function

T : Tµ(Σ) −→ �(Σ ∪ Var) , t �−→ T (t) : ω∗ ⇀ Σ ∪ Var

p �→ T (t)(p)

that assigns to every t ∈ Tµ(Σ) its tree unwinding T (t) is defined by induction on the length

|p| of access paths p ∈ ω∗, with a subinduction on the number of leading µ-bindings in t,

A duality between proof systems for cyclic term graphs 449

Figure 5. On the left: the tree unwinding of the µ-terms s1 ≡ µα. o(α) and t1 ≡ µβ. o(o(β)), which

specify the cyclic term graphs G1 and H1 in Figure 1, respectively. On the right: the common tree

unwinding of the µ-terms s2 ≡ µα. F(F(α, α), α) and t2 ≡ µβ. F(β, F(β, β)), which specify the cyclic

term graphs G2 and H2 in Figure 3, respectively.

by the following clauses:

T (α)(ε) =def α

T (α)(i.p)↑

T (F(t1, . . . , tn))(ε) =def F

T (F(t1, . . . , tn))(i.p) =def

{
T (ti+1)(p) . . . i < n

↑ . . . i � n

T (µα. t)(p) =def T (t[µα. t/α])(p)

(for all α ∈ Var, n ∈ ω, F ∈ Σn, t, t1, . . . , tn ∈ Tµ(Σ), and for all i ∈ ω and p ∈ ω∗).

Figure 5 contains an example where the common tree unwindings of µ-terms that specify

the bisimilar cyclic term graphs in Figures 1 and 3, respectively, are shown informally.

As stated by the following easily verifiable proposition, the symbol that labels the root

of the tree unwinding of a µ-term t in Tµ(Σ) is just the leading symbol of t.

Proposition 2.4. For all t ∈ Tµ(Σ), we have T (t)(ε) =L(t).

Using the concept of the tree unwinding of a µ-term, we now define the binary

equivalence relation =T on Tµ(Σ) as the property of ‘having the same tree unwinding’.

Definition 2.5. The binary relation =T on Tµ(Σ), which is called tree unwinding equivalence,

is defined, for all s, t ∈ Tµ(Σ), by

s =T t ⇐⇒def T (s) = T (t) .

Two µ-terms s, t ∈ Tµ(Σ) are called equivalent if and only if s =T t.

We can now recognise that the two pairs of µ-terms used in Figure 5 that, respectively,

have the same tree unwinding are equivalent, and write this as s1 =T t1 and s2 =T t2.

It is well known that the tree unwinding of a µ-term is invariant under the folding and

unfolding operations, which can be formalised as the rewrite relations →unfold and →fold

C. Grabmayer 450

defined by the rewrite rules

µα. s →unfold s[µα. s/α]

t[µβ. t/β] →fold µβ. t

(for all α, β ∈ Var and s, t ∈ Tµ(Σ)). Using the rewriting relation →unfold and the concept

of an ‘infinite normal form’ from infinitary rewriting, the tree unwinding of a µ-term s

can also be viewed as the infinite normal form with respect to →unfold of s, that is, as the

possibly infinite term t with the following properties:

— t is the limit of a possibly infinite rewrite sequence consisting only of →unfold-steps

starting from s.
— No →unfold-step is possible from t (t does not contain an →unfold-‘redex’).

Another well-known fact about µ-terms is that, for all t ∈ Tµ(Σ) (and even for all

t ∈ Terµ(Σ)), only a finite number of µ-terms can be reached by successive applications of

the ‘unfolding at the outermost position’ and ‘decomposition of a µ-term F(t1, . . . , tn) into

one of its subterms t1, . . . tn’ operations. In order to formulate this fact about ‘generated

subterms’ of a µ-term, we introduce, in addition to folding and unfolding, a couple of

further rewrite rewrite relations that will also turn out to be useful for other purposes.

The rewrite relations:

→ou for outermost-unfolding ,

→unfold for unfolding ,

→fold for folding ,

→od(i) for outermost-decomposition selecting the i-th argument ,

→od for outermost-decomposition ,

→oud for outermost-unfolding or -decomposition

are defined as subsets of Tµ(Σ)× Tµ(Σ) as follows:

→ou =def { 〈µα. t, t[µα. t/α]〉 | α ∈ Var, t ∈ Tµ(Σ)}
→unfold =def {〈C[t], C[s]〉 | C context, C[t], t, s ∈ Tµ(Σ), t→ou s}

→fold =def ←unfold

→od(i) =def {〈F(t1, . . . , tn), ti〉 | n ∈ ω, F ∈ Σn, t1, . . . , tn ∈ Tµ(Σ)} (for all i ∈ ω)

→od =def

⋃
i∈ω
→od(i)

→oud =def →ou ∪ →od

For any of the rewrite relations →(·) defined here, we use:

←(·) to denote the converse relation;
→+

(·) to denote the transitive closure of →(·); and
�(·) for the reflexive and transitive closure of →(·), which is also called the more-step

rewrite relation with respect to →.

For example, �oud denotes the more-step rewrite relation with respect to →oud.

We now define ‘generated subterms’ of µ-terms. For all s, t ∈ Tµ(Σ), we say that s is a

generated subterm of t, denoted s � t, if and only if t �oud s. We use GS(t) to denote the

A duality between proof systems for cyclic term graphs 451

set of all generated subterms of a µ-term t in Tµ(Σ). The following lemma formulates the

well-known fact concerning µ-terms that we mentioned above (for example, see Brandt

and Henglein (1998), where the term ‘syntactical subterm’ is used).

Lemma 2.6. For all t ∈ Tµ(Σ), the set GS(t) of generated subterms of t is finite.

We now state a technical property of generated subterms that will be used later.

Suppose that t � s � t and t→ou s (t is a generated subterm of itself, which is witnessed

by a →oud-rewrite sequence t→ou s �oud t containing an →ou-step at the start). Then

every rewrite sequence that witnesses s �oud t contains at least one →od-step. This is

an immediate consequence of the following lemma, which states that →ou is strongly

normalising: every rewriting sequence consisting of contiguous →ou-steps is finite.

Lemma 2.7. The rewrite relation →ou is strongly normalising. Consequently there does

not exist a µ-term t ∈ Tµ(Σ) such that t→+
ou t.

Proof. Outermost unfolding steps on µ-terms in Tµ(Σ) strictly decrease the number

nlµb of leading µ-bindings: if s1 →ou s2 for s1, s2 ∈ Tµ(Σ), then nlµb(s1) > nlµb(s2).

Note that the extension of →ou to a rewrite relation on Terµ(Σ) is actually not strongly

normalising: a cyclic rewrite sequence such as µαβ. α →ou µβαβ. α →ou µαβ. α becomes

possible (in the first step the number of leading µ-bindings is actually increased).

The next lemma states that, for every subtree T (t)|p of the tree unwinding T (t) on a

µ-term t, there exists a generated subterm tp of t that has T (t)|p as its tree unwinding.

This technical statement will be needed later in the proof of Theorem 2.13.

Lemma 2.8. (∀t ∈ Tµ(Σ)) (∀p ∈ Acc(t)) (∃ tp ∈ GS(t))
[

T (tp) = T (t)|p
]
.

Sketch of proof. The lemma is a consequence of the fact that, in the definition of the

tree unwinding, the stipulation for T (t)(p), for t ∈ Terµ(Σ) and p ∈ ω∗, only recurs on

T (t′)(p′) for generated subterms t′ of t, and for paths p′ that are shorter than or equal in

length to that of p. This fact can be used to show the lemma by induction on the length

|p| of p with a subinduction on the number of leading µ-bindings in t.

We proceed by defining a concept of bisimilarity between µ-terms that is closely related

to tree unwinding equivalence. In fact, we will show later that if two µ-terms are bisimilar

according to the definition below, then they are equivalent. For a binary relation R on

Tµ(Σ) to be a bisimulation, three conditions are required to hold for all pairs 〈s, t〉 ∈ R:

1 s and t must have the same leading symbol.

2 The results of �ou-steps from s and t must also be related by R.

3 For all i ∈ ω, if s and t rewrite by →od(i)-steps, then the reducts must again be related

via R.

Definition 2.9. A non-empty relation R ⊆ Tµ(Σ)× Tµ(Σ) is a bisimulation on µ-terms (on

Tµ(Σ)) if and only if the following three conditions are fulfilled for all 〈s, t〉 ∈ R :

(i) L(s) =L(t).

(ii) If s �ou s′ and t �ou t′, for s′, t′ ∈ Tµ(Σ), then 〈s′, t′〉 ∈ R.

C. Grabmayer 452

(iii) If s→od(i) s
′ and t→od(i) t

′, for some i ∈ ω and s′, t′ ∈ Tµ(Σ), then 〈s′, t′〉 ∈ R (that

is, if s ≡ F(s1, . . . , sn) and t ≡ G(t1, . . . , tm), then 〈si, ti〉 ∈ R must hold for all

i ∈ {1, . . . ,min{n, m}}).
For s, t ∈ Tµ(Σ) we write s ∼ t if there exists a bisimulation R on Tµ(Σ) with 〈s, t〉 ∈ R; if

there exists a finite bisimulation R with 〈s, t〉 ∈ R, we write s ∼fin t.

The proposition below states an easy property of bisimulations on µ-terms. Item (ii)

can be proved using Lemma 2.6. The subsequent lemma is an immediate consequence.

Proposition 2.10. Let s, t ∈ Tµ(Σ) and R be a bisimulation on Tµ(Σ) with 〈s, t〉 ∈ R.

Then:

(i) For all generated subterms s′ of s there exists a generated subterm t′ of t such that

〈s′, t′〉 ∈ R, and vice versa .

(ii) The relation R ∩ (GS(s)× GS(t)) is a finite bisimulation on Tµ(Σ) with 〈s, t〉 ∈ R.

Lemma 2.11. For all s, t ∈ Tµ(Σ), we have s ∼ t ⇔ s ∼fin t.

The next lemma states that if two µ-terms are bisimilar, they are also equivalent.

Lemma 2.12. If R is a bisimulation on Tµ(Σ), then s =T t for all 〈s, t〉 ∈ R.

Sketch of proof. Suppose that R is a bisimulation on Terµ(Σ). The statement

(∀〈s, t〉 ∈ R) (∀p ∈ ω∗)
[

T (s)(p) = T (t)(p)]

can be shown by an induction on the length |p| of p with a subinduction on nlµb(s) +

nlµb(t), the sum of the number of leading µ-bindings of s and t.

In the proof of the next theorem, and later, we will encounter binary relations R on

Tµ(Σ) that are almost bisimulations in the sense that only a (finite) number of pairs are

missing, each of which can be reached from a pair 〈s, t〉 ∈ R by performing multiple

→ou-steps to s and to t. We will introduce a specific name for such relations: a relation

R ⊆ Tµ(Σ)× Tµ(Σ) is said to be a bisimulation on Tµ(Σ) up to adding →ou-reachable pairs

if and only if the extension

R̃ =def {〈s′, t′〉 | (∃〈s, t〉 ∈ R) [s �ou s′ & t �ou t′]} (2.1)

of R is a bisimulation on Tµ(Σ).

The following theorem now establishes that the concept of bisimilarity between µ-terms

introduced in Definition 2.9 coincides with tree unwinding equivalence. Furthermore, it

formulates a ‘finite bisimulation principle’ for proving the equivalence of µ-terms.

Theorem 2.13. For all s, t ∈ Tµ(Σ):

s ∼ t =⇒ s =T t (2.2)

s =T t =⇒ s ∼fin t . (2.3)

Thus, to prove that two µ-terms s, t ∈ Tµ(Σ) are equivalent, it suffices to find a bisimulation

on Tµ(Σ) that contains 〈s, t〉. If s, t ∈ Tµ(Σ) are equivalent, then even a finite bisimulation

A duality between proof systems for cyclic term graphs 453

ouod(1)
o(o(t1))t1

od(1)
s1 o(s1)ou

od(1)
o(t1) ouod(1)

o(o(t1))t1

od(1)
s1 o(s1)ou

od(1)
o(t1)

Figure 6. A bisimulation R on Tµ(Σ) up to adding →ou-reachable pairs (left) and its extension R̃ to

a bisimulation on Tµ(Σ) (right) relating the µ-terms s1 ≡ µα. o(α) and t1 ≡ µβ. o(o(β)).

containing 〈s, t〉 can be found. As a consequence, all three of the binary relations ∼, ∼fin

and =T on Tµ(Σ) coincide.

Proof. It suffices to show (2.2) and (2.3) for all s, t ∈ Tµ(Σ). That (2.2) holds for all

s, t ∈ Tµ(Σ) follows immediately from Lemma 2.12.

To prove the second statement, let s, t ∈ Tµ(Σ) be arbitrary with s =T t. Because of

Lemma 2.8, we can choose, for all p ∈ ω∗, generated subterms sp ∈ GS(s) and tp ∈ GS(t)

such that T (sp) = T (s)|p and T (tp) = T (t)|p. With these µ-terms, we let R = {〈sp, tp〉|
p ∈ ω∗}. Obviously, we have 〈s, t〉 ∈ R and R ⊆ GS(s) × GS(t). It is not difficult to

verify that R is a bisimulation up to adding →ou-reachable pairs, which means that the

extension R̃ of R defined by (2.1) is a bisimulation. Since, by the definition of R̃, we also

have R̃ ⊆ GS(s)×GS(t), it follows from Lemma 2.6 that R̃ is finite. As 〈s, t〉 ∈ R̃, we have

found a finite bisimulation R̃ with 〈s, t〉 ∈ R̃. Therefore we have shown s ∼fin t.

Example 2.14. Consider the µ-terms s1 ≡ µα. o(α) and t1 ≡ µβ. o(o(β)), which represent

the term graphs G1 and H1, respectively, in Figure 1. From the cyclic form of the

reduction graphs with respect to →oud of s1 and t1 (see Figure 6), it is easy to check

that R̃ = {s1, o(s1)} × {t1, o(t1), o(o(t1))} is a finite bisimulation on Tµ(Σ) that relates s1
and t1 (see the right-hand picture in Figure 6). Hence s1 ∼fin t1. By the finite bisimulation

principle, s1 =T t1 follows, confirming our earlier observation that T (s1) = T (t1).

An example of a bisimulation up to adding →ou-reachable pairs linking s1 and t1 is the

relation R = {〈s1, t1〉, 〈s1, o(t1)〉} (illustrated by the left-hand picture in Figure 6).

2.2. Preliminaries for canonical term graph specifications

In this subsection we define canonical term graph specifications (ctgs’s) and the concept

of bisimilarity between ctgs’s. Reasoning about bisimilarity of ctgs’s will be formalised

later in the proof systems defined in Section 6.

In order to keep the technicalities to a minimum, we follow Ariola and Klop and

consider only equational specifications of cyclic term graphs without free variables (Ariola

and Klop 1995). (All of the results in this section can be generalised straightforwardly to

the case of equational specifications with free variables.)

We assume that a countably infinite set RVar of recursion variables underlies the

following definition. Just as for variables in µ-terms, we use small Greek letters α, β, . . .

for recursion variables. We again use ≡ to denote syntactical equality between terms.

C. Grabmayer 454

Figure 7. The bisimilar term graphs G3 and H3, where F and G are binary function symbols.

Definition 2.15. Let Σ be a signature. A canonical term graph specification (a ctgs) is

an equational specification of the form 〈 α0 | {α0 = t0, . . . , αn = tn} 〉, where n ∈ ω, α0, . . . , αn
are distinct recursion variables in RVar and, for all i ∈ {0, 1, . . . , n}, the terms ti are of the

form ti ≡ F(αi1, . . . , αini) for some function symbol F ∈ Σ of arity ni and recursion variables

αi1, . . . , αini ∈ {α0, . . . , αn}; the (recursion) equation α0 = t0 is called the leading equation of

the specification, α0 the leading variable and t0 the leading term . We will use the letters

g and h to vary through ctgs’s, and the letters E and F for sets of recursion equations.

For a ctgs g, we use lv(g) to denote the leading variable of g. Finally, we use TGS(Σ) to

denote the set of all ctgs’s over Σ.

It is straightforward to define a notion of tree unwinding for ctgs’s: every finite path

that is possible in a ctgs g = 〈 α0 | Eg 〉 from the leading variable α0, via transitions specified

by Eg , to a recursion variable of Eg corresponds uniquely to an ‘access path’ in the tree

unwinding of g. We will not introduce this notion formally here, but mention that it

provides a reason for the significance of the concept of ‘bisimilarity’ for ctgs’s defined

below. This is because ctgs’s g and h have the same tree unwinding if and only if g and h

are ‘bisimilar’ (Ariola and Klop 1995).

Definition 2.16. Let Σ be a signature and g = 〈 α0 | {α0 = t0, . . . , αn = tn} 〉 and h =

〈 α′0 | {α′0 = t′0, . . . , α
′
n′ = t′n′ } 〉 be canonical term graph specifications over Σ.

A binary relation R ⊆ {α0, . . . , αn} × {α′0, . . . , α′n′ } is called a bisimulation between g and

h if and only if the following two conditions hold:

(i) 〈α0, α
′
0〉 ∈ R.

(ii) If 〈αi, α′j〉 ∈ R for some i, j with 0 � i � n and 0 � j � n′, and if (with some ni, n
′
j ∈ ω),

we have ti≡ F(αi1, . . . , αini) and t′j ≡ F ′(α′j1, . . . , α
′
jn′j

), then F ≡ F ′ (and hence ni = n′j)

and 〈αi1, α′j1〉 ∈ R, . . . , 〈αini , α′jn′j 〉 ∈ R must also hold.

We say that g and h are bisimilar (denoted symbolically by g � h) if and only if there

exists a bisimulation between g and h.

Example 2.17. Consider the canonical term graph specifications

g = 〈 α0 | Eg 〉 = 〈 α0 | {α0 = F(α1, α2), α1 = F(α0, α2), α2 = G(α1, α0)} 〉 (2.4)

h = 〈 β0 | Eh 〉 = 〈 β0 | {β0 = F(β0, β1), β1 = G(β0, β0)} 〉 (2.5)

in TGS({F,G}), where F and G are binary function symbols. These ctgs’s correspond

to the cyclic term graphs G3 and H3, respectively, in Figure 7. It is easy to verify that

A duality between proof systems for cyclic term graphs 455

the relation R = {〈α0, β0〉, 〈α1, β0〉, 〈α2, β1〉} is a bisimulation between g and h according

to Definition 2.16 (for the cyclic term graphs G3 and H3 represented in Figure 7, this

relation is shown by the broken lines, which connect nodes corresponding to the recursion

variables of g and h). This shows that g � h.

3. Brandt and Henglein’s coinductive proof system BH

In this section we define adaptations BH(Σ) of Brandt and Henglein’s coinductive axio-

matisation of recursive type equivalence (Brandt and Henglein 1998) for tree unwinding

equivalence on µ-terms over signature Σ. We give an example of a derivation in such a

system, and formulate a completeness theorem for BH(Σ) systems.

The BH(Σ) systems we define here are straightforward generalisations of Brandt and

Henglein’s system, which is the special case of a BH(Σ) system with the signature

Σ = {⊥,�,→} (where ⊥ and � are constants that denote the bottom and top types,

respectively, and→ is the construction symbol for composition types). Unlike Brandt and

Henglein’s formalisation of their system as a Gentzen-style sequent calculus, we define

BH(Σ) systems here as natural-deduction style systems based on the format of ‘N-systems’,

as described in Troelstra and Schwichtenberg (2000).

A characteristic feature of derivations in natural-deduction systems is that one is

allowed to use assumptions that may be ‘closed’ (or ‘discharged’) at a later stage in the

derivation, or in the extension of a derivation to a longer derivation. In defining BH(Σ)

systems, we assume a countably infinite set Mk of assumption markers, which are used

as bookmarking devices for the bindings of assumptions to rule applications at which

they are discharged. Here, and later, we will use u, v and w as syntactical variables for

assumption markers.

Definition 3.1. The natural-deduction style proof system BH(Σ) allows equations s = t with

s, t ∈ Tµ(Σ) as its formulas . It contains the axioms (that is, zero-premise rules) REFL and

FOLD/UNFOLD, allows assumptions (Assm), and contains the inference rules TRANS,

SYMM and c-COMP listed in Figure 8. The rule c-COMP enables applications at which

assumptions of the form of the conclusion are discharged (c-COMP is the only rule of

BH(Σ) with assumption discharging applications). To simplify our notation, from now on

we will keep the underlying signature implicit and write BH instead of BH(Σ).

As a motivation for the definition of derivations in BH given below, consider the

example shown in Figure 9 of the derivation D in BH with the equation µα. o(α) =

µβ. o(o(β)) as its conclusion. Recall that µα. o(α) and µβ. o(o(β)) are representations (via

Ariola and Klop’s translation G) of the bisimilar cyclic term graphs G1 and H1 in

Figure 1. The derivation D contains a single assumption at its top: the marked formula

(o(s) = o(o(t)))u. It is this formula that is discharged in D at the bottommost application

of the ‘circular decomposition rule’ c-COMP; this fact is indicated by attaching the

assumption marker u of the discharged assumption to the label of the application of

c-COMP at which it is discharged. The derivation D is a close counterpart of the

Brandt–Henglein derivation shown on the right-hand side of Figure 2, where equations

between µ-terms here take over the role of equations between ‘leading terms’ in term

C. Grabmayer 456

Figure 8. The Brandt–Henglein system BH(Σ) for tree unwinding equivalence =T on Tµ(Σ).

Figure 9. The derivation D in BH without open assumptions of the equation s = t, where

s ≡ µα. o(α) and t ≡ µβ. o(o(β)) are the µ-terms representing G1 and H1 in Figure 1.

graph specifications in the earlier example. Compared with the easy linear structure of

the derivation sketched on the right-hand side of Figure 2, the derivation D has a more

complicated form because performing the outermost-folding operation on a term on either

side of an equation in the system BH requires an axiom FOLD/UNFOLD, an application

of TRANS, and, for outermost-unfolding steps on the right, an application of SYMM.

General definition of derivations in BH

A derivation in BH is a prooftree, that is, a finite upwards-growing tree with nodes that

are labelled by formulas, or marked formulas, such that:

— the leaves at the top are labelled by axioms, or by assumptions, which are formulas

with a superscript-marker attached to it;

— in assumptions, different markers are attached to different formulas (to distinguish

different assumptions by their markers);

— assumptions occurring in a derivation may be ‘undischarged’ (also called ‘open’) or

‘discharged’ (also called ‘closed’), see below;

A duality between proof systems for cyclic term graphs 457

— formulas at an internal node ν of the prooftree arise through applications of BH-rules

from the formulas at the immediate successors of ν, where (depending on the kind of

rule applied) assumptions may be discharged;

— the bottommost formula is called the conclusion .

If an assumption Au is discharged (or closed) by a rule application in a derivation, this is

indicated by writing the marker u next to the rule name label at this application (markers

allow us to identify which assumptions get ‘discharged’ at a rule application).

An occurrence of an assumption Au in a derivation D is said to be undischarged (or

open) in D if and only if on the path down to the conclusion of D no assumption is

passed at which Au is discharged; otherwise the occurrence of this assumption is called

discharged (or closed) in D. Occurrences of open assumptions in a derivation D that are

occurrences of the same marker attached to the same formula form together an open

assumption set of D.

As usual for natural-deduction systems, theorems of the system BH are now defined as

conclusions of derivations without open assumptions: a formula s = t is a theorem of BH,

denoted �BH s = t, if and only if there is a derivation in BH without open assumptions

and with conclusion s = t.

The following soundness and completeness theorem holds for BH with respect to tree

unfolding equivalence.

Theorem 3.2. The proof system BH is sound and complete with respect to tree unwinding

equivalence, that is, for all s, t ∈ Tµ(Σ),

�BH s = t ⇐⇒ s =T t . (3.6)

Proof hint. The proof is an adaptation of the argument given by Brandt and Henglein

for the soundness and completeness of their coinductive axiomatisation for the subtyping

relation on recursive types (Brandt and Henglein 1998).

Alternatively, for the completeness direction, ‘⇐’ in (3.6), we can apply the finite

bisimulation principle, Theorem 2.13, to obtain, for s, t ∈ Tµ(Σ) with s =T t, a finite

bisimulation R with 〈s, t〉 ∈ R. It is then straightforward to extract a derivation in BH

with conclusion s = t and no open assumptions from such a finite bisimulation.

4. Ariola and Klop’s proof system AK for bisimilarity checking

In this section we introduce an adaptation AK(Σ) of Ariola and Klop’s ‘syntactic-matching’

proof system (Ariola and Klop 1995) for tree unwinding equivalence on µ-terms over a

general signature Σ. We define ‘contradictions with respect to =T ’ and the concept

of ‘consistency with respect to AK’, and formulate a correspondence theorem between

consistency with respect to AK and tree unwinding equivalence, which is the basis for the

usefulness of this system. The most conspicuous feature of this system is the decomposition

rule DECOMP, which is a ‘destructive’ counterpart of the ‘constructive’ composition rule

c-COMP of the BH system.

Definition 4.1. The Hilbert-style proof system AK(Σ) contains the equations between

µ-terms in Tµ(Σ) over Σ as its formulas . Its axioms and inference rules are given in

C. Grabmayer 458

Figure 10. The Ariola–Klop system AK(Σ) for tree unwinding equivalence on Tµ(Σ).

Figure 10: the formulas belonging to the schemes REFL and FOLD/UNFOLD are the

axioms, and SYMM, TRANS and DECOMP are the rules of AK(Σ). As with BH(Σ), we

generally abbreviate AK(Σ) to AK.

For all s, t ∈ Tµ(Σ), we use s = t �AK s1 = t1 to denote the assertion that there is a

derivation in AK from the assumption s = t that has conclusion s1 = t1.

In order to formulate a statement linking a concept of ‘relative consistency with respect

to AK’ to tree unwinding equivalence and bisimilarity of µ-terms, we need to stipulate

when a formula of AK is to be called ‘consistent’ with respect to this system. To do this,

we first need to define what we mean by ‘contradictions with respect to =T ’.

Definition 4.2. An equation s = t, where s, t ∈ Tµ(Σ), is called a contradiction with respect

to =T if and only s and t have different leading symbols.

Thus, a contradiction s = t with respect to =T is an equation between the µ-terms

s, t ∈ Tµ(Σ) for which it is obvious that s and t are not equivalent: their respective tree

unwindings already differ in the symbols labelling the roots. Examples of contradictions

are the equations α = β (if α �≡ β), C = α, and µα. F(α, β) = µγ. δ. On the other hand, for

all s, t, s1, t1 ∈ Tµ(Σ), F(s, t) = µα. F(s1, t1) is not a contradiction with respect to =T .

Definition 4.3. Let s, t ∈ Tµ(Σ). The equation s = t is called AK-inconsistent if and only if

we have s = t �AK s1 = t1 for a contradiction s1 = t1 with respect to =T ; otherwise it is

called AK-consistent or consistent with AK.

We can now formulate the correspondence theorem between consistency with respect

to AK and tree unwinding equivalence.

Theorem 4.4. Consistency with respect to AK corresponds to tree unwinding equivalence

in the following sense: for all s, t ∈ Tµ(Σ),

s = t is AK-consistent ⇐⇒ s =T t . (4.7)

Proof hint. The proof is an adaptation of the proof given by Ariola and Klop for

their syntactic-matching system (Ariola and Klop 1995), taking advantage of the feature

of the decomposition rule that enables us to carry out repeated ‘experiments’ that take

simultaneous ‘looks’ into component subterms on either side of an equation such as

A duality between proof systems for cyclic term graphs 459

F(s1, . . . , sn) = F(t1, . . . , tn), and other equations, to yield an ‘observation’ such as si = ti,

for some i ∈ {1, . . . , n}. Using this and the relationship to the tree unwinding, it can be

shown that a contradiction with respect to =T is derivable in AK from an equation

s = t, for s, t ∈ Tµ(Σ), if and only if there exists an access path p of s or of t such that

T (s)(p) �= T (t)(p).

5. The BH0 and AK0 variant systems

In this section we define the variants of the BH and AK proof systems on which our

results will be based. These variant systems, which will be called BH0 and AK0, have

stronger proof-theoretic properties than BH and AK, but allow analogous completeness

or correspondence theorems. Finally, we give a conservative extension e-BH0 of BH0 that

has two further inference rules that formalise ‘circular’ coinductive reasoning.

The presence of symmetry and transitivity rules in the BH and AK systems provides

great flexibility for finding derivations in these systems. But, as a consequence, these

rules contribute to a major proof-theoretic disadvantage: for all s, t ∈ Tµ(Σ), there is a

very complex search space for a derivation D in BH with conclusion s = t and no open

assumptions, or dually, for surveying all possible derivations in AK from the assumption

s = t to check whether these contain contradictions. Furthermore, it is not clear how

consistency checks in AK might be captured conceptually, since the same assumption may

be used several times in a derivation in AK. This was not the case for the consistency

checks discussed in Section 1, where it was assumed that the underlying syntactic-matching

system does not contain symmetry and transitivity rules.

It is for these reasons that we now introduce variants of BH and AK that enjoy the

same completeness properties as the original systems, but do not contain symmetry and

transitivity rules. We start by defining the BH0 variant of BH.

Definition 5.1. The natural-deduction style proof system BH0(Σ) allows equations s = t

between µ-terms in Tµ(Σ) as its formulas . It contains the axioms REFL, allows assumptions

(Assm) and contains the inference rules FOLDl , FOLDr , COMP and c-COMP listed in

Figure 11. The c-COMP rule enables applications at which assumptions are discharged. In

fact, some assumptions must be discharged by applications of c-COMP as stipulated by

the side-condition I: with reference to the designations used for the schematic application

of this rule displayed in Figure 11, the set of all assumptions (F(s1, . . . , sn) = F(t1, . . . , tn))u

that are open in one of D1, . . . , Dn, which are discharged by the application of c-COMP

at the bottom, must be non-empty.

Derivations in BH0(Σ) are defined analogously to derivations in BH(Σ). A formula

s = t is a theorem of BH0(Σ), denoted by �BH0(Σ) s = t, if and only if there is a derivation

in BH0(Σ) without open assumptions and with conclusion s = t.

As with BH(Σ), we will generally abbreviate BH0(Σ) to BH0. We will also use FOLDl/r

to mean both or either of the FOLDl and FOLDr rules: for example, we will write ‘. . .

holds for a FOLDl/r rule’, to mean ‘. . . holds for a FOLDl or FOLDr rule’, and ‘. . .

holds for FOLDl/r rules’ to mean ‘. . . holds for the FOLDl and FOLDr rules’.

We have split the coinductive composition rule c-COMP of BH into two parts for

BH0: a restricted version of c-COMP with applications at which assumptions have to

C. Grabmayer 460

Figure 11. The normalised variant system BH0(Σ) without symmetry and transitivity rules of the

Brandt–Henglein system BH(Σ).

Figure 12. The derivation D of s = t in BH0(Σ) without open assumptions for the µ-terms

s ≡ µα. F(F(α, α), α) and t ≡ µβ. F(β, F(β, β)), which represent G2 and H2 in Figure 3.

be discharged; and the plain composition rule COMP with applications at which no

assumptions can be discharged. We have done this purely for convenience as it will make

it easier to refer to certain case-distinctions in the definitions and proofs in Section 7.

As an example of a derivation in BH0, consider the derivation D without open

assumptions of the equation µα. F(F(α, α), α) = µβ. F(β, F(β, β)) in Figure 12. The µ-terms

in this equation are specifications of the cyclic term graphs G2 andH2 in Figure 3. Note

that the derivation D is closely related to the looping consistency check in Figure 4: it

arises by

(i) mirroring the consistency check at a horizontal line;

A duality between proof systems for cyclic term graphs 461

(ii) replacing the formulas with corresponding µ-terms;

(iii) changing applications of decomposition rules into applications of composition rules

COMP;

(iv) adding a few necessary additional applications of FOLDl/r at the top;

(v) discharging newly arising assumptions at the top at applications of c-COMP below

(to achieve this, some applications of decomposition rules COMP have to be changed

into applications of c-COMP at this point).

Another example of a BH0-derivation is shown on the right-hand side of Figure 14.

BH0 is a ‘normalised’ version of BH in the sense that it has stronger proof-theoretic

properties. In particular, BH0 fulfills the following easily verifiable ‘subformula principle’,

which relates the formulas occurring in a derivation to the conclusion.

Proposition 5.2. Let D be a derivation in BH0 with conclusion s = t. For all formulas

s1 = t1 in D, s1 and t1 are generated subterms of s and t, respectively.

It is easy to see that the absence of symmetry and transitivity rules from BH0 is crucial

for this statement (for transitivity, for example, with distinct α, β, γ ∈ Var, we can infer

α = β from α = γ and γ = β by a TRANS-application, where γ is not a generated

subterm of either α or β); in particular, BH does not enjoy this property. An important

consequence of the subformula principle is that proof search in BH0 is much more

restricted, and therefore substantially easier, than in BH.

We can prove the following two statements concerning the proof-theoretic relationship

between BH-derivations and BH0-derivations in the same way as analogous results can be

proved for a pair of corresponding proof systems for recursive type equality (Grabmayer

2005):

— Every derivation D in BH0 can be transformed into a derivation D′ in BH with

the same conclusion and the same open assumptions (this transformation is quite

straightforward).

— Conversely, there exists a ‘normalisation procedure’ that transforms derivations in BH

into corresponding derivations in BH0 (this transformation is rather involved).

Derivations in BH0 are closely related to bisimulations on µ-terms. More precisely, for

all derivations D in BH0 without open assumptions, the set of all pairs 〈s, t〉 such that

s = t is an equation in D is a bisimulation up to →ou-reachable pairs. This fact is useful

when proving the following soundness and completeness theorem for BH0.

Theorem 5.3. The proof system BH0 is sound and complete with respect to tree unwinding

equivalence, that is, for all s, t ∈ Tµ(Σ),

�BH0
s = t ⇐⇒ s =T t . (5.8)

Sketch of proof.

‘⇒’ Suppose that D is a derivation in BH0 without open assumptions and with conclusion

s = t for some s, t ∈ Tµ(Σ). If R = {〈s̃, t̃〉 | s̃ = t̃ occurs in D}, we have 〈s, t〉 ∈ R. It

follows from Proposition 5.2 that R ⊆ GS(s) × GS(t). It is then straightforward to

C. Grabmayer 462

Figure 13. The normalised variant system AK0(Σ) without symmetry and transitivity rules of the

Ariola–Klop system AK(Σ).

verify that R is a bisimulation up to adding →ou-reachable pairs, so

R̃ = {〈s̃1, t̃1〉 | 〈s̃, t̃〉 ∈ R, s̃ �ou s̃1, t̃ �ou t̃1} ⊆ GS(s)× GS(t) (5.9)

and 〈s, t〉 ∈ R̃ for the extension R̃ of R to a bisimulation. From (5.9), Lemma 2.6

means that R̃ is finite, and the finite bisimulation principle, Theorem 2.13, then implies

that s =T t.

‘⇐’ Suppose that s =T t, for some s, t ∈ Tµ(Σ). By the finite bisimulation principle, a finite

bisimulation R on Tµ(Σ) exists such that 〈s, t〉 ∈ R. This bisimulation can be used

to show that a straightforward bottom-up proof-search in BH0 from conclusion s = t

yields a derivation in BH0 with this conclusion and no open assumptions in finitely

many steps.

We continue by defining the AK0 variant of the syntactic-matching system AK defined

in the previous section.

Definition 5.4. The Hilbert-style proof system AK0(Σ) contains the equations between

µ-terms in Tµ(Σ) as its formulas . It contains no axioms . Its inference rules are the

UNFOLDl , UNFOLDr and DECOMP rules listed in Figure 13.

For all s, t, s1, t1 ∈ Tµ(Σ), we use s = t �AK0(Σ) s1 = t1 to denote the assertion that there

is a derivation in AK0(Σ) from the assumption s = t that has conclusion s1 = t1.

We will generally keep the underlying signature Σ implicit by writing AK0(Σ) for AK0.

As with BH0, AK0 does not contain symmetry or transitivity rules, and it is ‘normalised’

in a similar sense: AK0 satisfies the following ‘subformula principle’, which relates the

conclusion of a derivation D to other formulas of D in a converse manner to the way it

was stated in Proposition 5.2 for derivations in BH0.

Proposition 5.5. Let D be a derivation in AK0 with assumption s = t. For all formulas

s1 = t1 in D, s1 and t1 are generated subterms of s and t, respectively.

An example of a looping derivation C in AK0 is shown on the left-hand side of

Figure 14. This derivation C and the closely related BH0-derivation D (on the right-hand

side of Figure 14) are formal versions of the derivations in Figure 2 that illustrated our

initial observation. The explanations in the Introduction now also apply to the derivations

C and D here.

A duality between proof systems for cyclic term graphs 463

Figure 14. Formalising the proofs in Figure 2 in AK0 and in BH0: a derivation C in AK0 that is

looping (indicated by the repeated formula marker u) and a derivation D in BH0, where

s ≡ µα. o(α) and t ≡ µβ. o(o(β)). D arises from C by turning it on its head, adding additional

folding applications and discharging the new assumption at an application of c-COMP below.

Theorem 5.6. Consistency with respect to AK0 corresponds to tree unwinding equivalence

in the following sense: for all s, t ∈ Tµ(Σ),

s = t is AK0-consistent ⇐⇒ s =T t .

Proof hint. The proof exploits the fact that a derivation in AK0 with assumption s = t

and conclusion s1 = t1, for some s, t, s1, t1 ∈ Tµ(Σ), can be viewed as a computation of

generated subterms s1 and t1 of s and t, respectively, (cf. Proposition 5.5) that determines

the subtrees T (s)|p = T (s1) and T (t)|p = T (t1) of the tree unwindings T (s) and T (t) of s

and t at some common access path p.

There is a slight asymmetry in the relationship via mirroring, as explained in Section 1,

between looping consistency checks in an Ariola–Klop system and derivations in a

Brandt–Henglein system. This can be seen in the example in Figure 2 as well as from

its formalisation for the systems AK0 and BH0 in Figure 14: the BH0-derivation D on

the right arises, after mirroring the looping derivation C on the left, only by adding

new applications of folding (and minor manipulations involving the formula marker

u). Conversely, transforming D into C requires two rule applications to be discarded

before the resulting derivation is then mirrored into a looping derivation corresponding

to C. The reason for this asymmetry in the purported relationship between BH0 and

AK0 is that the ‘looping’ concept for derivation trees gathering AK0-derivations is more

general than the concept of discharging assumptions in BH0-derivations. This suggests

that an even closer relationship can be established by extending the system BH0 with

rules that also allow the discharge of assumptions in situations where the c-COMP ruleis

not applicable. Therefore, we now extend BH0 by adding two more rules that enable

assumption-discharging applications.

Definition 5.7. The extension e-BH0(Σ) of the system BH0(Σ) has the same formulas and

axioms as BH0(Σ), allows us to make the same assumptions and contains all inference rules

of BH0(Σ). However, e-BH0(Σ) also contains the inference rules c-FOLDl and c-FOLDr

for which schematic applications are shown in Figure 15. Applications of these rules are

comparable to applications of the FOLDl and FOLDr rules, respectively, but have the

additional feature that, as stipulated by the side-condition I, at least one assumption of

C. Grabmayer 464

Figure 15. The inference rules c-FOLDl and c-FOLDr in the extension e-BH0(Σ) of BH0(Σ).

the form of the conclusion is discharged. We will again use c-FOLDl/r to mean one or

about both of the c-FOLDl and c-FOLDr rules, and abbreviate e-BH0(Σ) to e-BH0.

It is not immediately obvious that the c-FOLDl/r rules formalise sound reasoning with

respect to =T . As a step towards showing the soundness of e-BH0 with respect to =T , we

now show that the side-condition I on applications of c-FOLDl/r entails the presence of

applications of COMP or c-COMP in immediate subderivations.

Lemma 5.8. Let D be a derivation in e-BH0 with a bottommost application of the

c-FOLDl or c-FOLDr rule as shown in Figure 15. Then the subderivation D1 of D
contains at least one application of the COMP or c-COMP rule.

Proof. Let D be a derivation in e-BH0 with a bottommost application of c-FOLDl as

shown in Figure 15. (The proof for a bottommost application of c-FOLDr is analogous.)

Due to the side-condition I for the c-FOLDl-application at the bottom of D, the

subderivation D1 of D contains at least one open assumption of the form (µα. s = t)u.

We choose an occurrence of such an open assumption at the top of D. By starting at

the conclusion and going upwards in D to the chosen assumption, and thereby looking

only at the µ-terms on the left-hand side of the equations encountered, we can construct

an →oud-rewrite sequence from µα. s back to itself of length greater than or equal to

one: passed applications of COMP or c-COMP give rise to single →od-steps; passed

applications of FOLDl or c-FOLDl generate →ou-steps; but passed applications of

FOLDr and c-FOLDr are ignored. As there is an application of c-FOLDl at the bottom

of D, the resulting→oud-rewrite sequence from µα. s back to itself starts with an→ou-step

and therefore has length greater than or equal to one. By Lemma 2.7 it follows that there

must be at least one →od-step in this →oud-rewrite sequence. Hence, by the construction

of the rewrite sequence, we can conclude that at least one application of COMP or of

c-COMP must be contained in the subderivation D1 of D.

The following theorem justifies the introduction of e-BH0 as a proof system with more

inference rules than BH0 but the same set of theorems. The proof uses the fact that each

application of c-FOLDl/r in a derivation D in e-BH0 can be eliminated individually by

using the ‘deductive power’ of an application of COMP or c-COMP higher up in D,

which is guaranteed to exist by Lemma 5.8.

Theorem 5.9. Every derivation D in e-BH0 can be transformed into a derivation D′ in

BH0 with the same conclusion and the same (if any) open assumptions. As a consequence,

e-BH0 has the same theorems as BH0.

A duality between proof systems for cyclic term graphs 465

Figure 16. The derivation D in e-BH0 that has an immediate subderivation D1 in BH0.

Figure 17. The result D(1) of transforming the e-BH0-derivation D in Figure 17 into a

BH0-derivation with the same sets of open assumptions.

Sketch of proof. The second sentence of the theorem is implied by the first, since e-BH0

is an extension of BH0, and, therefore, every derivation in BH0 is also a derivation in

e-BH0 with the same (if any) open assumptions. For the first sentence, it suffices to show

that topmost occurrences of the c-FOLDl/r rules in e-BH0-derivations can always be

eliminated. For this it is enough to establish: every derivation D in e-BH0 that has an

application of one of the c-FOLDl/r rules at the bottom and contains no other application

of either of these rules can effectively be transformed into a derivation D(1) in BH0 with

the same conclusion and the same open assumptions as D.

Consider the case of a derivation D in e-BH0 with a bottommost application of

c-FOLDr and an immediate subderivation in BH0 (the case with a bottommost application

of c-FOLDl can be settled analogously). Then, by Lemma 5.8, D contains at least one

application of COMP or c-COMP. We only consider the first case (the second case can

be argued similarly), in which D is of the form shown in Figure 16, where the double

lines represent a possibly empty sequence of applications of FOLDl/r , and where there is

at least one open occurrence of the marked formula (s = µβ. t)u in one of D11, . . . , D1n

that gets discharged at the application of c-FOLDr at the bottom. It is then easy to see

that D has the same conclusion and the same open assumption sets as the derivation D(1)

in BH0 that is shown in Figure 17.

The following soundness and completeness result for e-BH0 is an immediate consequence

of Theorems 5.9 and 5.3.

Corollary 5.10. e-BH0 is sound and complete with respect to =T .

C. Grabmayer 466

Figure 18. A Brandt–Henglein system BH�

0 without symmetry and transitivity rules for

bisimulation equivalence between canonical term graph specifications.

6. Similar proof systems for equational term graph specifications

In this section, taking inspiration from the BH0 and AK0 variants of the BH and AK

proof systems, we define a pair of proof systems that are concerned with bisimilarity on

equational specifications of cyclic term graphs, as defined in Section 2.2.

First we define a proof system BH�

0 for the relation � on ctgs’s that is analogous to

the system BH0 for µ-terms defined in Section 5.

Definition 6.1. The natural-deduction style proof system BH�

0 has the equations between

ctgs’s as its formulas . It has the axioms (that is, zero-premise rules) REFL, allows the

assumptions (Assm) and has the inference rules COMP and c-COMP shown in Figure 18.

c-COMP is the single rule of BH�

0 at which assumptions can be, and some indeed must

be, discharged: with reference to the designations used for the schematic application of

this rule in Figure 18, the side-condition I stipulates that the set of open assumptions

(〈 α | Eg 〉 = 〈 β | Eh 〉)u in the derivations D1, . . . , Dn must be non-empty (these open

assumptions are discharged by the application of c-COMP at the bottom).

A formula g = h is a theorem of BH�

0 , denoted �
BH

�

0
g = h, if and only if there is a

derivation in BH�

0 with conclusion g = h and no open assumptions.

Theorem 6.2. The system BH�

0 is sound and complete with respect to bisimulation

equivalence � on canonical term graph specifications: for all ctgs’s g and h,

�
BH

�

0
g = h ⇐⇒ g � h . (6.10)

Sketch of proof.

‘⇒’ The soundness direction is a consequence of the easily verifiable fact that every

derivation D in BH�

0 with conclusion g = h and no open assumptions corresponds

directly to a bisimulation between the ctgs’s g and h: it is easy to verify that

R = {〈lv(g̃), lv(h̃)〉 | g̃ = h̃ is a formula in D} is a bisimulation between g and h.

A duality between proof systems for cyclic term graphs 467

Figure 19. The Ariola–Klop system AK�

0 for consistency checking with respect to bisimulation

equivalence on canonical term graph specifications.

‘⇐’ The completeness direction can be proved by showing that, for all ctgs’s g and h with

g � h, a straightforward bottom-up proof search from the equation g = h in BH�

0 is

able to find a derivation in BH�

0 with conclusion g = h and no open assumptions.

Next we introduce a proof system AK�

0 for �, which, as with AK0 for equivalence of

µ-terms, is intended for consistency checking.

Definition 6.3. The Hilbert-style proof system AK�

0 contains precisely all equations

between ctgs’s as its formulas . It contains no axioms . Its single inference rule is the

rule DECOMP for which a schematic application is shown in Figure 19. For all g, h, g1, h1,

we use g = h �
AK

�

0
g1 = h1 to denote the statement that there is a derivation in AK�

0

from the assumption g = h with conclusion g1 = h1.

In order to formulate a statement that links ‘consistency with respect to AK’ and

bisimilarity of ctgs’s, we need to define when a formula of AK�

0 is to be called ‘consistent’

with respect to AK�

0 , and what we mean by ‘contradictions with respect to �’.

We say an equation g = h between two ctgs’s g = 〈 α0 | {α0 = t0, . . .} 〉 and h =

〈 α′0 | {α′0 = t′0, . . .} 〉 is a contradiction with respect to � if and only if the terms on the

right-hand sides of the leading equations in g and h start with different symbols, that is,

if and only if t0 ≡ F(α01, . . . , α0n0
) and t′0 ≡ G(α′01, . . . , α

′
0n′0

) for some n0, n
′
0 ∈ ω, variables

α01, . . . , α0n0
, α′01, . . . , α

′
0n′0

and different symbols F,G ∈ t. We say an equation g = h is

AK�

0 -consistent , for ctgs’s g and h, if and only if no contradiction with respect to � is

derivable in AK�

0 from g = h.

With these definitions, we have the following ‘correspondence theorem’ for AK�

0 .

Theorem 6.4. Consistency with respect to AK�

0 corresponds to bisimilarity of canonical

term graph specifications in the following sense: for all ctgs’s g and h,

g = h is AK�

0 -consistent ⇐⇒ g � h . (6.11)

Figure 20 shows an example of a derivation in BH�

0 without open assumptions that is

related by mirroring to a successful consistency check in AK�

0 .

7. Duality results

In the main part of this section we develop a duality result between the systems e-BH0

and AK0, starting with two preparatory steps:

1 In Section 7.1 we define the concept of ‘consistency unfolding in AK0’ for a given

equation as a formalisation of downwards-growing derivation trees that allow us to

recognise the consistency in AK0 of the equation at the root.

C. Grabmayer 468

Figure 20. Example consisting of a derivation in BH�

0 without open assumptions and a successful

consistency check in AK�

0 that are close to each other’s mirror image. For the bisimilar canonical

term graph specifications g = 〈 α0 | Eg 〉 and h = 〈 β0 | Eh 〉 from Example 2.17, here gi =def 〈 αi | Eg 〉
and hj =def 〈 βj | Eh 〉, for all i ∈ {0, 1, 2} and j ∈ {0, 1}.

2 In Section 7.2 we define a pair of mirroring functions between consistency unfoldings

in AK0 and derivations in e-BH0.

We then prove a duality theorem in Section 7.3 that states a correspondence by

mirroring between consistency unfoldings in AK0 and derivations in e-BH0 without open

assumptions.

In Section 7.4, we apply this theorem to give a new proof for the soundness of e-BH0

and BH0 with respect to =T . Finally, in Section 7.5, we indicate how the duality result

between BH0 and AK0 can be transferred to a statement linking the proof systems BH�

0

and AK�

0 for equational specifications of cyclic term graphs.

7.1. Consistency unfoldings in AK0

In the first preparatory step we introduce ‘consistency unfoldings’ in AK0 for equations

s = t as downwards-growing derivation trees that allow us to recognise the consistency

of s = t with AK0 by similar arguments to those sketched in Section 1. Consistency

unfoldings are built from rule applications in AK0 and from branchings that arise from

the two possible conclusions of the decomposition rule. A consistency unfolding of an

equation s = t gives a finite overview of the derivations in AK0 that are possible from

the assumption s = t by gathering all such derivations until at some point looping or a

reflexivity axiom is encountered. The derivations that ‘span’ a consistency unfolding are

not required to be of minimal length to ensure looping or to have a reflexivity axiom as

the conclusion.

Figure 21 provides a motivating example for the definition of the ‘consistency unfolding’

concept: it shows a derivation tree C that assembles, for µ-terms s and t that represent the

bisimilar cyclic term graphs in Figure 3, all possible derivations from the assumption s = t

until looping occurs (for the first time). Single and double lines in C separate the respective

premises and conclusions of one or two applications, respectively, of UNFOLDl/r , while

branchings at dashed lines in C stem from the two possible ways in which conclusions can

be deduced by applications of DECOMP. The markers u, v and w used for some formula

A duality between proof systems for cyclic term graphs 469

Figure 21. The consistency unfolding C in AK0 of s = t, where s ≡ µα. F(F(α, α), α) and

t ≡ µβ. F(β, F(β, β)) are the µ-terms representing the term graphs G2 and H2 in Figure 3.

occurrences in C highlight the looping in those AK0-derivations initial segments of which

constitute the branches of C. Since C does not contain contradictions, C witnesses the

consistency of s = t with AK0 in the sense that its construction facilitates an easy proof

by induction of this fact. The derivation tree C corresponds closely to the deduction

graph in Figure 4, which demonstrates the consistency of an equation between equational

specifications of the same cyclic term graphs (in a syntactic-matching system appropriate

for dealing with such equational specifications).

We are going to define consistency unfoldings as downwards-growing derivation trees in

which looping is described by markers that are attached to individual formulas: in a way

that is reminiscent of derivations in natural-deduction systems without open assumptions,

a leaf occurrence of a marked formula (s = t)u is bound to an ‘internal occurrence’ (the

first encountered above) of the same marked formula inside the derivation tree. While in

natural-deduction style derivations without open assumptions the assumptions are bound

to applications of rules, in consistency unfoldings, leaf occurrences of marked formulas

are ‘bound back’ to occurrences of the same formula higher up. The use of markers to

express these bindings is significant for our later results, because it provides a match with

derivations in e-BH0 in which assumption markers indicate the structure of the bindings

of individual assumptions to individual rule applications.

In order to define consistency unfoldings, we need the concept of ‘partial consistency

unfolding’, in which, analogously to derivations with open assumptions, not all leaf

occurrences of marked formulas have to be ‘bound back’. We again assume a countably

infinite set Mk of markers for the following definition.

Definition 7.1. A partial consistency unfolding (a pcu) in AK0 of an equation s = t, where

s, t ∈ Tµ(Σ), is a downwards-growing prooftree that can be formed by a finite number of

applications of the six generating clauses (i)–(vi) in Figure 22 (the notation used in the

clauses illustrated in Figure 22 is explained below). This inductive definition simultaneously

defines both the depth |C| and the set ucons(C) of unbound consequences in C (of the

formula s = t with respect to AK0).

In the generating clauses in Figure 22, both the pcu’s that are assumed and the pcu that

is generated by a clause have been put into framed boxes that are not part of the defined

objects. Each of the clauses (i)–(vi) should be read as follows: if the zero, one, or one, . . . ,

n pcu’s (denoted by Ci for i ∈ {1, . . . , n}) of the form as described on the left-hand side

C. Grabmayer 470

Figure 22. The six generating clauses of partial consistency unfoldings in AK0.

A duality between proof systems for cyclic term graphs 471

of the clause are assumed, then the derivation tree on the right-hand side of Figure 22 is

a partial consistency unfolding of the new formula at its top. One further restriction not

mentioned in Figure 22 is required for the generating steps (v) and (vi): different formulas

with the same markers attached must not occur in the union of the sets ucons(C1), . . . ,

ucons(Cn) for the pcu’s C1, . . . , Cn assumed.

All formula occurrences in a pcu C of s = t are called consequences of s = t in C.

Markers attached to formula occurrences at the bottom (leaf occurrences) and to formula

occurrences at internal nodes (internal occurrences) of a pcu C denote bindings between

leaf occurrences and internal occurrences higher up in C of the same marked formula:

a leaf occurrence of (̃s = t̃)u at the bottom of C is said to be bound back to the nearest

internal occurrence of (̃s = t̃)u higher up in C. If for a leaf occurrence of (̃s = t̃)u there

does not exist an internal occurrence higher up of the same marked formula, then the

leaf occurrence is called an unbound consequence in C; in this case the definition of pcu’s

warrants (̃s = t̃)u ∈ ucons(C).

The expression [s = t]u at the bottom of C1 (respectively, of C1, . . . , Cn) on the left

in clause (iv) (respectively, in clause (vi)) denotes the set of unbound consequences in C1

(respectively, in C1, . . . , Cn) of the form (s = t)u. And then the expression [s = t]u on

the right-hand side in clause (iv) (respectively, in clause (vi)), stands for a corresponding

set of consequences in the generated pcu C that in C are now bound back to the new

occurrence of the marked formula (s = t)u at the top (respectively, the root of C).

In clauses (i)–(vi), and also later, marked formulas (s = t)m with s, t ∈ Tµ(Σ) and a

boldface-marker m stand for either:

(a) the unmarked formula s = t; or

(b) a marked formula (s = t)u with some u ∈Mk, which in this case is denoted by m.

For parts in a pcu C in AK0 that involve a dashed line and are of the form

(F(s1, . . . , sn) = F(t1, . . . , tn)
m

DECOMP
(s1 = t1)

m1 . . . (sn = tn)
m2

(which are produced in the course of generation steps (v) and (vi)), we will use the

term branching . For such a branching we say that the formulas F(s1, . . . , sn) = F(t1, . . . , tn),

s1 = t1, . . . , sn = tn are its premise, first conclusion , . . . , and n-th conclusion , respectively.

A partial consistency unfolding in AK0 is then defined to be a pcu of s = t in AK0, for

some s, t ∈ Tµ(Σ). We will use the letter C, possibly with sub- and/or superscripts, as a

syntactical variable that ranges over a partial consistency unfoldings.

Definition 7.2. Let s, t ∈ Tµ(Σ). A partial consistency unfolding C of s = t in AK0 is called

a consistency unfolding (a cu) of s = t in AK0 if and only if ucons(C) = � (that is, if and

only if C does not contain unbound consequences of s = t). A cu of s = t in AK0, for

some s, t ∈ Tµ(Σ) is said to be a consistency unfolding in AK0.

Example 7.3. According to Definition 7.2, the derivation tree C depicted in Figure 21

can now be recognised as a pcu in AK0 without unbound consequences, and hence as a

consistency unfolding of µα. F(F(α, α), α) = µβ. F(β, F(β, β)).

C. Grabmayer 472

Having formally introduced consistency unfoldings in AK0 and proposed them as

adequate formalisations of successful consistency checks with respect to AK0 by way

of Example 7.3, we now have to ask whether consistency unfoldings in AK0 do indeed

‘witness’ the consistency with respect to AK0 of the equation at their root.

The lemma below answers this question in the affirmative. To prove it, we use the fact

that, analogously to derivations in BH0 without open assumptions, consistency unfoldings

in AK0 correspond to finite bisimulations on Tµ(Σ) (up to adding →ou-reachable pairs),

and hence demonstrate, by the finite bisimulation principle, the equivalence of the µ-terms

at the root.

Lemma 7.4. For all s, t ∈ Tµ(Σ),

(∃C)

[
C is a consistency unfolding

of s = t in AK0

]
=⇒ s = t is AK0-consistent . (7.12)

Sketch of proof. Let C be a consistency unfolding of s = t in AK0, for some s, t ∈ Tµ(Σ).

We can use an argument analogous to that used in the proof sketch for Theorem 5.3

to show that the relation R =def {〈s̃, t̃〉 | s̃ = t̃ occurs in C} is a finite bisimulation up

to adding →ou-reachable pairs that includes the pair 〈s, t〉. Hence the extension R̃ of

R defined as in (2.1) is a finite bisimulation on Tµ(Σ) with 〈s, t〉 ∈ R̃. Now, the finite

bisimulation principle, Theorem 2.13, gives s =T t. Finally, by Theorem 5.6, it follows that

s = t is consistent with respect to AK0.

Lemma 7.4 guarantees that a consistency unfolding in AK0 of an equation s = t

witnesses the consistency of s = t with AK0. But it leaves open the question as to whether

the concept of consistency unfolding is indeed general enough to capture entirely the

consistency of formulas with respect to AK0. The following theorem states that this is

indeed the case.

Theorem 7.5. For all s, t ∈ Tµ(Σ),

(∃C)

[
C is a consistency unfolding

of s = t in AK0

]
⇐⇒ s = t is AK0-consistent. (7.13)

Sketch of proof. Let s, t ∈ Tµ(Σ).

‘⇒’ This is an instance of Lemma 7.4.

‘⇐’ This can be shown by the following argument, which is analogous to, in fact, as

good as ‘dual’ to, the one used in a proof following Brandt and Henglein for the

completeness of BH with respect to =T .

Suppose that s =T t. Then a consistency unfolding of s = t in AK0 can be reached by

building up the downwards-growing ‘tree of consequences’ of this equation in AK0 in

successive extension stages, always stopping to expand a branch any further as soon

as ‘looping’ occurs (that is, whenever a formula s′ = t′ is produced of which another

occurrence higher up on the same branch has already been passed) or as soon as a

formula r = r is encountered. The fact that there can be no infinite branches in the

A duality between proof systems for cyclic term graphs 473

resulting derivation tree is an easy consequence of the following three facts:

(a) Branches in the derivation tree correspond to AK0-derivations.
(b) Because of Proposition 5.5, the subformula principle, for all formulas s1 = t1 in

the derivation tree, s1 and t1 are generated subterms of s and t, respectively.
(c) The sets GS(s) and GS(t) of generated subterms of s and t are finite because of

Lemma 2.6.

7.2. Mirroring functions

In the second preparatory step we give a definition of a pair of mirroring functions D
and C between partial consistency unfoldings in AK0 and derivations in e-BH0.

The possibility of defining such mirroring functions rests on the fact that there exists

a duality between BH0 and AK0 on the level of their rules: every one-premise rule R of

BH0 corresponds to a rule R′ of AK0 other than DECOMP such that every instance of

R can be related to an instance of R′ by swapping the roles of premise and conclusion.

For example, every instance of the rule FOLDl in BH0 corresponds to an instance of the

rule UNFOLDl in AK0 in the sense that, for all s, t ∈ Tµ(Σ), α ∈ Var and derivations D1

in BH0, the application at the bottom of the derivation

D1

s[µα. s/α] = t
FOLDl

µα. s = t

corresponds to
µα. s = t

UNFOLDl
s[µα. s/α] = t

There is also an obvious correspondence between instances of the composition rule COMP

in BH0 and the decomposition branchings DECOMP in partial consistency unfoldings in

AK0. That is, for all s1, t1, . . . , sn, tn ∈ Tµ(Σ), the inference figures

s1 = t1 . . . sn = tn
COMP

F(s1, . . . , sn) = F(t1, . . . , tn) sn = tn...s1 = t1
DECOMP

F(s1, . . . , sn) = F(t1, . . . , tn)

correspond by exchanging the roles of premises and conclusions.

In order to use this duality in the definition of transformations between prooftrees and

derivation trees, we introduce the following notation.

Notation 7.6. We use the syntactical variables R(d) and R(cu) for rules in BH0 (and hence

also in e-BH0) and AK0, respectively, to denote the bijective relationship between one-

premise rules in BH0 and rules in AK0 different from DECOMP that is described by

Table 1. The intended use of R(d) and R(cu) is explained by the following example: if in

a particular context (of a proof, an argument, and so on) the syntactical variable R(d) is

used for the FOLDr rule in BH0 (or in e-BH0), then, in the same context, R(cu) will stand

for the UNFOLDr rule in AK0.

We now give the definitions of ‘mirroring functions’ D and C that, as will be shown in

the next section, map pcu’s in AK0 to derivations in e-BH0, and derivations in e-BH0 to

pcu’s in AK0, respectively.

C. Grabmayer 474

Table 1. Notation formalising the duality between rules of BH0 and rules of AK0

Rule R(d) in BH0 FOLDl FOLDr

Rule R(cu) in AK0 UNFOLDl UNFOLDr

Definition 7.7. In item (i) we define a mirroring function D, that maps partial consistency

unfoldings in AK0 into prooftrees labelled by rules of e-BH0; in item (ii) we define a

mirroring function C that maps derivations in e-BH0 into derivation trees containing

marked formulas and involving AK0-rules and DECOMP-branchings.

(i) For every partial consistency unfolding C of s = t in AK0, where s, t ∈ Tµ(Σ), the

mirroring D(C) of C is defined by induction on the depth |C| of C according to

the six clauses shown in Figure 23 (through the arrows
D�−→ from left to right) that

arise by case-distinction dependent on the last step of the generation of C according

to Definition 7.1. The first, third and fifth inductive clauses apply to cases of partial

consistency unfoldings C where the formula at the root of C is not marked; the second,

fourth and sixth clauses apply to cases where it is marked.

(ii) For every derivationD in e-BH0 with conclusion s = t, where s, t∈ Tµ(Σ) , the mirroring

C(D) of D is defined by induction on the depth |D| of D according to the six inductive

clauses (indicated by the arrows
C�−→ from right to left) in Figure 23. These six clauses

cover all cases of axioms, assumptions and last rule applications in e-BH0-derivations.

7.3. The duality result linking e-BH0 and AK0

The lemma below is central to our duality result. On the one hand, it justifies the well-

definedness of the mirroring functions D and C in the sense that the images of D and C
are derivations in e-BH0 (with possibly open assumptions) and pcu’s in AK0, respectively.

On the other hand, it will lead us directly to our main result.

Lemma 7.8. The mirroring functions C and D define a bijective relationship between

partial consistency unfoldings in AK0 and derivations in e-BH0 in the sense explained in

items (i), (ii) and (iii) below and illustrated by the following picture:

C(D) =

(s= t)m

C
{ [si = ti]

ui }i=1,...,n

D�−→
←−�

C

{ [si = ti]
ui }i=1,...,n

D
s= t

= D(C) (7.14)

(at the bottom of C the family { [si = ti]
ui }i=1,...,n denotes the sets of unbound consequences

in C, at the top of D this family symbolises the open assumption sets of D).

(i) Let C be a partial consistency unfolding of s = t in AK0, for some s, t ∈ Tµ(Σ). Then

the mirroring D(C) of C is a derivation in e-BH0 with conclusion s = t and with the

same sets of open assumptions as C has sets of unbound consequences.

A duality between proof systems for cyclic term graphs 475

Figure 23. The six clauses of the inductive definitions of the mirroring functions D and C: the

function D maps partial consistency unfoldings C in AK0 into derivations D(C) in e-BH0, and the

function C maps derivations D in e-BH0 into partial consistency unfoldings C(D) in AK0.

C. Grabmayer 476

(ii) Let D be a derivation in e-BH0 with conclusion s = t, for some s, t ∈ Tµ(Σ). Then the

mirroring C(D) of D is a partial consistency unfolding of s = t in AK0 that has the

same sets of unbound consequences as D has open assumption sets.

(iii) The mirroring functions D and C are inverses of each other.

Proof.

(i) We use induction on the depth |C| of consistency unfoldings C in AK0.

The base case of a pcu C with |C| = 0 is settled by noticing that an unmarked formula

s = s and a marked formula (s = t)u are mapped by the mirroring function D to an

axiom (REFL) and to the assumption (s = t)u, respectively.

For the induction step, we will only consider the case of a partial consistency unfolding

C with |C| � 1 for which the inductive definition of D(C) in the outermost induction

step proceeds by an application of the sixth clause in Figure 23. The argument in the

other five cases is either much easier or, in the case of a required application of the

fourth clause in Figure 23, involves a very similar argument to the one given in the

case considered in (ii) below.

Let C be an arbitrary partial consistency unfolding in AK0 of the form for some

s̃1, . . . , s̃n, t̃1, . . . , t̃n ∈ Terµ(Σ) and a marker u, where the sets of unbound consequences

are precisely those that belong to the family {[si = ti]
ui}i=1,...,n for some n ∈ ω and

si, ti ∈ Terµ(Σ), and a marker ui for i = 1, . . . , n. In this way, the respective parts in C1,

. . . , Cn of the unbound consequences in C that belong to one of these sets [si = ti]
ui

are gathered at the bottom of C1,. . . , Cn by the respective families, each of which is

denoted there by {[si = ti]
ui}i=1,...,n.

Furthermore, [F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n)]
u at the bottom of C1, and Cn denotes the set

of all such leaf occurrences of (F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n))
u in C1, . . . , Cn that are not

bound back in C1, . . . , Cn, but are bound back in C to the root formula. Since C is a

pcu that must have been formed in the last generating step according to clause (vi) in

Definition 7.1, at least one such leaf occurrence of (F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n)
u) that

is bound back to the root of C occurs in one of the parts C1, . . . , Cn of C.

By the induction hypothesis, we find that D(C1), . . . , D(Cn) are e-BH0-derivations

with conclusions s̃1 = t̃1, . . . , s̃n = t̃n, which together possess precisely the sets

[F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n)]
u and [si = ti]

ui for i ∈ {1, . . . , n} as open assumption sets

that are non-empty in at least one of D(C1), . . . , D(Cn). From this it follows that the

result D(C)

[F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n)]
u

{[si = ti]
ui}i=1,...,n

D(C1)

s̃1 = t̃1 . . .

[F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n)]
u

{[si = ti]
ui}i=1,...,n

D(Cn)

s̃n = t̃n c-COMP, u
F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n)

of applying the mirroring function D to C is an e-BH0-derivation with conclusion

F (̃s1, . . . , s̃n) = F (̃t1, . . . , t̃n) whose open assumption sets are precisely those of the

family {[si = ti]
ui]i=1,...,n (in particular, we conclude here that the side-condition I on

A duality between proof systems for cyclic term graphs 477

the application of c-COMP at the bottom of D(C) is fulfilled). Hence we have shown

the statement required for the induction step in this case.

(ii) Analogously to the proof of item (i), we carry out the proof of the statement in

item (ii) of the lemma by induction on the depth |D| of e-BH0-derivations D.

The base case of the induction is straightforward.

For the induction step, we will only consider the case of an e-BH0-derivation D
with |D| � 1 in which the last rule application in D is a rule c-R(d) for some rule

R(d) ∈ {FOLDl , FOLDr}. The cases of e-BH0-derivations D with other rules applied

at the bottom can be treated in a similar and rather easier way (the case with c-COMP

as last rule application in D can be established by ‘reversing’ the reasoning in the

case detailed for the induction step in (i)).

Hence, we assume that D is an e-BH0-derivation of the form

[s = t]u {[si = ti]
ui}i=1,...,n

D1

s̃1 = t̃1
c-R(d), u

s = t

for an n ∈ ω and some s, t, s̃1, t̃1, s1, t1, . . . , sn, tn ∈ Terµ(Σ), as well as with sets [si = ti]
ui

of open assumptions, for i ∈ {1, . . . , n}. We notice that, due to the side-condition I

on the application of c-R(d) at the bottom of D, the open assumption set [s = t]u in

D1, which consists of the assumptions that are discharged at the bottommost rule

application in D, must be non-empty. By applying the induction hypothesis for D1,

we find that C(D1) is a pcu of s̃1 = t̃1 in AK0 that contains exactly the sets [s = t]u

and [si = ti]
ui , for i ∈ {1, . . . , n}, of unbound consequences at the bottom of C(D1).

With this, it follows that the derivation tree C(D)

(s = t)u
R(cu)

(̃s1 = t̃1)
m1

C(D1)

[s = t]u {[si = ti]
ui}i=1,...,n

which is the result of applying the mirroring function C to the derivation D according

to the fourth clause in the inductive definition in Figure 23, is a pcu in AK0 that

contains as sets of unbound consequences exactly the sets [si = ti]
ui for i ∈ {1, . . . , n}.

(For this we observe that C(D) is a pcu because it has been formed from the pcu C(D1)

by a generation step (iv) in Definition 7.1). Hence we have succeeded in performing

the induction step in the case considered here.

(iii) This part of the lemma follows from the statements:

1 D ◦C (D) = D, for all derivations D in e-BH0.
2 C ◦D (C) = C, for all partial consistency unfoldings C in AK0.

Both of these statements can be shown by straightforward induction on |D| and |C|,
distinguishing as separate cases between the six inductive clauses in the definitions of

D and C, respectively.

C. Grabmayer 478

The ‘duality theorem’ below is a special case of Lemma 7.8 that reveals the relationship

between AK0 and e-BH0 in the form of a direct correspondence via the mirroring func-

tions between consistency unfoldings in AK0 and ‘theorem-demonstrating’ derivations in

e-BH0.

Theorem 7.9. The mirroring functions D and C define a bijective functional relationship

between derivations in e-BH0 without open assumptions and consistency unfoldings in

AK0. More precisely, the following three assertions hold, for all s, t ∈ Tµ(Σ):

(i) For every consistency unfolding C of s = t in AK0 the mirroring D(C) of C is a

derivation in e-BH0 with conclusion s = t and no open assumptions.

(ii) For every derivation D in e-BH0 with conclusion s = t and without open assumptions,

the mirroring C(D) of D is a consistency unfolding in AK0 of s = t.

(iii) The restrictions of the mirroring functions D and C to the set of consistency unfoldings

in AK0 and to the set of derivations in e-BH0 without open assumptions, respectively,

are inverses of each other.

Proof. In view of the definition of a cu in AK0 as a pcu without unbound consequences,

statements (i) and (ii) follow as special cases of Lemma 7.8 (i) and (ii), respectively.

Statement (iii) follows by Lemma 7.8 (iii), using items (i) and (ii) of the theorem.

Example 7.10. For a binary function symbol F , consider the µ-terms over Σ = {F}

s ≡ µα. F(α, γ)

t ≡ µβ. F(F(β, γ), γ) ,

which it is easy to see are equivalent. An example of a pair 〈C1,D1〉 consisting of a

consistency unfolding C1 of s = t in AK0 and of a derivation in e-BH0 with conclusion

s = t and no open assumptions is shown in Figure 24. It is easy to check that the mirroring

D(C1) of the cu C1 is the derivation D1, and that, conversely, the mirroring C(D1) of the

derivation D1 coincides with the cu C1.

7.4. Alternative soundness proof for BH0 and e-BH0

We conclude this section by applying our duality result to give an alternative soundness

proof with respect to tree unwinding equivalence for e-BH0, and consequently also for

BH0. In this proof we apply the duality theorem between AK0 and e-BH0 to base the

soundness of e-BH0 and BH0 on the correspondence theorem for AK0.

The proof below is different from both the proof of Theorem 5.3 and from a proof

using ‘levelled stratifications’ analogous to the soundness proof by Brandt and Henglein

for the axiomatisation of the subtype relation on recursive types.

Proof. (Alternative soundness proof for BH0 and e-BH0 with respect to =T .) We know

from Theorem 5.9 that BH0 and e-BH0 have the same theorems, so it suffices to show the

soundness with respect to =T of e-BH0, the larger of these two systems.

Suppose that s = t is a theorem of e-BH0. Let D be a derivation in e-BH0 with

conclusion s = t and no open assumptions. Then, by Theorem 7.9, the mirroring C(D) of

A duality between proof systems for cyclic term graphs 479

Figure 24. Example consisting of a consistency unfolding C1 in AK0 and a derivation D1 in e-BH0

without open assumptions for which D(C1) = D1 and C(D1) = C1 where s ≡ µα. F(α, γ) and

t ≡ µβ. F(F(β, γ), γ).

D is a consistency unfolding of s = t in AK0. Hence, by Lemma 7.4, the equation s = t is

consistent with respect to AK0, so Theorem 5.6 implies that s and t are equivalent.

Although the reasoning employed in this proof can also be carried out in the opposite

direction to establish completeness of e-BH0 with respect to =T (and of BH0 through

Theorem 5.9), this would not be conceptually different from the completeness proof for

BH0 described earlier. This is because the proof we sketched for the ‘⇐’ implication in

Theorem 7.5 (which would be used in such an argument) closely matches the mirror image

under the mirroring function C of the completeness proof for BH0.

7.5. The duality result linking BH�

0 and AK�

0

Now it is very straightforward to define, analogously to Definitions 7.1 and 7.2, the

concepts of ‘partial consistency unfolding’ and ‘consistency unfolding’ in AK�

0 . (A

motivating example for the ‘consistency unfolding in AK�

0 ’ concept, which is actually less

complicated than the ‘consistency unfolding in AK0’ concept, is the successful consistency

check at the bottom of Figure 20.) Furthermore, we can define mirroring functions D and

C between pcu’s in AK�

0 and derivations in BH�

0 in a way that is very similar to (and in

fact easier than in) Definition 7.7. In this way we are led to a counterpart of Theorem 7.9

for BH�

0 and AK�

0 .

Theorem 7.11. There is a bijective functional relationship between derivations in BH�

0

without open assumptions and consistency unfoldings in AK�

0 via mirroring functions C
and D: this means that completely analogous statements to those in Theorem 7.9 (i), (ii)

and (iii) are true.

C. Grabmayer 480

Figure 25. The context-manipulating rules CTXT, c-CTXT and CTXT−1 (the contexts C are

assumed to be µ-free).

Now it is easy to see that Figure 20 provides an example for the assertion of this theorem

concerning the ctgs’s g and h of Example 2.17: it shows a pair 〈D,C〉 consisting of a

derivation D in BH�

0 with conclusion g = h and no open assumptions and a consistency

unfolding of g = h in AK�

0 . Each of D and C is the mirroring of the other via mirroring

functions C and D, that is C(D) = C and D(C) = D.

8. Concluding remarks and questions

In this concluding section we report on extensions of the duality results (without giving

proofs) and pose some questions for further investigation.

A first generalisation concerns the extension of the Brandt–Henglein system e-BH0

with a context rule CTXT and a circular context rule c-CTXT, and the extension of the

Ariola–Klop system AK0 with a dual rule CTXT−1 (see Figure 25). All occurring contexts

are assumed to be µ-free here, that is, they do not contain µ-bindings. Applications of the

circular inference rule c-CTXT are subject to the side-condition that the context C is not

the trivial context [].

Using a proof similar to that of Theorem 5.9, we can show that the extension of e-BH0

with the rules CTXT and c-CTXT is sound for tree unwinding equivalence. Furthermore, it

is straightforward to extend the concept consistency unfolding to the system AK0+CTXT−1

resulting from AK0 by the addition of the CTXT−1 rule , and to extend the mirroring

functions C and D of Definition 7.7 to functions between AK0+CTXT−1 and the extension

e-BH0+(c-)CTXT of e-BH0. With these preparations, we can prove the following extension

of Theorem 7.9.

Theorem 8.1. There is a duality between derivations in e-BH0+(c-)CTXT without open

assumptions and consistency unfoldings in AK0+CTXT−1 via extensions of the mirroring

functions C and D.

The example given in Figure 26 illustrates this duality in the form of a pair consisting of

a consistency unfolding C in AK0+CTXT−1 and a derivation without open assumptions

in e-BH0+CTXT such that C and D are mirror images of each other under extensions of

the mirroring functions D and C. Note that C and D here are smaller than the cu C1 in

AK0 and the e-BH0-derivation D1 in Figure 24, which establish corresponding provability

and consistency statements for the same µ-terms.

A second extension of our duality result concerns systems that arise by adding inference

rules that describe substitutions into other µ-terms, generalising the context rules for µ-free

contexts considered above. The SUB-INTO rule, its circular version c-SUB-INTO and

A duality between proof systems for cyclic term graphs 481

Figure 26. A consistency unfolding C in AK0+CTXT−1 (on the left) and a derivation D in

e-BH0+CTXT (on the right) that are mirror images of each other. Here s ≡ µα. F(α, γ) and

t ≡ µβ. F(F(α, γ), γ) are the µ-terms used in Example 7.10 and Figure 24.

Figure 27. The SUB-INTO rule for substitution into a µ-term, the dual (SUB-INTO)−1 rule and

c-SUB-INTO, the circular version of SUB-INTO.

Figure 28. A consistency unfolding C in AK0+(SUB-INTO)−1 (on the left) and a derivation D in

e-BH0+(c-)SUB-INTO (on the right) that are mirror images of each other. Here s ≡ µα. F(α, γ)

and t ≡ µβ. F(F(α, γ), γ) from Example 7.10 and Figure 24 are used.

the dual rule (SUB-INTO)−1 shown in Figure 27 generalise the context rules considered

above (which only account for substitution into µ-free µ-terms). The following duality

result can be shown by:

(1) showing the soundness of e-BH0+(c-)SUB-INTO;

(2) introducing consistency unfoldings also for the system AK0+(SUB-INTO)−1; and

(3) extending the mirroring functions C and D appropriately.

Theorem 8.2. There is a duality between derivations in e-BH0+(c-)SUB-INTO without

open assumptions and consistency unfoldings in AK0+(SUB-INTO)−1 via extensions of

the mirroring functions C and D.

Figure 28 shows a cu C in AK0+(SUB-INTO)−1 and a derivation without open

assumptions in e-BH0+(c-)SUB-INTO that are mirror images of each other.

C. Grabmayer 482

Figure 29. The substitution rule SUBST, a simplified version SUB and its dual rule (SUB)−1

(where σ denotes a substitution on µ-terms).

A similar duality result is possible for an extension of e-BH0 with each of the substitution

rules SUBST and SUB in relation to an extension of AK0 with the dual rule (SUB)−1 (see

Figure 29 for these rules and note that SUB can be used to mimic SUBST). It is interesting

that consistency unfoldings in AK0+(SUB)−1 (which can be defined in a straighforward

manner) seem to correspond to reasoning that is frequently employed when using Goguen

and Rosu’s ‘circular coinduction’ method (Rosu and Goguen 2001).

The following may be a related issue. We have observed that derivations in BH0 without

open assumptions and consistency unfoldings in AK0 formalise bisimulations on µ-terms

(up to adding →ou-reachable pairs). Furthermore, derivations in the Brandt–Henglein

system BH, which contains symmetry and transitivity rules, correspond to bisimulations

up to symmetry and transitivity. The concept of ‘bisimulation up to’ was first introduced in

process theory, where ‘up-to results’ turned out to be useful in reducing the work required

to show that specific processes are bisimilar. Sangiorgi (1998) provides an illuminating

abstract treatment of ‘up-to techniques’.

For the additional rules considered in this section, derivations without open assumptions

in BH0+(c-)SUB-INTO and BH0+SUB correspond to bisimulations on µ-terms up to

substitution into µ-terms and up to substitution, respectively. We believe that it would be

worthwhile studying the connection with up-to techniques in greater depth.

Question 8.3. What kind of abstract duality results can be obtained by relating general up-to

techniques to rules in coinductive proof systems for proving bisimilarity, on the one hand,

and to dual rules in corresponding syntactic-matching systems, on the other?

The connection with the ‘Recursion Inference Rule’ RIR in Moschovakis’s FLR0

(‘formal language of recursion’) is also interesting – see, for instance, the treatments

in Hurkens et al. (1998) and Moss (2003). Formulas in FLR0 are nested equational

specifications, of which ctgs’s are only a very special case. There seems to be a conceptual

difference between FLR0 and Brandt–Henglein systems, due to the fact that single

applications of the RIR rule in FLR0 may amount to the choice of a bisimulation

as a whole, while, for instance, in BH0 only entire derivations without open assumptions

correspond to bisimulations. This fact deserves some further investigation on the proof-

theoretic level.

The proof systems studied here have been concerned exclusively with showing that two

cyclic objects are equivalent in a definite sense. It would also be interesting to invest-

igate proof systems concerned with notions of equivalence between functions on cyclic

objects.

Question 8.4. Do the duality results presented here generalise, in some sense, to proof

systems concerned with notions of equivalence between functions (and perhaps higher-order

A duality between proof systems for cyclic term graphs 483

functions) on cyclic objects? Are there duality results for proof systems concerned with

proving equality in final coalgebras? For example, for proving equality of streams and of

stream functions (built from well-known stream functions such as even, odd and zip)?

Acknowledgments

I would like to thank Jan Willem Klop for suggesting an investigation into the proof-

theoretic connections between proof systems for cyclic objects, for a basic idea and for

helping with the restructuring of this article. I am also indebted to Bas Luttik for carefully

reading drafts of Grabmayer (2002a), and for offering many suggestions.

Finally, I would like to thank the anonymous referees for their careful reading, detailed

observations and suggestions concerning both immediate improvements and ideas for the

future.

References

Amadio, R.M. and Cardelli, L. (1993) Subtyping recursive types. ACM Transactions on Programming

Languages and Systems 15 (4) 575–631.

Ariola, Z.M. and Klop, J.W. (1995) Equational term graph rewriting. Technical Report IR-391,

Vrije Universiteit Amsterdam. (This is an extension of Ariola and Klop (1996).)

Ariola, Z.M. and Klop, J.W. (1996) Equational term graph rewriting. Fundamenta Informaticae 26

(3-4) 207–240.

Blom, S. (2001) Term Graph Rewriting, Syntax and Sematics, Ph.D. thesis, Vrije Universiteit

Amsterdam.

Brandt, M. and Henglein, F. (1998) Coinductive axiomatization of recursive type equality and

subtyping. Fundamenta Informaticae 33 1–30.

Grabmayer, C. (2002a) A duality in proof systems for recursive type equality and bisimulation

equivalence on cyclic term graphs. In: Plump, D. (ed.) Proceedings of TERMGRAPH 2002.

Electronic Notes in Computer Science 72 (1).

Grabmayer, C. (2002b) A duality in proof systems for recursive type equality and bisimulation

equivalence on cyclic term graphs. Technical Report IR-499, Dept. of Math. and Comp. Sci.,

Vrije Universiteit Amsterdam. (Available from the authors’s home page.)

Grabmayer, C. (2005) Relating Proof Systems for Recursive Types, Ph.D. thesis, Vrije Universiteit

Amsterdam.

Hurkens, A. J. C., McArthur, M., Moschovakis, Y., Moss, L. S. and Whitney, G. (1998) The logic of

recursive equations. Journal of Symbolic Logic 63 (2) 451–478.

Hüttel, H. and Stirling, C. (1991) Actions speak louder than words: Proving bisimilarity for

context-free processes. In: Proceedings of LICS’91, IEEE Computer Society Press 376–386.

Klop, J.W. (2000) Proof systems for cyclic term graphs. Lecture at the Winter Workshop on

Logics, Types and Rewriting, February 1-3 2000, Heriot-Watt University, Edinburgh. (Available

at: http://www.cs.vu.nl/~jwk/ctg1-41.pdf.)

Milner, R. (1984) A complete inference system for a class of regular behaviours. Journal of Computer

and System Sciences 28 439–466.

C. Grabmayer 484

Moss, L. S. (2003) Recursion and corecursion have the same equational logic. Theoretical Computer

Science 294 (1-2) 233–267.

Rosu, G. and Goguen, J. (2001) Circular coinduction. In: Proceedings of IJCAR’01, Siena, Italy.

Salomaa, A. (1966) Two complete axiom systems for the algebra of regular events. Journal of the

ACM 13 (13) 158–169.

Sangiorgi, D. (1998) On the bisimulation proof method. Mathematical Structures in Computer

Science 8 (5) 447–479.

Troelstra, A. and Schwichtenberg, H. (2000) Basic Proof Theory, Cambridge University Press.

