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Abstrat

This paper is onerned with a proof-theoreti observation about two kinds of proof sys-

tems for regular yli objets. It is presented for the ase of two formal systems that

are omplete with respet to the notion of \reursive type equality" on a restrited lass

of reursive types in �-term notation. Here we show the existene of an immediate dual-

ity with a geometrial visualization between proofs in a variant of the oindutive axiom

system due to M. Brandt and F. Henglein and \onsisteny-unfoldings" in a variant of

a `syntati-mathing' proof system for testing equations between reursive types due to

Z. Ariola and J.W. Klop. This result makes it possible to argue for the soundness of the

oindutive derivation rule present in the system of Brandt and Henglein in a new way and

it leads to an independent soundness proof for the here onsidered variant of this system.

Finally we sketh an analogous result of a duality between a similar pair of proof systems

for bisimulation equivalene on equational spei�ations of yli term graphs.

1 Introdution

The main part of this paper is onerned with an observation about two omplete

proof systems for the notion of \reursive type equality" on reursive types.

There are to our knowledge basially two di�erent omplete axiom systems

known for reursive type equality: (i) A system due to R. Amadio and L. Cardelli

given in [1℄ (1993) and (ii) a oindutively motivated axiom system introdued by

M. Brandt and F. Henglein in [4℄ (1998). Apart from these axiomatizations it is also

possible to onsider (iii) a `syntati-mathing' proof system for whih a notion of
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onsisteny with respet to this system is omplete for reursive type equality. Suh

a system an be de�ned in a very similar way to one that has been introdued by

Z. Ariola and J.W. Klop in [2℄ (1995) for the notion of bisimulation equivalene on

equational representations of yli term graphs. For our purpose we will onsider

only `normalized' variants without symmetry and transitivity rules of the Brandt-

Henglein and syntati-mathing systems. In Setion 3 these variant-systems will

be de�ned and their respetive soundness and ompleteness theorems stated.

It was noted by J.W. Klop that there appears to be a striking similarity between

the ativities of (a) trying to demonstrate the onsisteny of an equation between

reursive types with respet to the syntati-mathing system and of (b) trying

to �nd a derivation for the same equation in the system of Brandt and Henglein.

This basi observation underlying the present paper will be desribed in Setion 4 in

relation to the introdued variant-systems by explaining it in the light of an example.

In order to extrat a preise statement from this observation two formal prereq-

uisites turn out to be neessary: Firstly, in Setion 5 we will introdue an extension

of the variant Brandt-Henglein system with some more oindutive rules. And se-

ondly, in Setion 6 we de�ne so alled \onsisteny-unfoldings" of given equations

between reursive types in the variant `syntati-mathing' system as ertain for-

malizations of suessful onsisteny-heks. With these notions our main theorem

is then stated in Setion 7: There exists even a \duality" between derivations in the

extended variant-Brandt-Henglein system and orresponding onsisteny-unfoldings

in the variant-syntati-mathing system via easily de�nable reetion mappings.

This relationship between the two onsidered proof systems an be geometrially

visualized and allows us to give an alternative soundness proof for our variant of

the Brandt-Henglein system and for its extension. By `zooming' into a speial ase

of this duality we furthermore show the existene of an analogous strong onne-

tion between derivations in the (not extended) variant-Brandt-Henglein system and

orresponding onsisteny-unfoldings of a ertain formally haraterized kind in our

syntati-mathing system.

In Setion 8 we outline an analogous result for a similar pair of proof systems

onerned with the bisimulation relation on equational spei�ations of yli term

graphs.

2 Preliminaries on reursive types

Likewise as Brandt and Henglein in [4℄ we onsider only

3

reursive types denoted

by �-terms in anonial form over the restrited lass of �nite types with ! as the

single type onstrutor. We assume a ountably in�nite set TVar of type variables

to be given and to underlie the following de�nition. The small Greek letters � and

� (possibly with subsripts) will be used as syntatial variables for type variables

and the letters �; �; �; � for reursive types.

3

Our results do not depend on the limitation to proof systems for reursive types in anonial

form only. We followed [4℄ in the intention to avoid unneessary tehnialities here. The general

ase will be treated in [5℄.
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De�nition 2.1 (Reursive Types an-�Tp in Canonial Form). The set

an-�Tp of reursive types in anonial form is generated by the following grammar:

� ::= ? j> j� j �

1

! �

2

j ��: (�

1

! �

2

)

| {z }

where � 2 fv(�

1

! �

2

)

: (2.1)

The set of all equations � = � between reursive types � and � in anonial form

will be denoted by an-�Tp{Eq.

The reursive types in an-�Tp are in \anonial form" due to the two require-

ments in the last disjuntive lause in grammar (2.1): For given � 2 TVar the

�-operator may only be applied to a previously formed expression � if � is of the

form �

1

! �

2

and if � ours free in �

1

! �

2

.

Contrary to [4℄ we do not impliitly identify reursive types in an-�Tp that an

be obtained from eah other by a �nite sequene of admissible renaming-steps for

bound type variables, i.e. that are variants of eah other. We will use the notation

�

1

�

v

�

2

to express that �

1

and �

2

are variants of eah other.

Via a natural transformation of �-terms into yli term graphs desribed in (the

extended version of) [2℄ it is possible to assign to every reursive type � 2 an-�Tp

a yli term graph G(�), whose nodes have at most two outgoing edges and are

labelled by either the binary funtion symbol ! or by a symbol of arity zero in

f?;>g [ TVar . Relying on this transformation the tree unfolding Tree(�) of an

arbitrary reursive type � 2 an-�Tp an be de�ned as the tree unfolding of G(�).

An alternative formal de�nition of Tree(�) an be found in [1℄.

4

The leading symbol

L(�) of a reursive type � 2 an-�Tp is de�ned as the symbol that labels the root

in the tree unfolding Tree(�) of � .

5

De�nition 2.2 (Reursive Type Equality (Strong Equivalene) =

�

). Two

reursive types �; � 2 an-�Tp are alled strongly equivalent (symbolially denoted

by: � =

�

�) i� they possess the same tree unfolding. More formally, the equivalene

relation reursive type equality (also alled strong reursive type equivalene) =

�

is

de�ned by: For all �; � 2 an-�Tp

� =

�

� : () Tree(�) = Tree(�) :

An example for De�nition 2.2 and for the underlying notion of the tree unfolding

of a reursive type in an-�Tp is given in Figure 1.

4

The de�nition in [1℄ is slightly more general than then the one needed here beause Amadio and

Cardelli allow also reursive types not in anonial form like for example ��: (��: �) .

5

Alternatively and more formally L(�) an be de�ned for all � 2 an-�Tp by the 5 lauses

L(?) := ? , L(>) := > , L(�) := � (for all � 2 TVar ) and L(�

1

! �

2

) :=L(��: (�

1

! �

2

)) :=!

(for all � 2 TVar and �

1

; �

2

2 an-�Tp).
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Figure 1 Example of two strongly equivalent reursive types.

We onsider the reursive types in anonial form

� :� ��: ((�! �)! �) and � :� ��: (�! (�! �)) .

These orrespond respetively to the di�erent yli term graphs
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Hene � and � are strongly equivalent, i.e. � =

�

� holds, due to De�nition 2.2.

3 The proof systems HB

=

0

and AK

=

0

for =

�

In this setion we de�ne the two proof systems on whih our results will be based:

A variant-system HB

=

0

of the oindutively motivated axiomatization for =

�

given

by Brandt and Henglein in [4℄ and a proof system AK

=

0

suitable for onsisteny-

heking similar to a system as de�ned by Ariola and Klop in [2℄. We formulate these

systems in natural-dedution style and for this and for later purposes we assume a

ountably in�nite set Mk of assumption markers to be given.

De�nition 3.1 (The axiom system HB

=

0

for =

�

). The formal system HB

=

0

has

the equations in an-�Tp{Eq as its formulas. It ontains the axioms (REFL), allows

marked assumptions (Assm) and has the derivation rules VAR, FOLD

l

, FOLD

r

,

ARROW and ARROW/FIX listed in Figure 2. The side-ondition I on appliations

of ARROW/FIX requires that the lass of disharged assumptions is atually inhabi-

tated, i.e. non-empty.

6

A formula � = � is a theorem ofHB

=

0

(symbolially denoted

by `

HB

=

0

� = � ) i� there is a derivation D in HB

=

0

with onlusion � = � and

with the property that all marked assumptions have been disharged at respetive

appliations of ARROW/FIX in D.

Apart from minor di�erenes the system HB

=

0

an be onsidered as a `norma-

lized' version of the omplete axiomatization for =

�

given in [4℄. A distintive role in

6

The aim here is to reate a lear-ut distintion between appliations of ARROW and applia-

tions of ARROW/FIX for easing the reasoning about a later de�ned proof-transformation.

4
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Figure 2 A normalized versionHB

=

0

of the oindutive axiomatization for reursive

type equality =

�

given by Brandt and Henglein.

The axioms and possible marked assumptions in HB

=

0

:

(REFL) � = � (Assm) (� = �)

x

(with x 2Mk ) :

The derivation rules of HB

=

0

:

�

0

[��: �

0

=�℄ = �

FOLD

l

��: �

0

= �

� = �

0

[��: �

0

=�℄

FOLD

r

� = ��: �

0

� = �

VAR (if �

0

�

v

�

and �

0

�

v

�)

�

0

= �

0

�

1

= �

1

�

2

= �

2

ARROW

�

1

! �

2

= �

1

! �

2

h�

1

! �

2

= �

1

! �

2

i

x

D

1

�

1

= �

1

h�

1

! �

2

= �

1

! �

2

i

x

D

2

�

2

= �

2 (ARROW/FIX)

x

(if side-ond. I)

�

1

! �

2

= �

1

! �

2

.

both the original system in [4℄ as well as inHB

=

0

is played by the rule ARROW/FIX,

an appliation of whih onsists of the amalgamation of an appliation of the om-

position rule ARROW with an appliation of a �xed-point rule

7

FIX, at whih

open assumptions of the form of its onlusion an be disharged. No symmetry

and transitivity rules are present in HB

=

0

and the axioms (FOLD/UNFOLD) used

in [4℄ have been reformulated into the two

8

rules FOLD

l=r

. HB

=

0

is `normalized' in

the sense that it satis�es a version of the subformula property . Although laking the

expressivity of symmetry and transitivity rules the following also holds for HB

=

0

:

Theorem 3.2 (Sound- and Completeness of HB

=

0

with respet to =

�

). The

axiom system HB

=

0

is sound and omplete with respet to strong reursive type

equivalene =

�

, i.e. for all �; � 2 an-�Tp it holds that

`

HB

=

0

� = � () � =

�

� :

Both the soundness and the ompleteness of HB

=

0

with respet to =

�

an be

shown analogously as done by Brandt and Henglein in [4℄ for their system.

9

7

This rule is not part of HB

=

0

nor of the system introdued in [4℄. As Brandt and Henglein point

out, the rule FIX is unsound in its general form, but it an be reformulated into a sound derivation

rule for a formal system that axiomatizes =

�

by requiring a ertain side-ondition to be ful�lled

for its appliations.

8

Here and later we allow two rules like FOLD

l

and FOLD

r

to be \bundled together" to rules

FOLD

l=r

in informal arguments: \. . . holds for a rule FOLD

l=r

" is intended to mean \. . . holds

for a rule FOLD

l

or for a rule FOLD

r

" and \. . . holds for rules FOLD

l=r

" stands for \. . . holds

for the rule FOLD

l

and for the rule FOLD

r

".

9

Beause of a very lose relationship between HB

=

0

and the de�nition of the tree unfolding of

reursive types, Theorem 3.2 an also be shown in a more diret alternative way.
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Figure 3 A normalized `syntati-mathing' proof system AK

=

0

for heking the

onsisteny of given equations with respet to =

�

. This system is related to a one

that was introdued by Ariola and Klop.

The derivation rules of AK

=

0

:

��: �

0

= �

UNFOLD

l

�

0

[��: �

0

=�℄ = �

� = ��: �

0

UNFOLD

r

� = �

0

[��: �

0

=�℄

� = �

VAR (if �

0

�

v

�

and �

0

�

v

�)

�

0

= �

0

�

1

! �

2

= �

1

! �

2

DECOMP (i = 1; 2)

�

i

= �

i

.

We do not investigate in this paper the proof-theoreti relationship between the

axiom system for =

�

introdued by Brandt and Henglein and our variant-system

HB

=

0

. However, we want to mention two fats in this respet that are proven in

our forthoming work [5℄: (1) Every derivation D in HB

=

0

an be transformed in an

easy and e�etive way into a derivation D

0

in the system of Brandt and Henglein

suh that D

0

has the same onlusion and the same open assumption lasses as D.

But (2) an e�etive transformation of derivations between these two systems in the

opposite diretion is|although possible|not of an equally easy kind.

We ontinue with the de�nition of a proof system very similar to a `syntati-

mathing' system introdued by Ariola and Klop in Setion 3.4 of [2℄.

De�nition 3.3 (A `syntati-mathing' proof system AK

=

0

for =

�

). The

formal system AK

=

0

ontains preisely all equations in an-�Tp{Eq as its formulas.

It ontains no axioms. Its derivation rules are the rules VAR, UNFOLD

l

, UNFOLD

r

and DECOMP that are listed in Figure 3. We will use � = � `

AK

=

0

�

1

= �

2

(for

�; �; �

1

; �

2

2 an-�Tp) as notation for the assertion that there is a derivation in

AK

=

0

from the assumption � = � with onlusion �

1

= �

2

.

The onspiuous feature of this system is the deomposition rule DECOMP,

whih is a \destrutive" ounterpart of the \onstrutive" omposition rules AR-

ROW and ARROW/FIX in HB

=

0

. Like HB

=

0

the system AK

=

0

does not ontain

symmetry and transitivity rules and is `normalized' in the sense that it ful�lls an

\inverse subformula property".

Clearly, AK

=

0

does not axiomatize =

�

, but a notion of onsisteny-heking with

respet to AK

=

0

is sound and omplete for =

�

. For being able to state this properly,

we need the following terminology: An equation � = � between reursive types is

a ontradition with respet to =

�

i� L(�) 6= L(�), i.e. i� the leading symbols of �

and � di�er. Furthermore an equation � = � is alled AK

=

0

-inonsistent i� there

exists a ontradition �

1

= �

2

with respet to =

�

suh that � = � `

AK

=

0

�

1

= �

2

;

otherwise we say that � = � is AK

=

0

-onsistent .

Theorem 3.4 (Soundness and Completeness with respet to =

�

of on-

sisteny-heking relative to AK

=

0

). Consisteny with respet to AK

=

0

is

6
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Figure 4 Assemblage to a �nite downwards-growing \tree of onsequenes" C of

the 6 di�erent possible initial segments of derivations from ��: ((�! �)! �) =

��: (�! (�! �)) in AK

=

0

without VAR-appliations until looping ours.

(� = �)

x

(� = � ! �)

z

(� = �)

x

� ! � = � ! (� ! �)

� ! � = �

(� ! �)! � = � ! �

(� = � ! �)

z

(� = �)

x

(� ! � = �)

y

(� ! �)! � = � ! �

� = � ! �(� = �)

x

� ! � = � ! (� ! �)

(� ! � = �)

y

DECOMP

(� ! �)! � = � ! (� ! �)

UNFOLD

l=r

�

�: �

z }| {

��: ((�! �)! �) =

�:�

z }| {

��: (�! (�! �))

�

x

sound and omplete in relation to =

�

: For all �; � 2 an-�Tp it holds that

� = � is AK

=

0

-onsistent () � =

�

� :

Sketh of Proof. Both the soundness-part \)" and the ompleteness-part \("

are easy onsequenes of the fat that derivations D in AK

=

0

from assumption � = �

with onlusion �

1

= �

2

orrespond to omputations of �

1

; �

2

2 an-�Tp with the

property that

10

Tree(�)jp = Tree(�

1

) and Tree(�)jp = Tree(�

2

) hold for some

ommon position p in the tree unfoldings Tree(�) and Tree(�) of � and �. 2

4 The basi observation

It is our aim in this setion to indiate the intuition behind the results of this paper

by desribing an observation about a onrete and simple example. Throughout this

setion we let � and � be the two strongly equivalent reursive types in an-�Tp

from the example in Figure 1.

Suppose that we want to prove that the equation � = � is indeed onsistent with

the system AK

=

0

. Then we are obliged to show for every derivation D in AK

=

0

from

the assumption � = � that the onlusion of D is not a ontradition with respet

to =

�

. But sine there are potentially in�nitely many suh derivations in AK

=

0

, we

might not be able to hek all of them in a �nite amount of time.

However, it turns out that in every derivation in AK

=

0

from � = � of depth � 7,

that does not ontain appliations of VAR, a loop arises, i.e. one formula ours at

two di�erent plaes. What is more, the initial segments until looping ours of all

derivations from � = � in AK

=

0

without VAR-appliations an be arranged to the

downwards-growing derivation-tree C depited in Figure 4. Single and double lines

in C separate the respetive premises and onlusions of appliations of UNFOLD

l=r

,

whereas branhings at dashed lines in C stem from the two possible ways in whih

onlusions an be drawn at rules DECOMP in AK

=

0

. The markers x, y and z used

10

Here Tree(�)jp denotes the subtree of Tree(�) at position p.

7
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for some formula ourrenes in C are intended to highlight the looping in those

AK

=

0

-derivations initial segments of whih onstitute the branhes of C.

It is now possible to use the derivation-tree C in an easy indutive proof for the

AK

=

0

-onsisteny of the equality � = � by ombining the following two properties

of C: Firstly, as inspetion shows, C does not ontain any ontraditions with respet

to =

�

. And seondly, C an be onsidered to be the (positive) result of loop-heking

for all possible derivations without VAR-appliations from � = � in AK

=

0

. { Let

~

D

be an arbitrary given derivation from � = � in AK

=

0

without appliations of VAR

(the following argument has to be re�ned for derivations with appliations of VAR).

If looping does not our in

~

D, then j

~

Dj � 7 must hold and

~

D has to be ontained

in one of the 6 di�erent initial segments of AK

=

0

-derivations from � = � gathered in

C; hene the onlusion of

~

D must our among the formulas in C and annot be a

ontradition. However, if looping does our in

~

D, then by utting out a loop from

~

D we get a shorter derivation

~

D

0

in AK

=

0

from � = � of smaller depth j

~

D

0

j < j

~

Dj,

but with the same onlusion as

~

D. Therefore we an apply the indution hypotheses

to

~

D

0

and onlude that the onlusion of

~

D is no ontradition.

In order to give an indiation about the partiular relationship between the sys-

tems AK

=

0

andHB

=

0

that is desribed in this paper, we observe

11

the following: By

reeting the downwards-growing derivation-tree C in AK

=

0

at a horizontal line it is

possible to obtain an upwards-growing prooftree Re(C) in the system HB

=

0

with

ourrenes of open assumption lasses. Thereby all appliations of UNFOLD

l=r

in

C are \reeted" into appliations of FOLD

l=r

in Re(C) and all branhings DE-

COMP into appliations of ARROW. To transform Re(C) into a derivation D in

HB

=

0

without open assumptions it is merely neessary (1) to extend Re(C) above

eah of its leaves by one or two appliations of FOLD

l=r

, (2) to transfer respetive

assumption markers up to the new formulas at the top of the extended prooftree and

(3) to rediret the bindings desribed by these markers to respetive appliations

of ARROW below, thereby also hanging these into ARROW/FIX-appliations. In

this way the derivation D in HB

=

0

without open assumption lasses suggestively

depited in Figure 5 is reahed.

And similarly, by reeting the derivation D from Figure 5 at a horizontal line in

an analogous way it is possible to get a downwards-growing derivation-tree Re(D)

from � = � in AK

=

0

, whih|although slightly di�erent from C|like C an be taken

as the basis of an indutive argument for showing the AK

=

0

-onsisteny of � = � .

This example suggests a very diret relationship between derivations in HB

=

0

without open assumption lasses having onlusion ~� = ~� (for some ~� ; ~� 2 an-�Tp)

and �nite downwards-growing trees of onsequenes from the same equation ~� = ~�

in AK

=

0

that are the result of loop-heking and that failitate easy indutive proofs

for the onsisteny of ~� = ~� relative to AK

=

0

.

11

J.W. Klop noted this for a similar example in slightly di�erent, but omparable proof systems.

8
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Figure 5 The derivation D of ��: ((�! �)! �) = ��: (�! (�! �)) in HB

=

0

without open assumption lasses.

(: : :)

x

� = �

(: : :)

y

� ! � = �

(: : :)

x

� = �

(� ! �)! � = � ! �

� = � ! �

y

� ! � = � ! (� ! �)

� ! � = �

(: : :)

x

� = �

(: : :)

z

� = � ! �

� ! � = � ! (� ! �)

� ! � = �

(: : :)

x

� = �

z

(� ! �)! � = � ! �

� = � ! �

(ARR./FIX)

x

(� ! �)! � = � ! (� ! �)

FOLD

l=r

��: ((�! �)! �)

| {z }

�: �

= ��: (�! (�! �))

| {z }

�:�

5 The extension e-HB

=

0

of HB

=

0

For obtaining a preise formulation of the observation in the previous setion it will

be helpful

12

to extend the system HB

=

0

by three more oindutive �xed-point rules.

De�nition 5.1 (The extension e-HB

=

0

of the system HB

=

0

). The extension

e-HB

=

0

of the system HB

=

0

has the same formulas and axioms as HB

=

0

, allows

the same marked assumptions and ontains all derivation rules of HB

=

0

. Addi-

tionally, e-HB

=

0

possesses the rules VAR/FIX, FOLD

l

/FIX and FOLD

r

/FIX with

appliations of the respetive form

[ � = � ℄

x

D

0

�

0

= �

0

(R/FIX)

x

(if side-ond.(s) I (and C for R = VAR))

� = �

(5.1)

(with some �; �; �

0

; �

0

2 an-�Tp and x 2Mk ), given that

�

0

= �

0

R

� = �

is an ap-

pliation of a rule R 2 fFOLD

l=r

, VAR g and that the respetively neessary side-

onditions desribed below are satis�ed. At suh appliations the lass [� = �℄

x

of open marked assumptions of the form (� = �)

x

in D

0

gets disharged. The

side-ondition I requires that the assumption lass � = � in D

0

is inhabitated (not

empty). For appliations of VAR/FIX the side-ondition C demands furthermore

that D

0

is ontrative with respet to the marked open assumptions (� = �)

x

, whih

means that for every thread in D

0

from a marked open assumption (� = �)

x

down-

wards at least one appliation of ARROW or ARROW/FIX is passed.

A formula � = � is a theorem of e-HB

=

0

(symbolially denoted by `

e-HB

=

0

� = �)

i� there is a derivation D in e-HB

=

0

with onlusion � = � and with the prop-

erty that all marked assumptions have been disharged at respetive appliations of

FOLD

l=r

/FIX, of VAR/FIX or of ARROW/FIX.

12

We will indiate later why this preparatory step indeed helps to obtain a more satisfying result.

9
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It is easy to see that either of two following more speial requirements C

1

and C

2

ould have been used instead of the side-ondition C for appliations of VAR/FIX

of the form (5.1) (with R = VAR) with an equivalent de�nition as the result: C

1

is

the ondition \D

0

ontains at least one appliation of ARROW or ARROW/FIX"

and C

2

demands that \there is at least one appliation of a rule di�erent from VAR

in D

0

".

Although the system e-HB

=

0

is an extension of HB

=

0

, no new theorems beome

derivable:

Theorem 5.2 (Equivalene of the systems HB

=

0

and e-HB

=

0

). The system

e-HB

=

0

is a onservative extension of HB

=

0

and hene

13

the systems HB

=

0

and

e-HB

=

0

are equivalent (i.e. they possess the same theorems). More spei�ally, every

derivation D in e-HB

=

0

an e�etively be transformed into a derivation D

0

in HB

=

0

with the same onlusion and the same (if any) open assumption lasses.

Hint at the Proof. This theorem is a onsequene of the fat that the rules

FOLD

l=r

/FIX and VAR/FIX of e-HB

=

0

are admissible rules of the system HB

=

0

,

i.e. rules that an e�etively be eliminated from an arbitrary given derivation in

e-HB

=

0

with the �nal result of a derivation in HB

=

0

. The reason for this is that the

\dedutive power" of an appliation of FOLD

l=r

/FIX or VAR/FIX in a derivation

D an always be emulated by the \dedutive power" of a respetive appliation of

ARROW/FIX in a derivation D

0

losely related to D. We will demonstrate this only

in the very speial ase of a derivation D in e-HB

=

0

ending with an appliation of

FOLD

l

/FIX that is itself immediately preeded by an appliation of ARROW: Let

D be a derivation in e-HB

=

0

of the form

h� = �i

x

D

01

�

01

[�=�℄ = �

1

h� = �i

x

D

02

�

02

[�=�℄ = �

2

ARROW

�

01

[�=�℄! �

02

[�=�℄ = �

1

! �

2

(FOLD

l

/FIX)

x

��: (�

01

! �

02

)

| {z }

� �

= �

1

! �

2

| {z }

��

and denote by D

0

the sub-derivation of D that leads up to the appliation of FOLD

l

/

FIX at the bottom of D. This appliation of FOLD

l

/FIX an now be eliminated by

extending D

0

above eah of the open assumptions (� = �)

x

inD

0

by an appliation of

FOLD

l

and by disharging the marked open assumptions (�

01

[�=�℄! �

02

[�=�℄ = �)

x

in the new leaves at an appliation of ARROW/FIX that arises by renaming from

the penultimate rule appliation in D, the appliation of ARROW. The result is the

derivation D

0

of the following form:

13

Sine HB

=

0

and e-HB

=

0

have the same formulas.

10
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(�

01

[�=�℄! �

02

[�=�℄ = �)

x

FOLD

l

h� = �i

D

01

�

01

[�=�℄ = �

1

(�

01

[�=�℄! �

02

[�=�℄ = �)

x

FOLD

l

h� = �i

D

02

�

02

[�=�℄ = �

2

(ARROW/FIX)

x

�

01

[�=�℄! �

02

[�=�℄ = �

1

! �

2

FOLD

l

��: (�

01

! �

02

)

| {z }

� �

= �

1

! �

2

| {z }

��

Similar e�etive eliminations an be arried out for all appliations of FOLD

l=r

/FIX

and VAR/FIX in arbitrary given e-HB

=

0

-derivations. 2

As an immediate onsequene of this theorem and of Theorem 3.2 we �nd the

following orollary.

Corollary 5.3 (Sound- and Completeness of e-HB

=

0

with respet to =

�

).

The axiom system e-HB

=

0

is sound and omplete with respet to strong reursive

type equivalene =

�

, i.e. for all �; � 2 an-�Tp it holds that

`

e-HB

=

0

� = � () � =

�

� :

6 Consisteny-Unfoldings

In a seond step of the formulation of the observation in Setion 4 into a preise

statement we will formalize �nite downwards-growing trees of onsequenes in AK

=

0

as \onsisteny-unfoldings", whih allow to prove easily the AK

=

0

-onsisteny of

the formulas at their respetive roots. { We have to give a de�nition of \partial

onsisteny-unfoldings" �rst.

De�nition 6.1 (Partial Consisteny-Unfoldings in AK

=

0

). For all reursive

types �; � 2 an-�Tp a partial onsisteny-unfolding (a p..u.) C of the equation

� = � in AK

=

0

is a �nite downwards-growing \tree of onsequenes" of � = � in

AK

=

0

that together with the assertion \C is a p..u. of � = � inAK

=

0

" an be formed

by a �nite number of appliations of the following 5 generation rules. Thereby the

notion of an unbound leaf-ourrene of a marked formula (an u.l.o.m.f.) in a p..u.

is de�ned in parallel:

14

(i) For all �; � 2 an-�Tp and x 2Mk (� = �)

x

is a p..u. C from � = � . The

ourrene of (� = �)

x

in C is the single u.l.o.m.f. in C. { Furthermore for all

� 2 an-�Tp � = � is a p..u. of � = � , whih ontains no u.l.o.m.f.'s in C.

14

In the following lauses the addition \inAK

=

0

" in statements like \C is a p..u. inAK

=

0

" is always

dropped. Auxiliary framed boxes are used to delimit the de�ned p..u.'s from the surrounding text.

Here and later we will allow formulas (� = �)

m

with �; � 2 an-�Tp and a boldfae-markerm to

stand either (a) for the unmarked formula � = � or (b) for a marked formula (� = �)

x

with some

x 2Mk suh that this marker is then assumed to be denoted by m.

11
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(ii) For all �; �; �

0

; �

0

2 an-�Tp

� = �

R

(�

0

= �

0

)

m

0

C

0

is a p..u. C of � = � given

that C

0

is a p..u. of �

0

= �

0

and that R is an appliation of a rule UNFOLD

l=r

or VAR. An u.l.o.m.f. in C is suh an ourrene of a marked formula in C

within its subtree C

0

that orresponds to an u.l.o.m.f. in C

0

.

(iii) For all �; �; �

0

; �

0

2 an-�Tp and x 2Mk

(� = �)

x

R

(�

0

= �

0

)

m

0

C

0

[� = �℄

x

is a p..u. C

of � = � given that (1) C

0

is a p..u. of �

0

= �

0

in whih the (indiated) lass

[� = �℄

x

of all u.l.o.m.f.'s of the form (� = �)

x

is non-empty and that either

(2a) R is an appliation of a rule UNFOLD

l=r

or (2b) R is an appliation of

VAR and C

0

ontains at least one appliation of a rule di�erent from VAR.

{ All ourrenes of (� = �)

x

within the subtree C

0

of C, that orrespond to

u.l.o.m.f.'s in C

0

, are bound bak in C to the ourrene of (� = �)

x

at the

root. For all marked formulas (~� = ~�)

~x

di�erent from (� = �)

x

the unbound

leaf-ourrenes of this marked formula orrespond uniquely and in an obvious

way to the u.l.o.'s of (~� = ~�)

~x

within the subtree C

0

of C.

(iv)

C

02

(�

02

= �

02

)

m

02

C

01

(�

01

= �

01

)

m

01

DECOMP

�

01

! �

02

= �

01

! �

02

is a p..u. C of the formula

�

01

! �

02

= �

01

! �

02

for all �

01

; �

02

; �

01

; �

02

2 an-�Tp, given that C

0i

is a

p..u. of �

0i

= �

0i

for eah i 2 f1; 2g. The u.l.o.m.f.'s in C orrespond uniquely

and in an obvious way to the u.l.o.m.f.'s in either of its immediate subtrees C

01

or C

02

.

(v)

h� = �i

x

C

02

(�

02

= �

02

)

m

02

h� = �i

x

C

01

(�

01

= �

01

)

m

01

DECOMP

(�

01

! �

02

= �

01

! �

02

)

x

(with some x 2Mk and with

� :� �

01

! �

02

and � :� �

01

! �

02

) is a p..u. C of �

01

! �

02

= �

01

! �

02

for

all �

01

; �

02

; �

01

; �

02

2 an-�Tp given that C

0i

is a p..u. from �

0i

= �

0i

for eah

i 2 f1; 2g and that there is at least one unbound leaf-ourrene of the marked

formula (�

01

! �

02

= �

01

! �

02

)

x

in either C

01

or in C

02

. { All ourrenes

of (� = �)

x

within either of the immediate subtrees C

01

and C

02

of C, that

orrespond to u.l.o.m.f.'s in C

01

or C

02

, are bound bak in C to the ourrene

of (� = �)

x

at the root (and hene are not u.l.o.m.f.'s in C). For every marked

formula (~� = ~�)

~x

di�erent from (� = �)

x

the unbound leaf-ourrenes of this

12
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marked formula orrespond uniquely and in an obvious way to the u.l.o.'s of

(~� = ~�)

~x

within either of the sub-p..u.'s C

01

or C

02

of C.

The depth jCj of a p..u. C is de�ned as the depth of the underlying (derivation-)

tree.

De�nition 6.2 (Consisteny-Unfoldings in AK

=

0

). Let � and � be reursive

types in anonial form. A partial onsisteny-unfolding C of � = � in AK

=

0

is

alled a onsisteny-unfolding (a .u.) of � = � in AK

=

0

if and only if C does not

ontain any unbound leaf-ourrenes of marked formulas.

Aording to these de�nitions the derivation-tree C depited in Figure 4 an now

be reognized as a p..u. in AK

=

0

without u.l.o.m.f.'s and hene as a onsisteny-

unfolding of ��: ((�! �)! �) = ��: (�! (�! �)) in AK

=

0

. { An important

statement about onsisteny-unfoldings is expressed in the following lemma that

requires a somewhat tehnial, but not diÆult proof.

Lemma 6.3 Let �; � 2 an-�Tp and C be a onsisteny-unfolding of � = � in

AK

=

0

. Then for all equations �

1

= �

2

ouring in C it holds that L(�

1

) = L(�

2

),

i.e. that �

1

and �

2

have the same leading symbols.

It should perhaps be mentioned that if the hypotheses \let C be a .u. . . . " in

Lemma 6.3 were replaed by \let C be a p..u. . . . ", then a wrong assertion would

result. This an already be seen from the easy example of the ontradition ? = >

with respet to =

�

that ours in the marked assumption (? = >)

x

, whih by

De�nition 6.1 is a partial onsisteny-unfolding of ? = > in AK

=

0

.

The following theorem establishes the link motivated by the example in Setion 4

between the notions of \AK

=

0

-onsisteny" and \onsisteny-unfolding in AK

=

0

".

Theorem 6.4 For all reursive types �; � 2 an-�Tp it holds that:

� = � is AK

=

0

-onsistent () There exists a onsisteny-

unfolding of � = � in AK

=

0

.

(6.1)

Hint at the Proof. Let �; � 2 an-�Tp. The impliation \(" in (6.1) follows

by a generalization using Lemma 6.3 of the intuitive argumentation skethed in

Setion 4 for the example of the onsisteny-unfolding in Figure 4. The impliation

\)" in (6.1) follows by an analogous, in fat as good as `dual' argument to that

one used in a proof (following [4℄) for the ompleteness of HB

=

0

with respet to

=

�

: For an arbitrary given equation � = � between reursive types �; � 2 an-�Tp

for whih � =

�

� holds a onsisteny-unfolding of � = � in AK

=

0

an be reahed

by building up the \tree of onsequenes" of this equation in AK

=

0

in suessive

extension stages, utting o� branhes always as soon as \looping" ours or as soon

as a formula � = � has been enountered. There annot be in�nite branhes in

the arising derivation-tree due to the fat that the set of onlusions of derivations

from � = � in AK

=

0

is always �nite, if equations that arise from eah other by

appliations of VAR are not ounted separately. 2

13
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7 A duality between the proof systems e-HB

=

0

and AK

=

0

In a third step of our formalization of the observation in Setion 4 we will now give

a de�nition of a pair of reetion mappings D(�) and C(�) between p..u.'s in AK

=

0

and derivations in e-HB

=

0

.

De�nition 7.1 (Reetion Mappings D(�) and C(�)). The reetion mapping

D(�) from partial onsisteny-unfoldings in AK

=

0

to derivations in HB

=

0

(with pos-

sibly open assumption-lasses) is de�ned by indution on the depth j

~

Cj of a p..u.

~

C

in AK

=

0

aording to 5 indutive lauses, whih refer to the 5 ases in the indutive

de�nition of p..u.'s in De�nition 6.1; these lauses are indiated in Figure 6 through

the arrows

D(�)

7�! between the boxes on the left- and on the right-hand side. The de�-

nition of the reetion mapping C(�) in the opposite diretion an be arried out for

all derivations

~

D in e-HB

=

0

(with possibly open assumption lasses) by indution

on the depth j

~

Dj of

~

D with lauses that apart from the base ase distinguish the 8

ases of di�erent rules in e-HB

=

0

, appliations of whih may our as the last rule

appliation in

~

D (if j

~

Dj > 0). These in total 9 ases are desribed in the 5 indutive

lauses of the de�nition of C(�), whih lauses are indiated through the arrows

C(�)

7�!

from right to left in Figure 6. For the seond and the third lause in both de�nitions

we use a bijetive orrespondene de�ned through the table

Rule R

(u)

in AK

=

0

UNFOLD

l

UNFOLD

r

VAR

Rule R

(d)

in HB

=

0

FOLD

l

FOLD

r

VAR

between rules in AK

=

0

and rules in HB

=

0

respetively denoted by R

(u)

and R

(d)

.

The well-de�nedness of D(�) and C(�) as funtions between the set of p..u.'s in

AK

=

0

and the set of derivations in e-HB

=

0

with possibly open assumption lasses an

be shown by indution on the depth of the elements in the domain of the respetive

mapping.

We are now able to state our main theorem.

Theorem 7.2 (A Duality between derivations in e-HB

=

0

and onsisteny-

unfoldings in AK

=

0

). There is a bijetive funtional relationship between deriva-

tions in e-HB

=

0

without open assumption lasses and onsisteny-unfoldings in

AK

=

0

via the reetion funtions D(�) and C(�) de�ned in De�nition 7.1 in the

following sense:

(i) For every onsisteny-unfolding

~

C of � = � inAK

=

0

(with some �; � 2 an-�Tp)

its reetion D(

~

C) is a derivation in e-HB

=

0

with onlusion � = � and without

open assumption lasses.

(ii) For every derivation

~

D in e-HB

=

0

without open assumption lasses and with

onlusion � = � (for some �; � 2 an-�Tp) its reetion C(

~

D) is a onsisteny-

unfolding of � = � in AK

=

0

.

(iii) The funtions D(�) of taking the reetion of a onsisteny-unfolding in AK

=

0

and C(�) of taking the reetion of a derivation in e-HB

=

0

without open assump-

14
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Figure 6 Indutive de�nition of the reetion mappings D(�) and C(�) between

partial onsisteny-unfoldings

~

C inAK

=

0

and derivations

~

D in e-HB

=

0

(with possibly

open assumption-lasses).

(� = �)

m

D(�)

7�!

 �[

C(�)

(� = �)

m

� = �

R

(u)

(�

0

= �

0

)

m

0

~

C

0

(�C(

~

D

0

))

D(�)

7�!

 �[

C(�)

~

D

0

(�D(

~

C

0

))

�

0

= �

0

R

(d)

� = �

(for orresponding R

(u)

2 fUNFOLD

l=r

, VARg and R

(d)

2 fFOLD

l=r

, VARg)

(� = �)

x

R

(u)

(�

0

= �

0

)

m

0

~

C

0

(�C(

~

D

0

))

[� = �℄

x

D(�)

7�!

 �[

C(�)

[� = �℄

x

~

D

0

(�D(

~

C

0

))

�

0

= �

0

(R

(d)

/FIX)

x

� = �

(for orresponding R

(u)

2 fUNFOLD

l=r

, VARg and R

(d)

2 fFOLD

l=r

, VARg)

~

C

02

(�C(

~

D

02

))

(�

02

= �

02

)

m

02

~

C

01

(�C(

~

D

01

))

(�

01

= �

01

)

m

01

DECOMP

�

01

! �

02

= �

01

! �

02

D(�)

7�!

 �[

C(�)

7�!

 � [

~

D

01

(�D(

~

C

01

))

�

01

= �

01

~

D

02

(�D(

~

C

02

))

�

02

= �

02

ARROW

�

01

! �

02

= �

01

! �

02

h� = �i

x

~

C

02

(�C(

~

D

02

))

(�

02

= �

02

)

m

02

h� = �i

x

~

C

01

(�C(

~

D

01

))

(�

01

= �

01

)

m

01

DECOMP

(

� �

z }| {

�

01

! �

02

=

��

z }| {

�

01

! �

02

)

x

D(�)

7�!

 � [

C(�)

7�!

 �[

h� = �i

x

~

D

01

(�D(

~

C

01

))

�

01

= �

01

h� = �i

x

~

D

02

(�D(

~

C

02

))

�

02

= �

02

(ARROW/FIX)

x

�

01

! �

02

| {z }

� �

= �

01

! �

02

| {z }

��

15



Grabmayer

Figure 7 Example onsisting of a onsisteny-unfolding

~

C in AK

=

0

and of a deriva-

tion

~

D in e-HB

=

0

that are eah other's reetion via the mappings D(�) and C(�),

i.e. for whih it holds that D(

~

C) =

~

D and C(

~

D) =

~

C :

~

D :=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�

� = �

�

x

? = ?

ARROW

� ! ? = � ! ?

� = � ! ? ? = ?

ARROW

� ! ? = (� ! ?)! ?

FOLD

r

� ! ? = �

(FOLD

l

/FIX)

x

��: (�! ?)

| {z }

�: �

= ��: ((� ! ?)! ?)

| {z }

�:�

~

C :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

? = ?

? = ?

�

� = �

�

x

DECOMP

� ! ? = � ! ?

� = � ! ?

DECOMP

� ! ? = (� ! ?)! ?

UNFOLD

r

� ! ? = �

UNFOLD

l

�

��: (�! ?) = ��: ((� ! ?)! ?)

�

x

tion-lasses are eah other's inverse.

The very immediate kind of this bijetive funtional relationship and the possibility

to visualize the reetion funtions in a geometrial way is reason to all it a duality.

Sketh of Proof. All three items of the theorem (the third one an be split into

the two assertions D Æ C = id and C Æ D = id) an be shown by quite straightfor-

ward indutions using the indutive lauses in the de�nitions of D(�) and C(�). In

these indutions bookkeeping must be done as indiated in the below piture for

respetively the set of open marked assumptions in an e-HB

=

0

-derivation

~

D with

onlusion � = � and for the lasses of u.l.o.m.f.'s in a p..u.

~

C of � = � in AK

=

0

(for arbitrary �; � 2 an-�Tp) :

(� = �)

m

~

C

f [�

i

= �

i

℄

x

i

g

i=1;:::;n

D(�)

7�!

 �[

C(�)

f [�

i

= �

i

℄

x

i

g

i=1;:::;n

~

D

� = �

Hereby the displayed family f [�

i

= �

i

℄

x

i

g

i=1;:::;n

(with n 2 N

0

, �

i

; �

i

2 an-�Tp

and x

i

2Mk for i = 1; : : : ; n) gathers in

~

C preisely all n lasses of u.l.o.m.f.'s and

respetively assembles in

~

D preisely all n open assumption lasses. 2

An example of a pair (

~

D;

~

C) onsisting of a derivation

~

D in e-HB

=

0

without open

assumption lasses and of a onsisteny-unfolding

~

C in AK

=

0

that are eah other's

reetion via the operations D(�) and C(�) is depited in Figure 7.

This example makes it also very easy to explain why|with the aim of estab-

16
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lishing a satisfying duality result|we have hosen to extend the system HB

=

0

�rst

by some more rules to the system e-HB

=

0

before only later de�ning mutual trans-

formations between p..u.'s in AK

=

0

and derivations in the extended system: If we

had not done so, then we would not have been able to disharge the open marked

assumption (� = �)

x

in a derivation Re(

~

C) in HB

=

0

that arises by plain reetion

from the .u.

~

C from Figure 7. Similarly as desribed for the example used in Se-

tion 4 we would have had to enlarge Re(

~

C) above this marked assumption by two

additional appliations (one of FOLD

l

and one of FOLD

r

) before being able to dis-

harge the newly ouring open marked assumption (� ! ? = (� ! ?)! ?)

x

in

a thereby reated derivation Re(

~

C)

�

at an appliation of ARROW/FIX that results

by renaming from the bottommost appliation of ARROW in Re(

~

C).

15

But due

to the presene of the rules FOLD

l=r

/FIX in e-HB

=

0

it is in fat possible to trans-

form the plain reetion Re(

~

C) of

~

C into the derivation

~

D in Figure 7 by merely

renaming the bottommost appliation of FOLD

l

in Re(

~

C) into FOLD

l

/FIX and by

disharging the open marked assumption (� = �)

x

at this appliation.

This look at the example from Figure 7 an make it lear why it is atually

not possible to �nd a bijetive and equally immediate orrespondene as stated in

Theorem 7.2 between arbitrary onsisteny-unfoldings in AK

=

0

and derivations in

HB

=

0

.

But the duality statement in Theorem 7.2 leaves open the question how the

partiular lass of those .u.'s in AK

=

0

that are the images under the reetion

funtion C(�) of derivations in the basi system HB

=

0

an formally be haraterized.

Closer examination shows that suh .u.'s are always of the partiular form, that

leaf-ourrenes in them of marked formulas are exlusively bound bak to upper

premises of branhings DECOMP; we stipulate that suh .u.'s ful�ll the property D.

This observation gives rise to the following speialized version of Theorem 7.2, whih

an also be proved in a very straightforward way.

Theorem 7.3 (A Duality between derivations in HB

=

0

and onsisteny-

unfoldings in AK

=

0

with the property D). The restritions D

0

(�) := Dj

A

(�)

and C

0

(�) := Cj

B

(�) of the reetion funtions D(�) and C(�) to respetively the set

A of partial onsisteny-unfoldings in AK

=

0

with the property D and to the set B

of derivations in HB

=

0

(possibly with open assumption lasses) yield a duality state-

ment with assertions analogous to items (i), (ii) and (iii) in Theorem 7.2 between

onsisteny-unfoldings in AK

=

0

with the property D and derivations in HB

=

0

without

open assumption lasses.

This theorem is illustrated in Figure 8 by a derivation in HB

=

0

without open

assumption lasses and by a onsisteny-unfolding in AK

=

0

with the property D

that are eah other's reetion via the reetion mappings D(�) and C(�).

Our \duality"-results, Theorem 7.2 and Theorem 7.3, are able to provide a pre-

15

The derivation Re(

~

C)

�

desribed here is atually equal to the derivation

~

D in HB

=

0

depited in

Figure 8 [stritly speaking, Re(

~

C)

�

is equal to one of the 4 HB

=

0

-derivations that are denoted by

the prooftree

~

D depited in Figure 8 (sine for the two pairs of suessive FOLD

l=r

-appliations

the order in whih these two appliations atually follow eah other has not been �xed there)℄.

17
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Figure 8 Example onsisting of a onsisteny-unfolding

~

C in AK

=

0

with the prop-

erty D and of a derivation

~

D in HB

=

0

that are eah other's reetion via the re-

stritions D

0

(�) := Dj

A

(�) and C

0

(�) := Cj

B

(�) (f. Theorem 7.3) of the reetion

mappings C(�) and D(�), i.e. for whih it holds that D

0

(

~

C) = Dj

A

(

~

C) =

~

D and

C

0

(

~

D) = Cj

B

(

~

D) =

~

C .

~

D :=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�

� ! ? = (� ! ?)! ?

�

x

� = � ? = ?

ARROW

� ! ? = � ! ?

� = � ! ? ? = ?

(ARR./FIX)

x

� ! ? = (� ! ?)! ?

FOLD

l=r

��: (�! ?)

| {z }

�: �

= ��: ((� ! ?)! ?)

| {z }

�:�

~

C :=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

? = ?

? = ?

�

� ! ? = (� ! ?)! ?

�

x

� = �

DECOMP

� ! ? = � ! ?

� = � ! ?

DECOMP

�

� ! ? = (� ! ?)! ?

�

x

UNFOLD

l=r

��: (�! ?) = ��: ((� ! ?)! ?)

ise formal onnetion between the Brandt-Henglein-like axiomatizations HB

=

0

and

e-HB

=

0

for =

�

and the `syntati-mathing' proof system AK

=

0

that is similar to a

system introdued by Ariola and Klop. But probably the main signi�ane of these

statements onsists in the fat that they an help to understand the soundness of

the reasoning formalized through a oindutive rule like ARROW/FIX in a diret

way with a geometrial visualization.

In partiular, they make it possible to attribute some preise meaning to the

informal explanation given by M. Brandt in the sentene

\The intuition [of the reasoning formalized by rules like ARROW/FIX, C.G.℄

being that if you an not �nd hard evidene proving that the judgement is false

then it must be true."

(ited from the abstrat of [3℄): Suppose we have given a derivation

~

D in HB

=

0

of

the form

h� = �i

x

~

D

01

�

01

= �

01

h� = �i

x

~

D

02

�

02

= �

02

(ARROW/FIX)

x

�

01

! �

02

| {z }

�: �

= �

01

! �

02

| {z }

�:�

.

(7.1)

We will try to understand the inferene formalized by the bottommost appliation

of ARROW/FIX in

~

D in the light of the above ited sentene. Furthermore we

want to detet the reason why no \harm" does arise by disharging all open marked

18
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assumptions in

~

D

01

and

~

D

02

of the form of the onlusion of

~

D at the appliation of

ARROW/FIX at the bottom of

~

D.

By building the reetion of

~

D via the reetion mapping C(�) de�ned in De�ni-

tion 7.1 we arrive at the p..u. C(

~

D) of the form

h� = �i

x

~

C

02

(�C(

~

D

02

))

(�

02

= �

02

)

m

02

h� = �i

x

~

C

01

(�C(

~

D

01

))

(�

01

= �

01

)

m

01

DECOMP

(

� �

z }| {

�

01

! �

02

=

��

z }| {

�

01

! �

02

)

x

(7.2)

and an use some of our aquired knowledge about (partial) onsisteny-unfoldings:

It is easy to prove (similar to a proof for Lemma 6.3) that no ontraditions with

respet to =

�

an possibly our in C(

~

D) between the root and suh leaf-ourrenes

of marked formulas (� = �)

x

that are bound bak to the root. Hene all di�erent

branhes b

1

; : : : ; b

n

in C(

~

D) from the root downwards to u.l.o.m.f.'s (� = �)

x

in

either

~

C

01

or

~

C

02

orrespond to derivations D

1

; : : : ;D

n

from � = � in AK

=

0

in whih

no ontraditions with respet to =

�

are enountered and during whih at least one

full loop was passed through. From this it follows that for the purpose of showing

the AK

=

0

-onsisteny of � = � all those derivations D in AK

=

0

from the assumption

� = � , that have one of the derivations D

1

; : : : ;D

n

as their initial segment, do not

have to be taken into further aount: If suh a derivation D had a ontradition

with respet to =

�

as its onlusion, then a shorter derivation D

0

(in AK

=

0

from the

assumption � = � ) that resulted from D by utting out the loop at its beginning

would also lead to a ontradition.

The n di�erent threads

16

�

1

; : : : ;�

n

within the derivation

~

D of (7.1) from one

of the marked assumptions (� = �)

x

down to the onlusion � = � of

~

D orrespond

uniquely|under the reetion mapping C(�)|to the above desribed n branhes

b

1

; : : : ; b

n

in the p..u. C(

~

D) in (7.2) and hene to the derivations D

1

; : : : ;D

n

of

from � = � in AK

=

0

, in whih no ontradition with respet to =

�

is enountered

and during whih a loop is passed through. Thus the inferene formalized by the

bottommost appliation of ARROW/FIX in

~

D an be justi�ed on the grounds that

(a) along the derivations D

1

; : : : ;D

n

from � = � in AK

=

0

that result as mirror

images from the threads �

1

; : : : ;�

n

in

~

D no evidene for the AK

=

0

-inonsisteny of

� = � is found and that (b) the open marked assumptions (� = �)

x

in either

~

D

01

or in

~

D

02

are allowed to be disharged at the bottom of

~

D beause of the \meaning"

given to

~

D through the p..u. C(

~

D) relative to the onept of \onsisteny with

respet to AK

=

0

".

By extending the above argumentation slightly it is easy to see: All m di�erent

threads �

0

1

; : : : ;�

0

m

in the derivation

~

D depited in (7.1) from a leaf at the top

labelled with either an axiom (REFL) or a marked assumption, that is disharged

in

~

D, downwards to the onlusion of

~

D orrespond uniquely via reetion to m

derivations D

0

1

; : : : ;D

0

m

from � = � in AK

=

0

during whih no ontradition with

16

Due to the side-ond. I on appl.'s of ARROW/FIX there must exist at least one suh thread.

19
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respet to =

�

does our. And furthermore, ontraditions with respet to =

�

an only our in suh derivations D from � = � in AK

=

0

that possess an initial

segment D

0

that is related

17

via reetion to a thread � in

~

D from an open marked

assumption downwards to the onlusion of

~

D.

Rather more formally than done so in the above disussion the duality theorem,

Theorem 7.2, enables us to arry out the following alternative proof for the soundness

part in Theorem 3.2, in whih the soundness assertion for HB

=

0

with respet to =

�

is `redued' to the soundness assertion for AK

=

0

with respet to =

�

.

Alternative

18

Soundness Proof for HB

=

0

with respet to =

�

. Suppose that

� = � is a theorem of HB

=

0

, where �; � 2 an-�Tp. This means that there exists a

derivation D in HB

=

0

with onlusion � = � and without open assumption lasses;

let D be hosen as suh a derivation. Then due to Theorem 7.2 the reetion C(D)

of D is a onsisteny-unfolding of � = � in AK

=

0

(whih .u.|as we remark by

the way|ful�lls the property D due to Theorem 7.3). Hene by Theorem 6.4 the

equation � = � is onsistent with respet to AK

=

0

. And from this Theorem 3.4,

whih states the soundness of AK

=

0

with respet to =

�

, implies that � and � are

strongly equivalent. 2

The soundness of the extension e-HB

=

0

of HB

=

0

with respet to =

�

an be

shown by a ompletely analogous

19

proof. { Although the argumentation used for

the above proof an be arried out in the opposite diretion as well and is able to

demonstrate also the ompleteness of e-HB

=

0

with respet to =

�

, this does not

really onstitute an alternative ompleteness proof for e-HB

=

0

independent from

suh a ompleteness proof for HB

=

0

that (as hinted for Theorem 3.2) an be derived

from the one desribed in [4℄. This is beause the problem of showing the diretion

\)" of (6.1) for Theorem 6.4 (whih impliation is used in suh an argument for

the ompleteness of e-HB

=

0

) is in fat a problem of a \dual" kind to showing the

ompleteness of e-HB

=

0

: In view of Theorem 7.2 and, more preisely, in view of its

proof the ativity of trying to build a derivation in e-HB

=

0

with onlusion � = �

for two given reursive types �; � 2 an-�Tp orresponds uniquely to the ativity of

trying to build a onsisteny-unfolding of � = � in AK

=

0

.

8 A duality in proof systems for bisimulation equivalene

on yli term graphs

In this setion we want to sketh how our duality result about two proof systems for

reursive type equality an be transferred to similar proof systems onerned with

bisimulation equivalene on equational representations of yli term graphs.

17

Due to the \inuene" of possible VAR-appliations in D

0

the word \related" annot be replaed

by \orresponds uniquely" here.

18

By this we mean an alternative proof ompared to one that follows from and is derived from the

soundness proof given in [4℄ with respet to =

�

for the system given there.

19

More preisely, only the two appearanes of \HB

=

0

" in the proof have to be replaed by \e-HB

=

0

"

and the addition in brakets \(whih .u.. . . ful�lls the property D . . . )" has to be dropped.

20
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In the aim to limit tehnialities and to follow [2℄ we will only onsider equa-

tional spei�ations of yli term graphs without free variables. We are assuming

a ountably in�nite set RVar of reursion variables to underlie the following de�ni-

tion. In this setion we will let small Greek letters �; �; : : : vary through reursion

variables.

De�nition 8.1 (Canonial Term Graph Spei�ations). Let � be a �rst-

order signature. A anonial term graph spei�ation (a .t.g.s.) is an equational

spei�ation of the form h�

0

j f�

0

= t

0

; : : : ; �

n

= t

n

g i, where n 2 N , �

0

; : : : ; �

n

are

pairwisely di�erent reursion variables in RVar and for all i with 0 � i � n the terms

t

i

are of the form t

i

� F (�

i1

; : : : ; �

in

i

) for some funtion symbol F 2 � of arity n

i

and variables �

i1

; : : : ; �

in

i

2 f�

0

; : : : ; �

n

g. An equation �

i

= t

i

for i 2 f1; : : : ; ng

is alled useless i� the reursion variable �

i

is not reahable from the root �

0

in the

obvious sense. We will use the letters g and h to vary through .t.g.s.'s and denote

by T GS(�) the set of all .t.g.s.'s over �.

Bisimilarity between .t.g.s.'s is de�ned in [4℄ as follows:

De�nition 8.2 (Bisimulation Equivalene $ on .t.g.s.'s). Let � be a

signature. Let g and h be anonial term graph spei�ations over � of the form

g = h�

0

j f�

0

= t

0

; : : : ; �

n

= t

n

g i and h = h�

0

0

j f�

0

0

= t

0

0

; : : : ; �

0

n

0

= t

0

n

0

g i.

(a) R is alled a bisimulation between g and h if and only if

(i) R is a relation with domain f�

0

; : : : ; �

n

g and odomain f�

0

0

; : : : ; �

0

n

0

g;

(ii) �

0

R�

0

0

;

(iii) if �

i

R�

0

j

for some i; j with 0 � i � n and 0 � j � n

0

, and given that

t

i

� F (�

i1

; : : : ; �

in

i

) and t

0

j

� F

0

(�

0

j1

; : : : ; �

0

jn

0

j

) with some n

i

; n

0

j

2 N

0

, then

F � F

0

(and hene n

i

= n

0

j

) and �

i1

R�

0

j1

; : : : ; �

in

i

R�

0

jn

0

j

must hold.

(b) We say that g and h are bisimilar (symbolially denoted by g$ h) i� there

exists a bisimulation between g and h.

We ontinue with an example for the notions de�ned in De�nition 8.1 and De�-

nition 8.2.

Example 8.3 We onsider the two anonial term graph spei�ations

g := h�

0

jE

g

i := h�

0

j f�

0

= F (�

1

; �

2

); �

1

= F (�

0

; �

2

); �

2

= G(�

1

; �

0

)g i (8.1)

h := h �

0

jE

h

i := h �

0

j f�

0

= F (�

0

; �

1

); �

1

= G(�

0

; �

0

)g i (8.2)

in T GS(fF;Gg) . These orrespond respetively to the two yli term graphs

/.-,()*+
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��~~
~~

~~
~~

��@
@@

@@
@@

@

��

/.-,()*+
F

22

00 /.-,()*+
G

nn

ll and

/.-,()*+
F

11

��@
@@

@@
@@

@

��

/.-,()*+
G

PP
ll

.

It is easy to hek that R := f(�

0

; �

0

); (�

1

; �

0

); (�

2

; �

1

)g is a bisimulation between

g and h aording to De�nition 8.2. Hene g$h holds, i.e. g and h are bisimilar.
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Figure 9 A Brandt-Henglein-like axiomatization HB

$

0

without symmetry and

transitivity rules of bisimulation equivalene between anonial term graph spei�-

ations over signature �.

The axioms and possible marked assumptions in HB
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0
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x

:
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The derivation rules of HB
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0

: Rules COMP and rules COMP/FIX with
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i
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i ii
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FIX)

x

(if s.-. I)

h� j f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

g

| {z }

=E

g

i = h � j f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

h

| {z }

=E

h

i

An axiomatizationHB

$

0

for $ , whih is very similar to the `normalized' variant

HB

=

0

of the axiom system for =

�

by Brandt and Henglein, is depited in Figure 9.

Similarly as it was de�ned for its ounterpart in HB

=

0

, the rule ARROW/FIX,

appliations of the rule COMP/FIX in HB

$

0

are subjeted to the side ondition I:

This requirement demands that the disharged assumption lass is in fat non-empty

(to distinguish suh appliations from ones of the \plain" COMP-rule). The rules

GC

�1

l=r

formalize the inverse operation of garbage olletion (of useless equations) on

.t.g.s.'s. The following theorem, whih is very straightforward to prove, holds for

HB

$

0

:

Theorem 8.4 (Sound- and Completeness of HB

$

0

with respet to $). The

axiom system HB

$

0

is sound and omplete with respet to bisimulation equivalene

$ on anonial term graph spei�ations, i.e. for all .t.g.s.'s g and h it holds:

`

HB

$

0

g = h () g$ h :

A `syntati mathing' proof system AK

$

0

for $ is depited in Figure 10, whih

system is of a similar kind as the system AK

=

0

for equational testing with respet

to =

�

. The rules GC

l=r

in AK

$

0

formalize the operations of garbage olletion (of

useless equations) on .t.g.s.'s . A notion of onsisteny with respet to AK

$

0

is

sound and omplete for $ . We need the following terminology: An equation ~g =

~

h
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Figure 10 A `syntati-mathing' proof system AK

$

0

for testing bisimulation

equivalene on equations between anonial term graph spei�ations.

The derivation rules of AK

$

0

:

h� jE

0

℄ f�

i

= t

i

g i = h

GC

l

h� jE

0

i

| {z }

= g

= h

g = h � jE

0

℄ f�

i

= s

i

g i

GC

r

g = h � jE

0

i

| {z }

=h

(if �

i

is unreahable in g) (if �

i

is unreahable in h)

h� j

=:E

g

z }| {

f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

g

i = h � j

=E

h

z }| {

f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

h

i

DECOMP

(for 1� i�n)

h�

i

jE

g

i = h �

i

jE

h

i

between two .t.g.s.'s ~g and

~

h is alled AK

$

0

-onsistent i� no ontradition with re-

spet to$ is derivable inAK

$

0

from ~g =

~

h. And furthermore an equation ~g =

~

h be-

tween two .t.g.s.'s ~g = h�

0

j f�

0

= t

0

; : : :g i and

~

h = h�

0

0

j f�

0

0

= t

0

0

; : : :g i is agreed

to be a ontradition with respet to $ i� it holds that t

0

� F (�

01

; : : : ; �

0n

0

) and

t

0

0

� G(�

0

01

; : : : ; �

0

0n

0

0

) for some n

0

; n

0

0

2 N

0

, variables �

01

; : : : ; �

0n

0

, �

0

01

; : : : ; �

0

0n

0

0

and di�erent symbols F;G 2 � (i.e. F 6� G). Relying on these notational agree-

ments the following theorem holds, whih is again easy to show.

Theorem 8.5 (Soundness and Completeness with respet to $ of

onsisteny-heking relative to AK

$

0

).

The `syntati-mathing' system AK

$

0

is sound and omplete with respet to $ for

the notion of heking onsisteny relative to this system: For all anonial term

graph spei�ations g and h it holds:

g = h is AK

$

0

-onsistent () g$h :

Now it is very straightforward to de�ne the notion of p..u.'s and onsisteny-

unfoldings in AK

$

0

of equations between .t.g.s.'s analogously to De�nitions 6.1

and 6.2. And furthermore also reetion mappings C(�) and D(�) between p..u.'s

in AK

$

0

and derivations in HB

$

0

an be de�ned very similar to (and in fat easier

than in) De�nition 7.1. In this way we are lead to the following ounterpart of

Theorem 7.2 for the two proof systems onsidered here.

Theorem 8.6 (A Duality between derivations in HB

$

0

and onsisteny-

unfoldings in AK

$

0

). There is a bijetive funtional relationship between

derivations in HB

$

0

without open assumption lasses and onsisteny-unfoldings in

AK

$

0

via reetion mappings C(�) and D(�) : This means that ompletely analogous

statements to that in items (i), (ii) and (iii) of Theorem 7.2 are true.

In Figure 11 the assertion of this theorem is exempli�ed for the .t.g.s.'s g and

h of Example 8.3 by a suggestively typeset pair (

~

D;

~

C) of a derivation

~

D for g = h
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Figure 11 Example onsisting of a derivation in HB

$

0

without open assumption

lasses and of a onsisteny-unfolding in AK

$

0

that are are eah other's \reetion".

(The anonial term graph spei�ations g and h are taken from Example 8.3).
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0

jE
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in HB

$

0

without open assumption lasses and a onsisteny-unfolding of g = h in

AK

$

0

, where

~

C and

~

D are eah other's \mirror image" via reetion mappings C(�)

and D(�).

9 Conlusion

In the main part of this paper we have motivated and developed a preise for-

mal relationship between two di�erent proof systems onerned with reursive type

equality =

�

on a restrited lass of reursive types in �-term notation with only

type onstrutor !. We showed the existene of a bijetive orrespondene that

an geometrially be visualized between (1) derivations without open assumptions

in an extension e-HB

=

0

of a `normalized' version HB

=

0

of the axiomatization for

=

�

by Brandt and Henglein and (2) what we de�ned as onsisteny-unfoldings in

a proof system AK

=

0

�a la Ariola and Klop for equational testing with respet to

=

�

. This orrespondene takes plae via two reetion mappings C(�) and D(�)

that formalize e�etive transformations and that are inverse to eah other. Its par-

tiularly immediate kind gave us reason to all it a duality. { By \developing on

�ne-grained �lm" and analyzing the image of the set of HB

=

0

-derivations under

the reetion mapping C(�) we found that our orrespondene result an be speial-

ized to the assertion of a duality taking plae via appropriate restritions C

0

(�) and

D

0

(�) of the reetion mappings C(�) and D(�) also between (1

0

) derivations without

open assumption lasses in our basi Brandt-Henglein system HB

=

0

and (2

0

) suh

onsisteny-unfoldings in AK

=

0

that ful�ll the partiular property D.

Apart from establishing a preise formal link between the systems HB

=

0

and

AK

=

0

by tying together losely the notions of \derivability in HB

=

0

" and \onsis-

teny with respet to AK

=

0

", the main signi�ane of the duality results onsists

perhaps in the following: They an be used to understand and justify the sound-
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ness of the|at least at �rst sight|seemingly paradoxial reasoning formalized by

the rule ARROW/FIX in the variant-Brandt-Henglein system HB

=

0

. In fat, our

results failitated an alternative soundness proof for the system HB

=

0

that is inde-

pendent from the one given in [4℄ and that proeeds by `reduing' the soundness of

HB

=

0

to the soundness of the system AK

=

0

.

We did not investigate in this paper the proof-theoreti relationship between

the axiom system (here denoted by) HB

=

for reursive type equality introdued by

Brandt and Henglein and our variant-system HB

=

0

. The symmetry and transitivity

rules present in HB

=

are not part of the formal system HB

=

0

for whih a version

of the subformula property is true. It an be shown that every HB

=

-derivation

without open assumption lasses an be `normalized' in a ertain e�etive way by

`working away' all appliations of symmetry and transitivity rules with the result of

derivation in HB

=

0

with the same onlusion and no open assumption lasses. For

this as well as for a detailed study of proof-theoreti transformations between the

here formally introdued or merely mentioned proof systems for reursive types and

a number of further variant-systems we want to refer to our forthoming work [5℄.

In the last setion we indiated that the desribed duality result is not spei�

to the two onsidered proof systems for reursive types: We skethed an analogous

duality theorem for a similar pair of proof systems onerned with the notion of

bisimulation equivalene on equational spei�ations of yli term graphs.

We have ome to realize only very reently that the notion of a onsisteny-

unfolding, the de�nition of whih was devised very muh in an `ad ho'-manner for

the speial purpose at hand here, does bear an obvious analogy with the onept of

a `losed analyti tableau' as introdued by R. Smullyan. And in fat, the duality

statements developed here lend themselves for being reformulated with respet to

an|in eah ase|suitably de�ned tableau alulus as assertions about an immedi-

ate funtional relationship between proofs in a respetive Brandt-Henglein system

and so alled `syntati-mathing tableaux' in the tableau system. Preliminary for-

mulations of results in this diretion regarding proof systems for reursive types an

be found on the slides [6℄ of a reent talk.
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