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Abstract

This paper is concerned with a proof-theoretic observation about two kinds of proof sys-
tems for regular cyclic objects. It is presented for the case of two formal systems that
are complete with respect to the notion of “recursive type equality” on a restricted class
of recursive types in p-term notation. Here we show the existence of an immediate dual-
ity with a geometrical visualization between proofs in a variant of the coinductive axiom
system due to M. Brandt and F. Henglein and “consistency-unfoldings” in a variant of
a ‘syntactic-matching’ proof system for testing equations between recursive types due to
Z. Ariola and J.W. Klop. This result makes it possible to argue for the soundness of the
coinductive derivation rule present in the system of Brandt and Henglein in a new way and
it leads to an independent soundness proof for the here considered variant of this system.

Finally we sketch an analogous result of a duality between a similar pair of proof systems
for bisimulation equivalence on equational specifications of cyclic term graphs.

1 Introduction

The main part of this paper is concerned with an observation about two complete
proof systems for the notion of “recursive type equality” on recursive types.

There are to our knowledge basically two different complete axiom systems
known for recursive type equality: (i) A system due to R. Amadio and L. Cardelli
given in [1] (1993) and (ii) a coinductively motivated axiom system introduced by
M. Brandt and F. Henglein in [4] (1998). Apart from these axiomatizations it is also
possible to consider (iii) a ‘syntactic-matching’ proof system for which a notion of

1 This is a slightly extended and more detailed version of a paper submitted for the Workshop
TERMGRAPH 2002, Barcelona, October 7, 2002. This version was completed at 15 July 2002.

2 Email: clemens@cs.vu.nl; homepage: http://www.cs.vu.nl/"clemens .
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consistency with respect to this system is complete for recursive type equality. Such
a system can be defined in a very similar way to one that has been introduced by
Z. Ariola and J.W. Klop in [2] (1995) for the notion of bisimulation equivalence on
equational representations of cyclic term graphs. For our purpose we will consider
only ‘normalized’ variants without symmetry and transitivity rules of the Brandt-
Henglein and syntactic-matching systems. In Section 3 these variant-systems will
be defined and their respective soundness and completeness theorems stated.

It was noted by J.W. Klop that there appears to be a striking similarity between
the activities of (a) trying to demonstrate the consistency of an equation between
recursive types with respect to the syntactic-matching system and of (b) trying
to find a derivation for the same equation in the system of Brandt and Henglein.
This basic observation underlying the present paper will be described in Section 4 in
relation to the introduced variant-systems by explaining it in the light of an example.

In order to extract a precise statement from this observation two formal prereq-
uisites turn out to be necessary: Firstly, in Section 5 we will introduce an extension
of the variant Brandt-Henglein system with some more coinductive rules. And sec-
ondly, in Section 6 we define so called “consistency-unfoldings” of given equations
between recursive types in the variant ‘syntactic-matching’ system as certain for-
malizations of successful consistency-checks. With these notions our main theorem
is then stated in Section 7: There exists even a “duality” between derivations in the
extended variant-Brandt-Henglein system and corresponding consistency-unfoldings
in the variant-syntactic-matching system via easily definable reflection mappings.

This relationship between the two considered proof systems can be geometrically
visualized and allows us to give an alternative soundness proof for our variant of
the Brandt-Henglein system and for its extension. By ‘zooming’ into a special case
of this duality we furthermore show the existence of an analogous strong connec-
tion between derivations in the (not extended) variant-Brandt-Henglein system and
corresponding consistency-unfoldings of a certain formally characterized kind in our
syntactic-matching system.

In Section 8 we outline an analogous result for a similar pair of proof systems
concerned with the bisimulation relation on equational specifications of cyclic term
graphs.

2 Preliminaries on recursive types

Likewise as Brandt and Henglein in [4] we consider only® recursive types denoted
by p-terms in canonical form over the restricted class of finite types with — as the
single type constructor. We assume a countably infinite set TVar of type variables
to be given and to underlie the following definition. The small Greek letters v and
B (possibly with subscripts) will be used as syntactical variables for type variables
and the letters 7,0, p, x for recursive types.

3 Our results do not depend on the limitation to proof systems for recursive types in canonical
form only. We followed [4] in the intention to avoid unnecessary technicalities here. The general
case will be treated in [5].
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Definition 2.1 (Recursive Types can-uTp in Canonical Form). The set
can-pTp of recursive types in canonical form is generated by the following grammar:

o= L|T|a|n— nlpa.(nn— ) . (2.1)
~——
where a € fv(11 — T2)

The set of all equations 7 = o between recursive types 7 and ¢ in canonical form
will be denoted by can-uTp—FEq.

The recursive types in can-uTp are in “canonical form” due to the two require-
ments in the last disjunctive clause in grammar (2.1): For given « € T'Var the
p-operator may only be applied to a previously formed expression 7 if 7 is of the
form 71 — 7 and if a occurs free in 7, — 7.

Contrary to [4] we do not implicitly identify recursive types in can-uTp that can
be obtained from each other by a finite sequence of admissible renaming-steps for
bound type variables, i.e. that are variants of each other. We will use the notation
T1 =y T2 to express that 7y and 7 are variants of each other.

Via a natural transformation of p-terms into cyclic term graphs described in (the
extended version of) [2] it is possible to assign to every recursive type 7 € can-uTp
a cyclic term graph G(7), whose nodes have at most two outgoing edges and are
labelled by either the binary function symbol — or by a symbol of arity zero in
{L, T}UTVar. Relying on this transformation the tree unfolding Tree(r) of an
arbitrary recursive type 7 € can-uTp can be defined as the tree unfolding of G(7).
An alternative formal definition of Tree(7) can be found in [1].* The leading symbol
L(7) of a recursive type 7 € can-uTp is defined as the symbol that labels the root
in the tree unfolding Tree(r) of 7.°

Definition 2.2 (Recursive Type Equality (Strong Equivalence) =,). Two
recursive types 7,0 € can-pTp are called strongly equivalent (symbolically denoted
by: 7 =, o) iff they possess the same tree unfolding. More formally, the equivalence
relation recursive type equality (also called strong recursive type equivalence) =, is
defined by: For all 7,0 € can-uTp

T=,0 : < Tree(r) = Tree(o) .

An example for Definition 2.2 and for the underlying notion of the tree unfolding
of a recursive type in can-uTp is given in Figure 1.

1 The definition in [1] is slightly more general than then the one needed here because Amadio and
Cardelli allow also recursive types not in canonical form like for example pa. (uf8.a) .

5 Alternatively and more formally £(7) can be defined for all 7 € can-uTp by the 5 clauses
LL)y:=1, L(T):=T, L(a):=a (for all a € TVar) and L(11 = 72):=L(pa. (11 = T2)):=—
(for all « € TVar and 71,7 € can-uTp).
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Figure 1 Example of two strongly equivalent recursive types.

We consider the recursive types in canonical form
7= po. ((a = a) = a) and o= pa. (o — (a— ) .

These correspond respectively to the different cyclic term graphs

G(r) = and G(o) =

but they possess the same tree unfolding of the form
Tree(7) = Tree(o)=

7/ AN / N
/ N 7/ AN
/ N / N

Hence 7 and o are strongly equivalent, i.e. 7 =, o holds, due to Definition 2.2.

3 The proof systems HB; and AKj for =,

In this section we define the two proof systems on which our results will be based:
A variant-system HBg of the coinductively motivated axiomatization for =, given
by Brandt and Henglein in [4] and a proof system AKGZ suitable for consistency-
checking similar to a system as defined by Ariola and Klop in [2]. We formulate these
systems in natural-deduction style and for this and for later purposes we assume a
countably infinite set Mk of assumption markers to be given.

Definition 3.1 (The axiom system HBf for =,). The formal system HBg has
the equations in can-uTp-Eqas its formulas. It contains the azioms (REFL), allows
marked assumptions (Assm) and has the derivation rules VAR, FOLD,, FOLD,,
ARROW and ARROW/FIX listed in Figure 2. The side-condition I on applications
of ARROW /FIX requires that the class of discharged assumptions is actually inhabi-
tated, i.e. non-empty.® A formula 7 = o is a theorem of HBy (symbolically denoted
by Fup= 7 = o) iff there is a derivation D in HBg with conclusion 7= 0 and
with the property that all marked assumptions have been discharged at respective
applications of ARROW/FIX in D.

Apart from minor differences the system HBg can be considered as a ‘norma-
lized” version of the complete axiomatization for =, given in [4]. A distinctive role in

6 The aim here is to create a clear-cut distinction between applications of ARROW and applica-
tions of ARROW /FIX for easing the reasoning about a later defined proof-transformation.

4
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Figure 2 A normalized version HBg of the coinductive axiomatization for recursive
type equality =, given by Brandt and Henglein.

The azioms and possible marked assumptions in HBg:

(REFL) 7 =71 (Assm) (7 =o0)% (with x € Mk) .
The derivation rules of HBg:
To[ﬁba.To/g] =0 FOLD, T = UO[MB- Uo/ﬁ] FOLD,
Uo. Ty = 0 T = up. oy
_T=0 VAR (if 7=, 7 T = 01 T2 =02 )\ pROW
= and o' =, 0) Ty, — Te = 01 — 02
<7'1—>7'2:0'1 _)0_2>13 <’7'1 — To = 01 _)0_2>13
Dy D,
T =01 72 = 02 (ARROW/FIX),
T —» Ty = 01 = 02 (if side-cond. I)

both the original system in [4] as well as in HBf is played by the rule ARROW /FIX,
an application of which consists of the amalgamation of an application of the com-
position rule ARROW with an application of a fixed-point rule” FIX, at which
open assumptions of the form of its conclusion can be discharged. No symmetry
and transitivity rules are present in HBy and the axioms (FOLD/UNFOLD) used
in [4] have been reformulated into the two® rules FOLD;,, . HB§ is ‘normalized’ in
the sense that it satisfies a version of the subformula property. Although lacking the
expressivity of symmetry and transitivity rules the following also holds for HBj :

Theorem 3.2 (Sound- and Completeness of HBF with respect to =,). The
aztom system HBg s sound and complete with respect to strong recursive type
equivalence =, i.e. for all 7,0 € can-uTp it holds that

Faps 7T=0 <— T=,0.

w

Both the soundness and the completeness of HBgy with respect to =, can be
shown analogously as done by Brandt and Henglein in [4] for their system.®

T This rule is not part of HBF nor of the system introduced in [4]. As Brandt and Henglein point
out, the rule FIX is unsound in its general form, but it can be reformulated into a sound derivation
rule for a formal system that axiomatizes =, by requiring a certain side-condition to be fulfilled
for its applications.

8 Here and later we allow two rules like FOLD; and FOLD, to be “bundled together” to rules
FOLD;/, in informal arguments: “... holds for a rule FOLD,,,” is intended to mean “... holds
for a rule FOLD; or for a rule FOLD,” and “... holds for rules FOLD,,,” stands for “... holds
for the rule FOLD; and for the rule FOLD,”.

9 Because of a very close relationship between HB5 and the definition of the tree unfolding of
recursive types, Theorem 3.2 can also be shown in a more direct alternative way.
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Figure 3 A normalized ‘syntactic-matching’ proof system AKG for checking the
consistency of given equations with respect to =,. This system is related to a one
that was introduced by Ariola and Klop.

The derwation rules of AKg:

P UNFOLD, T=1b9%  yNpoLD,
Tolpc. o/ = o T = oouB. 00/ ]
=0 and o' =, 0) T =0

We do not investigate in this paper the proof-theoretic relationship between the
axiom system for =, introduced by Brandt and Henglein and our variant-system
HBgG. However, we want to mention two facts in this respect that are proven in
our forthcoming work [5]: (1) Every derivation D in HBF can be transformed in an
easy and effective way into a derivation D’ in the system of Brandt and Henglein
such that D’ has the same conclusion and the same open assumption classes as D.
But (2) an effective transformation of derivations between these two systems in the
opposite direction is—although possible—not of an equally easy kind.

We continue with the definition of a proof system very similar to a ‘syntactic-
matching’ system introduced by Ariola and Klop in Section 3.4 of [2].

Definition 3.3 (A ‘syntactic-matching’ proof system AKF for =,). The
formal system AKG contains precisely all equations in can-pTp—Eq as its formulas.
It contains no azioms. Its derivation rules are the rules VAR, UNFOLD,;, UNFOLD,
and DECOMP that are listed in Figure 3. We will use 7 =0 Fakz= X1 = X2 (for
T,0,X1, X2 € can-uTp) as notation for the assertion that there is a derivation in
AKg from the assumption 7 = o with conclusion x; = x2.

The conspicuous feature of this system is the decomposition rule DECOMP,
which is a “destructive” counterpart of the “constructive” composition rules AR-
ROW and ARROW/FIX in HBf. Like HBF the system AKF does not contain
symmetry and transitivity rules and is ‘normalized’ in the sense that it fulfills an
“inverse subformula property”.

Clearly, AK§ does not axiomatize =,, but a notion of consistency-checking with
respect to AKg is sound and complete for =,. For being able to state this properly,
we need the following terminology: An equation 7 = ¢ between recursive types is
a contradiction with respect to =, iff L(1) # L(0), i.e. iff the leading symbols of 7
and o differ. Furthermore an equation 7 = o is called AKGg -inconsistent iff there
exists a contradiction x; = xo with respect to =, such that 7 =0 Fak= x1 = x2 ;
otherwise we say that 7 = o is AK{ -consistent.

Theorem 3.4 (Soundness and Completeness with respect to =, of con-
sistency-checking relative to AKF). Consistency with respect to AKg is
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Figure 4 Assemblage to a finite downwards-growing “tree of consequences” C of
the 6 different possible initial segments of derivations from pa. (o = ) = ) =
pa. (@ — (@ — «)) in AKy without VAR-applications until looping occurs.

Il
3
Il

i

A A

~

(Loz. (0 = a) = a) = pa. (a = (a — a)))x UNFOLD
lr

________________________________ DECOMP
(1 —=>1=0) (r=0—0)
TT=0—(0—0) (1—=7)>717=0—>0
(r=0)" T=0—>0 T T=0 (1=0)"

sound and complete in relation to =,: For all 7,0 € can-puTp 1t holds that
T =0 1is AKg-consistent <= T=,0 .

Sketch of Proof. Both the soundness-part “=" and the completeness-part “<”
are easy consequences of the fact that derivations D in AKg from assumption 7 = o
with conclusion x; = x2 correspond to computations of xi, x2 € can-uTp with the
property that'® Tree(r)|p = Tree(x;) and Tree(o)|p = Tree(x2) hold for some
common position p in the tree unfoldings Tree(7) and Tree(o) of 7 and o. O

4 The basic observation

It is our aim in this section to indicate the intuition behind the results of this paper
by describing an observation about a concrete and simple example. Throughout this
section we let 7 and o be the two strongly equivalent recursive types in can-uTp
from the example in Figure 1.

Suppose that we want to prove that the equation 7 = ¢ is indeed consistent with
the system AKG. Then we are obliged to show for every derivation D in AKgF from
the assumption 7 = o that the conclusion of D is not a contradiction with respect
to =,. But since there are potentially infinitely many such derivations in AKg, we
might not be able to check all of them in a finite amount of time.

However, it turns out that in every derivation in AK§ from 7 = ¢ of depth > 7,
that does not contain applications of VAR, a loop arises, i.e. one formula occurs at
two different places. What is more, the initial segments until looping occurs of all
derivations from 7 = o in AKy without VAR-applications can be arranged to the
downwards-growing derivation-tree C depicted in Figure 4. Single and double lines
in C separate the respective premises and conclusions of applications of UNFOLD,,
whereas branchings at dashed lines in C stem from the two possible ways in which
conclusions can be drawn at rules DECOMP in AKy. The markers z, y and z used

10 Here Tree(r)|p denotes the subtree of Tree(r) at position p.
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for some formula occurrences in C are intended to highlight the looping in those
AK{ -derivations initial segments of which constitute the branches of C.

It is now possible to use the derivation-tree C in an easy inductive proof for the
AKG -consistency of the equality 7 = o by combining the following two properties
of C: Firstly, as inspection shows, C does not contain any contradictions with respect
to =, . And secondly, C can be considered to be the (positive) result of loop-checking
for all possible derivations without VAR-applications from 7 = o in AKg. — Let D
be an arbitrary given derivation from 7 = ¢ in AKg without applications of VAR
(the following argument has to be refined for derivations with applications of VAR).
If looping does not occur in D, then |D| < 7 must hold and D has to be contained
in one of the 6 different initial segments of AKg-derivations from 7 = o gathered in
C; hence the conclusion of D must occur among the formulas in C and cannot be a
contradiction. However, if looping does occur in D, then by cutting out a loop from
D we get a shorter derivation D[) in AK5 from 7 = o of smaller depth |Dy| < |D],
but with the same conclusion as D. Therefore we can apply the induction hypotheses
to DO and conclude that the conclusion of D is no contradiction.

In order to give an indication about the particular relationship between the sys-
tems AKG and HBj that is described in this paper, we observe'! the following: By
reflecting the downwards-growing derivation-tree C in AK{ at a horizontal line it is
possible to obtain an upwards-growing prooftree Refl(C) in the system HB§ with
occurrences of open assumption classes. Thereby all applications of UNFOLD,, in
C are “reflected” into applications of FOLD,/, in Refl(C) and all branchings DE-
COMP into applications of ARROW. To transform Refl(C) into a derivation D in
HBj without open assumptions it is merely necessary (1) to extend Refl(C) above
each of its leaves by one or two applications of FOLDy/,, (2) to transfer respective
assumption markers up to the new formulas at the top of the extended prooftree and
(3) to redirect the bindings described by these markers to respective applications
of ARROW below, thereby also changing these into ARROW /FIX-applications. In
this way the derivation D in HBg without open assumption classes suggestively
depicted in Figure 5 is reached.

And similarly, by reflecting the derivation D from Figure 5 at a horizontal line in
an analogous way it is possible to get a downwards-growing derivation-tree Refl(D)
from 7 = o in AKF, which—although slightly different from C—1like C can be taken
as the basis of an inductive argument for showing the AK{-consistency of 7 =o.

This example suggests a very direct relationship between derivations in HBg
without open assumption classes having conclusion 7 = & (for some 7,6 € can-uTp)
and finite downwards-growing trees of consequences from the same equation 7 = ¢
in AK{ that are the result of loop-checking and that facilitate easy inductive proofs
for the consistency of 7 = ¢ relative to AKGg .

11 J.W. Klop noted this for a similar example in slightly different, but comparable proof systems.
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Figure 5 The derivation D of pa. (( = o) = o) = pa. (@« = (@ — «)) in HBy
without open assumption classes.

(...) (..) (..) (...)

T—=T=0 T=0 T=0 T=0—0

(.7 (T—=>717)>T=0—>0 T—>17=0—(0—o0) (...)7
T=0 T=0—>0 T>T=0 T=0 ,
T=>T=0— (0 —0) (r—=71)>T17=0—>0
T—>T=0 T=0—>0

(ARR./FIX),
(1—=7)—>717=0—(0—0)
FOLD,
pa. (@ = a) = a) = pa. (o = (o — «a))

5 The extension e-HBjg of HBj

For obtaining a precise formulation of the observation in the previous section it will
be helpful ? to extend the system HBg by three more coinductive fixed-point rules.

Definition 5.1 (The extension e-HBF of the system HBY). The extension
e-HBg of the system HB§ has the same formulas and azioms as HBg, allows
the same marked assumptions and contains all derivation rules of HBgy. Addi-
tionally, e-HBg possesses the rules VAR/FIX, FOLD,/FIX and FOLD, /FIX with
applications of the respective form

T

[T=0]
?0 (5.1)
T0 =9 (R/FIX), (if side-cond.(s) I (and C for R = VAR))
T=0

(with some 7,0, 79,00 € can-uTp and = € Mk), given that % R is an ap-

plication of a rule R € { FOLD;;,, VAR } and that the respectively necessary side-
conditions described below are satisfied. At such applications the class [r = o]*
of open marked assumptions of the form (7 =0)® in Dy gets discharged. The
side-condition I requires that the assumption class 7 = o in Dy is inhabitated (not
empty). For applications of VAR/FIX the side-condition C demands furthermore
that Dy is contractive with respect to the marked open assumptions (7 = ¢)*, which
means that for every thread in Dy from a marked open assumption (7 = ¢)* down-
wards at least one application of ARROW or ARROW /FIX is passed.

A formula 7 = ¢ is a theorem of e-HBg (symbolically denoted by Fegp= 7 = 0)
ift there is a derivation D in e-HBg with conclusion 7 = o and with the prop-

erty that all marked assumptions have been discharged at respective applications of
FOLD,;,/FIX, of VAR/FIX or of ARROW/FIX.

12 We will indicate later why this preparatory step indeed helps to obtain a more satisfying result.

9



NA LUV SV L AL

It is easy to see that either of two following more special requirements C; and Cy
could have been used instead of the side-condition C for applications of VAR/FIX
of the form (5.1) (with R = VAR with an equivalent definition as the result: C; is
the condition “Dy contains at least one application of ARROW or ARROW /FIX”
and C, demands that “there is at least one application of a rule different from VAR
in DO” .

Although the system e-HByg is an extension of HB§, no new theorems become
derivable:

Theorem 5.2 (Equivalence of the systems HBF and e-HBy). The system
e-HBJ is a conservative extension of HB5 and hence' the systems HBy and
e-HBY are equivalent (i.e. they possess the same theorems). More specifically, every
derivation D in e-HBg can effectively be transformed into a derivation D' in HBF
with the same conclusion and the same (if any) open assumption classes.

Hint at the Proof. This theorem is a consequence of the fact that the rules
FOLDy;,/FIX and VAR/FIX of e-HBy are admissible rules of the system HBG,
i.e. rules that can effectively be eliminated from an arbitrary given derivation in
e-HBg with the final result of a derivation in HBg. The reason for this is that the
“deductive power” of an application of FOLD,;, /FIX or VAR/FIX in a derivation
D can always be emulated by the “deductive power” of a respective application of
ARROW/FIX in a derivation D’ closely related to D. We will demonstrate this only
in the very special case of a derivation D in e-HBg ending with an application of
FOLD,/FIX that is itself immediately preceded by an application of ARROW: Let
D be a derivation in e-HBg of the form

(r=0)" (r=0)"
Dy, Do

To1[7/a] = 04 To2[T /] = 09

To1[T /| = Too[T /] = 01 — 09

ARROW
(FOLD;/FIX),

HOZ. (7’01 — 7'022 =01 — 02

~”

=T o

and denote by Dy the sub-derivation of D that leads up to the application of FOLD,/
FIX at the bottom of D. This application of FOLD,;/FIX can now be eliminated by
extending Dy above each of the open assumptions (7 = ¢)* in Dy by an application of
FOLD; and by discharging the marked open assumptions (7o;[7/a] — 7o2[7/a] = 0)*
in the new leaves at an application of ARROW /FIX that arises by renaming from
the penultimate rule application in D, the application of ARROW. The result is the
derivation D’ of the following form:

13 Since HBF and e-HB3 have the same formulas.

10
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(To1[7/ ] = T[T /] = 0)* (To1[7/ ] = To2[T /] = 0)*

FOLD, FOLD,
(r=0) (r =0)
Dgl DOZ
Tolr/o] = o Toalr/0] = o2 (ARROW /FIX)

To1[T /] = Toe[T /] = 01 = 09

FOLD,
Ho. (7’01 — T02) =01 — 02

g

Similar effective eliminations can be carried out for all applications of FOLD,;, /FIX
and VAR/FIX in arbitrary given e-HB{§ -derivations. O

As an immediate consequence of this theorem and of Theorem 3.2 we find the
following corollary.

Corollary 5.3 (Sound- and Completeness of e-HBy with respect to =,).
The aziom system e-HBg s sound and complete with respect to strong recursive
type equivalence =, v.e. for all 7,0 € can-puTp it holds that

FemBz T=0 < T=,0.

6 Consistency-Unfoldings

In a second step of the formulation of the observation in Section 4 into a precise
statement we will formalize finite downwards-growing trees of consequences in AKg
as “consistency-unfoldings”, which allow to prove easily the AKG-consistency of
the formulas at their respective roots. — We have to give a definition of “partial
consistency-unfoldings” first.

Definition 6.1 (Partial Consistency-Unfoldings in AKg). For all recursive
types 7,0 € can-puTp a partial consistency-unfolding (a p.c.u.) C of the equation
7 =0 in AKF is a finite downwards-growing “tree of consequences” of 7 = o in
AKG that together with the assertion “C is a p.c.u. of 7 = o in AK§F” can be formed
by a finite number of applications of the following 5 generation rules. Thereby the
notion of an unbound leaf-occurrence of a marked formula (an u.l.o.m.f.) in a p.c.u.
is defined in parallel: '

(i) Forall 7,0 € can-uTp and = € Mk |(r =0)*|isap.cu. C from 7 =0. The

occurrence of (7 =0)* in C is the single u.l.o.m.f. in C. — Furthermore for all

T € can-puTp | 7 =71 | is a p.c.u. of 7 = 7, which contains no u.l.o.m.f.’s in C.

14 Tn the following clauses the addition “in AKZ” in statements like “C is a p.c.u. in AKg” is always
dropped. Auxiliary framed boxes are used to delimit the defined p.c.u.’s from the surrounding text.
Here and later we will allow formulas (7 = ¢)™ with 7,0 € can-uTp and a boldface-marker m to
stand either (a) for the unmarked formula 7 = o or (b) for a marked formula (7 = ¢)® with some
x € Mk such that this marker is then assumed to be denoted by m.

11
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For all 7,0,1,00 € can-uTp (70 = 09)™ is a p.c.u. C of 7 =0 given

that Cy is a p.c.u. of 79 = 0¢ and that R is an application of a rule UNFOLD;/,
or VAR. An ul.om.f. in C is such an occurrence of a marked formula in C
within its subtree Cy that corresponds to an u.l.o.m.f. in C,.

(1 =0)"
(7_0 —_ Og)mo R
For all 7,0,719,00 € can-uTp and = € Mk c is a p.cau. C
0
[r=ol"

of 7 =0 given that (1) Cy is a p.c.u. of 75 = 0 in which the (indicated) class
[T =0]* of all u.l.o.m.f.’s of the form (7 = 0)* is non-empty and that either
(2a) R is an application of a rule UNFOLD,;, or (2b) R is an application of
VAR and C, contains at least one application of a rule different from VAR.
— All occurrences of (7 = ¢)* within the subtree Cy of C, that correspond to
u.lo.m.f.’s in Cy, are bound back in C to the occurrence of (7 =0)* at the
root. For all marked formulas (7 = )* different from (7 = ¢)® the unbound
leaf-occurrences of this marked formula correspond uniquely and in an obvious
way to the u.l.o.’s of (7 = &)* within the subtree Cy of C.

___ T To2 = 0ol > 002 DECOMP
= " = is a p.c.u. C of the formula

Tolr — To2 = Op1 — 002 for all To1, T02, 001, 002 € CG/I?,-,MTp, given that COZ' is a
p.c.u. of 7p; = oy; for each ¢ € {1,2}. The ul.o.m.f.’s in C correspond uniquely
and in an obvious way to the u.l.o.m.f.’s in either of its immediate subtrees Cy;
or COQ .

Tor — To2 = Op1 — 0¢2)"
(s R 702)’ - - - DECOMP
(To1 = 001) (o2 = 002) (with some x € Mk and with
Co Coz
(r = o) (r = o)
T = To1 — T2 and o = Og1 — 0'02) is a p.c.u. C of Tol — To2 = Op1 — 002 for

all 791, 702, 001, 02 € can-uTp given that Cy; is a p.c.u. from 79; = o¢; for each
i € {1,2} and that there is at least one unbound leaf-occurrence of the marked
formula (791 — 792 = 091 — 0¢2)* in either Cy; or in Cpy. — All occurrences
of (1 =0)" within either of the immediate subtrees Cy; and Cyp of C, that
correspond to u.l.o.m.f.’s in Cy; or Cpo, are bound back in C to the occurrence
of (1 =0)* at the root (and hence are not u.l.o.m.f.’s in C). For every marked
formula (7 = )% different from (7 = 0)® the unbound leaf-occurrences of this

12
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marked formula correspond uniquely and in an obvious way to the u.l.o.’s of
(7 = )% within either of the sub-p.c.u.’s Cy; or Cpy of C.

The depth |C| of a p.c.u. C is defined as the depth of the underlying (derivation-)
tree.

Definition 6.2 (Consistency-Unfoldings in AKY). Let 7 and o be recursive
types in canonical form. A partial consistency-unfolding C of 7 =0 in AKF is
called a consistency-unfolding (a c.u.) of 7 =0 in AKF if and only if C does not
contain any unbound leaf-occurrences of marked formulas.

According to these definitions the derivation-tree C depicted in Figure 4 can now
be recognized as a p.c.u. in AKg without u.l.o.m.f.’s and hence as a consistency-
unfolding of po. ((a - a) - a) = pa. (a = (@ = «)) in AKgF. — An important
statement about consistency-unfoldings is expressed in the following lemma that
requires a somewhat technical, but not difficult proof.

Lemma 6.3 Let 7,0 € can-uTp and C be a consistency-unfolding of T =0 1in
AKF. Then for all equations x1 = x2 occuring in C it holds that L(x1) = L(x2),
i.e. that x1 and xo have the same leading symbols.

7

It should perhaps be mentioned that if the hypotheses “let C be a c.u. ...” in
Lemma 6.3 were replaced by “let C be a p.c.u. ...”, then a wrong assertion would
result. This can already be seen from the easy example of the contradiction L. =T
with respect to =, that occurs in the marked assumption (L = T)*, which by
Definition 6.1 is a partial consistency-unfolding of L =T in AKF.

The following theorem establishes the link motivated by the example in Section 4
between the notions of “AKf-consistency” and “consistency-unfolding in AKg”.

Theorem 6.4 For all recursive types 7,0 € can-uTp it holds that:

T = 0 158 AK{ -consistent <= There exists a consistency- (6.1)
unfolding of T =0 1 AKY .

Hint at the Proof. Let 7,0 € can-uTp. The implication “<”" in (6.1) follows
by a generalization using Lemma 6.3 of the intuitive argumentation sketched in
Section 4 for the example of the consistency-unfolding in Figure 4. The implication
“=" in (6.1) follows by an analogous, in fact as good as ‘dual’ argument to that
one used in a proof (following [4]) for the completeness of HBy with respect to
=, : For an arbitrary given equation 7 = o between recursive types 7,0 € can-uTp
for which 7=, o holds a consistency-unfolding of 7 = ¢ in AK§ can be reached
by building up the “tree of consequences” of this equation in AKgF in successive
extension stages, cutting off branches always as soon as “looping” occurs or as soon
as a formula x = x has been encountered. There cannot be infinite branches in
the arising derivation-tree due to the fact that the set of conclusions of derivations
from 7 =0 in AKF is always finite, if equations that arise from each other by
applications of VAR are not counted separately. O

13
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7 A duality between the proof systems e-HB; and AK{

In a third step of our formalization of the observation in Section 4 we will now give
a definition of a pair of reflection mappings D(-) and C(-) between p.c.u.’s in AKF
and derivations in e-HBg .

Definition 7.1 (Reflection Mappings D(-) and C(-)). The reflection mapping
D(+) from partial consistency-unfoldings in AKg to derivations in HBF (with pos-
sibly open assumption-classes) is defined by induction on the depth |C| of a p.c.u. C
in AK§ according to 5 inductive clauses, which refer to the 5 cases in the inductive
definition of p.c.u.’s in Definition 6.1; these clauses are indicated in Figure 6 through

the arrows &('i between the boxes on the left- and on the right-hand side. The defi-
nition of the reflection mapping C(-) in the opposite direction can be carried out for
all derivations D in e-HBj5 (with possibly open assumption classes) by induction
on the depth |D| of D with clauses that apart from the base case distinguish the 8
cases of different rules in e-HBg, applications of which may occur as the last rule
application in D (if |D| > 0). These in total 9 cases are described in the 5 inductive

clauses of the definition of C(+), which clauses are indicated through the arrows <0,
from right to left in Figure 6. For the second and the third clause in both definitions
we use a bijective correspondence defined through the table

Rule R(*) in AK5 | UNFOLD, | UNFOLD, | VAR
Rule R in HBy FOLD, FOLD, | VAR

between rules in AKG and rules in HBj respectively denoted by R(*) and R(?

The well-definedness of D(:) and C(-) as functions between the set of p.c.u.’s in
AKG and the set of derivations in e-HBg with possibly open assumption classes can
be shown by induction on the depth of the elements in the domain of the respective
mapping.

We are now able to state our main theorem.

Theorem 7.2 (A Duality between derivations in e-HBF and consistency-

unfoldings in AKF). There is a bijective functional relationship between deriva-
tions in e-HBg without open assumption classes and consistency-unfoldings in
AKY wia the reflection functions D(-) and C(-) defined in Definition 7.1 in the
following sense:

(i) For every consistency-unfolding C of T = 0 in AKZ (with some 7,0 € can-uTp)
its reflection D(C) is a derivation in e-HBF with conclusion T = o and without
open assumption classes.

(ii) For every derivation D in e-HBg without open assumption classes and with
conclusion T = o (for some 1,0 € can-uTp) its reflection C(D) is a consistency-
unfolding of T =0 i AKj.

(11i) The functions D(-) of taking the reflection of a consistency-unfolding in AKg
and C(-) of taking the reflection of a derivation in e-HBF without open assump-

14
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Figure 6 Inductive definition of the reflection mappings D(:) and C(-) between

partial consistency-unfoldings Cin AK{g and derivations Dine- -HBgy

open assumption-classes).

(with possibly

20
c=om] = [r=om
c()
T=0__ pew by Dy (=)
(10 = 09)™ i To = 0p
5 . ) R@
Co (=C(Do)) T =0

[T =o0o]*

R [T = o]
o cu (- _
(10 = 09)™ 24 Dy (=)
- <—
Co (=¢(Po)) c() )

T=o0

(for corresponding R € {UNFOLD;,, VAR} and R € {FOLD,/,, VAR})

— Tye = 01 —
it 7oL _)7_710?102 z _“_0(1_ e " DECOMP 20
To1 = Oo1 To2 —~ 002 .
Cor (=C(Por)) Con (=C(Po2)) v
— ﬁm (=D(Cor)) ﬁ02 (=D(Co2))
< Tolr = Op1 To2 = 002
Tolr — Toz = Op1 — 002 ARROW
22 =00 = 00)" DECOMP
(’7'01 = 001)777-01 (7_02 - 002)m02 &
- i - X i
Co1 (=C(Do)) Co2 (=C(Do2)) c()
(T =0)" (T =0)"
(1 =0)° (T =0)"
= D1 (=D(Co)) Dos (=D(Co2)
701 = 001

Toz = 902 (ARROW/FIX),

To1 = To2 = Oo1 = 002
H "~
=0

T
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Figure 7 Example consisting of a consistency-unfolding Cin AK7 and of a deriva-
tion D in e-HBF that are each other’s reflection via the mappings D(-) and C(-),
i.e. for which it holds that D(C) =D and C(D) =C:

;

(7’ — O')x _L == J_
S =05 1 ARROW
i T=0— L J‘:J‘ARROW
D= Tol=(c—=1)—=1
1= FOLD,
T =0 (FOLD, /FIX),
pa (o= L) =pB (8- 1) » 1)
( (pa (o= 1) =pp. (B—= 1) = 1))* UNFOLD;
T 1l=0
UNFOLD;
el Tot=l2 DL DECOMP
- T=0— 1 =1
o Todl=o2 L cowe
L (T = 0)”” =

tion-classes are each other’s inverse.

The very immediate kind of this bijective functional relationship and the possibility
to visualize the reflection functions in a geometrical way is reason to call it a duality.

Sketch of Proof. All three items of the theorem (the third one can be split into
the two assertions DoC =1id and Co D =id) can be shown by quite straightfor-
ward inductions using the inductive clauses in the definitions of D(-) and C(-). In
these inductions bookkeeping must be done as indicated in the below picture for
respectively the set of open marked assumptions in an e-HBg-derivation D with
conclusion 7 = o and for the classes of u.l.o.m.f.’s in a p.cu. C of 7 =0 in AK§
(for arbitrary 7,0 € can-puTp):

(r=0o)™ 0% bizt, o

o}
—
5

o
St
ﬁ

9 |l

oil* Yict,om

{[n

Hereby the displayed family {[r; = ;] b':l:---:n (with n € Ny, 7,0; € can-puTp

and x; € Mk for i =1,...,n) gathers in C precisely all n classes of u.l.o.m.f.’s and
respectively assembles in D precisely all n open assumption classes. O

An example of a pair (D,C) consisting of a derivation Din e-HBj without open
assumption classes and of a consistency-unfolding C in AKgF that are each other’s

reflection via the operations D(-) and C(-) is depicted in Figure 7.
This example makes it also very easy to explain why—with the aim of estab-
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lishing a satisfying duality result—we have chosen to extend the system HBF first
by some more rules to the system e-HBg before only later defining mutual trans-
formations between p.c.u.’s in AKy and derivations in the extended system: If we
had not done so, then we would not have been able to discharge the open marked
assumption (7 = o) in a derivation Refl(C) in HBj that arises by plain reflection
from the c.u. C from Figure 7. Similarly as described for the example used in Sec-
tion 4 we would have had to enlarge Refl(C) above this marked assumption by two
additional applications (one of FOLD, and one of FOLD,.) before being able to dis-
charge the newly occuring open marked assumption (r - L =(c — 1) — 1)* in

a thereby created derivation Refl(C)* at an application of ARROW/FIX that results

by renaming from the bottommost application of ARROW in Refl(C).'® But due
to the presence of the rules FOLD,/,/FIX in e-HBJ it is in fact possible to trans-
form the plain reflection Refl(C) of C into the derivation D in Figure 7 by merely
renaming the bottommost application of FOLD; in Refl(C) into FOLD,/FIX and by
discharging the open marked assumption (7 = o)* at this application.

This look at the example from Figure 7 can make it clear why it is actually
not possible to find a bijective and equally immediate correspondence as stated in
Theorem 7.2 between arbitrary consistency-unfoldings in AKgF and derivations in
HBg.

But the duality statement in Theorem 7.2 leaves open the question how the
particular class of those c.u.’s in AKy that are the images under the reflection
function C(-) of derivations in the basic system HBF can formally be characterized.
Closer examination shows that such c.u.’s are always of the particular form, that
leaf-occurrences in them of marked formulas are exclusively bound back to upper
premises of branchings DECOMP; we stipulate that such c.u.’s fulfill the property D.
This observation gives rise to the following specialized version of Theorem 7.2, which
can also be proved in a very straightforward way.

Theorem 7.3 (A Duality between derivations in HBF and consistency-

unfoldings in AKF with the property D). The restrictions Dy(-) := D|a(")
and Cy(-) :=C|p(-) of the reflection functions D(-) and C(-) to respectively the set
A of partial consistency-unfoldings in AKg with the property D and to the set B
of derivations in HBy (possibly with open assumption classes) yield a duality state-
ment with assertions analogous to items (1), (ii) and (111) in Theorem 7.2 between
consistency-unfoldings in AKg with the property D and derivations in HBy without
open assumption classes.

This theorem is illustrated in Figure 8 by a derivation in HBg without open
assumption classes and by a consistency-unfolding in AKg with the property D
that are each other’s reflection via the reflection mappings D(-) and C(-).

Our “duality”-results, Theorem 7.2 and Theorem 7.3, are able to provide a pre-

15 The derivation Refl(C)* described here is actually equal to the derivation D in HBZ depicted in
Figure 8 [strictly speaking, Reﬁ(é)* is equal to one of the 4 HBF -derivations that are denoted by
the prooftree D depicted in Figure 8 (since for the two pairs of successive FOLD,/,-applications
the order in which these two applications actually follow each other has not been fixed there)].
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Figure 8 Example consisting of a consistency-unfolding € in AKjy with the prop-
erty D and of a derivation D in HBg that are each other’s reflection via the re-
strictions Dy(+) := D|a(-) and Co(-) :=C|p(:) (cf. Theorem 7.3) of the reflection
mappings C(-) and D(:), i.e. for which it holds that Dy(C) = D|4(C) =D and
Co(D) = C|p(D) =C.

[ (= L=(c—1)—>1)°
T 1l=0c—1 ARROW -
D = | T=0—.1 L=1 (ARR./FIX)s
T>1l=(c—1)—=1
FOLD,,
pa.(a— L) =ps.((f—L)—1)
\ g’r gg
( po. (o = L) =pf.(B— L) = 1) UNFOLDy,.
(roLl=(c—=1)—1)"
_________________________ DECOMP
é.:% T=0— | 1=1
) T—>1l=0— 1
_T___B______————l—:—l—DECOMP
| (T2 L=(c—>1)—1)"

cise formal connection between the Brandt-Henglein-like axiomatizations HBg and
e-HBj for =, and the ‘syntactic-matching’ proof system AKg that is similar to a
system introduced by Ariola and Klop. But probably the main significance of these
statements consists in the fact that they can help to understand the soundness of
the reasoning formalized through a coinductive rule like ARROW/FIX in a direct
way with a geometrical visualization.

In particular, they make it possible to attribute some precise meaning to the
informal explanation given by M. Brandt in the sentence

“The intuition [of the reasoning formalized by rules like ARROW/FIX, C.G.]
being that if you can not find hard evidence proving that the judgement is false
then it must be true.”

(cited from the abstract of [3]): Suppose we have given a derivation D in HBy of
the form

(r=0)" (r=0)"
1501 {)02 (71)
TOI — UOI TOQ — UO2 (ARROW/FIX)

To1 = Toz = 001 = 002,
We will try to understand the inference formalized by the bottommost application
of ARROW/FIX in D in the light of the above cited sentence. Furthermore we
want to detect the reason why no “harm” does arise by discharging all open marked
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assumptions in Dy; and Dgy of the form of the conclusion of D at the application of
ARROW/FIX at the bottom of D.

By building the reflection of D via the reflection mapping C(-) defined in Defini-
tion 7.1 we arrive at the p.c.u. C(D) of the form

(5—01 J—: 7—02‘ = 6’01 J_; 0-02‘):17
(To1 = op1)™ (Tog = 0g2) ™2 DECOMP )
~01 (=C(Po1)) CN’OZ (=C(Do2))
(r=0)° (r =0)

and can use some of our acquired knowledge about (partial) consistency-unfoldings:
It is easy to prove (similar to a proof for Lemma 6.3) that no contradictions with
respect to =, can possibly occur in C (D) between the root and such leaf-occurrences
of marked formulas (7 = 0)* that are bound back to the root. Hence all different
branches by,...,b, in C(D) from the root downwards to ulo.m.f’s (7 =0)* in
either C~01 or (,;02 correspond to derivations Dy, ..., D, from 7 = ¢ in AKg in which
no contradictions with respect to =, are encountered and during which at least one
full loop was passed through. From this it follows that for the purpose of showing
the AKg-consistency of 7 = o all those derivations D in AKg from the assumption
7 = o0, that have one of the derivations Dy, ..., D, as their initial segment, do not
have to be taken into further account: If such a derivation D had a contradiction
with respect to =, as its conclusion, then a shorter derivation Dy (in AKg from the
assumption 7 = o) that resulted from D by cutting out the loop at its beginning
would also lead to a contradiction.

The n different threads'® ©y,...,0, within the derivation D of (7.1) from one
of the marked assumptions (7 = o)* down to the conclusion 7 = ¢ of D correspond
uniquely—under the reflection mapping C(-)—to the above described n branches
bi,...,b, in the p.c.u. C(D) in (7.2) and hence to the derivations Dy,...,D, of
from 7 = ¢ in AKF, in which no contradiction with respect to =, is encountered
and during which a loop is passed through. Thus the inference formalized by the
bottommost application of ARROW/FIX in D can be justified on the grounds that
(a) along the derivations Dy,...,D, from 7 =0 in AK§ that result as mirror
images from the threads ©4,...,0, in D no evidence for the AKG -inconsistency of
7 =0 is found and that (b) the open marked assumptions (7 = o) in either Dy,
or in Dys are allowed to be discharged at the bottom of D because of the “meaning”
given to D through the p.c.u. C(ﬁ) relative to the concept of “consistency with
respect to AKy5”.

By extending the above argumentation slightly it is easy to see: All m different
threads ©/,...,0’ in the derivation D depicted in (7.1) from a leaf at the top
labelled with either an axiom (REFL) or a marked assumption, that is discharged
in D, downwards to the conclusion of D correspond uniquely via reflection to m
derivations Djp,..., D, from 7 =0 in AK§ during which no contradiction with

16 Due to the side-cond. I on appl.’s of ARROW /FIX there must exist at least one such thread.
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respect to =, does occur. And furthermore, contradictions with respect to =,
can only occur in such derivations D from 7 = o¢ in AKg§ that possess an initial
segment Dy that is related 7 via reflection to a thread © in D from an open marked
assumption downwards to the conclusion of D.

Rather more formally than done so in the above discussion the duality theorem,
Theorem 7.2, enables us to carry out the following alternative proof for the soundness
part in Theorem 3.2, in which the soundness assertion for HBg with respect to =,
is ‘reduced’ to the soundness assertion for AKg with respect to = .

Alternative '® Soundness Proof for HBy with respect to =, . Suppose that
T =0 is a theorem of HB§, where 7,0 € can-uTp. This means that there exists a
derivation D in HBF with conclusion 7 = o and without open assumption classes;
let D be chosen as such a derivation. Then due to Theorem 7.2 the reflection C(D)
of D is a consistency-unfolding of 7 =0 in AKg (which c.u.—as we remark by
the way—fulfills the property D due to Theorem 7.3). Hence by Theorem 6.4 the
equation 7 = o is consistent with respect to AKg. And from this Theorem 3.4,
which states the soundness of AK§ with respect to =, , implies that 7 and o are
strongly equivalent. O

The soundness of the extension e-HBgy of HBy with respect to =, can be
shown by a completely analogous'® proof. — Although the argumentation used for
the above proof can be carried out in the opposite direction as well and is able to
demonstrate also the completeness of e-HB§ with respect to =, , this does not
really constitute an alternative completeness proof for e-HBF independent from
such a completeness proof for HBy that (as hinted for Theorem 3.2) can be derived
from the one described in [4]. This is because the problem of showing the direction
“=” of (6.1) for Theorem 6.4 (which implication is used in such an argument for
the completeness of e-HBY) is in fact a problem of a “dual” kind to showing the
completeness of e-HBg: In view of Theorem 7.2 and, more precisely, in view of its
proof the activity of trying to build a derivation in e-HB§ with conclusion 7 =o¢
for two given recursive types 7,0 € can-uT'p corresponds uniquely to the activity of
trying to build a consistency-unfolding of 7 = ¢ in AKjg.

8 A duality in proof systems for bisimulation equivalence
on cyclic term graphs

In this section we want to sketch how our duality result about two proof systems for
recursive type equality can be transferred to similar proof systems concerned with
bisimulation equivalence on equational representations of cyclic term graphs.

17 Due to the “influence” of possible VAR-applications in Dy the word “related” cannot be replaced
by “corresponds uniquely” here.

18 By this we mean an alternative proof compared to one that follows from and is derived from the
soundness proof given in [4] with respect to =, for the system given there.

19 More precisely, only the two appearances of “HBZ” in the proof have to be replaced by “e-HBZ”
and the addition in brackets “(which c.u.... fulfills the property D ...)” has to be dropped.
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In the aim to limit technicalities and to follow [2] we will only consider equa-
tional specifications of cyclic term graphs without free variables. We are assuming
a countably infinite set RVar of recursion variables to underlie the following defini-
tion. In this section we will let small Greek letters «, 3, ... vary through recursion
variables.

Definition 8.1 (Canonical Term Graph Specifications). Let ¥ be a first-
order signature. A canonical term graph specification (a c.t.g.s.) is an equational
specification of the form (g | {ay = to,...,, =t,} ), where n € N, ay,..., qa, are
pairwisely different recursion variables in RVar and for all ¢ with 0 < ¢ < n the terms
t; are of the form t; = F(«,. .., Qy,) for some function symbol F' € ¥ of arity n;
and variables a;1,...,Qm, € {ao,...,a,}. An equation a; =t; for i € {1,...,n}
is called useless iff the recursion variable «; is not reachable from the root «ag in the
obvious sense. We will use the letters g and A to vary through c.t.g.s.’s and denote
by TGS(X) the set of all c.t.g.s.’s over X.

Bisimilarity between c.t.g.s.’s is defined in [4] as follows:

Definition 8.2 (Bisimulation Equivalence < on c.t.g.s.’s).  Let ¥ be a
signature. Let g and h be canonical term graph specifications over ¥ of the form
g={ap|{ao=to,...,an=1t,}) and h = (aj|{af =1t} ..., al, =1,}).

(a) R is called a bisimulation between g and h if and only if
(i) R is a relation with domain {ay,...,a,} and codomain {af,...,a/,};
(i) apRay;
(iii) if oy Raj for some 7,5 with 0 <i<n and 0<j<n', and given that
ti = Fai, ..., i) and ) = F'(ajy, ..., o, ) with some n;,n; € Ny, then

F =F' (and hence n; =n}) and oy Raly, ..., i, Roz;.n,_ must hold.
J

(b) We say that g and h are bisimilar (symbolically denoted by g« h) iff there
exists a bisimulation between g and h.

We continue with an example for the notions defined in Definition 8.1 and Defi-
nition 8.2.

Example 8.3 We consider the two canonical term graph specifications

=(ap | Ey) = (g |{awn = Flag,a2), oy = F(ap, aa), s = Glag,ap)}) (8.1)
= (Bo| En) :=(Bo|{Bo = F(Bo, 51), Br = G(Bo, Bo)}) (8.2)

qg:
h:
in TGS({F,G}). These correspond respectively to the two cyclic term graphs

and

It is easy to check that R := {(ao, o), (a1, Bo), (ae, 1)} is a bisimulation between
g and h according to Definition 8.2. Hence g<»> h holds, i.e. g and h are bisimilar.
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Figure 9 A Brandt-Henglein-like axiomatization HB§" without symmetry and
transitivity rules of bisimulation equivalence between canonical term graph specifi-
cations over signature X.

The azioms and possible marked assumptions in HBg*:

(REFL) (a|{a=C,...})y=(p|{8=C,...}) (Assm) (g =h)" .
(if C'is a constant symbol in X) (with = € Mk)

The derivation rules of HBy:  Rules COMP and rules COMP/FIX with

=g =h
(a|Ey)=nh ae! g={(B|Eo) GO
(a|EoW{a =t:})=h 9=(BlEow{fi=si})
(if a; is unreachable in g) (if B; is unreachable in h)
((alEy)=(B|En) )" {((alBy)=(B|En) )"
Dl Dn
(a1 [Ey) = (Bi| Bn) (an|Ey) = (Bul En)  (cOMP/
(affo=Fla,...,a)} 8 EY) = (B]{8=F(B,....8)} ¥ B} " SF_ICX}a)c

An axiomatization HB§” for +», which is very similar to the ‘normalized’ variant
HByg of the axiom system for =, by Brandt and Henglein, is depicted in Figure 9.
Similarly as it was defined for its counterpart in HBg, the rule ARROW/FIX,
applications of the rule COMP/FIX in HBg§” are subjected to the side condition I:
This requirement demands that the discharged assumption class is in fact non-empty
(to distinguish such applications from ones of the “plain” COMP-rule). The rules
GC’Z_: formalize the inverse operation of garbage collection (of useless equations) on
c.t.g.s.’s. The following theorem, which is very straightforward to prove, holds for

HB3 :
Theorem 8.4 (Sound- and Completeness of HB3” with respect to ). The

aziom system HBg" is sound and complete with respect to bisimulation equivalence
<> on canonical term graph specifications, i.e. for all c.t.g.s.’s g and h it holds:

A ‘syntactic matching’ proof system AKg” for «» is depicted in Figure 10, which
system is of a similar kind as the system AKgG for equational testing with respect
to =, . The rules GCy/, in AK3® formalize the operations of garbage collection (of
useless equations) on c.t.g.s.’s. A notion of consistency with respect to AKg® is
sound and complete for <». We need the following terminology: An equation § = h

22



NA LUV SV L AL

Figure 10 A ‘syntactic-matching’ proof system AKg” for testing bisimulation
equivalence on equations between canonical term graph specifications.

The derivation rules of AKg™:

<04|E0Lﬂ{ai:ti}>:hGCl g=(BlE W {8 =si}) ac,

(a| Ey)=h 9={B|Ep)

—— H,h_/
:g =

(if ; is unreachable in g) (if B; is unreachable in h)
P :fh

Ta=Fla,..., o)} WE®) = (8| {8 =F(B,.... )} 0 EO
<Oé|{0[ (ala y QU )} g > <5|{B (Bla 75 )} h > DECOMP
(i | Bg) = (Bi| En) (for 1<i<n)

between two c.t.g.s.’s § and h is called AK0 -consistent iff no contradiction with re-
spect to < is derivable in AKg” from § = h. And furthermore an equation § = h be-
tween two c.t.g.s.’s § = (| {ozo =ty,...}) and h = (a} |{a) =1),...}) is agreed

to be a contradiction with respect to < iff it holds that to = F(agq, .. ., aon,) and
ty = G(agys - - - agn{)) for some ng,nj € Ng, variables ag1,..., Qong s Qh1y-- -, %n;)

and different symbols F,G € ¥ (i.e. F'# G). Relying on these notational agree-
ments the following theorem holds, which is again easy to show.

Theorem 8.5 (Soundness and Completeness with respect to <> of
consistency-checking relative to AK3").

The ‘syntactic-matching’ system AKg" is sound and complete with respect to <> for

the notion of checking consistency relative to this system: For all canonical term

graph specifications g and h it holds:

g=nh 1s AKOﬁ—consistent <~ g&h .

Now it is very straightforward to define the notion of p.c.u.’s and consistency-
unfoldings in AKG" of equations between c.t.g.s.’s analogously to Definitions 6.1
and 6.2. And furthermore also reflection mappings C(-) and D(-) between p.c.u.’s
in AKg” and derivations in HB§”™ can be defined very similar to (and in fact easier
than in) Definition 7.1. In this way we are lead to the following counterpart of
Theorem 7.2 for the two proof systems considered here.

Theorem 8.6 (A Duality between derivations in HBg> and consistency-

unfoldings in AKgY). There is a bijective functional relationship between
derivations in HBy" without open assumption classes and consistency-unfoldings in
AKG via reflection mappings C(-) and D(-) : This means that completely analogous
statements to that in items (i), (ii) and (i) of Theorem 7.2 are true.

In Figure 11 the assertion of this theorem is exemplified for the c.t.g.s.’s g and
h of Example 8.3 by a suggestively typeset pair (D,C) of a derivation D for g = h
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Figure 11 Example consisting of a derivation in HB§" without open assumption
classes and of a consistency-unfolding in AKg” that are are each other’s “reflection”.
(The canonical term graph specifications g and h are taken from Example 8.3).

(a1 |Eg) = (Bol Enp)* ()" () G

()" (2| By) = (PilEn) o ([ Eg) = (ol En) ()",
(a1 [Eg) = (Pol En) (02| Ey) = (Bi|En)
{ao| Bg) = (ol En)
=gin (8.1) =h in (8.2)

in HB3> without open assumption classes and a conmstency—unfoldmg of g=~h in
AKS, where C and D are each other’s “mirror image” via reflection mappings C(-)
and D(-).

9 Conclusion

In the main part of this paper we have motivated and developed a precise for-
mal relationship between two different proof systems concerned with recursive type
equality =, on a restricted class of recursive types in p-term notation with only
type constructor —. We showed the existence of a bijective correspondence that
can geometrically be visualized between (1) derivations without open assumptions
in an extension e-HBg of a ‘normalized’ version HBF of the axiomatization for
=, by Brandt and Henglein and (2) what we defined as consistency-unfoldings in
a proof system AKg a la Ariola and Klop for equational testing with respect to
=,. This correspondence takes place via two reflection mappings C(-) and D()
that formalize effective transformations and that are inverse to each other. Its par-
ticularly immediate kind gave us reason to call it a duality. — By “developing on
fine-grained film” and analyzing the image of the set of HBg-derivations under
the reflection mapping C(-) we found that our correspondence result can be special-
ized to the assertion of a duality taking place via appropriate restrictions Cy(+) and
Dy(-) of the reflection mappings C(-) and D(-) also between (1) derivations without
open assumption classes in our basic Brandt-Henglein system HB§ and (2') such
consistency-unfoldings in AKg that fulfill the particular property D.

Apart from establishing a precise formal link between the systems HBg and
AKGF by tying together closely the notions of “derivability in HBg” and “consis-
tency with respect to AKG”, the main significance of the duality results consists
perhaps in the following: They can be used to understand and justify the sound-
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ness of the—at least at first sight—seemingly paradoxical reasoning formalized by
the rule ARROW/FIX in the variant-Brandt-Henglein system HBF. In fact, our
results facilitated an alternative soundness proof for the system HBg that is inde-
pendent from the one given in [4] and that proceeds by ‘reducing’ the soundness of
HBg to the soundness of the system AKjg .

We did not investigate in this paper the proof-theoretic relationship between
the axiom system (here denoted by) HB= for recursive type equality introduced by
Brandt and Henglein and our variant-system HBg . The symmetry and transitivity
rules present in HB= are not part of the formal system HBg for which a version
of the subformula property is true. It can be shown that every HB=-derivation
without open assumption classes can be ‘normalized’ in a certain effective way by
‘working away’ all applications of symmetry and transitivity rules with the result of
derivation in HBg with the same conclusion and no open assumption classes. For
this as well as for a detailed study of proof-theoretic transformations between the
here formally introduced or merely mentioned proof systems for recursive types and
a number of further variant-systems we want to refer to our forthcoming work [5].

In the last section we indicated that the described duality result is not specific
to the two considered proof systems for recursive types: We sketched an analogous
duality theorem for a similar pair of proof systems concerned with the notion of
bisimulation equivalence on equational specifications of cyclic term graphs.

We have come to realize only very recently that the notion of a consistency-
unfolding, the definition of which was devised very much in an ‘ad hoc’-manner for
the special purpose at hand here, does bear an obvious analogy with the concept of
a ‘closed analytic tableau’ as introduced by R. Smullyan. And in fact, the duality
statements developed here lend themselves for being reformulated with respect to
an—in each case—suitably defined tableau calculus as assertions about an immedi-
ate functional relationship between proofs in a respective Brandt-Henglein system
and so called ‘syntactic-matching tableaux’ in the tableau system. Preliminary for-
mulations of results in this direction regarding proof systems for recursive types can
be found on the slides [6] of a recent talk.

Acknowledgement

I want to thank J.W. Klop for suggesting a study about the proof-theoretic con-
nections between proof systems for cyclic objects, for providing me with a couple of
initial ideas and for reading some versions of this paper. And I am also very much
indebted to Bas Luttik for his careful reading of drafts for the submitted version of
this paper and for many suggestions of improvements he kindly offered.

References

[1] Amadio, R.M., Cardelli, L.: “Subtyping Recursive Types”, ACM Transactions on
Programming Languages and Systems 15 (4), pp. 575-631, 1993.

25



NA LUV SV L AL

[2] Ariola, Z.M., Klop, J.W.: “Equational Term Graph Rewriting”, Fundamenta
Informaticae 26 (3,4), pp. 207-240, June 1996; extended version as: Vrije Universiteit
Amsterdam Technical Report IR-391, September 1995.

[3] Brandt, M.: “Recursive Subtyping: Axiomatizations and Computational
Interpretations”, Master’s Thesis, DIKU, Department of Computer Science, University
of Copenhagen, August 1997; available on the internet TOPPS Technical Report D-352
from: ftp://ftp.diku.dk/diku/semantics/papers/D-352.ps.gz .

[4] Brandt, M., Henglein, F.: “Coinductive Axiomatization of Recursive Type Equality
and Subtyping”, Fundamenta Informaticae 33, pp. 1-30, 1998.

[5] Grabmayer, C.: “Proof-Theoretic Interconnections between Proof Systems for
Recursive Type Equality”, forthcoming as Vrije Universiteit Amsterdam Technical
Report, 2002.

[6] Grabmayer, C.: “Proving Equality for Recursive Types—A Duality between ‘syntactic-
matching’ tableaux and Brandt-Henglein derivations”, slides for a talk given at the
Process Algebra Meeting (PAM), CWI Amsterdam, May 8, 2002; presently available
from: http://www.cs.vu.nl/"clemens/PAM.ps.gz .

26



