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Abstra
t

This paper is 
on
erned with a proof-theoreti
 observation about two kinds of proof sys-

tems for regular 
y
li
 obje
ts. It is presented for the 
ase of two formal systems that

are 
omplete with respe
t to the notion of \re
ursive type equality" on a restri
ted 
lass

of re
ursive types in �-term notation. Here we show the existen
e of an immediate dual-

ity with a geometri
al visualization between proofs in a variant of the 
oindu
tive axiom

system due to M. Brandt and F. Henglein and \
onsisten
y-unfoldings" in a variant of

a `synta
ti
-mat
hing' proof system for testing equations between re
ursive types due to

Z. Ariola and J.W. Klop. This result makes it possible to argue for the soundness of the


oindu
tive derivation rule present in the system of Brandt and Henglein in a new way and

it leads to an independent soundness proof for the here 
onsidered variant of this system.

Finally we sket
h an analogous result of a duality between a similar pair of proof systems

for bisimulation equivalen
e on equational spe
i�
ations of 
y
li
 term graphs.

1 Introdu
tion

The main part of this paper is 
on
erned with an observation about two 
omplete

proof systems for the notion of \re
ursive type equality" on re
ursive types.

There are to our knowledge basi
ally two di�erent 
omplete axiom systems

known for re
ursive type equality: (i) A system due to R. Amadio and L. Cardelli

given in [1℄ (1993) and (ii) a 
oindu
tively motivated axiom system introdu
ed by

M. Brandt and F. Henglein in [4℄ (1998). Apart from these axiomatizations it is also

possible to 
onsider (iii) a `synta
ti
-mat
hing' proof system for whi
h a notion of
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onsisten
y with respe
t to this system is 
omplete for re
ursive type equality. Su
h

a system 
an be de�ned in a very similar way to one that has been introdu
ed by

Z. Ariola and J.W. Klop in [2℄ (1995) for the notion of bisimulation equivalen
e on

equational representations of 
y
li
 term graphs. For our purpose we will 
onsider

only `normalized' variants without symmetry and transitivity rules of the Brandt-

Henglein and synta
ti
-mat
hing systems. In Se
tion 3 these variant-systems will

be de�ned and their respe
tive soundness and 
ompleteness theorems stated.

It was noted by J.W. Klop that there appears to be a striking similarity between

the a
tivities of (a) trying to demonstrate the 
onsisten
y of an equation between

re
ursive types with respe
t to the synta
ti
-mat
hing system and of (b) trying

to �nd a derivation for the same equation in the system of Brandt and Henglein.

This basi
 observation underlying the present paper will be des
ribed in Se
tion 4 in

relation to the introdu
ed variant-systems by explaining it in the light of an example.

In order to extra
t a pre
ise statement from this observation two formal prereq-

uisites turn out to be ne
essary: Firstly, in Se
tion 5 we will introdu
e an extension

of the variant Brandt-Henglein system with some more 
oindu
tive rules. And se
-

ondly, in Se
tion 6 we de�ne so 
alled \
onsisten
y-unfoldings" of given equations

between re
ursive types in the variant `synta
ti
-mat
hing' system as 
ertain for-

malizations of su

essful 
onsisten
y-
he
ks. With these notions our main theorem

is then stated in Se
tion 7: There exists even a \duality" between derivations in the

extended variant-Brandt-Henglein system and 
orresponding 
onsisten
y-unfoldings

in the variant-synta
ti
-mat
hing system via easily de�nable re
e
tion mappings.

This relationship between the two 
onsidered proof systems 
an be geometri
ally

visualized and allows us to give an alternative soundness proof for our variant of

the Brandt-Henglein system and for its extension. By `zooming' into a spe
ial 
ase

of this duality we furthermore show the existen
e of an analogous strong 
onne
-

tion between derivations in the (not extended) variant-Brandt-Henglein system and


orresponding 
onsisten
y-unfoldings of a 
ertain formally 
hara
terized kind in our

synta
ti
-mat
hing system.

In Se
tion 8 we outline an analogous result for a similar pair of proof systems


on
erned with the bisimulation relation on equational spe
i�
ations of 
y
li
 term

graphs.

2 Preliminaries on re
ursive types

Likewise as Brandt and Henglein in [4℄ we 
onsider only

3

re
ursive types denoted

by �-terms in 
anoni
al form over the restri
ted 
lass of �nite types with ! as the

single type 
onstru
tor. We assume a 
ountably in�nite set TVar of type variables

to be given and to underlie the following de�nition. The small Greek letters � and

� (possibly with subs
ripts) will be used as synta
ti
al variables for type variables

and the letters �; �; �; � for re
ursive types.

3

Our results do not depend on the limitation to proof systems for re
ursive types in 
anoni
al

form only. We followed [4℄ in the intention to avoid unne
essary te
hni
alities here. The general


ase will be treated in [5℄.

2
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De�nition 2.1 (Re
ursive Types 
an-�Tp in Canoni
al Form). The set


an-�Tp of re
ursive types in 
anoni
al form is generated by the following grammar:

� ::= ? j> j� j �

1

! �

2

j ��: (�

1

! �

2

)

| {z }

where � 2 fv(�

1

! �

2

)

: (2.1)

The set of all equations � = � between re
ursive types � and � in 
anoni
al form

will be denoted by 
an-�Tp{Eq.

The re
ursive types in 
an-�Tp are in \
anoni
al form" due to the two require-

ments in the last disjun
tive 
lause in grammar (2.1): For given � 2 TVar the

�-operator may only be applied to a previously formed expression � if � is of the

form �

1

! �

2

and if � o

urs free in �

1

! �

2

.

Contrary to [4℄ we do not impli
itly identify re
ursive types in 
an-�Tp that 
an

be obtained from ea
h other by a �nite sequen
e of admissible renaming-steps for

bound type variables, i.e. that are variants of ea
h other. We will use the notation

�

1

�

v

�

2

to express that �

1

and �

2

are variants of ea
h other.

Via a natural transformation of �-terms into 
y
li
 term graphs des
ribed in (the

extended version of) [2℄ it is possible to assign to every re
ursive type � 2 
an-�Tp

a 
y
li
 term graph G(�), whose nodes have at most two outgoing edges and are

labelled by either the binary fun
tion symbol ! or by a symbol of arity zero in

f?;>g [ TVar . Relying on this transformation the tree unfolding Tree(�) of an

arbitrary re
ursive type � 2 
an-�Tp 
an be de�ned as the tree unfolding of G(�).

An alternative formal de�nition of Tree(�) 
an be found in [1℄.

4

The leading symbol

L(�) of a re
ursive type � 2 
an-�Tp is de�ned as the symbol that labels the root

in the tree unfolding Tree(�) of � .

5

De�nition 2.2 (Re
ursive Type Equality (Strong Equivalen
e) =

�

). Two

re
ursive types �; � 2 
an-�Tp are 
alled strongly equivalent (symboli
ally denoted

by: � =

�

�) i� they possess the same tree unfolding. More formally, the equivalen
e

relation re
ursive type equality (also 
alled strong re
ursive type equivalen
e) =

�

is

de�ned by: For all �; � 2 
an-�Tp

� =

�

� : () Tree(�) = Tree(�) :

An example for De�nition 2.2 and for the underlying notion of the tree unfolding

of a re
ursive type in 
an-�Tp is given in Figure 1.

4

The de�nition in [1℄ is slightly more general than then the one needed here be
ause Amadio and

Cardelli allow also re
ursive types not in 
anoni
al form like for example ��: (��: �) .

5

Alternatively and more formally L(�) 
an be de�ned for all � 2 
an-�Tp by the 5 
lauses

L(?) := ? , L(>) := > , L(�) := � (for all � 2 TVar ) and L(�

1

! �

2

) :=L(��: (�

1

! �

2

)) :=!

(for all � 2 TVar and �

1

; �

2

2 
an-�Tp).

3
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Figure 1 Example of two strongly equivalent re
ursive types.

We 
onsider the re
ursive types in 
anoni
al form

� :� ��: ((�! �)! �) and � :� ��: (�! (�! �)) .

These 
orrespond respe
tively to the di�erent 
y
li
 term graphs
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Hen
e � and � are strongly equivalent, i.e. � =

�

� holds, due to De�nition 2.2.

3 The proof systems HB

=

0

and AK

=

0

for =

�

In this se
tion we de�ne the two proof systems on whi
h our results will be based:

A variant-system HB

=

0

of the 
oindu
tively motivated axiomatization for =

�

given

by Brandt and Henglein in [4℄ and a proof system AK

=

0

suitable for 
onsisten
y-


he
king similar to a system as de�ned by Ariola and Klop in [2℄. We formulate these

systems in natural-dedu
tion style and for this and for later purposes we assume a


ountably in�nite set Mk of assumption markers to be given.

De�nition 3.1 (The axiom system HB

=

0

for =

�

). The formal system HB

=

0

has

the equations in 
an-�Tp{Eq as its formulas. It 
ontains the axioms (REFL), allows

marked assumptions (Assm) and has the derivation rules VAR, FOLD

l

, FOLD

r

,

ARROW and ARROW/FIX listed in Figure 2. The side-
ondition I on appli
ations

of ARROW/FIX requires that the 
lass of dis
harged assumptions is a
tually inhabi-

tated, i.e. non-empty.

6

A formula � = � is a theorem ofHB

=

0

(symboli
ally denoted

by `

HB

=

0

� = � ) i� there is a derivation D in HB

=

0

with 
on
lusion � = � and

with the property that all marked assumptions have been dis
harged at respe
tive

appli
ations of ARROW/FIX in D.

Apart from minor di�eren
es the system HB

=

0


an be 
onsidered as a `norma-

lized' version of the 
omplete axiomatization for =

�

given in [4℄. A distin
tive role in

6

The aim here is to 
reate a 
lear-
ut distin
tion between appli
ations of ARROW and appli
a-

tions of ARROW/FIX for easing the reasoning about a later de�ned proof-transformation.

4
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Figure 2 A normalized versionHB

=

0

of the 
oindu
tive axiomatization for re
ursive

type equality =

�

given by Brandt and Henglein.

The axioms and possible marked assumptions in HB

=

0

:

(REFL) � = � (Assm) (� = �)

x

(with x 2Mk ) :

The derivation rules of HB

=

0

:

�

0

[��: �

0

=�℄ = �

FOLD

l

��: �

0

= �

� = �

0

[��: �

0

=�℄

FOLD

r

� = ��: �

0

� = �

VAR (if �

0

�

v

�

and �

0

�

v

�)

�

0

= �

0

�

1

= �

1

�

2

= �

2

ARROW

�

1

! �

2

= �

1

! �

2

h�

1

! �

2

= �

1

! �

2

i

x

D

1

�

1

= �

1

h�

1

! �

2

= �

1

! �

2

i

x

D

2

�

2

= �

2 (ARROW/FIX)

x

(if side-
ond. I)

�

1

! �

2

= �

1

! �

2

.

both the original system in [4℄ as well as inHB

=

0

is played by the rule ARROW/FIX,

an appli
ation of whi
h 
onsists of the amalgamation of an appli
ation of the 
om-

position rule ARROW with an appli
ation of a �xed-point rule

7

FIX, at whi
h

open assumptions of the form of its 
on
lusion 
an be dis
harged. No symmetry

and transitivity rules are present in HB

=

0

and the axioms (FOLD/UNFOLD) used

in [4℄ have been reformulated into the two

8

rules FOLD

l=r

. HB

=

0

is `normalized' in

the sense that it satis�es a version of the subformula property . Although la
king the

expressivity of symmetry and transitivity rules the following also holds for HB

=

0

:

Theorem 3.2 (Sound- and Completeness of HB

=

0

with respe
t to =

�

). The

axiom system HB

=

0

is sound and 
omplete with respe
t to strong re
ursive type

equivalen
e =

�

, i.e. for all �; � 2 
an-�Tp it holds that

`

HB

=

0

� = � () � =

�

� :

Both the soundness and the 
ompleteness of HB

=

0

with respe
t to =

�


an be

shown analogously as done by Brandt and Henglein in [4℄ for their system.

9

7

This rule is not part of HB

=

0

nor of the system introdu
ed in [4℄. As Brandt and Henglein point

out, the rule FIX is unsound in its general form, but it 
an be reformulated into a sound derivation

rule for a formal system that axiomatizes =

�

by requiring a 
ertain side-
ondition to be ful�lled

for its appli
ations.

8

Here and later we allow two rules like FOLD

l

and FOLD

r

to be \bundled together" to rules

FOLD

l=r

in informal arguments: \. . . holds for a rule FOLD

l=r

" is intended to mean \. . . holds

for a rule FOLD

l

or for a rule FOLD

r

" and \. . . holds for rules FOLD

l=r

" stands for \. . . holds

for the rule FOLD

l

and for the rule FOLD

r

".

9

Be
ause of a very 
lose relationship between HB

=

0

and the de�nition of the tree unfolding of

re
ursive types, Theorem 3.2 
an also be shown in a more dire
t alternative way.

5
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Figure 3 A normalized `synta
ti
-mat
hing' proof system AK

=

0

for 
he
king the


onsisten
y of given equations with respe
t to =

�

. This system is related to a one

that was introdu
ed by Ariola and Klop.

The derivation rules of AK

=

0

:

��: �

0

= �

UNFOLD

l

�

0

[��: �

0

=�℄ = �

� = ��: �

0

UNFOLD

r

� = �

0

[��: �

0

=�℄

� = �

VAR (if �

0

�

v

�

and �

0

�

v

�)

�

0

= �

0

�

1

! �

2

= �

1

! �

2

DECOMP (i = 1; 2)

�

i

= �

i

.

We do not investigate in this paper the proof-theoreti
 relationship between the

axiom system for =

�

introdu
ed by Brandt and Henglein and our variant-system

HB

=

0

. However, we want to mention two fa
ts in this respe
t that are proven in

our forth
oming work [5℄: (1) Every derivation D in HB

=

0


an be transformed in an

easy and e�e
tive way into a derivation D

0

in the system of Brandt and Henglein

su
h that D

0

has the same 
on
lusion and the same open assumption 
lasses as D.

But (2) an e�e
tive transformation of derivations between these two systems in the

opposite dire
tion is|although possible|not of an equally easy kind.

We 
ontinue with the de�nition of a proof system very similar to a `synta
ti
-

mat
hing' system introdu
ed by Ariola and Klop in Se
tion 3.4 of [2℄.

De�nition 3.3 (A `synta
ti
-mat
hing' proof system AK

=

0

for =

�

). The

formal system AK

=

0


ontains pre
isely all equations in 
an-�Tp{Eq as its formulas.

It 
ontains no axioms. Its derivation rules are the rules VAR, UNFOLD

l

, UNFOLD

r

and DECOMP that are listed in Figure 3. We will use � = � `

AK

=

0

�

1

= �

2

(for

�; �; �

1

; �

2

2 
an-�Tp) as notation for the assertion that there is a derivation in

AK

=

0

from the assumption � = � with 
on
lusion �

1

= �

2

.

The 
onspi
uous feature of this system is the de
omposition rule DECOMP,

whi
h is a \destru
tive" 
ounterpart of the \
onstru
tive" 
omposition rules AR-

ROW and ARROW/FIX in HB

=

0

. Like HB

=

0

the system AK

=

0

does not 
ontain

symmetry and transitivity rules and is `normalized' in the sense that it ful�lls an

\inverse subformula property".

Clearly, AK

=

0

does not axiomatize =

�

, but a notion of 
onsisten
y-
he
king with

respe
t to AK

=

0

is sound and 
omplete for =

�

. For being able to state this properly,

we need the following terminology: An equation � = � between re
ursive types is

a 
ontradi
tion with respe
t to =

�

i� L(�) 6= L(�), i.e. i� the leading symbols of �

and � di�er. Furthermore an equation � = � is 
alled AK

=

0

-in
onsistent i� there

exists a 
ontradi
tion �

1

= �

2

with respe
t to =

�

su
h that � = � `

AK

=

0

�

1

= �

2

;

otherwise we say that � = � is AK

=

0

-
onsistent .

Theorem 3.4 (Soundness and Completeness with respe
t to =

�

of 
on-

sisten
y-
he
king relative to AK

=

0

). Consisten
y with respe
t to AK

=

0

is

6
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Figure 4 Assemblage to a �nite downwards-growing \tree of 
onsequen
es" C of

the 6 di�erent possible initial segments of derivations from ��: ((�! �)! �) =

��: (�! (�! �)) in AK

=

0

without VAR-appli
ations until looping o

urs.

(� = �)

x

(� = � ! �)

z

(� = �)

x

� ! � = � ! (� ! �)

� ! � = �

(� ! �)! � = � ! �

(� = � ! �)

z

(� = �)

x

(� ! � = �)

y

(� ! �)! � = � ! �

� = � ! �(� = �)

x

� ! � = � ! (� ! �)

(� ! � = �)

y

DECOMP

(� ! �)! � = � ! (� ! �)

UNFOLD

l=r

�

�: �

z }| {

��: ((�! �)! �) =

�:�

z }| {

��: (�! (�! �))

�

x

sound and 
omplete in relation to =

�

: For all �; � 2 
an-�Tp it holds that

� = � is AK

=

0

-
onsistent () � =

�

� :

Sket
h of Proof. Both the soundness-part \)" and the 
ompleteness-part \("

are easy 
onsequen
es of the fa
t that derivations D in AK

=

0

from assumption � = �

with 
on
lusion �

1

= �

2


orrespond to 
omputations of �

1

; �

2

2 
an-�Tp with the

property that

10

Tree(�)jp = Tree(�

1

) and Tree(�)jp = Tree(�

2

) hold for some


ommon position p in the tree unfoldings Tree(�) and Tree(�) of � and �. 2

4 The basi
 observation

It is our aim in this se
tion to indi
ate the intuition behind the results of this paper

by des
ribing an observation about a 
on
rete and simple example. Throughout this

se
tion we let � and � be the two strongly equivalent re
ursive types in 
an-�Tp

from the example in Figure 1.

Suppose that we want to prove that the equation � = � is indeed 
onsistent with

the system AK

=

0

. Then we are obliged to show for every derivation D in AK

=

0

from

the assumption � = � that the 
on
lusion of D is not a 
ontradi
tion with respe
t

to =

�

. But sin
e there are potentially in�nitely many su
h derivations in AK

=

0

, we

might not be able to 
he
k all of them in a �nite amount of time.

However, it turns out that in every derivation in AK

=

0

from � = � of depth � 7,

that does not 
ontain appli
ations of VAR, a loop arises, i.e. one formula o

urs at

two di�erent pla
es. What is more, the initial segments until looping o

urs of all

derivations from � = � in AK

=

0

without VAR-appli
ations 
an be arranged to the

downwards-growing derivation-tree C depi
ted in Figure 4. Single and double lines

in C separate the respe
tive premises and 
on
lusions of appli
ations of UNFOLD

l=r

,

whereas bran
hings at dashed lines in C stem from the two possible ways in whi
h


on
lusions 
an be drawn at rules DECOMP in AK

=

0

. The markers x, y and z used

10

Here Tree(�)jp denotes the subtree of Tree(�) at position p.

7
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for some formula o

urren
es in C are intended to highlight the looping in those

AK

=

0

-derivations initial segments of whi
h 
onstitute the bran
hes of C.

It is now possible to use the derivation-tree C in an easy indu
tive proof for the

AK

=

0

-
onsisten
y of the equality � = � by 
ombining the following two properties

of C: Firstly, as inspe
tion shows, C does not 
ontain any 
ontradi
tions with respe
t

to =

�

. And se
ondly, C 
an be 
onsidered to be the (positive) result of loop-
he
king

for all possible derivations without VAR-appli
ations from � = � in AK

=

0

. { Let

~

D

be an arbitrary given derivation from � = � in AK

=

0

without appli
ations of VAR

(the following argument has to be re�ned for derivations with appli
ations of VAR).

If looping does not o

ur in

~

D, then j

~

Dj � 7 must hold and

~

D has to be 
ontained

in one of the 6 di�erent initial segments of AK

=

0

-derivations from � = � gathered in

C; hen
e the 
on
lusion of

~

D must o

ur among the formulas in C and 
annot be a


ontradi
tion. However, if looping does o

ur in

~

D, then by 
utting out a loop from

~

D we get a shorter derivation

~

D

0

in AK

=

0

from � = � of smaller depth j

~

D

0

j < j

~

Dj,

but with the same 
on
lusion as

~

D. Therefore we 
an apply the indu
tion hypotheses

to

~

D

0

and 
on
lude that the 
on
lusion of

~

D is no 
ontradi
tion.

In order to give an indi
ation about the parti
ular relationship between the sys-

tems AK

=

0

andHB

=

0

that is des
ribed in this paper, we observe

11

the following: By

re
e
ting the downwards-growing derivation-tree C in AK

=

0

at a horizontal line it is

possible to obtain an upwards-growing prooftree Re
(C) in the system HB

=

0

with

o

urren
es of open assumption 
lasses. Thereby all appli
ations of UNFOLD

l=r

in

C are \re
e
ted" into appli
ations of FOLD

l=r

in Re
(C) and all bran
hings DE-

COMP into appli
ations of ARROW. To transform Re
(C) into a derivation D in

HB

=

0

without open assumptions it is merely ne
essary (1) to extend Re
(C) above

ea
h of its leaves by one or two appli
ations of FOLD

l=r

, (2) to transfer respe
tive

assumption markers up to the new formulas at the top of the extended prooftree and

(3) to redire
t the bindings des
ribed by these markers to respe
tive appli
ations

of ARROW below, thereby also 
hanging these into ARROW/FIX-appli
ations. In

this way the derivation D in HB

=

0

without open assumption 
lasses suggestively

depi
ted in Figure 5 is rea
hed.

And similarly, by re
e
ting the derivation D from Figure 5 at a horizontal line in

an analogous way it is possible to get a downwards-growing derivation-tree Re
(D)

from � = � in AK

=

0

, whi
h|although slightly di�erent from C|like C 
an be taken

as the basis of an indu
tive argument for showing the AK

=

0

-
onsisten
y of � = � .

This example suggests a very dire
t relationship between derivations in HB

=

0

without open assumption 
lasses having 
on
lusion ~� = ~� (for some ~� ; ~� 2 
an-�Tp)

and �nite downwards-growing trees of 
onsequen
es from the same equation ~� = ~�

in AK

=

0

that are the result of loop-
he
king and that fa
ilitate easy indu
tive proofs

for the 
onsisten
y of ~� = ~� relative to AK

=

0

.

11

J.W. Klop noted this for a similar example in slightly di�erent, but 
omparable proof systems.
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Figure 5 The derivation D of ��: ((�! �)! �) = ��: (�! (�! �)) in HB

=

0

without open assumption 
lasses.

(: : :)

x

� = �

(: : :)

y

� ! � = �

(: : :)

x

� = �

(� ! �)! � = � ! �

� = � ! �

y

� ! � = � ! (� ! �)

� ! � = �

(: : :)

x

� = �

(: : :)

z

� = � ! �

� ! � = � ! (� ! �)

� ! � = �

(: : :)

x

� = �

z

(� ! �)! � = � ! �

� = � ! �

(ARR./FIX)

x

(� ! �)! � = � ! (� ! �)

FOLD

l=r

��: ((�! �)! �)

| {z }

�: �

= ��: (�! (�! �))

| {z }

�:�

5 The extension e-HB

=

0

of HB

=

0

For obtaining a pre
ise formulation of the observation in the previous se
tion it will

be helpful

12

to extend the system HB

=

0

by three more 
oindu
tive �xed-point rules.

De�nition 5.1 (The extension e-HB

=

0

of the system HB

=

0

). The extension

e-HB

=

0

of the system HB

=

0

has the same formulas and axioms as HB

=

0

, allows

the same marked assumptions and 
ontains all derivation rules of HB

=

0

. Addi-

tionally, e-HB

=

0

possesses the rules VAR/FIX, FOLD

l

/FIX and FOLD

r

/FIX with

appli
ations of the respe
tive form

[ � = � ℄

x

D

0

�

0

= �

0

(R/FIX)

x

(if side-
ond.(s) I (and C for R = VAR))

� = �

(5.1)

(with some �; �; �

0

; �

0

2 
an-�Tp and x 2Mk ), given that

�

0

= �

0

R

� = �

is an ap-

pli
ation of a rule R 2 fFOLD

l=r

, VAR g and that the respe
tively ne
essary side-


onditions des
ribed below are satis�ed. At su
h appli
ations the 
lass [� = �℄

x

of open marked assumptions of the form (� = �)

x

in D

0

gets dis
harged. The

side-
ondition I requires that the assumption 
lass � = � in D

0

is inhabitated (not

empty). For appli
ations of VAR/FIX the side-
ondition C demands furthermore

that D

0

is 
ontra
tive with respe
t to the marked open assumptions (� = �)

x

, whi
h

means that for every thread in D

0

from a marked open assumption (� = �)

x

down-

wards at least one appli
ation of ARROW or ARROW/FIX is passed.

A formula � = � is a theorem of e-HB

=

0

(symboli
ally denoted by `

e-HB

=

0

� = �)

i� there is a derivation D in e-HB

=

0

with 
on
lusion � = � and with the prop-

erty that all marked assumptions have been dis
harged at respe
tive appli
ations of

FOLD

l=r

/FIX, of VAR/FIX or of ARROW/FIX.

12

We will indi
ate later why this preparatory step indeed helps to obtain a more satisfying result.
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It is easy to see that either of two following more spe
ial requirements C

1

and C

2


ould have been used instead of the side-
ondition C for appli
ations of VAR/FIX

of the form (5.1) (with R = VAR) with an equivalent de�nition as the result: C

1

is

the 
ondition \D

0


ontains at least one appli
ation of ARROW or ARROW/FIX"

and C

2

demands that \there is at least one appli
ation of a rule di�erent from VAR

in D

0

".

Although the system e-HB

=

0

is an extension of HB

=

0

, no new theorems be
ome

derivable:

Theorem 5.2 (Equivalen
e of the systems HB

=

0

and e-HB

=

0

). The system

e-HB

=

0

is a 
onservative extension of HB

=

0

and hen
e

13

the systems HB

=

0

and

e-HB

=

0

are equivalent (i.e. they possess the same theorems). More spe
i�
ally, every

derivation D in e-HB

=

0


an e�e
tively be transformed into a derivation D

0

in HB

=

0

with the same 
on
lusion and the same (if any) open assumption 
lasses.

Hint at the Proof. This theorem is a 
onsequen
e of the fa
t that the rules

FOLD

l=r

/FIX and VAR/FIX of e-HB

=

0

are admissible rules of the system HB

=

0

,

i.e. rules that 
an e�e
tively be eliminated from an arbitrary given derivation in

e-HB

=

0

with the �nal result of a derivation in HB

=

0

. The reason for this is that the

\dedu
tive power" of an appli
ation of FOLD

l=r

/FIX or VAR/FIX in a derivation

D 
an always be emulated by the \dedu
tive power" of a respe
tive appli
ation of

ARROW/FIX in a derivation D

0


losely related to D. We will demonstrate this only

in the very spe
ial 
ase of a derivation D in e-HB

=

0

ending with an appli
ation of

FOLD

l

/FIX that is itself immediately pre
eded by an appli
ation of ARROW: Let

D be a derivation in e-HB

=

0

of the form

h� = �i

x

D

01

�

01

[�=�℄ = �

1

h� = �i

x

D

02

�

02

[�=�℄ = �

2

ARROW

�

01

[�=�℄! �

02

[�=�℄ = �

1

! �

2

(FOLD

l

/FIX)

x

��: (�

01

! �

02

)

| {z }

� �

= �

1

! �

2

| {z }

��

and denote by D

0

the sub-derivation of D that leads up to the appli
ation of FOLD

l

/

FIX at the bottom of D. This appli
ation of FOLD

l

/FIX 
an now be eliminated by

extending D

0

above ea
h of the open assumptions (� = �)

x

inD

0

by an appli
ation of

FOLD

l

and by dis
harging the marked open assumptions (�

01

[�=�℄! �

02

[�=�℄ = �)

x

in the new leaves at an appli
ation of ARROW/FIX that arises by renaming from

the penultimate rule appli
ation in D, the appli
ation of ARROW. The result is the

derivation D

0

of the following form:

13

Sin
e HB

=

0

and e-HB

=

0

have the same formulas.

10
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(�

01

[�=�℄! �

02

[�=�℄ = �)

x

FOLD

l

h� = �i

D

01

�

01

[�=�℄ = �

1

(�

01

[�=�℄! �

02

[�=�℄ = �)

x

FOLD

l

h� = �i

D

02

�

02

[�=�℄ = �

2

(ARROW/FIX)

x

�

01

[�=�℄! �

02

[�=�℄ = �

1

! �

2

FOLD

l

��: (�

01

! �

02

)

| {z }

� �

= �

1

! �

2

| {z }

��

Similar e�e
tive eliminations 
an be 
arried out for all appli
ations of FOLD

l=r

/FIX

and VAR/FIX in arbitrary given e-HB

=

0

-derivations. 2

As an immediate 
onsequen
e of this theorem and of Theorem 3.2 we �nd the

following 
orollary.

Corollary 5.3 (Sound- and Completeness of e-HB

=

0

with respe
t to =

�

).

The axiom system e-HB

=

0

is sound and 
omplete with respe
t to strong re
ursive

type equivalen
e =

�

, i.e. for all �; � 2 
an-�Tp it holds that

`

e-HB

=

0

� = � () � =

�

� :

6 Consisten
y-Unfoldings

In a se
ond step of the formulation of the observation in Se
tion 4 into a pre
ise

statement we will formalize �nite downwards-growing trees of 
onsequen
es in AK

=

0

as \
onsisten
y-unfoldings", whi
h allow to prove easily the AK

=

0

-
onsisten
y of

the formulas at their respe
tive roots. { We have to give a de�nition of \partial


onsisten
y-unfoldings" �rst.

De�nition 6.1 (Partial Consisten
y-Unfoldings in AK

=

0

). For all re
ursive

types �; � 2 
an-�Tp a partial 
onsisten
y-unfolding (a p.
.u.) C of the equation

� = � in AK

=

0

is a �nite downwards-growing \tree of 
onsequen
es" of � = � in

AK

=

0

that together with the assertion \C is a p.
.u. of � = � inAK

=

0

" 
an be formed

by a �nite number of appli
ations of the following 5 generation rules. Thereby the

notion of an unbound leaf-o

urren
e of a marked formula (an u.l.o.m.f.) in a p.
.u.

is de�ned in parallel:

14

(i) For all �; � 2 
an-�Tp and x 2Mk (� = �)

x

is a p.
.u. C from � = � . The

o

urren
e of (� = �)

x

in C is the single u.l.o.m.f. in C. { Furthermore for all

� 2 
an-�Tp � = � is a p.
.u. of � = � , whi
h 
ontains no u.l.o.m.f.'s in C.

14

In the following 
lauses the addition \inAK

=

0

" in statements like \C is a p.
.u. inAK

=

0

" is always

dropped. Auxiliary framed boxes are used to delimit the de�ned p.
.u.'s from the surrounding text.

Here and later we will allow formulas (� = �)

m

with �; � 2 
an-�Tp and a boldfa
e-markerm to

stand either (a) for the unmarked formula � = � or (b) for a marked formula (� = �)

x

with some

x 2Mk su
h that this marker is then assumed to be denoted by m.

11
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(ii) For all �; �; �

0

; �

0

2 
an-�Tp

� = �

R

(�

0

= �

0

)

m

0

C

0

is a p.
.u. C of � = � given

that C

0

is a p.
.u. of �

0

= �

0

and that R is an appli
ation of a rule UNFOLD

l=r

or VAR. An u.l.o.m.f. in C is su
h an o

urren
e of a marked formula in C

within its subtree C

0

that 
orresponds to an u.l.o.m.f. in C

0

.

(iii) For all �; �; �

0

; �

0

2 
an-�Tp and x 2Mk

(� = �)

x

R

(�

0

= �

0

)

m

0

C

0

[� = �℄

x

is a p.
.u. C

of � = � given that (1) C

0

is a p.
.u. of �

0

= �

0

in whi
h the (indi
ated) 
lass

[� = �℄

x

of all u.l.o.m.f.'s of the form (� = �)

x

is non-empty and that either

(2a) R is an appli
ation of a rule UNFOLD

l=r

or (2b) R is an appli
ation of

VAR and C

0


ontains at least one appli
ation of a rule di�erent from VAR.

{ All o

urren
es of (� = �)

x

within the subtree C

0

of C, that 
orrespond to

u.l.o.m.f.'s in C

0

, are bound ba
k in C to the o

urren
e of (� = �)

x

at the

root. For all marked formulas (~� = ~�)

~x

di�erent from (� = �)

x

the unbound

leaf-o

urren
es of this marked formula 
orrespond uniquely and in an obvious

way to the u.l.o.'s of (~� = ~�)

~x

within the subtree C

0

of C.

(iv)

C

02

(�

02

= �

02

)

m

02

C

01

(�

01

= �

01

)

m

01

DECOMP

�

01

! �

02

= �

01

! �

02

is a p.
.u. C of the formula

�

01

! �

02

= �

01

! �

02

for all �

01

; �

02

; �

01

; �

02

2 
an-�Tp, given that C

0i

is a

p.
.u. of �

0i

= �

0i

for ea
h i 2 f1; 2g. The u.l.o.m.f.'s in C 
orrespond uniquely

and in an obvious way to the u.l.o.m.f.'s in either of its immediate subtrees C

01

or C

02

.

(v)

h� = �i

x

C

02

(�

02

= �

02

)

m

02

h� = �i

x

C

01

(�

01

= �

01

)

m

01

DECOMP

(�

01

! �

02

= �

01

! �

02

)

x

(with some x 2Mk and with

� :� �

01

! �

02

and � :� �

01

! �

02

) is a p.
.u. C of �

01

! �

02

= �

01

! �

02

for

all �

01

; �

02

; �

01

; �

02

2 
an-�Tp given that C

0i

is a p.
.u. from �

0i

= �

0i

for ea
h

i 2 f1; 2g and that there is at least one unbound leaf-o

urren
e of the marked

formula (�

01

! �

02

= �

01

! �

02

)

x

in either C

01

or in C

02

. { All o

urren
es

of (� = �)

x

within either of the immediate subtrees C

01

and C

02

of C, that


orrespond to u.l.o.m.f.'s in C

01

or C

02

, are bound ba
k in C to the o

urren
e

of (� = �)

x

at the root (and hen
e are not u.l.o.m.f.'s in C). For every marked

formula (~� = ~�)

~x

di�erent from (� = �)

x

the unbound leaf-o

urren
es of this

12
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marked formula 
orrespond uniquely and in an obvious way to the u.l.o.'s of

(~� = ~�)

~x

within either of the sub-p.
.u.'s C

01

or C

02

of C.

The depth jCj of a p.
.u. C is de�ned as the depth of the underlying (derivation-)

tree.

De�nition 6.2 (Consisten
y-Unfoldings in AK

=

0

). Let � and � be re
ursive

types in 
anoni
al form. A partial 
onsisten
y-unfolding C of � = � in AK

=

0

is


alled a 
onsisten
y-unfolding (a 
.u.) of � = � in AK

=

0

if and only if C does not


ontain any unbound leaf-o

urren
es of marked formulas.

A

ording to these de�nitions the derivation-tree C depi
ted in Figure 4 
an now

be re
ognized as a p.
.u. in AK

=

0

without u.l.o.m.f.'s and hen
e as a 
onsisten
y-

unfolding of ��: ((�! �)! �) = ��: (�! (�! �)) in AK

=

0

. { An important

statement about 
onsisten
y-unfoldings is expressed in the following lemma that

requires a somewhat te
hni
al, but not diÆ
ult proof.

Lemma 6.3 Let �; � 2 
an-�Tp and C be a 
onsisten
y-unfolding of � = � in

AK

=

0

. Then for all equations �

1

= �

2

o

uring in C it holds that L(�

1

) = L(�

2

),

i.e. that �

1

and �

2

have the same leading symbols.

It should perhaps be mentioned that if the hypotheses \let C be a 
.u. . . . " in

Lemma 6.3 were repla
ed by \let C be a p.
.u. . . . ", then a wrong assertion would

result. This 
an already be seen from the easy example of the 
ontradi
tion ? = >

with respe
t to =

�

that o

urs in the marked assumption (? = >)

x

, whi
h by

De�nition 6.1 is a partial 
onsisten
y-unfolding of ? = > in AK

=

0

.

The following theorem establishes the link motivated by the example in Se
tion 4

between the notions of \AK

=

0

-
onsisten
y" and \
onsisten
y-unfolding in AK

=

0

".

Theorem 6.4 For all re
ursive types �; � 2 
an-�Tp it holds that:

� = � is AK

=

0

-
onsistent () There exists a 
onsisten
y-

unfolding of � = � in AK

=

0

.

(6.1)

Hint at the Proof. Let �; � 2 
an-�Tp. The impli
ation \(" in (6.1) follows

by a generalization using Lemma 6.3 of the intuitive argumentation sket
hed in

Se
tion 4 for the example of the 
onsisten
y-unfolding in Figure 4. The impli
ation

\)" in (6.1) follows by an analogous, in fa
t as good as `dual' argument to that

one used in a proof (following [4℄) for the 
ompleteness of HB

=

0

with respe
t to

=

�

: For an arbitrary given equation � = � between re
ursive types �; � 2 
an-�Tp

for whi
h � =

�

� holds a 
onsisten
y-unfolding of � = � in AK

=

0


an be rea
hed

by building up the \tree of 
onsequen
es" of this equation in AK

=

0

in su

essive

extension stages, 
utting o� bran
hes always as soon as \looping" o

urs or as soon

as a formula � = � has been en
ountered. There 
annot be in�nite bran
hes in

the arising derivation-tree due to the fa
t that the set of 
on
lusions of derivations

from � = � in AK

=

0

is always �nite, if equations that arise from ea
h other by

appli
ations of VAR are not 
ounted separately. 2

13
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7 A duality between the proof systems e-HB

=

0

and AK

=

0

In a third step of our formalization of the observation in Se
tion 4 we will now give

a de�nition of a pair of re
e
tion mappings D(�) and C(�) between p.
.u.'s in AK

=

0

and derivations in e-HB

=

0

.

De�nition 7.1 (Re
e
tion Mappings D(�) and C(�)). The re
e
tion mapping

D(�) from partial 
onsisten
y-unfoldings in AK

=

0

to derivations in HB

=

0

(with pos-

sibly open assumption-
lasses) is de�ned by indu
tion on the depth j

~

Cj of a p.
.u.

~

C

in AK

=

0

a

ording to 5 indu
tive 
lauses, whi
h refer to the 5 
ases in the indu
tive

de�nition of p.
.u.'s in De�nition 6.1; these 
lauses are indi
ated in Figure 6 through

the arrows

D(�)

7�! between the boxes on the left- and on the right-hand side. The de�-

nition of the re
e
tion mapping C(�) in the opposite dire
tion 
an be 
arried out for

all derivations

~

D in e-HB

=

0

(with possibly open assumption 
lasses) by indu
tion

on the depth j

~

Dj of

~

D with 
lauses that apart from the base 
ase distinguish the 8


ases of di�erent rules in e-HB

=

0

, appli
ations of whi
h may o

ur as the last rule

appli
ation in

~

D (if j

~

Dj > 0). These in total 9 
ases are des
ribed in the 5 indu
tive


lauses of the de�nition of C(�), whi
h 
lauses are indi
ated through the arrows

C(�)

7�!

from right to left in Figure 6. For the se
ond and the third 
lause in both de�nitions

we use a bije
tive 
orresponden
e de�ned through the table

Rule R

(
u)

in AK

=

0

UNFOLD

l

UNFOLD

r

VAR

Rule R

(d)

in HB

=

0

FOLD

l

FOLD

r

VAR

between rules in AK

=

0

and rules in HB

=

0

respe
tively denoted by R

(
u)

and R

(d)

.

The well-de�nedness of D(�) and C(�) as fun
tions between the set of p.
.u.'s in

AK

=

0

and the set of derivations in e-HB

=

0

with possibly open assumption 
lasses 
an

be shown by indu
tion on the depth of the elements in the domain of the respe
tive

mapping.

We are now able to state our main theorem.

Theorem 7.2 (A Duality between derivations in e-HB

=

0

and 
onsisten
y-

unfoldings in AK

=

0

). There is a bije
tive fun
tional relationship between deriva-

tions in e-HB

=

0

without open assumption 
lasses and 
onsisten
y-unfoldings in

AK

=

0

via the re
e
tion fun
tions D(�) and C(�) de�ned in De�nition 7.1 in the

following sense:

(i) For every 
onsisten
y-unfolding

~

C of � = � inAK

=

0

(with some �; � 2 
an-�Tp)

its re
e
tion D(

~

C) is a derivation in e-HB

=

0

with 
on
lusion � = � and without

open assumption 
lasses.

(ii) For every derivation

~

D in e-HB

=

0

without open assumption 
lasses and with


on
lusion � = � (for some �; � 2 
an-�Tp) its re
e
tion C(

~

D) is a 
onsisten
y-

unfolding of � = � in AK

=

0

.

(iii) The fun
tions D(�) of taking the re
e
tion of a 
onsisten
y-unfolding in AK

=

0

and C(�) of taking the re
e
tion of a derivation in e-HB

=

0

without open assump-

14
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Figure 6 Indu
tive de�nition of the re
e
tion mappings D(�) and C(�) between

partial 
onsisten
y-unfoldings

~

C inAK

=

0

and derivations

~

D in e-HB

=

0

(with possibly

open assumption-
lasses).

(� = �)

m

D(�)

7�!

 �[

C(�)

(� = �)

m

� = �

R

(
u)

(�

0

= �

0

)

m

0

~

C

0

(�C(

~

D

0

))

D(�)

7�!

 �[

C(�)

~

D

0

(�D(

~

C

0

))

�

0

= �

0

R

(d)

� = �

(for 
orresponding R

(
u)

2 fUNFOLD

l=r

, VARg and R

(d)

2 fFOLD

l=r

, VARg)

(� = �)

x

R

(
u)

(�

0

= �

0

)

m

0

~

C

0

(�C(

~

D

0

))

[� = �℄

x

D(�)

7�!

 �[

C(�)

[� = �℄

x

~

D

0

(�D(

~

C

0

))

�

0

= �

0

(R

(d)

/FIX)

x

� = �

(for 
orresponding R

(
u)

2 fUNFOLD

l=r

, VARg and R

(d)

2 fFOLD

l=r

, VARg)

~

C

02

(�C(

~

D

02

))

(�

02

= �

02

)

m

02

~

C

01

(�C(

~

D

01

))

(�

01

= �

01

)

m

01

DECOMP

�

01

! �

02

= �

01

! �

02

D(�)

7�!

 �[

C(�)

7�!

 � [

~

D

01

(�D(

~

C

01

))

�

01

= �

01

~

D

02

(�D(

~

C

02

))

�

02

= �

02

ARROW

�

01

! �

02

= �

01

! �

02

h� = �i

x

~

C

02

(�C(

~

D

02

))

(�

02

= �

02

)

m

02

h� = �i

x

~

C

01

(�C(

~

D

01

))

(�

01

= �

01

)

m

01

DECOMP

(

� �

z }| {

�

01

! �

02

=

��

z }| {

�

01

! �

02

)

x

D(�)

7�!

 � [

C(�)

7�!

 �[

h� = �i

x

~

D

01

(�D(

~

C

01

))

�

01

= �

01

h� = �i

x

~

D

02

(�D(

~

C

02

))

�

02

= �

02

(ARROW/FIX)

x

�

01

! �

02

| {z }

� �

= �

01

! �

02

| {z }

��
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Figure 7 Example 
onsisting of a 
onsisten
y-unfolding

~

C in AK

=

0

and of a deriva-

tion

~

D in e-HB

=

0

that are ea
h other's re
e
tion via the mappings D(�) and C(�),

i.e. for whi
h it holds that D(

~

C) =

~

D and C(

~

D) =

~

C :

~

D :=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�

� = �

�

x

? = ?

ARROW

� ! ? = � ! ?

� = � ! ? ? = ?

ARROW

� ! ? = (� ! ?)! ?

FOLD

r

� ! ? = �

(FOLD

l

/FIX)

x

��: (�! ?)

| {z }

�: �

= ��: ((� ! ?)! ?)

| {z }

�:�

~

C :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

? = ?

? = ?

�

� = �

�

x

DECOMP

� ! ? = � ! ?

� = � ! ?

DECOMP

� ! ? = (� ! ?)! ?

UNFOLD

r

� ! ? = �

UNFOLD

l

�

��: (�! ?) = ��: ((� ! ?)! ?)

�

x

tion-
lasses are ea
h other's inverse.

The very immediate kind of this bije
tive fun
tional relationship and the possibility

to visualize the re
e
tion fun
tions in a geometri
al way is reason to 
all it a duality.

Sket
h of Proof. All three items of the theorem (the third one 
an be split into

the two assertions D Æ C = id and C Æ D = id) 
an be shown by quite straightfor-

ward indu
tions using the indu
tive 
lauses in the de�nitions of D(�) and C(�). In

these indu
tions bookkeeping must be done as indi
ated in the below pi
ture for

respe
tively the set of open marked assumptions in an e-HB

=

0

-derivation

~

D with


on
lusion � = � and for the 
lasses of u.l.o.m.f.'s in a p.
.u.

~

C of � = � in AK

=

0

(for arbitrary �; � 2 
an-�Tp) :

(� = �)

m

~

C

f [�

i

= �

i

℄

x

i

g

i=1;:::;n

D(�)

7�!

 �[

C(�)

f [�

i

= �

i

℄

x

i

g

i=1;:::;n

~

D

� = �

Hereby the displayed family f [�

i

= �

i

℄

x

i

g

i=1;:::;n

(with n 2 N

0

, �

i

; �

i

2 
an-�Tp

and x

i

2Mk for i = 1; : : : ; n) gathers in

~

C pre
isely all n 
lasses of u.l.o.m.f.'s and

respe
tively assembles in

~

D pre
isely all n open assumption 
lasses. 2

An example of a pair (

~

D;

~

C) 
onsisting of a derivation

~

D in e-HB

=

0

without open

assumption 
lasses and of a 
onsisten
y-unfolding

~

C in AK

=

0

that are ea
h other's

re
e
tion via the operations D(�) and C(�) is depi
ted in Figure 7.

This example makes it also very easy to explain why|with the aim of estab-

16
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lishing a satisfying duality result|we have 
hosen to extend the system HB

=

0

�rst

by some more rules to the system e-HB

=

0

before only later de�ning mutual trans-

formations between p.
.u.'s in AK

=

0

and derivations in the extended system: If we

had not done so, then we would not have been able to dis
harge the open marked

assumption (� = �)

x

in a derivation Re
(

~

C) in HB

=

0

that arises by plain re
e
tion

from the 
.u.

~

C from Figure 7. Similarly as des
ribed for the example used in Se
-

tion 4 we would have had to enlarge Re
(

~

C) above this marked assumption by two

additional appli
ations (one of FOLD

l

and one of FOLD

r

) before being able to dis-


harge the newly o

uring open marked assumption (� ! ? = (� ! ?)! ?)

x

in

a thereby 
reated derivation Re
(

~

C)

�

at an appli
ation of ARROW/FIX that results

by renaming from the bottommost appli
ation of ARROW in Re
(

~

C).

15

But due

to the presen
e of the rules FOLD

l=r

/FIX in e-HB

=

0

it is in fa
t possible to trans-

form the plain re
e
tion Re
(

~

C) of

~

C into the derivation

~

D in Figure 7 by merely

renaming the bottommost appli
ation of FOLD

l

in Re
(

~

C) into FOLD

l

/FIX and by

dis
harging the open marked assumption (� = �)

x

at this appli
ation.

This look at the example from Figure 7 
an make it 
lear why it is a
tually

not possible to �nd a bije
tive and equally immediate 
orresponden
e as stated in

Theorem 7.2 between arbitrary 
onsisten
y-unfoldings in AK

=

0

and derivations in

HB

=

0

.

But the duality statement in Theorem 7.2 leaves open the question how the

parti
ular 
lass of those 
.u.'s in AK

=

0

that are the images under the re
e
tion

fun
tion C(�) of derivations in the basi
 system HB

=

0


an formally be 
hara
terized.

Closer examination shows that su
h 
.u.'s are always of the parti
ular form, that

leaf-o

urren
es in them of marked formulas are ex
lusively bound ba
k to upper

premises of bran
hings DECOMP; we stipulate that su
h 
.u.'s ful�ll the property D.

This observation gives rise to the following spe
ialized version of Theorem 7.2, whi
h


an also be proved in a very straightforward way.

Theorem 7.3 (A Duality between derivations in HB

=

0

and 
onsisten
y-

unfoldings in AK

=

0

with the property D). The restri
tions D

0

(�) := Dj

A

(�)

and C

0

(�) := Cj

B

(�) of the re
e
tion fun
tions D(�) and C(�) to respe
tively the set

A of partial 
onsisten
y-unfoldings in AK

=

0

with the property D and to the set B

of derivations in HB

=

0

(possibly with open assumption 
lasses) yield a duality state-

ment with assertions analogous to items (i), (ii) and (iii) in Theorem 7.2 between


onsisten
y-unfoldings in AK

=

0

with the property D and derivations in HB

=

0

without

open assumption 
lasses.

This theorem is illustrated in Figure 8 by a derivation in HB

=

0

without open

assumption 
lasses and by a 
onsisten
y-unfolding in AK

=

0

with the property D

that are ea
h other's re
e
tion via the re
e
tion mappings D(�) and C(�).

Our \duality"-results, Theorem 7.2 and Theorem 7.3, are able to provide a pre-

15

The derivation Re
(

~

C)

�

des
ribed here is a
tually equal to the derivation

~

D in HB

=

0

depi
ted in

Figure 8 [stri
tly speaking, Re
(

~

C)

�

is equal to one of the 4 HB

=

0

-derivations that are denoted by

the prooftree

~

D depi
ted in Figure 8 (sin
e for the two pairs of su

essive FOLD

l=r

-appli
ations

the order in whi
h these two appli
ations a
tually follow ea
h other has not been �xed there)℄.

17
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Figure 8 Example 
onsisting of a 
onsisten
y-unfolding

~

C in AK

=

0

with the prop-

erty D and of a derivation

~

D in HB

=

0

that are ea
h other's re
e
tion via the re-

stri
tions D

0

(�) := Dj

A

(�) and C

0

(�) := Cj

B

(�) (
f. Theorem 7.3) of the re
e
tion

mappings C(�) and D(�), i.e. for whi
h it holds that D

0

(

~

C) = Dj

A

(

~

C) =

~

D and

C

0

(

~

D) = Cj

B

(

~

D) =

~

C .

~

D :=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�

� ! ? = (� ! ?)! ?

�

x

� = � ? = ?

ARROW

� ! ? = � ! ?

� = � ! ? ? = ?

(ARR./FIX)

x

� ! ? = (� ! ?)! ?

FOLD

l=r

��: (�! ?)

| {z }

�: �

= ��: ((� ! ?)! ?)

| {z }

�:�

~

C :=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

? = ?

? = ?

�

� ! ? = (� ! ?)! ?

�

x

� = �

DECOMP

� ! ? = � ! ?

� = � ! ?

DECOMP

�

� ! ? = (� ! ?)! ?

�

x

UNFOLD

l=r

��: (�! ?) = ��: ((� ! ?)! ?)


ise formal 
onne
tion between the Brandt-Henglein-like axiomatizations HB

=

0

and

e-HB

=

0

for =

�

and the `synta
ti
-mat
hing' proof system AK

=

0

that is similar to a

system introdu
ed by Ariola and Klop. But probably the main signi�
an
e of these

statements 
onsists in the fa
t that they 
an help to understand the soundness of

the reasoning formalized through a 
oindu
tive rule like ARROW/FIX in a dire
t

way with a geometri
al visualization.

In parti
ular, they make it possible to attribute some pre
ise meaning to the

informal explanation given by M. Brandt in the senten
e

\The intuition [of the reasoning formalized by rules like ARROW/FIX, C.G.℄

being that if you 
an not �nd hard eviden
e proving that the judgement is false

then it must be true."

(
ited from the abstra
t of [3℄): Suppose we have given a derivation

~

D in HB

=

0

of

the form

h� = �i

x

~

D

01

�

01

= �

01

h� = �i

x

~

D

02

�

02

= �

02

(ARROW/FIX)

x

�

01

! �

02

| {z }

�: �

= �

01

! �

02

| {z }

�:�

.

(7.1)

We will try to understand the inferen
e formalized by the bottommost appli
ation

of ARROW/FIX in

~

D in the light of the above 
ited senten
e. Furthermore we

want to dete
t the reason why no \harm" does arise by dis
harging all open marked

18
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assumptions in

~

D

01

and

~

D

02

of the form of the 
on
lusion of

~

D at the appli
ation of

ARROW/FIX at the bottom of

~

D.

By building the re
e
tion of

~

D via the re
e
tion mapping C(�) de�ned in De�ni-

tion 7.1 we arrive at the p.
.u. C(

~

D) of the form

h� = �i

x

~

C

02

(�C(

~

D

02

))

(�

02

= �

02

)

m

02

h� = �i

x

~

C

01

(�C(

~

D

01

))

(�

01

= �

01

)

m

01

DECOMP

(

� �

z }| {

�

01

! �

02

=

��

z }| {

�

01

! �

02

)

x

(7.2)

and 
an use some of our a
quired knowledge about (partial) 
onsisten
y-unfoldings:

It is easy to prove (similar to a proof for Lemma 6.3) that no 
ontradi
tions with

respe
t to =

�


an possibly o

ur in C(

~

D) between the root and su
h leaf-o

urren
es

of marked formulas (� = �)

x

that are bound ba
k to the root. Hen
e all di�erent

bran
hes b

1

; : : : ; b

n

in C(

~

D) from the root downwards to u.l.o.m.f.'s (� = �)

x

in

either

~

C

01

or

~

C

02


orrespond to derivations D

1

; : : : ;D

n

from � = � in AK

=

0

in whi
h

no 
ontradi
tions with respe
t to =

�

are en
ountered and during whi
h at least one

full loop was passed through. From this it follows that for the purpose of showing

the AK

=

0

-
onsisten
y of � = � all those derivations D in AK

=

0

from the assumption

� = � , that have one of the derivations D

1

; : : : ;D

n

as their initial segment, do not

have to be taken into further a

ount: If su
h a derivation D had a 
ontradi
tion

with respe
t to =

�

as its 
on
lusion, then a shorter derivation D

0

(in AK

=

0

from the

assumption � = � ) that resulted from D by 
utting out the loop at its beginning

would also lead to a 
ontradi
tion.

The n di�erent threads

16

�

1

; : : : ;�

n

within the derivation

~

D of (7.1) from one

of the marked assumptions (� = �)

x

down to the 
on
lusion � = � of

~

D 
orrespond

uniquely|under the re
e
tion mapping C(�)|to the above des
ribed n bran
hes

b

1

; : : : ; b

n

in the p.
.u. C(

~

D) in (7.2) and hen
e to the derivations D

1

; : : : ;D

n

of

from � = � in AK

=

0

, in whi
h no 
ontradi
tion with respe
t to =

�

is en
ountered

and during whi
h a loop is passed through. Thus the inferen
e formalized by the

bottommost appli
ation of ARROW/FIX in

~

D 
an be justi�ed on the grounds that

(a) along the derivations D

1

; : : : ;D

n

from � = � in AK

=

0

that result as mirror

images from the threads �

1

; : : : ;�

n

in

~

D no eviden
e for the AK

=

0

-in
onsisten
y of

� = � is found and that (b) the open marked assumptions (� = �)

x

in either

~

D

01

or in

~

D

02

are allowed to be dis
harged at the bottom of

~

D be
ause of the \meaning"

given to

~

D through the p.
.u. C(

~

D) relative to the 
on
ept of \
onsisten
y with

respe
t to AK

=

0

".

By extending the above argumentation slightly it is easy to see: All m di�erent

threads �

0

1

; : : : ;�

0

m

in the derivation

~

D depi
ted in (7.1) from a leaf at the top

labelled with either an axiom (REFL) or a marked assumption, that is dis
harged

in

~

D, downwards to the 
on
lusion of

~

D 
orrespond uniquely via re
e
tion to m

derivations D

0

1

; : : : ;D

0

m

from � = � in AK

=

0

during whi
h no 
ontradi
tion with

16

Due to the side-
ond. I on appl.'s of ARROW/FIX there must exist at least one su
h thread.

19
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respe
t to =

�

does o

ur. And furthermore, 
ontradi
tions with respe
t to =

�


an only o

ur in su
h derivations D from � = � in AK

=

0

that possess an initial

segment D

0

that is related

17

via re
e
tion to a thread � in

~

D from an open marked

assumption downwards to the 
on
lusion of

~

D.

Rather more formally than done so in the above dis
ussion the duality theorem,

Theorem 7.2, enables us to 
arry out the following alternative proof for the soundness

part in Theorem 3.2, in whi
h the soundness assertion for HB

=

0

with respe
t to =

�

is `redu
ed' to the soundness assertion for AK

=

0

with respe
t to =

�

.

Alternative

18

Soundness Proof for HB

=

0

with respe
t to =

�

. Suppose that

� = � is a theorem of HB

=

0

, where �; � 2 
an-�Tp. This means that there exists a

derivation D in HB

=

0

with 
on
lusion � = � and without open assumption 
lasses;

let D be 
hosen as su
h a derivation. Then due to Theorem 7.2 the re
e
tion C(D)

of D is a 
onsisten
y-unfolding of � = � in AK

=

0

(whi
h 
.u.|as we remark by

the way|ful�lls the property D due to Theorem 7.3). Hen
e by Theorem 6.4 the

equation � = � is 
onsistent with respe
t to AK

=

0

. And from this Theorem 3.4,

whi
h states the soundness of AK

=

0

with respe
t to =

�

, implies that � and � are

strongly equivalent. 2

The soundness of the extension e-HB

=

0

of HB

=

0

with respe
t to =

�


an be

shown by a 
ompletely analogous

19

proof. { Although the argumentation used for

the above proof 
an be 
arried out in the opposite dire
tion as well and is able to

demonstrate also the 
ompleteness of e-HB

=

0

with respe
t to =

�

, this does not

really 
onstitute an alternative 
ompleteness proof for e-HB

=

0

independent from

su
h a 
ompleteness proof for HB

=

0

that (as hinted for Theorem 3.2) 
an be derived

from the one des
ribed in [4℄. This is be
ause the problem of showing the dire
tion

\)" of (6.1) for Theorem 6.4 (whi
h impli
ation is used in su
h an argument for

the 
ompleteness of e-HB

=

0

) is in fa
t a problem of a \dual" kind to showing the


ompleteness of e-HB

=

0

: In view of Theorem 7.2 and, more pre
isely, in view of its

proof the a
tivity of trying to build a derivation in e-HB

=

0

with 
on
lusion � = �

for two given re
ursive types �; � 2 
an-�Tp 
orresponds uniquely to the a
tivity of

trying to build a 
onsisten
y-unfolding of � = � in AK

=

0

.

8 A duality in proof systems for bisimulation equivalen
e

on 
y
li
 term graphs

In this se
tion we want to sket
h how our duality result about two proof systems for

re
ursive type equality 
an be transferred to similar proof systems 
on
erned with

bisimulation equivalen
e on equational representations of 
y
li
 term graphs.

17

Due to the \in
uen
e" of possible VAR-appli
ations in D

0

the word \related" 
annot be repla
ed

by \
orresponds uniquely" here.

18

By this we mean an alternative proof 
ompared to one that follows from and is derived from the

soundness proof given in [4℄ with respe
t to =

�

for the system given there.

19

More pre
isely, only the two appearan
es of \HB

=

0

" in the proof have to be repla
ed by \e-HB

=

0

"

and the addition in bra
kets \(whi
h 
.u.. . . ful�lls the property D . . . )" has to be dropped.
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In the aim to limit te
hni
alities and to follow [2℄ we will only 
onsider equa-

tional spe
i�
ations of 
y
li
 term graphs without free variables. We are assuming

a 
ountably in�nite set RVar of re
ursion variables to underlie the following de�ni-

tion. In this se
tion we will let small Greek letters �; �; : : : vary through re
ursion

variables.

De�nition 8.1 (Canoni
al Term Graph Spe
i�
ations). Let � be a �rst-

order signature. A 
anoni
al term graph spe
i�
ation (a 
.t.g.s.) is an equational

spe
i�
ation of the form h�

0

j f�

0

= t

0

; : : : ; �

n

= t

n

g i, where n 2 N , �

0

; : : : ; �

n

are

pairwisely di�erent re
ursion variables in RVar and for all i with 0 � i � n the terms

t

i

are of the form t

i

� F (�

i1

; : : : ; �

in

i

) for some fun
tion symbol F 2 � of arity n

i

and variables �

i1

; : : : ; �

in

i

2 f�

0

; : : : ; �

n

g. An equation �

i

= t

i

for i 2 f1; : : : ; ng

is 
alled useless i� the re
ursion variable �

i

is not rea
hable from the root �

0

in the

obvious sense. We will use the letters g and h to vary through 
.t.g.s.'s and denote

by T GS(�) the set of all 
.t.g.s.'s over �.

Bisimilarity between 
.t.g.s.'s is de�ned in [4℄ as follows:

De�nition 8.2 (Bisimulation Equivalen
e $ on 
.t.g.s.'s). Let � be a

signature. Let g and h be 
anoni
al term graph spe
i�
ations over � of the form

g = h�

0

j f�

0

= t

0

; : : : ; �

n

= t

n

g i and h = h�

0

0

j f�

0

0

= t

0

0

; : : : ; �

0

n

0

= t

0

n

0

g i.

(a) R is 
alled a bisimulation between g and h if and only if

(i) R is a relation with domain f�

0

; : : : ; �

n

g and 
odomain f�

0

0

; : : : ; �

0

n

0

g;

(ii) �

0

R�

0

0

;

(iii) if �

i

R�

0

j

for some i; j with 0 � i � n and 0 � j � n

0

, and given that

t

i

� F (�

i1

; : : : ; �

in

i

) and t

0

j

� F

0

(�

0

j1

; : : : ; �

0

jn

0

j

) with some n

i

; n

0

j

2 N

0

, then

F � F

0

(and hen
e n

i

= n

0

j

) and �

i1

R�

0

j1

; : : : ; �

in

i

R�

0

jn

0

j

must hold.

(b) We say that g and h are bisimilar (symboli
ally denoted by g$ h) i� there

exists a bisimulation between g and h.

We 
ontinue with an example for the notions de�ned in De�nition 8.1 and De�-

nition 8.2.

Example 8.3 We 
onsider the two 
anoni
al term graph spe
i�
ations

g := h�

0

jE

g

i := h�

0

j f�

0

= F (�

1

; �

2

); �

1

= F (�

0

; �

2

); �

2

= G(�

1

; �

0

)g i (8.1)

h := h �

0

jE

h

i := h �

0

j f�

0

= F (�

0

; �

1

); �

1

= G(�

0

; �

0

)g i (8.2)

in T GS(fF;Gg) . These 
orrespond respe
tively to the two 
y
li
 term graphs

/.-,()*+
F

��~~
~~

~~
~~

��@
@@

@@
@@

@

��

/.-,()*+
F

22

00 /.-,()*+
G

nn

ll and

/.-,()*+
F

11

��@
@@

@@
@@

@

��

/.-,()*+
G

PP
ll

.

It is easy to 
he
k that R := f(�

0

; �

0

); (�

1

; �

0

); (�

2

; �

1

)g is a bisimulation between

g and h a

ording to De�nition 8.2. Hen
e g$h holds, i.e. g and h are bisimilar.
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Figure 9 A Brandt-Henglein-like axiomatization HB

$

0

without symmetry and

transitivity rules of bisimulation equivalen
e between 
anoni
al term graph spe
i�-


ations over signature �.

The axioms and possible marked assumptions in HB

$

0

:

(REFL) h� j f� = C; : : :g i = h � j f� = C; : : :g i (Assm) (g = h)

x

:

(if C is a 
onstant symbol in �) (with x 2Mk )

The derivation rules of HB

$

0

: Rules COMP and rules COMP/FIX with

= g

z }| {

h� jE

0

i
= h

GC

�1

l

h� jE

0

℄ f�

i

= t

i

g i = h

g =

=h

z }| {

h � jE

0

i

GC

�1

r

g = h � jE

0

℄ f�

i

= s

i

g i

(if �

i

is unrea
hable in g) (if �

i

is unrea
hable in h)

hh h� jE

g

i = h � jE

h

i ii

x

D

1

h�

1

jE

g

i = h �

1

jE

h

i : : :

hh h� jE

g

i = h � jE

h

i ii

x

D

n

h�

n

jE

g

i = h �

n

jE

h

i

(COMP/

FIX)

x

(if s.-
. I)

h� j f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

g

| {z }

=E

g

i = h � j f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

h

| {z }

=E

h

i

An axiomatizationHB

$

0

for $ , whi
h is very similar to the `normalized' variant

HB

=

0

of the axiom system for =

�

by Brandt and Henglein, is depi
ted in Figure 9.

Similarly as it was de�ned for its 
ounterpart in HB

=

0

, the rule ARROW/FIX,

appli
ations of the rule COMP/FIX in HB

$

0

are subje
ted to the side 
ondition I:

This requirement demands that the dis
harged assumption 
lass is in fa
t non-empty

(to distinguish su
h appli
ations from ones of the \plain" COMP-rule). The rules

GC

�1

l=r

formalize the inverse operation of garbage 
olle
tion (of useless equations) on


.t.g.s.'s. The following theorem, whi
h is very straightforward to prove, holds for

HB

$

0

:

Theorem 8.4 (Sound- and Completeness of HB

$

0

with respe
t to $). The

axiom system HB

$

0

is sound and 
omplete with respe
t to bisimulation equivalen
e

$ on 
anoni
al term graph spe
i�
ations, i.e. for all 
.t.g.s.'s g and h it holds:

`

HB

$

0

g = h () g$ h :

A `synta
ti
 mat
hing' proof system AK

$

0

for $ is depi
ted in Figure 10, whi
h

system is of a similar kind as the system AK

=

0

for equational testing with respe
t

to =

�

. The rules GC

l=r

in AK

$

0

formalize the operations of garbage 
olle
tion (of

useless equations) on 
.t.g.s.'s . A notion of 
onsisten
y with respe
t to AK

$

0

is

sound and 
omplete for $ . We need the following terminology: An equation ~g =

~

h

22



Grabmayer

Figure 10 A `synta
ti
-mat
hing' proof system AK

$

0

for testing bisimulation

equivalen
e on equations between 
anoni
al term graph spe
i�
ations.

The derivation rules of AK

$

0

:

h� jE

0

℄ f�

i

= t

i

g i = h

GC

l

h� jE

0

i

| {z }

= g

= h

g = h � jE

0

℄ f�

i

= s

i

g i

GC

r

g = h � jE

0

i

| {z }

=h

(if �

i

is unrea
hable in g) (if �

i

is unrea
hable in h)

h� j

=:E

g

z }| {

f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

g

i = h � j

=E

h

z }| {

f� = F (�

1

; : : : ; �

n

)g ℄ E

(0)

h

i

DECOMP

(for 1� i�n)

h�

i

jE

g

i = h �

i

jE

h

i

between two 
.t.g.s.'s ~g and

~

h is 
alled AK

$

0

-
onsistent i� no 
ontradi
tion with re-

spe
t to$ is derivable inAK

$

0

from ~g =

~

h. And furthermore an equation ~g =

~

h be-

tween two 
.t.g.s.'s ~g = h�

0

j f�

0

= t

0

; : : :g i and

~

h = h�

0

0

j f�

0

0

= t

0

0

; : : :g i is agreed

to be a 
ontradi
tion with respe
t to $ i� it holds that t

0

� F (�

01

; : : : ; �

0n

0

) and

t

0

0

� G(�

0

01

; : : : ; �

0

0n

0

0

) for some n

0

; n

0

0

2 N

0

, variables �

01

; : : : ; �

0n

0

, �

0

01

; : : : ; �

0

0n

0

0

and di�erent symbols F;G 2 � (i.e. F 6� G). Relying on these notational agree-

ments the following theorem holds, whi
h is again easy to show.

Theorem 8.5 (Soundness and Completeness with respe
t to $ of


onsisten
y-
he
king relative to AK

$

0

).

The `synta
ti
-mat
hing' system AK

$

0

is sound and 
omplete with respe
t to $ for

the notion of 
he
king 
onsisten
y relative to this system: For all 
anoni
al term

graph spe
i�
ations g and h it holds:

g = h is AK

$

0

-
onsistent () g$h :

Now it is very straightforward to de�ne the notion of p.
.u.'s and 
onsisten
y-

unfoldings in AK

$

0

of equations between 
.t.g.s.'s analogously to De�nitions 6.1

and 6.2. And furthermore also re
e
tion mappings C(�) and D(�) between p.
.u.'s

in AK

$

0

and derivations in HB

$

0


an be de�ned very similar to (and in fa
t easier

than in) De�nition 7.1. In this way we are lead to the following 
ounterpart of

Theorem 7.2 for the two proof systems 
onsidered here.

Theorem 8.6 (A Duality between derivations in HB

$

0

and 
onsisten
y-

unfoldings in AK

$

0

). There is a bije
tive fun
tional relationship between

derivations in HB

$

0

without open assumption 
lasses and 
onsisten
y-unfoldings in

AK

$

0

via re
e
tion mappings C(�) and D(�) : This means that 
ompletely analogous

statements to that in items (i), (ii) and (iii) of Theorem 7.2 are true.

In Figure 11 the assertion of this theorem is exempli�ed for the 
.t.g.s.'s g and

h of Example 8.3 by a suggestively typeset pair (

~

D;

~

C) of a derivation

~

D for g = h
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Figure 11 Example 
onsisting of a derivation in HB

$

0

without open assumption


lasses and of a 
onsisten
y-unfolding in AK

$

0

that are are ea
h other's \re
e
tion".

(The 
anoni
al term graph spe
i�
ations g and h are taken from Example 8.3).

(: : :)

x

(h�

1

jE

g

i = h �

0

jE

h

i)

y

(: : :)

x

h�

2

jE

g

i = h �

1

jE

h

i

y

h�

1

jE

g

i = h �

0

jE

h

i

(: : :)

x

(: : :)

z

h�

1

jE

g

i = h �

0

jE

h

i (: : :)

x

z

h�

2

jE

g

i = h �

1

jE

h

i

x

h�

0

jE

g

i

| {z }

= g in (8.1)

= h �

0

jE

h

i

| {z }

=h in (8.2)

(: : :)

x

(: : :)

z

(: : :)

x

h�

1

jE

g

i = h �

0

jE

h

i

(h�

2

jE

g

i = h �

1

jE

h

i)

z

(: : :)

x

(h�

1

jE

g

i = h �

0

jE

h

i)

y

h�

2

jE

g

i = h �

1

jE

h

i(: : :)

x

(h�

1

jE

g

i = h �

0

jE

h

i)

y

(h�

0

jE

g

i = h �

0

jE

h

i)

x

in HB

$

0

without open assumption 
lasses and a 
onsisten
y-unfolding of g = h in

AK

$

0

, where

~

C and

~

D are ea
h other's \mirror image" via re
e
tion mappings C(�)

and D(�).

9 Con
lusion

In the main part of this paper we have motivated and developed a pre
ise for-

mal relationship between two di�erent proof systems 
on
erned with re
ursive type

equality =

�

on a restri
ted 
lass of re
ursive types in �-term notation with only

type 
onstru
tor !. We showed the existen
e of a bije
tive 
orresponden
e that


an geometri
ally be visualized between (1) derivations without open assumptions

in an extension e-HB

=

0

of a `normalized' version HB

=

0

of the axiomatization for

=

�

by Brandt and Henglein and (2) what we de�ned as 
onsisten
y-unfoldings in

a proof system AK

=

0

�a la Ariola and Klop for equational testing with respe
t to

=

�

. This 
orresponden
e takes pla
e via two re
e
tion mappings C(�) and D(�)

that formalize e�e
tive transformations and that are inverse to ea
h other. Its par-

ti
ularly immediate kind gave us reason to 
all it a duality. { By \developing on

�ne-grained �lm" and analyzing the image of the set of HB

=

0

-derivations under

the re
e
tion mapping C(�) we found that our 
orresponden
e result 
an be spe
ial-

ized to the assertion of a duality taking pla
e via appropriate restri
tions C

0

(�) and

D

0

(�) of the re
e
tion mappings C(�) and D(�) also between (1

0

) derivations without

open assumption 
lasses in our basi
 Brandt-Henglein system HB

=

0

and (2

0

) su
h


onsisten
y-unfoldings in AK

=

0

that ful�ll the parti
ular property D.

Apart from establishing a pre
ise formal link between the systems HB

=

0

and

AK

=

0

by tying together 
losely the notions of \derivability in HB

=

0

" and \
onsis-

ten
y with respe
t to AK

=

0

", the main signi�
an
e of the duality results 
onsists

perhaps in the following: They 
an be used to understand and justify the sound-
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ness of the|at least at �rst sight|seemingly paradoxi
al reasoning formalized by

the rule ARROW/FIX in the variant-Brandt-Henglein system HB

=

0

. In fa
t, our

results fa
ilitated an alternative soundness proof for the system HB

=

0

that is inde-

pendent from the one given in [4℄ and that pro
eeds by `redu
ing' the soundness of

HB

=

0

to the soundness of the system AK

=

0

.

We did not investigate in this paper the proof-theoreti
 relationship between

the axiom system (here denoted by) HB

=

for re
ursive type equality introdu
ed by

Brandt and Henglein and our variant-system HB

=

0

. The symmetry and transitivity

rules present in HB

=

are not part of the formal system HB

=

0

for whi
h a version

of the subformula property is true. It 
an be shown that every HB

=

-derivation

without open assumption 
lasses 
an be `normalized' in a 
ertain e�e
tive way by

`working away' all appli
ations of symmetry and transitivity rules with the result of

derivation in HB

=

0

with the same 
on
lusion and no open assumption 
lasses. For

this as well as for a detailed study of proof-theoreti
 transformations between the

here formally introdu
ed or merely mentioned proof systems for re
ursive types and

a number of further variant-systems we want to refer to our forth
oming work [5℄.

In the last se
tion we indi
ated that the des
ribed duality result is not spe
i�


to the two 
onsidered proof systems for re
ursive types: We sket
hed an analogous

duality theorem for a similar pair of proof systems 
on
erned with the notion of

bisimulation equivalen
e on equational spe
i�
ations of 
y
li
 term graphs.

We have 
ome to realize only very re
ently that the notion of a 
onsisten
y-

unfolding, the de�nition of whi
h was devised very mu
h in an `ad ho
'-manner for

the spe
ial purpose at hand here, does bear an obvious analogy with the 
on
ept of

a `
losed analyti
 tableau' as introdu
ed by R. Smullyan. And in fa
t, the duality

statements developed here lend themselves for being reformulated with respe
t to

an|in ea
h 
ase|suitably de�ned tableau 
al
ulus as assertions about an immedi-

ate fun
tional relationship between proofs in a respe
tive Brandt-Henglein system

and so 
alled `synta
ti
-mat
hing tableaux' in the tableau system. Preliminary for-

mulations of results in this dire
tion regarding proof systems for re
ursive types 
an

be found on the slides [6℄ of a re
ent talk.
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