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Abstract

In this report we collect some general results about the notions of derivability and admis-
sibility of inference rules in Hilbert-style proof systems. For this purpose we introduce,
by analogy with abstract rewrite systems, a general framework for Hilbert systems, in
which it is abstracted from the syntax of formulas and the operational content of rules. In
these “abstract Hilbert systems” a rule is a set of inference steps that is endowed with a
premise and a conclusion function. We adapt the notions of rule derivability and admissi-
bility to abstract Hilbert systems, propose two variants of rule derivability, s-derivability
and m-derivability, and investigate how these four notions are related. Furthermore, we
consider relations that compare abstract Hilbert systems with respect to rule derivability
and admissibility and with respect to (relative) formula derivability. We study the inter-
relations, for all abstract Hilbert systems S1 and S2, of assertions like “S1 and S2 have
the same derivable rules”, “the rules of S1 are admissible in S2, and vice versa” or “S1

and S2 have the same theorems” and give ‘interrelation prisms’, i.e. diagrams in the form
of a prism that capture the relationship between statements of this kind. And lastly, we
explore what consequences derivability or admissibility of a rule R in an abstract Hilbert
system S has for the possibility to eliminate applications of R from derivations in S.

Keywords: Derivable rule, derived rule, admissible rule, Hilbert system, proof system.

1 Introduction

The notions of derivability and admissibility of inference rules are usually studied
in the context of concrete systems of formal logic. A new rule R is generally called
‘derivable’ (or ‘derived’) with respect to a formal system S if its ‘operational be-
haviour’, i.e. the possibility R offers to produce certain conclusions when certain
premises are given, can always be, in some sense, ‘modeled’ or ‘mimicked’ by appro-
priate derivations in S. And a rule R is understood to be ‘admissible’ in a formal

1 Email: clemens@cs.vu.nl ; homepage: http://www.cs.vu.nl/~clemens .
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system S if the collection of theorems of S is closed under applications of R. Con-
trary to rule derivability, the notion of admissibility of rules also has a meaning for
‘logics’ that are defined semantically, i.e. for sets of theorems consisting of all those
formulas defined according to a given syntax that are ‘true’ in a considered class of
semantical structures.

There are at least two conspicuous reasons why precise definitions for these no-
tions are mostly stipulated only for specific classes of formal systems: Firstly, the
definition of rule derivability in a system S requires an exact explanation of when a
rule R is ‘modeled’ by a derivation in S, and such an explanation may hinge substan-
tially on the formal concepts of S or even on the intentional notions formalized 2 by
S. But more fundamentally, both notions presuppose the concept of inference rule,
formalizations of which are often very specific to concrete formal systems because
they usually depend on special features of, for instance, the syntax of formulas (see,
for example, the schematic definition of rules explained in Section 2).

In this report, we collect a number of basic results about rule derivability and
admissibility that are applicable to all Hilbert-style systems of the simplest kind.
By this we mean systems, sometimes 3 just called ‘axiomatic systems’, in which each
rule application α within a derivation D is the inference of a single conclusion from
a finite sequence of premises; each such rule application α does furthermore not
depend on the presence or absence of assumptions in subderivations of D leading
to α. As a framework for all such systems, we introduce the notion of “abstract
Hilbert system”, in which formulas are considered as unspecified objects and every
rule application is treated as an inference step from which only its premises and its
conclusion are relevant.

In Section 2, we first expound the abstract notion of rule that provides the basis
for abstract Hilbert systems, which are defined next in a version with axiom and rule
names (n-AHS’s) and without (AHS’s). We proceed with stipulations for the notions
of derivation, theorem, consequence relation and relative derivability statement in an
AHS. And furthermore, we fix some terminology about certain extensions of AHS’s.
In Section 3, we adapt known definitions for rule derivability and admissibility to
our framework, propose two variant notions of rule derivability, and collect basic
facts about the interrelations of these four introduced notions. For this, we start
from an adaptation to our setting of a lemma given by Hindley and Seldin in [3].
Also, we will present some characterizations of rule derivability and admissibility in
terms of the respective other notion.

In Section 4 we consider, inspired by another lemma in [3], relations that com-
pare AHS’s with respect to rule admissibility, the three introduced notions of rule
derivability and with respect to the relative derivability statements that hold in

2 For example, in the context of a system S of linear logic where an assumption usually gets
‘consumed’ by an inference in which it is used and in this case can be used only once, it seems
generally reasonable to demand that an application α of a rule R is ‘modeled’ by a derivation Dα

in S only if there exists a bijective mapping between the premises of α and the assumptions of
Dα.
3 In [1], Avron calls these systems ‘axiomatic systems’ or ‘Hilbert-systems for theoremhood’.
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them. That is, we are interested in questions of the following kind: Is there a rela-
tionship, and if so then what kind of a relationship, between, for all AHS’s S1 and
S2, assertions like “every rule of S1 is derivable in S2, and vice versa” and “S1 and
S2 have the same theorems”. We will introduce twelve “inclusion relations” between
AHS’s and twelve “mutual inclusion relations” that are induced by respective inclu-
sion relations, and we will then present two theorems that describe the results of a
systematic study concerning the interrelations of these relations. Although n-AHS’s
will not be considered, the results of this section can be carried over to these systems
as well.

In Section 5 we will consider, in the general framework of abstract Hilbert sys-
tems, a question that has stimulated our interest in the notions of rule admissibility
and derivability in the first place: What consequences does the fact that a rule R
is derivable or admissible in a Hilbert-style proof system S have for the possibility
to eliminate applications of R from derivations in S? For this purpose, we will
introduce in Subsection 5.1 four abstract notions of rule elimination in AHS’s and
n-AHS’s. We will then show a direct correspondence between three of the 4 concepts
and respective notions of rule derivability and admissibility (in the fourth case only
a weaker connection will be established). Among the results of Subsection 5.2 it
will be established that, for all n-AHS’s S, if a rule R is derivable in S, but not a
rule of S, the applications of R can be eliminated from arbitrary derivations D by
easy transformation steps. And what is more, it will be proved for this situation
that every derivation D in S can be transformed into a derivation D′ in S without
R-applications and with the same conclusion as D by performing a sufficiently long
sequence of such elimination steps in an arbitrary order .

Due to space limitations, proofs are generally omitted from this paper. However,
they can be found in respective technical appendices A, B, C and D to each of the
sections 2, 3, 4 and 5. 4

2 Abstract Hilbert Systems

In this paper we will study properties of inference rules only in the most basic kind
of proof systems. In the literature, these systems occur under a variety of names,
among them “formal systems”, “axiom(atic) systems” and “Hilbert(-style) systems”.
For instance, in [8] Shoenfield uses the term “formal system” in the sense of for-
mal axiom systems: Every formal system contains as its parts a language, axioms,
and rules of inference; its theorems are defined inductively from axioms and rules.
Similarly, in [1] Avron describes a “formal system” in traditional understanding as
containing the following components:

1. A formal language L with several syntactic categories, one of which is the
category of ‘well-formed formulae’ (wff).

4 These appendices will not be included in all printed versions of this report. However, the full
version of this paper is available at http://www.cs.vu.nl/~clemens/dairahs.ps or can be
obtained via http://www.cs.vu.nl/~clemens , the author’s homepage.
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2. An effective set of wff called ‘axioms’.

3. An effective set of rules (called ‘inference rules’) for derivating theorems from
the axioms.

And then, “the set of ‘theorems’ is usually taken to be the minimal set of wff which
includes all the axioms and is closed under the rules of inference.”

We will only consider proof systems that, with respect to the characterization of
Hilbert systems in the sequent-style formalization due to Avron in [1], correspond to
“pure”, single-conclusioned “Hilbert-type systems for consequence”. In Appendix E
this characterization from [1] is recalled and correspondences are given between three
consequence relation defined on Hilbert systems as studied here and sequent-style
Hilbert systems à la Avron. However, these interrelations can only be formulated
after we have explained our concept of Hilbert system and introduced the mentioned
consequence relations. For this reason, we first give a rather more informal outline
of the class of Hilbert system in which we are interested.

The Hilbert-style proof systems of the sort considered here will be restricted to
those in which applications of rules have an outer appearance as follows: A rule
application is either of the form

A (2.1)

(where A is a formula) with no premise and with a single conclusion (here the
formula A), or of the form

A1 . . . An

A
(2.2)

with a finite sequence of premises (here the sequence of formulas A1, . . . , An ) and
again a single conclusion (here the formula A). And as a further condition on the
Hilbert-style proof systems considered here, we demand that rule applications in
derivations do not depend on occurrences of assumptions in immediate subderiva-
tions. For spelling out this condition rather more formally, we consider, as we will
do throughout this report, derivations as ‘prooftrees’, i.e. as trees that are labelled
by formulas, in place of sequences of formulas (as is done so in many traditional
textbooks on logic). We will only investigate such Hilbert-style proof systems here
in which the following holds: Suppose that R is a rule in a Hilbert-style proof system
S. And suppose that, for some formulas A,A1, . . . , An of S, (2.2) is an application
of R; and let D1, . . . ,Dn be derivations (which may contain unproven assumptions)
with respective conclusions A1, . . . , An . Then the derivation D of the form

D1

A1 . . .

Dn

An

A

(2.3)

is also a derivation in S irrespectively of whether or not assumptions occur in
D1, . . . ,Dn . That is, the inference (2.2) at the bottom of (2.3) does not depend
on the presence or absence of assumptions in subderivations D1, . . . ,Dn of D.

The precise definition of an inference rule with applications of the form (2.1) or
(2.2) in a formal system S is usually based in an essential way on the syntax of the
formula language Fo of S. Frequently, an extension Fo′ of Fo with formulas that
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may contain formula variables is considered 5 and rules are given in a schematic way:
A rule R is based on a pair of the form 〈〈A1, . . . , An〉, A〉, where A1, . . . , An, A ∈ Fo′ .
The “instances” or “applications” of R are then defined to be all inferences of the
form σ̄(A1), . . . , σ̄(An)/σ̄(A) with premises σ̄(A1), . . . , σ̄(An) and with conclusion
σ̄(A), where for an arbitrary substitution σ that assigns formulas of Fo to formula
variables, σ̄ is a homomorphic extension of σ to a function from Fo′ into Fo.

However, for a study of general properties of the notions of rule derivability
and admissibility it is desirable to abstract away from the language-specific details
concerned with substitution when rules are introduced as schemes, because these
details may be hard to capture in a general framework. And furthermore, it is
conceivable that, in some formal systems, rules could be defined in a different, though
still ‘mechanizable’ way. One possible abstract view on how rules may be described
in a formal system is taken in [3]. There, rules are considered to be determined by
extensional ‘rule descriptions’ as follows: Given a set Fo of formulas and a natural
number n ∈ ω\{0}, every n-ary partial function Φ : (Fo)n ⇀ Fo, a rule description,
is understood to determine an n-premise rule R(Φ) for formal systems with formula
set Fo. The instances of R(Φ) are defined to be all those inferences A1, . . . , An/A
with premises A1, . . . , An and conclusion A for which Φ(A1, . . . , An) = A holds.

A notion of inference rule that is based on such rule descriptions may be consid-
ered as too limited, for two reasons: Firstly, it does not allow for rules that enable
to infer different possible conclusions from the same premise(s) such as, for example,
the ∀-elimination rule

∀xA
∀E

A[t/x]

in a natural-deduction system for predicate logic. And secondly, this formalization
tends to identify rules that have the same extensional behaviour, but that might
be defined operationally in a different way. Yet, whereas the first objection could
clearly be met by allowing ‘rule descriptions’ of n-premise rules to be of the form
Φ : (Fo)n ⇀ P(Fo), (or equivalently, to be relations on (Fo)n+1 ), the second seems
to call for a different formal framework.

Our formalization of a general class of Hilbert-style proof systems, to be given be-
low, draws on the notion abstract rewrite system (ARS) in the notation of van Oost-
rom and de Vrijer in [11] and in [9, p. 317]: There, an ARS A is defined as a quadru-
ple 〈A,Φ, src, tgt〉 in which A and Φ are sets whose members are respectively called
objects and steps , and src, tgt : Φ → A are the source and the target functions of
A. The authors of [11] emphasize that this definition “is in concordance with many
papers on abstract rewriting in general and residuals in particular”. Interestingly,
an analogous notion (“indexed 1-complexes”) occurs already in the seminal paper
[5] by Newman. This and other related notions are also mentioned in [11]:

“The terminology used in connection with abstract rewrite systems varies through-
out the literature, depending on the intended application area. For instance, our
abstract rewrite systems are called indexed 1-complexes in [5], reduction complexes

5 No extension is needed if formula variables are already allowed to occur in formulas of S.
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in [7], and graphs in [4]. Objects are called (1)-cells , transitions, moves , events ,
edges or arrows. Source and target are called domain and codomain, start and
terminus, or initial and final .”

For the definition of useful notions in relation to ARS’s, see also Appendix D.2.

Before giving the formal definition of our abstract notion of rules, we need the
following prerequisites: For an arbitrary set X, we denote by Seqsf(X) the set of
all finite-length sequences of elements of X, that is, we let

Seqsf(X) = {()} ∪ {(x1, . . . , xn) | n ∈ ω, x1, . . . , xn ∈ X} ,

where () denotes a sequence of length 0; by lg : Seqsf(X) → ω we designate the
function which to every sequence σ ∈ Seqsf(X) assigns its length lg(σ) (for example,
lg(()) = 0 and lg((x1, x2, x3, x4)) = 4). For all sets X, σ ∈ Seqsf(X) and x ∈ X , we
say that x occurs in σ iff i ∈ ω exists such that σ = (x1, . . . , xi−1, xi, xi+1, . . . , xn)
and x = xi . It is clear what we mean by saying that, for some set X, an element x
of X occurs in a sequence σ ∈ Seqsf(X) n times or that x occurs in such a sequence
σ precisely n times .

Definition 2.1 (An abstract notion of rule). Let Fo be a set. An AHS-rule (a
rule for an abstract Hilbert system—which notion will be defined below) is a triple
of the form 〈Apps, prem, concl〉 , where

• Apps is a set, the members of which are called the applications of R, and

• prem : Apps→ Seqsf(Fo) and concl : Apps→ Fo are the premise and conclusion
functions of R.

We will use the symbolic denotations AppsR, premR and conclR, whenever we want
to refer directly to the application set, the premise and conclusion functions of a
rule R, respectively. And we will use α as a syntactical variable for applications.

In addition to the functions prem and concl associated with a rule, we will now
define the functions arity and premi, for auxiliary purposes. For every set Fo of
formulas and for every rule R = 〈Apps, prem, concl〉 on Fo, we introduce

the function arity : Apps→ ω and

the partial functions premi : Apps ⇀ Fo (for all i ∈ ω\{0})

as follows: arity assigns to every application α of R the number of its premises, i.e.
the length lg(prem(α)) of the formula sequence prem(α). And for all i ∈ ω\{0},
premi(α) assigns to every application α of R its i-th premise, i.e. the i-th formula Ai

in the sequence prem(α) = (A1, . . . , Ai−1, Ai, . . .), whenever this exists; otherwise

premi(α) is undefined. We will use the denotations arityR and prem
(R)
i , whenever

we want to make the dependence of arity and premi upon R explicit. Using these
definitions, a visualization as graph ‘hyperedges’ of two kinds of rule applications α
and α′, with no premises and with a finite, non-zero number of premises, respectively,
is given in Figure 1.
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Figure 1 Visualization as graph ‘hyperedges’ of two kinds of rule applications of
AHS-rules: Of a zero premise application α of a rule R1 and of an application α′ of
a rule R2 such that α′ has a finite, non-zero number of premises.

conclR1(α)

α

prem
(R2)
1 (α′) prem

(R2)
arity(α′)(α

′)

conclR2(α
′)

α′

Definition 2.1 allows rule applications to possess any finite arity. Also, rules
may have applications of different arities. Contrary to traditional formal systems,
axioms are nowadays frequently avoided in Hilbert-style proof systems for the sake
of technical convenience and are modeled by zero-premise rule applications instead.
However, we have decided not to follow this practice here. In our notion of abstract
Hilbert system, which will now be defined, the appearance of axioms as well as of
rules with zero-premise applications will be allowed.

Definition 2.2 (Abstract Hilbert Systems). An abstract Hilbert system (an
AHS) S is a triple 〈Fo,Ax,R〉 consisting of sets Fo, Ax and R such that

• the elements of Fo, Ax and R are respectively called the formulas, the axioms
and the rules of S,

• Ax ⊆ Fo holds, i.e. all axioms of S are formulas of S, and

• every rule R ∈ R is an AHS-rule on Fo.

We denote by H the class of all abstract Hilbert systems. If, for a some abstract
Hilbert system S, we want to refer to its set of formulas, its set of axioms or its set
of rules, then we will use the symbolic denotations FoS , AxS or RS , respectively.

In most usually encountered formal systems, names are given to the axioms and
rules of the system. Apart from being useful identifiers for presenting proof systems
and for reasoning about them, names for axioms and rules are helpful devices for
making formal derivations easier understandable, at least for the human reader:
Frequently, each inference in a derivation is labeled by the respective rule of which
the inference is an instance (or, also called, an application). In practice however,
name labels in derivations are often dropped at inferences for which it is easily
recognizable to which rule they belong.

We have not taken up the concept of names for axioms and rules into our frame-
work of AHS because it introduces a formal technicality, which often makes the
formulation of definitions and theorems rather more complicated than necessary. In
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Figure 2 Visualization as graph ‘hyperedges’ of two kinds of rule applications in
an n-AHS S: Of a zero premise application α of a rule R1 and of an application α′

of a rule R2 such that α′ has a finite, non-zero number of premises.

conclR1(α)

nameS(R1) α

prem
(R2)
1 (α′) prem

(R2)
arity(α′)(α

′)

conclR2(α
′)

nameS(R2) α′

fact, names are inessential for the development of the notions of rule derivability
and admissibility as well as for most of the results presented in this paper. However,
they will play a role in Section 5 where we are concerned with a question about
the possibility to eliminate applications of a considered rule from a given derivation.
There, it will be important to have a notion of derivation at hand with the property
that each inference in a derivation carries a label which denotes the rule according
to an application of which the inference has been formed. For this purpose, we
introduce also the following extended notion of abstract Hilbert system, in which
names are assigned to axioms and rules.

Definition 2.3 (Abstract Hilbert Systems with names). An abstract Hilbert
system with names (for axioms and rules) (an n-AHS) S is a quintupel of the form
〈Fo,Ax,R, Na, name〉 such that:

• Fo, Ax, R and Na are sets, the elements of which are respectively called the
formulas, the axioms , the rules and the names of S.

• 〈Fo,Ax,R〉 is an AHS, which is called the underlying AHS of S.

• name : Ax ∪R → Na is the name function of S, which is injective on the subset
R of its domain Ax ∪R. The function name assigns a name to every axiom of S
and a unique name to every rule of S.

We denote by Hn the class of all abstract Hilbert systems with names. If, for some
n-AHS S, we want to refer to its set of formulas, its set of axioms, its set of rules
or to its name function, then we will use the symbolic denotations FoS , AxS , RS ,
NaS or nameS , respectively.

A visualization as ‘graph hyperedges’ of two kinds of rule applications in an
n-AHS, with no premises and respectively with a finite number of premises, is given
in Figure 2. Clearly, every AHS S = 〈Fo,Ax,R〉 can be extended to an n-AHS S ′

in a trivial way by letting S ′ = 〈Fo,Ax,R, Ax ∪R, idAx∪R〉 , where idAx∪R is the
identity function on Ax ∪R; hereby we use the axioms and rules of S as names for
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themselves in S ′. The fact that in an AHS names are assigned not only to rules, but
also to axioms, makes it possible to formalize the notion of axiom scheme: An axiom
scheme Ax in an n-AHS S is a non-empty set of the form {A ∈ Fo | nameS(A) = na}
for some na ∈ NaS .

For the next definition, we will need the notion of finite multisets over some given
set. For an arbitrary set X, we let

Mf(X) = {M : X → ω |M(x) 6= 0 for only finitely many x ∈ X}

the set of finite multisets over X; we say that x ∈ X occurs in M ∈ Mf(X) iff
M(x) 6= 0, and that, for all n ∈ ω , x ∈ X occurs n times in M iff M(x) = n. The
union of two finite multisets M1,M2 ∈ Mf(X) over a set X is defined by

M1 ⊎M2 : X → ω

x 7→ M1 ⊎M2 = M1(x) +M2(x) .

(More notation about finite multisets is introduced in Appendix D.3 where basic
results about the multiset ordening are gathered). For given sets X, we denote by
P(X) the set of all subsets of X, i.e. the powerset of X, and by Pf(X) the set of
all finite subsets of X. Here and later we will use Γ,∆ as syntactical variables for
multisets of formulas and Σ,Ξ for sets of formulas.

We will now introduce derivations in an AHS or n-AHS S as prooftrees in the
sense of [10]: These are trees in which the nodes are labelled by formulas and in
which the edges make part of rule applications and are not drawn, but are replaced
by horizontal lines that represent applications. Axioms and assumptions appear
as top nodes and lower nodes are formed by applications of rules. In the case of
n-AHS’s, which we will treat first, occurrences of axioms and of inferences that
correspond to rule applications will furthermore be labeled by the names of the
respective axioms or rules.

Definition 2.4 (Derivations in abstract Hilbert systems with names). Let
S = 〈Fo,Ax,R, Na, name〉 be an n-AHS. A derivation D in S is a prooftree that is
the result of carrying out a finite number of construction steps of the three kinds de-
tailed below. Simultaneously with this inductive definition, we define for all deriva-
tions D in S its multiset assm(D) of assumptions (where assm(D) ∈ Mf(Fo)), its
conclusion concl(D) (with concl(D) ∈ Fo) and its (rule application) depth |D|:

(i) For every axiom A ∈ Ax , the prooftree D of the form

(name(A))

A
(2.4)

is a derivation in S with conclusion concl(D) = A and with no assumptions,
i.e. assm(D) = ∅ holds. Its depth is defined as |D| = 0.

(ii) For all formulas A ∈ Fo, the prooftree D consisting only of the formula

A (2.5)
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is a derivation in S with assumptions assm(D) = {A} and with conclusion
concl(D) = A . It has depth |D| = 0.

(iii) Let a rule R ∈ R and an application α ∈ AppsR be given. We distinguish two
cases concerning the arity of α:

Case 1. arityR(α) = 0: Given that conclR(α) = A, the prooftree

name(R)
A (2.6)

is a derivation D in S that has conclusion concl(D) = A and no assump-
tions, i.e. assm(D) = ∅ holds. Its depth is |D| = 1.

Case 2. arityR(α) = n ∈ ω\{0}: Given that prem(R)(α) = (A1, . . . , An) and
that conclR(α) = A , and given further that D1, . . . ,Dn are derivations in
S with respective conclusions A1, . . . , An , the prooftree of the form

D1

A1 . . .
Dn

An name(R)
A

(2.7)

is a derivation D in S with conclusion concl(D) = A and with assumptions
and depth defined by

assm(D) =
n

⊎

i=1

assm(Di) and |D| = 1 + max {|Di| | i ∈ ω, 1 ≤ i ≤ n} .

We denote by Der(S) the set of all derivations in S and let the assumption function
assm : Der(S) → Seqsf(Fo) and the conclusion function concl : Der(S) → Fo
on derivations of S be defined as described above. For arbitrary rules R ∈ R,
applications α ∈ AppsR and derivations D ∈ Der(S), we designate by D(α,R,S) the
derivation in S consisting of an (one-step) inference of the form

name(R)
conclR(α)

or
prem

(R)
1 (α) . . . prem

(R)
arity(α)(α)

name(R)
conclR(α) ,

given that arityR(α) = 0 holds in the left and arityR(α) ∈ ω in the right case, and
will call D(α,R,S) the derivation of S corresponding to the application α of R. We
will also allow to speak of occurrences of inferences D(α,R,S) (for all R ∈ R and
α ∈ AppsR ) in derivations D ∈ Der(S) as of applications of R.

Derivations in AHS’s will now be defined as analogous prooftrees in which infer-
ences corresponding to rule applications are not labeled.

Definition 2.5 (Derivations in abstract Hilbert systems). Let S be an AHS.
A derivation D in S is the result of carrying out a finite number of three kinds of
construction steps that arise from the ones numbered (i), (ii) and (iii) in Defini-
tion 2.4 by replacing each of the prooftrees (2.4) and (2.6), for a respective formula
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A occurring there, by the respective prooftree

A

and by replacing the prooftrees of the form (2.7), for respective formulas A,A1, . . . , An

and derivations D1, . . . ,Dn , by ones of the respective form

D1

A1 . . .

Dn

An

A

(for respective formulas A,A1, . . . , An and derivations D1, . . . ,Dn). Simultaneously
with this inductive definition, for all derivations D in S the multiset assm(D) of
assumptions (where assm(D) ∈ Mf(Fo)), its conclusion concl(D) (where it holds
concl(D) ∈ Fo) and its (rule application) depth |D| are defined by identical stipula-
tions as in the respective construction steps (i), (ii) and (iii) of Definition 2.4. Again,
we denote by Der(S) the set of all derivations in S and let the assumption function
assm : Der(S) → Seqsf(Fo) and the conclusion function concl : Der(S) → Fo on
derivations of S be defined analogously as in Definition 2.4.

For arbitrary rules R ∈ R and applications α ∈ AppsR , we again designate by
D(α,R,S) ∈ Der(S) the derivation consisting of an (one-step) inference of the form

conclR(α)
or

prem
(R)
1 (α) . . . prem

(R)
arity(α)(α)

conclR(α) ,

given that respectively arityR(α) = 0 and arityR(α) ∈ ω hold with respect to the left
and the right inference, and will call D(α,R,S) the derivation of S corresponding to
the application α of R. Again, we will allow to refer to occurrences of inferences
D(α,R,S) (for all R ∈ R and α ∈ AppsR ) in derivations D ∈ Der(S) as applications
of R.

There is obviously an immediate relationship between derivations in an n-AHS S
and derivations in the AHS S0 underlying S: Every derivation D ∈ Der(S) can be
transformed into a derivation D0 ∈ Der(S0) with the same multiset of assumptions
and the same conclusion as D by simply dropping all labels for axioms and rules
from the prooftree D; formally this can be shown by induction on the depth |D|
of a derivation. And conversely, from every derivation D0 ∈ Der(S0) a derivation
D ∈ Der(S) with the same multiset of assumptions and the same conclusion as D0

can be built by labeling every occurrence of an axiom in D0 by its name in S and by
labeling every inference in D0 by the name in S of a rule according to an application
of which the inference is formed.

For the purpose of formally stating some consequences of these easy transforma-
tions, we define, for every n-AHS S and its underlying AHS S0, the function

ˇ: Der(S) → Der(S0)

11
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which maps every derivation D ∈ Der(S) to the derivation Ď ∈ Der(S0) that arises
from D by removing all labels for names and rules from the prooftree D. We have
sketched a proof for the following lemma in the previous paragraph.

Lemma 2.6 Let S be an n-AHS and S0 its underlying AHS. Then it holds that

Der(S0) =
{

Ď | D ∈ Der(S)
}

.

As an immediate consequence of this lemma, we find the following statement.

Proposition 2.7 Let S be an n-AHS and S0 its underlying AHS.

(i) For every derivation D ∈ Der(S) there exists a derivation D0 ∈ Der(S0) with
the same multiset of assumptions, the same conclusion and the same depth as
D, i.e. such that it holds:

assm(D) = assm(D0), concl(D) = concl(D0) and |D| = |D0| . (2.8)

(ii) For every derivation D0 ∈ Der(S0) there exists a derivation D ∈ Der(S) with
the property (2.8).

For use in the next definition as well as in later ones, we define, for arbitrary
sets X, the functions

set : Mf(X) ∪ Seqsf(X) → Pf(X)

mset : Pf(X) ∪ Seqsf(X) → Mf(X)

in the following way: The function set(·) assigns to every multiset M ∈ Mf(X)
the finite set set(M) of all elements of X that occur in M , and to every sequence
σ ∈ Seqsf(X) the finite set set(σ) of all elements of X that occur in σ. And the
function mset(·) assigns to every finite subset Y of X the finite multiset mset(X)
in which every element of Y occurs precisely once and no other elements of X occur,
and to every sequence σ ∈ Seqsf(X) the finite multiset mset(σ) in which every
element of X occurs precisely as often as in σ and no other elements of X occur.

We are now going to associate with every AHS three consequence relations that
differ by specific stipulations for how the assumptions occurring in a derivation are
counted or for in which sense derivations are allowed to make use of assumptions
from a respectively given set or multiset of formulas.

Definition 2.8 (Three consequence relations and three kinds of relative
derivability statements in an AHS or n-AHS). Let S be an AHS or n-AHS

with formula set Fo. We define the consequence relations ⊢S, ⊢
(s)
S

and ⊢
(m)
S

, where

⊢S,⊢
(s)
S
⊆ P(Fo) × Fo and ⊢

(m)
S

⊆ Mf(Fo) × Fo by stipulating for all A ∈ Fo, sets
Σ ∈ P(Fo) and multisets Γ ∈ Mf(Fo):

〈Σ, A〉 ∈ ⊢S ⇐⇒ (∃D∈Der(S))
[

set(assm(D)) ⊆ Σ & concl(D) = A
]

,

〈Σ, A〉 ∈ ⊢
(s)
S

⇐⇒ (∃D∈Der(S))
[

set(assm(D)) = Σ & concl(D) = A
]

,

〈Γ, A〉 ∈ ⊢
(m)
S

⇐⇒ (∃D∈Der(S))
[

assm(D) = Γ & concl(D) = A
]

.

12
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With respect to each of these three consequence relations we consider relative deriv-
ability statements of the respective form Σ ⊢S A , Σ ⊢(s)

S A and Γ ⊢(m)
S A, and we

define what will be meant by saying that such a statement holds : For all A ∈ Fo and
Σ ∈ P(Fo), the statements Σ ⊢S A and Σ ⊢(s)

S A hold if and only if, respectively,

〈Σ, A〉 ∈ ⊢S and 〈Σ, A〉 ∈ ⊢
(s)
S

. And analogously, for all Γ ∈ Mf(Fo) and A ∈ Fo,

the statement Γ ⊢(m)
S A holds if and only if 〈Γ, A〉 ∈ ⊢

(m)
S

.

The consequence relations ⊢S, ⊢
(s)
S

and ⊢
(m)
S

and the induced notions of holding
relative derivability statement correspond to different degrees of ‘resource-conscious-
ness’ in derivations. For every AHS or n-AHS S and for all formulas A ∈ FoS , sets
Σ and multisets Γ of formulas in FoS , the relative derivability statements Σ ⊢S A,
Σ ⊢(s)

S A and Γ ⊢(m)
S A respectively assert the following: That the formula A is deriv-

able in S from a subset of the assumptions in Σ (using every assumption as often as
needed), that A is derivable from the set Σ of assumptions (using every assumption
one or more times) or that A is derivable in S from precisely the assumptions in the
multiset Γ of assumptions (and thereby using every assumption exactly once).

In Appendix E a close connection is established between the three kinds of conse-
quence relations defined above and sequent-style “Hilbert systems for consequence”
(HSC’s) à la Avron 6 . In particular, natural correspondences are established be-
tween the class of AHS’s and the subclass of HSC’s consisting of all “pure” and
single-conclusioned systems. These correspondences yield the statement that, for
every AHS, the consequence relations ⊢

(m)
S

,⊢
(s)
S
,⊢S can be “axiomatized” by re-

spective “pure”, single-conclusioned HSC’s H1, H2 and H3; hereby H1 does not
contain any structural rules, whereas H2 is the extension of H1 with contraction,
and H3 is the extension of H1 with weakening and contraction. Certainly through
this result it becomes apparant that a fourth kind of consequence relation on AHS’s
has not been defined in Definition 2.8, namely one that can be “axiomatized” by a
HSC that contains weakening, but not contraction. This consequence relation ⊢

(mw)

is also introduced in Appendix E, but it is not treated otherwise in this report.

Furthermore it is proven in Appendix E that, for some set Fo, a relation 

with ⊆ Pf(Fo) × Fo (i.e. a relation between sets on Fo and Fo), or of the form
⊆ Mf(Fo) × Fo (i.e. a relation between multisets on Fo and Fo) is “naturally
axiomatizable” by a HSC if and only if it is one of the consequence relations ⊢S,
⊢

(s)
S

, ⊢
(mw)
S

and ⊢
(m)
S

on an AHS S with formula set Fo. Due to this result it can be
said that in this report we study three of the four consequence relations on AHS’s
which can be “naturally axiomatized” by pure, single conclusioned “Hilbert systems
for consequence” à la Avron.

The following proposition is an obvious consequence of Definition 2.8.

Proposition 2.9 Let S be an AHS or an n-AHS with set Fo of formulas. Then for
all formulas A ∈ Fo, for all sets Σ ∈ P(Fo) and for all multisets Γ ∈ Mf(Fo) it
holds:

Γ ⊢(m)
S A ⇒ set(Γ) ⊢(s)

S A , and Σ ⊢(s)
S A ⇒ Σ ⊢S A .

6 For the original definition of “Hilbert-type systems for consequence” see [1, p.26].
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It follows immediately from Definition 2.8 and from Proposition 2.7 that, for
every n-AHS S with underlying AHS S0, the consequence relations ⊢S, ⊢

(s)
S

and

⊢
(m)
S

coincide respectively with the consequence relations ⊢S0
, ⊢

(s)
S0

and ⊢
(m)
S0

; as a
consequence also the respective three kinds of holding relative derivability statements
in S and in S0 are in agreement. In a similar way, also the notions formalized in the
next definition can be seen to coincide for every n-AHS and its underlying AHS.

Definition 2.10 (Theorems, theory of an AHS or n-AHS). Let S be an AHS
or an n-AHS. A formula A ∈ FoS is a theorem of S if and only if ∅ ⊢S A , i.e.
iff there exists a derivation D in S from the empty set of assumptions and with
conclusion A ; in this case we write ⊢S A for ∅ ⊢S A . The theory of S is the set
Th(S) = {A ∈ FoS | ⊢S A} of theorems of S.

Extensions of systems of formal logic are often defined in the following way (see,
for example, the special case of “first-order theories” treated in [8, p. 41]): A formal
system S ′ is called an extension of a formal system S if the language of S ′ is an
extension of the language of S and if every theorem of S is also a theorem of S ′.
Since we will mainly be interested in extensions of formal systems that arise by
adding new formulas, axioms and/or rules, we introduce a particular name for such
extensions.

Definition 2.11 (Extensions by enlargement of AHS’s and n-AHS’s). We
consider AHS’s and n-AHS’s separately from each other in the two items below.

(i) Let S = 〈Fo,Ax,R〉 and S ′ = 〈Fo′, Ax′,R′〉 be two AHS’s. We say that S ′ is
an extension by enlargement of S or that S is a sub-AHS of S ′ if and only if
Fo ⊆ Fo′ , Ax ⊆ Ax′ and R ⊆ R′ , i.e. iff the set of formulas, axioms and rules
of S are respectively contained in the sets of formulas, axioms and rules of S ′.

(ii) Let S = 〈Fo,Ax,R, Na, name〉 and S ′ = 〈Fo′, Ax′,R′, Na′, name′〉 be n-AHS’s.
Then we call S ′ an extension by enlargement of S, or we call S is a sub-n-AHS
of S ′ if and only if it holds that Fo ⊆ Fo′ , Ax ⊆ Ax′ , R ⊆ R′ and Na ⊆ Na′ ,
and if furthermore

name′|Ax∪R = name

(where name′|Ax∪R is the restriction of name′ to the set Ax ∪R ) is the case,
i.e. if the name function of S ′ assigns the same names to the axioms and rules
of S as the name function of S.

The following lemma formulates a special feature of the notion “extension by
enlargement”: For every AHS or n-AHS S, a relative derivability statement that
holds in S does also hold in every extension by enlargement of S.

Lemma 2.12 Let S1 and S2 be two AHS’s, or two n-AHS’s, such that S2 is an
extension by enlargement of S1. Then it holds for all A ∈ FoS1 , Σ ∈ P(FoS1) and
Γ ∈ Mf(FoS1) that

Σ ⊢S1 A =⇒ Σ ⊢S2 A ,

Σ ⊢(s)
S1
A =⇒ Σ ⊢(s)

S2
A ,
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Γ ⊢(m)
S1

A =⇒ Γ ⊢(m)
S2

A .

For extensions by enlargement of AHS’s that arise by addition of new axioms
and/or rules, but not of new formulas, we introduce the following notation.

Definition 2.13 (Adding new axioms or rules to an AHS). Let S be an AHS
of the form S = 〈Fo,Ax,R〉 , let Σ ⊆ Fo and let Rnew be a set of rules over Fo.

(i) By S+Σ we denote the extension by enlargement 〈Fo,Ax∪Σ,R〉 of S.

(ii) By S+Rnew we denote the AHS 〈Fo,Ax,R∪Rnew〉 . If Rnew = {R} , then we
will allow to write S+R for S+Rnew .

An easy, later important relationship between relative derivability statements in
an AHS S and in extensions by enlargement of S is formalized in the lemma below.

Lemma 2.14 Let S be an AHS with set Fo of formulas. Then it holds for all
A ∈ Fo and ∆,Σ ∈ P(Fo) :

∆ ⊢S+Σ A ⇐⇒ ∆ ∪ Σ ⊢S A .

Extensions by enlargement of n-AHS’s that arise by adding new axioms from a
set Σ or by adding new rules from a set R∗ cannot be denoted uniquely in the same
convenient way as S+Σ and S+R∗ were defined for AHS’s Σ because in extensions
by enlargement of n-AHS’s also unique names have to be assigned to the new axioms
and rules. We choose here not to introduce a specific notation for such extensions
of n-AHS’s, but define a notation for n-AHS’s that arise from other n-AHS’s by
removing a set of rules instead.

Definition 2.15 (Removing rules from n-AHS’s and AHS’s).

(i) Let S = 〈Fo,Ax,R, Na, name〉 be an n-AHS and let R∗ be a set of rules on Fo.
Then we denote by S−R∗ the n-AHS 〈Fo,Ax,R\R∗, Na, name|Ax∪(R\R∗)〉. If
R∗ = {R} for some rule R on Fo, then we allow to write S−R for S−R∗ .

(ii) Similarly, we define, for all AHS’s S = 〈Fo,Ax,R〉 and all sets R∗ of rules on
Fo, the AHS S−R∗ as 〈Fo,Ax,R\R∗〉 ; also in this case, we allow to write
again S−R for S−R∗ if R∗ = {R} for some rule R on Fo.

It is clearly the case for all n-AHS’s or AHS’s S and all sets R∗ of rules on FoS
that S is an extension by enlargement of S−R∗ .

3 Rule derivability and admissibility in AHS’s

In this section we will formally define the notions of rule derivability and admissibil-
ity in abstract Hilbert systems, propose two variants of rule derivability, and gather
a number of immediate consequences of these definitions. We will also give two
results about the interdependence between rule derivability and admissibility that
we did not encounter in the literature (Proposition 3.4 and Theorem 3.5 below).
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Our focus is on AHS’s instead of on n-AHS’s here, since names for rules and
axioms do not play a relevant part in the definitions of rule derivability and admis-
sibility. But for later use, we will give these definitions also with respect to n-AHS’s,
and moreover, we will state most results for n-AHS’s, too. In some statements below,
the notation specific to AHS’s for adding new axioms or rules to abstract Hilbert
systems will be used, and therefore these assertions will only apply to AHS’s. How-
ever, such results can always be generalized to n-AHS’s by reformulating them into
formally somewhat more complicated statements in which the respective extensions
of n-AHS’s by new axioms or rule are described precisely. We will not do so here in
the desire to keep necessary technicalities to a miminum.

The informal stipulation for the notion of rule admissibility given the Introduc-
tion, according to which a rule R is called admissible with respect to a formal system
S iff the theory of S is closed under applications of R, has a precise meaning in the
framework of abstract Hilbert systems. It therefore leads to a single formal notion
of rule admissibility in AHS’s, which will be defined in Definition 3.1 below.

The situation is somewhat different, however, for rule derivability: As it was
laid out in the Introduction, a rule R is usually called derivable with respect to
a formal system S iff every application of R can be ‘modeled’ or ‘mimicked’ by a
derivation in S. Therefore we need to formalize the precise circumstances under
which a derivation does actually ‘mimic’ a rule application in an AHS before the
definition of rule derivability in AHS’s can be given. We shall now propose three
clarifications for the term “mimicking derivation” for an application in an AHS, one
for each of the three kinds of consequence relations defined in Definition 2.8. This
will lead to three different notions of rule derivability in AHS’s.

Let S be an AHS, D a derivation in S, R a rule on FoS , and α an application
of R. We say that the derivation D mimics α with respect to ⊢S, or that D is a
mimicking derivation for α in S with respect to ⊢S if and only if

set(assm(D)) ⊆ set(prem(α)) & concl(D) = concl(α) (3.1)

holds, i.e. iff the set of assumptions of D is contained in the set of assumptions of α,
and if D has the same conclusion as α. And similarly, by demanding equal sets or
equal mulitsets of assumptions as well as same conclusions, we say that D mimics
α with respect to ⊢

(s)
S

, and that D mimics α with respect to ⊢
(m)
S

if and only if the
assertion (3.2), and respectively, if (3.3) holds:

set(assm(D)) = set(prem(α)) & concl(D) = concl(α) (3.2)

assm(D) = mset(prem(α)) & concl(D) = concl(α) (3.3)

In this way three formal notions of rule derivability arise for AHS’s: In Defini-
tion 3.1 below, we will agree, for each consequence relation ⊢

(·)

S
∈

{

⊢S,⊢
(s)
S
,⊢

(m)
S

}

,
on a formal clause that amounts to the stipulation

R is ⊢
(·)

S
-derivable in S ⇐⇒ (∀α ∈ AppsR)(∃D ∈ Der(S))

[

D mimics α with respect to ⊢
(·)

S

]

. (3.4)
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However, the use of the concept “mimicking derivation” will actually be avoided.
And for every AHS S, we will speak of derivability, s-derivability and m-derivability
in S rather than of ⊢S-, ⊢

(s)
S

- and ⊢
(m)
S

-derivability in S.

Definition 3.1 (Rule derivability and admissibility in AHS’s and n-AHS’s).
Let S be an AHS or an n-AHS and let R = 〈AppsR, prem, concl〉 be a rule on FoS .

(i) The rule R is derivable in S if and only if

(∀α ∈ AppsR)
[

set(prem(α)) ⊢S concl(α)
]

(3.5)

holds. Similarly, we say that R is s-derivable or that R is m-derivable if and
only if, respectively, the assertions (3.6) and (3.7) hold:

(∀α ∈ AppsR)
[

set(prem(α)) ⊢(s)
S concl(α)

]

, (3.6)

(∀α ∈ AppsR)
[

mset(prem(α)) ⊢(m)
S concl(α)

]

. (3.7)

(ii) The rule R is admissible in S if and only if it holds that

(∀α ∈ AppsR)
[

(∀A ∈ set(prem(α))) [ ⊢S A ] =⇒ ⊢S concl(α)
]

. (3.8)

As a consequence of the fact noted in Section 2 that, for every n-AHS S and its
underlying AHS S0, the consequence relations ⊢S, ⊢

(s)
S

, ⊢
(m)
S

and ⊢S0
, ⊢

(s)
S0

, ⊢
(m)
S0

coincide respectively, we find that also the notions of derivability, s-derivability,
m-derivability and admissibility of rules are respectively the same for every n-AHS
and its underlying AHS.

A number of easy consequences of Definition 3.1 are gathered in the following
Proposition that is an adaptation to our framework of AHS’s and slight reformula-
tion 7 of Lemma 6.14 on p. 70 in the book [3] by Hindley and Seldin.

Proposition 3.2 Let S be an AHS and let R be a rule on the set of formulas of S.
Then the following statements holds:

(i) R is admissible in S iff the AHS S+R does not possess more theorems than S.

(ii) If R is derivable in S, then R is also admissible in S. The implication in the
opposite direction does not hold in general.

(iii) If R is derivable in S, then R is derivable in any extension S ′ of S that is
obtained from S by adding new formulas, axioms and/or rules, that is, then R
is derivable in every extension by enlargement of S.

Proposition 3.2 (i) can be viewed to provide further justification, in addition to
the informal stipulation for rule admissibility explained above, for the use of the
term “admissible rule”: If a rule R is admissible in an AHS S, then R is not only
“admissible” in S in the sense that the theory of S is closed under applications of

7 This concerns item (iii) of Proposition 3.2 and item (iii) of Lemma 6.14 on p. 70 in [3]: Hindley
and Seldin do not consider extensions that arise by extending the set of formulas of a formal system.
However, they consider extensions that result by introducing new axioms and/or new rules.
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S, but also in the sense that allowing R as an additional rule for an extension S+R
of S does not lead to an AHS with more theorems than S.

In the following proposition the relationship between the three introduced notions
of rule derivability is explained.

Proposition 3.3 Let S be an AHS or an n-AHS, and let R be a rule on the set of
formulas of S. If R is m-derivable in S, then it is also s-derivable in S. And if R
is s-derivable in S, then it is also derivable in S. Neither of the implications in the
opposite direction holds in general. Furthermore the assertions in (ii) and (iii) of
Proposition 3.2 hold also if “derivable” is replaced by “s-derivable” and “m-deriv-
able”, respectively.

The following proposition contains a characterization of the exact circumstances
under which a rule is admissible, but not derivable in an AHS. And it furthermore
asserts that the property of a rule R to be admissible in an AHS S is equivalent to
the property of a certain ‘restriction’ R0 of R to be derivable in S.

Proposition 3.4 Let S be an AHS or an n-AHS and let R = 〈Apps, prem, concl〉
be a rule on FoS .

(i) Suppose that R is admissible in S. Then it holds that:

R is not derivable in S ⇐⇒

⇐⇒ (∃α ∈ Apps)
[ (

(∃A ∈ set(prem(α)))[ 6 ⊢S A ]
)

&

& set(prem(α)) 6 ⊢S concl(α)
]

. (3.9)

(ii) Let R0 be the rule that arises by restricting the applications of R to all those that
exclusively have theorems of S as premises, i.e. let R0 = 〈Apps0, prem0, concl0〉,
where

Apps0 = {α ∈ Apps | (∀A ∈ set(prem(α))) [⊢S A ]} (3.10)

and where prem0 and concl0 are the respective restrictions of prem and concl to
the set Apps0. Then it holds that

R is admissible in S ⇐⇒ R0 is derivable in S . (3.11)

We conclude this section by stating a theorem that establishes a link between
the assertions of items (ii) and (iii) in Proposition 3.2. It gives, for all AHS’s S, two
closely related characterizations of rule derivability in S in terms of rule admissibility
in certain extensions of S.

Theorem 3.5 Let S be an AHS with set Fo as its set of formulas, and let R be a
rule on Fo. Then the following three statements are equivalent:

(i) R is derivable in S.

(ii) R is admissible in every AHS S+Σ with Σ ∈ P(Fo) arbitrary.

(iii) R is admissible in every extension by enlargement of S.
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Following [3], we extend the notions of derivability and admissibility of rules also
to formulas.

Definition 3.6 (Derivability and admissibility of formulas in AHS’s). Let
S be an AHS on an n-AHS with formula set Fo. We call a formula A ∈ Fo both
admissible and derivable in S as well as s-derivable and m-derivable in S, if and
only if ⊢S A holds, i.e. iff A is a theorem of S.

The reason for stipulating the notions of admissibility, derivability, s-derivability
and m-derivability to coincide on formulas consists in the following easy observation:
Within derivations, axioms of an AHS have the same ‘behaviour’ as zero-premise rule
applications. In fact, by formulating axiom schemes as zero-premise rules, every AHS
S can be transformed into an AHS S ′ with an empty set of axioms such that the same
relative derivability statements are true in S and in S ′; in this way axioms of an AHS
S can be viewed as zero-premise rules in a closely related AHS S ′. On zero-premise
rules, however, there is agreement between the notions of admissibility, derivability,
s-derivability and m-derivability, as an obvious consequence of Definition 3.1.

4 Relations between abstract Hilbert systems

In this section we consider relations that compare AHS’s with respect to earlier
introduced concepts such as relative derivability statements and the notions of rule
derivability and admissibility. For this we have drawn inspiration from a lemma in
[3] (cf. Remark 4.14 below for details). First, we will introduce a total of twenty-four
relations between AHS’s, and then we will state results about their interrelations.

We do not consider n-AHS’s in this section since names for axioms and rules do
not play any role in the concepts developed below. It should be mentioned, however,
that all results given here about interrelations between relations on AHS’s hold also
as statements about analogous interrelations between analogously defined relations
on n-AHS’s (except for the case of Corollary 4.15 which must be reformulated for
n-AHS’s, see a remark below).

The kind of relations between AHS’s that we will consider are “inclusion rela-
tions” �P,Q, which are respectively based on properties P and Q of objects in AHS’s
such as formulas, theorems, rules and relative derivability statements. As properties
we will hereby use, for example, “is theorem in the considered system”, “is admis-
sible rule on the formulas of the considered system” and similar ones. For given
properties P and Q of this sort, the definition of the inclusion relation �P,Q with
respect to P and Q will always be of the form that for all S1,S2 ∈ H

S1 ∼P,Q S2 ⇐⇒

{

Every formula in S1 is also a formula of S2, and
every object x in S1 having the property P does
also appear in S2 as an object with the property Q.

}

is stipulated; a relation �P,Q defined in this way will always be considered as a
subclass of H × H . And furthermore we will fix, for every inclusion relation �P,Q ,
a mutual inclusion relation ∼P,Q ⊆ H × H with respect to P and Q that is induced

19



Grabmayer

by �P,Q: For all S1,S2 ∈ H , we define

S1 ∼P,Q S2 ⇐⇒ S1 �P,Q S2 & S2 �P,Q S1 . (4.1)

By an inclusion or mutual inclusion relation with respect to only a single property P
we will mean the inclusion or mutual inclusion relation �P,P or ∼P,P , respectively.

The concrete inclusion and mutual inclusion relations defined below, will actually
not be denoted in the form �P,Q or ∼P,Q using the properties P and Q with respect
to which they are defined, but they will be denoted by the symbols � and ∼ with
attached sub- and superscripts that abbreviate the name of the respective relation.
We start by defining inclusion and mutual inclusion relations with respect to the
property “is theorem” and with respect to “is relative derivability statement”; the
latter property consists of three variants, one for each of the three consequence
relations defined in Definition 2.8.

Definition 4.1 (The relations �th and �rth, �
(s)
rth, �

(m)
rth between AHS’s).

(i) We define the relation �th on the class H by stipulating for all S1,S2 ∈ H :

S1 �th S2 ⇐⇒ FoS1 ⊆ FoS2 & (∀A∈FoS1)[ (⊢S1 A) ⇒ (⊢S2 A) ] .

(ii) We define the relations �rth and �(m)
rth on H by stipulating for all S1,S2 ∈ H

S1 �rth S2 ⇐⇒ FoS1 ⊆ FoS2 &

& (∀Σ ∈ P(FoS1)) (∀A∈FoS1)
[

(Σ ⊢S1 A) ⇒ (Σ ⊢S2 A)
]

,

S1 �
(m)
rth S2 ⇐⇒ FoS1 ⊆ FoS2 &

& (∀Γ ∈ Mf(FoS1)) (∀A∈FoS1)
[

(Γ ⊢(m)
S1

A) ⇒ (Γ ⊢(m)
S2

A)
]

.

The relation �(s)
rth on H is defined in an analogous way to �rth involving relative

derivability statements with respect to ⊢(s)
S1

and ⊢(s)
S2

instead of with respect to
⊢S1 and ⊢S2.

By adapting the notion of extension of a formal system (explained preceding
Definition 2.11 above) to abstract Hilbert systems, we also define: For all AHS’s S1

and S2, S2 is an extension of S1 if and only if S1 ∼th S2 holds.

Definition 4.2 (The relations ∼th and ∼rth, ∼(s)
rth, ∼(m)

rth between AHS’s).

The relations ∼th , ∼rth , ∼(s)
rth and ∼(m)

rth are the mutual inclusion relations induced

by the inclusion relations �th , �rth , �(s)
rth and �(m)

rth , respectively.

For all S1,S2 ∈ H such that S1 ∼th S2 holds, we say that S1 and S2 are equivalent
or theorem equivalent . If, with S1,S2 ∈ H , S1 ∼rth S2 holds, we say that S1 and S2

are equivalent with respect to relative theoremhood .

Here are two examples of alternative formulations for these definitions: For all
AHS’s S1 and S2, the assertion S1 �

(s)
rth S2 expresses that all formulas of S1 are also

formulas of S2, and that all relative derivability statements in S1 with respect to ⊢
(s)
S1
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are also relative derivability statements in S2 with respect to ⊢
(s)
S2

; and S1 ∼th S2

means that S1 and S2 have the same formulas and the same theorems. Some basic
properties of the relations defined above are stated in the following proposition.

Proposition 4.3 The relations �th, �rth, �(s)
rth and �(m)

rth are pre-order relations,

i.e. they are reflexive and transitive, and the relations ∼th, ∼rth, ∼
(s)
rth and ∼(m)

rth are
equivalence relations.

Using the equivalence relation ∼th , the assertion (i) of Proposition 3.2 can be
reformulated as: For all AHS’s S and all rules R on FoS , it holds that

R is admissible in S ⇐⇒ S+R ∼th S . (4.2)

Since clearly S �th S+R holds for all AHS’s S and rules R on FoS , the right side
of the logical equivalence in (4.2) can be weakened to S+R �th S such that the
resulting assertion is equivalent with (4.2). We will see in Corollary 4.15 below that,
similar to the characterization of rule admissibility in (4.2), there exist characteri-
zations for two of the three notions of rule derivability in terms of mutual inclusion
relations from Definition 4.2.

In close connection with Theorem 3.5, the following proposition formulates char-
acterizations of the relations �rth and ∼rth in terms of the relations �th and ∼th,
respectively.

Proposition 4.4 For all S1,S2 ∈ H the following two logical equivalences hold:

S1 �rth S2 ⇐⇒ (∀Σ ∈ P(FoS1)) [ S1+Σ �th S2+Σ ] , (4.3)

S1 ∼rth S2 ⇐⇒ (∀Σ ∈ P(FoS1)) [ S1+Σ ∼th S2+Σ ] . (4.4)

We continue by defining inclusion and mutual inclusion relations between AHS’s
with respect to the property “is admissible rule” and, respectively, with respect to
the properties “is derivable rule”, “is s-derivable rule” and “is m-derivable rule”.

Definition 4.5 (The relations �adm and �der , �
(s)
der , �

(m)
der between AHS’s).

(i) We define the relation �adm on the class H by stipulating for all S1,S2 ∈ H :

S1 �adm S2 ⇐⇒ FoS1 ⊆ FoS2 &

& (∀A ∈ FoS1)
[

A is adm. in S1 ⇒ A is adm. in S2

]

&

& (∀R, R is rule on FoS1)
[

R is admissible in S1 ⇒ R is admissible in S2

]

.

(ii) We define the relations �der , �(s)
der and �(m)

der on H by analogous stipulations
as for �adm that rely respectively on the notions of derivability, s-derivability
and m-derivability of rules instead of on the notion of rule admissibility: For
example, we stipulate that S1 �

(m)
der S2 holds if and only if the following three

conditions are met: The formulas of S1 are contained among the formulas of
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S2, every formula of S1 that is m-derivable in S1 is also m-derivable in S2, and
every rule on FoS1 that is m-derivable in S1 is also m-derivable in S2.

Definition 4.6 (The relations ∼adm and ∼der , ∼(s)
der , ∼(m)

der between AHS’s).

The relations ∼adm , ∼der , ∼(s)
der and ∼(m)

der are the mutual inclusion relations in-

duced by the inclusion relations �adm , �der , �(s)
der and �(m)

der , respectively.

For all S1,S2 ∈ H such that S1 ∼adm S2 (S1 ∼der S2 , S1 ∼
(s)
der S2 , S1 ∼

(m)
der S2 )

holds, we say that S1 and S2 are equivalent with respect to rule admissibility (with
respect to rule derivability , w.r.t. rule s-derivability , w.r.t. rule m-derivability).

As an example for an alternative verbal formalization of a stipulation in Defini-
tion 4.6, we give the following: For all AHS’s S1 and S2 the assertion S1 ∼adm S2

expresses that S1 and S2 have the same formulas and the same admissible formu-
las and rules. The following proposition is as easy a consequence of the last two
definitions as Proposition 4.3 was one of Definition 4.1 and Definition 4.2.

Proposition 4.7 The relations �adm , �der , �
(s)
der and �(m)

der are pre-order relations,

i.e. they are reflexive and transitive, and the relations ∼adm , ∼der , ∼
(s)
der and ∼(m)

der

are equivalence relations.

As formulated in the following lemma, there exist respective immediate connec-
tions between, on the one hand, the relations �adm and ∼adm , and on the other
hand, the notions “conservative extension” and “extension” of AHS’s.

Lemma 4.8 (i) For all S1,S2 ∈ H it holds

S1 �adm S2 ⇐⇒ Th(S2) ⊇ FoS1 ∨

∨ S2 is conservative extension of S1 . (4.5)

(ii) For all S1,S2 ∈ H with the same set of formulas, i.e. with FoS1 = FoS2 , it holds

S1 �adm S2 ⇐⇒ S1 ∼th S2 ∨ S2 is inconsistent .

(iii) For all S1,S2 ∈ H it holds

S1 ∼adm S2 ⇐⇒ S1 ∼th S2 . (4.6)

Finally, we will define inclusion and mutual inclusion relations with respect to
the pair (P,Q) of properties, where P stands for “is rule of the considered system”
and Q denotes “is admissible rule in the considered system”, and with respect to
three analogous pairs of properties that arise by replacing “admissible” in Q by
“derivable”, “s-derivable” or “m-derivable”, respectively.

Definition 4.9 (The relations �r/adm and �r/der , �
(s)
r/der , �

(m)
r/der on AHS’s).

(i) We define the relation �r/adm on the class H by stipulating for all S1,S2 ∈ H :

S1 �r/adm S2 ⇐⇒ FoS1 ⊆ FoS2 & (∀A ∈ AxS1)
[

A is admissible in S2

]

&

& (∀R ∈ RS1)
[

R is admissible in S2

]

.
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(ii) We define the relations �r/der , �
(s)
r/der and �(m)

r/der on H by analogous stipulations
as for �r/adm that rely respectively on the notions of derivability, s-derivability
and m-derivability of rules instead of on the notion of admissibility: For exam-
ple, we let S1 �

(s)
r/der S2 be true if and only if it holds that: All formulas of S1

are also formulas of S2, and all axioms and rules of S1 are s-derivable in S2.

Definition 4.10 (The relations ∼r/adm and ∼r/der , ∼
(s)
r/der , ∼

(m)
r/der on AHS’s).

The relations ∼r/adm , ∼r/der , ∼(s)
r/der and ∼(m)

r/der are the mutual inclusion relations

induced by the inclusion relations �r/adm , �r/der , �(s)
r/der and �(m)

r/der , respectively.

For all AHS’s S1 and S2 such that S1 ∼r/adm S2 (S1 ∼r/der S2 , S1 ∼
(s)
r/der S2 ,

S1 ∼
(m)
r/der S2 ) holds, we say that S1 and S2 are rule equivalent with respect to rule

admissibility (rule equivalent with respect to rule derivability , rule equivalent w.r.t.
rule s-derivability , rule equivalent w.r.t. rule m-derivability).

The mutual inclusion relations ∼r/der and ∼r/adm correspond to the two notions
“rule-equivalence” and “theorem-equivalence” as defined by Hindley and Seldin in
[3, p. 71]. Since in Definition 4.2 we have already defined a notion of theorem equiv-
alence as a relation that is not designated symbolically in [3] and that is intended to
reflect the meaning of this term more directly, we have chosen to use longer explicit
names for the mutual inclusion relations in Definition 4.10.

For the 8 relations defined in the two definitions above, transitivity is no longer
obvious. In fact, it does not hold for �r/adm (see Example C.1 in Appendix C for a

counterexample), nor for �(s)
r/der and ∼(s)

r/der (see Example C.2 for a counterexample

applicable in these two cases). However, we clearly find the following statement.

Proposition 4.11 The relations �r/adm , �r/der , �(s)
r/der and �(m)

r/der are reflexive,

and the relations ∼r/adm , ∼r/der , ∼
(s)
r/der and ∼(m)

r/der are reflexive and symmetric.

Our main theorem, which we will give now, settles the question of how the twelve
introduced inclusion relations between abstract Hilbert systems are interrelated.

Theorem 4.12 (Interrelations between introduced inclusion relations).

For all AHS’s S1 and S2, the implications and logical equivalences shown in Figure 3
(a) hold between assertions of the form S1 � S2 , where � is an inclusion relation
defined in Definitions 4.1, Definition 4.5 or Definition 4.9. Implication arrows ap-
pearing in Figure 3 (a) that are not inverted indicate that the respective implication
in the opposite direction does not hold in general.

Quite obviously, Theorem 4.12 also describes the precise relationships towards
each other of the twelve inclusion relations introduced above. For example, Theo-
rem 4.12 implies directly that the relations �rth, �der and �r/der coincide, and that

only two of the three relations �(s)
rth, �

(s)
der and �(s)

r/der coincide, namely �(s)
rth and �(s)

der ,

whereas both are properly contained in �(s)
r/der .

The following theorem states that the interrelations asserted by Theorem 4.12
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Figure 3 Two ‘interrelation prisms’: (a) Interrelations stated, for arbitrary AHS’s
S1 and S2, by Theorem 4.12 between assertions involving the twelve defined inclusion
relations, and (b) interrelations stated, for all AHS’s S1 and S2, by Theorem 4.13
between assertions involving the twelve defined mutual inclusion relations.

S1 �
(m)
der S2

S1 �
(s)
der S2

S1 �der S2

S1 �adm S2

S1 �r/adm S2

S1 �r/der S2

S1 �
(s)
r/der S2

S1 �
(m)
r/der S2

S1 �
(s)
rth S2

S1 �
(m)
rth S2

S1 �th S2

S1 �rth S2

S1 ∼r/adm S2

S1 ∼r/der S2

S1 ∼
(s)
r/der S2

S1 ∼
(m)
rth S2

S1 ∼
(s)
rth S2

S1 ∼rth S2

S1 ∼th S2

S1 ∼adm S2

S1 ∼der S2

S1 ∼
(s)
der S2

S1 ∼
(m)
der S2

S1 ∼
(m)
r/der S2

(a) (b)

between the twelve introduced inclusion relations carry over to analogous interrela-
tions between the twelve respectively induced mutual inclusion relations.

Theorem 4.13 (Interrelations between introduced mutual incl. relations).
For all AHS’s S1 and S2, the implications and logical equivalences shown in Fig-
ure 3 (b) hold between assertions of the form S1 ∼ S2 , where ∼ is a mutual inclusion
relation defined in Definitions 4.2, Definition 4.6 or Definition 4.10. Again in this
situation, implication arrows appearing in Figure 3 (b) that are not inverted indicate
that the respective implication in the opposite direction does not hold in general.

Theorem 4.13 is mainly a corollary to Theorem 4.12: Except for four additional
implication arrows in Figure 3 (b) that involve the relations ∼adm , ∼r/adm , ∼th ,
and except for the clause asserting that not inverted implications in Figure 3 (b)
do not hold in general, Theorem 4.13 follows in a direct way from Theorem 4.12:
This is because every implication arrow in Figure 3 (a) ‘induces’ a corresponding
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implication arrow in Figure 3 (b) due to (4.1), the way in which a mutual inclusion
relation is linked via its definition to the inclusion relation by which it is induced.

Remark 4.14 Theorem 4.13 was actually inspired by and is a substantial gen-
eralization of Lemma 6.16 in [3, p. 71], which if adapted to our framework and
terminology asserts that for all AHS’s S1 and S2

S1 ∼r/adm S2 ⇐⇒ S1 ∼th S2 (4.7)

holds; this is also stated by Theorem 4.13. We extended the equivalence (4.7) to
a further logical equivalence with the relation ∼adm , which does not appear in [3].
Furthermore the arising triangle of implications has been carried over to analogous
triangles of implications involving respectively the relations ∼r/der , ∼der and ∼rth

as well as the relations ∼(m)
r/der , ∼

(m)
der and ∼(m)

rth ; and we found a weaker relationship

between the relations ∼(s)
r/der , ∼

(s)
der and ∼(s)

rth (of these additional relations only ∼r/der

appears also in [3], and that is under the name of “rule-equivalence”).

We conclude this section with an easy consequence of Theorem 4.13: For the
notions of derivability and m-derivability of rules, similar characterizations as the
one stated in (4.2) for rule admissibility can be given. For s-derivability, however,
only a weaker statement holds.

Corollary 4.15 Let S be an AHS and let R be a rule on the set of formulas of S.
Then the following implications and equivalences hold:

R is admissible in S ⇐⇒ S+R ∼th S , (4.8)

R is derivable in S ⇐⇒ S+R ∼rth S , (4.9)

R is s-derivable in S ⇐= S+R ∼(s)
rth S , (4.10)

R is m-derivable in S ⇐⇒ S+R ∼(m)
rth S . (4.11)

For a counterexample to the implication “⇒” in (4.10) see Example C.10 in
Appendix C. As we have remarked at the start of this section, Corollary 4.15 is the
only statement in this section whose statement cannot immediately be transferred
to n-AHS’s. This is due to the fact that we have not defined n-AHS’s of the form
S+R for an n-AHS S and a set of rules R on FoS . However, Corollary 4.15 can
quite obviously be reformulated in the following way:

Corollary 4.16 Let S be an AHS and let R be a rule of S. Then the following
implications and equivalences hold:

R is admissible in S−R ⇐⇒ S ∼th S−R , (4.12)

R is derivable in S−R ⇐⇒ S ∼rth S−R , (4.13)

R is s-derivable in S−R ⇐= S ∼(s)
rth S−R , (4.14)

R is m-derivable in S−R ⇐⇒ S ∼(m)
rth S−R . (4.15)
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And we want to close this section by stating that the statement of Corollary 4.16
is also true for n-AHS’s S and relations ∼th, ∼rth, ∼

(s)
rth and ∼(m)

rth between n-AHS’s
that are defined analogously as the respective, here introduced relations between
AHS’s.

5 How can derived and admissible rules be eliminated from
derivations in abstract Hilbert systems?

In this section we investigate the question what consequences the fact that a rule R is
admissible, derivable, s-derivable or m-derivable in an AHS S has for the possibility
of eliminating applications of R from derivations in S+R ; also, we will consider
an analogous question for n-AHS’s. First we will introduce, in Subsection 5.1, four
abstract notions of rule elimination: Roughly, we will stipulate that a rule R can
be eliminated from a derivation D in an AHS or n-AHS S, if D ‘can be replaced’
by a derivation D′ in S without applications of R. For this, D′ must of course
demonstrate all relative derivability statements in S that are demonstrated by D.
Recall that for every derivation D in an AHS or n-AHS S at least one relative
derivability statement arises, which relates the multiset of assumptions of D, the
set of assumptions of D, or a superset of the set of assumptions of D with the
conclusion of D. The multiset of assumptions of a derivation can be thought of
as the ‘input’ of the derivation; the conclusion as the ‘output’ of the derivation.
In analogy with the three concepts of “mimicking derivation” for rule applications
defined in Section 3, we will propose three formalizations of the concept “mimicking
derivation” for derivations in AHS’s or n-AHS’s; we will hereby stipulate when two
derivations have the same or a ‘similar’ ‘input/output-behaviour’. Based on these
definitions, we will formulate different abstract notions of rule elimination and show
a number of characterizations for them in terms of rule derivability and admissibility.
This part of the present section will apply to both AHS’s and n-AHS’s.

And secondly, in Subsection 5.2, we will turn to a study of effective rule elim-
ination. This will only be carried out in n-AHS’s because the involved notions of
reduction lean themselves much better to a formalization in abstract Hilbert systems
with names. Among similar questions, we will be concerned with what consequences
the property of a rule R to be derivable in an n-AHS S has for the possibility to
eliminate applications of R from derivations in S effectively . For this, we will in-
troduce abstract rewrite systems of “rule elimination by mimicking steps” using
the fact that considered applications of a rule R that is derivable in an n-AHS S
can always be eliminated from derivations in Der(S) by replacing them through
mimicking derivations. Our main finding in this respect will be that, for derivable
rules, abstract rewrite systems of “rule elimination by mimicking steps” are strongly
normalizing. And we will give similar results with respect to the variant notions of
rule derivability, s-derivability and m-derivability.
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5.1 Rule elimination in derivations of AHS’s and n-AHS’s

For the purpose of defining abstract notions of rule elimination, we need to fix three
binary relations between derivations that formalize notions of ‘similarity’ between
the assumptions and conclusions of derivations. These three relations on derivations
will be reminiscent of the notions of “mimicking derivations” for rule applications
defined at the beginning of in Section 3, and if viewed suitably, they can be seen to
be proper extensions of respective relations defined there.

Let S1 and S2 be AHS’s or n-AHS’s, more precisely, let S1,S2 ∈ H ∪ Hn, and
let D1 ∈ Der(S1) and D2 ∈ Der(S2) be derivations. We say that D1 mimics D2

(symbolically denoted by D1 - D2 ), or that D2 is mimicked by D1, if and only if

set(assm(D1)) ⊆ set(assm(D2)) & concl(D1) = concl(D2) (5.1)

holds, i.e. iff D1 and D2 have the same conclusion and the set of assumptions of D1

is contained among the set of assumptions of D2.

Furthermore, we say that D1 s-mimics D2 (abbreviated by D1 ≃(s) D2 ), or that
D2 is s-mimicked by D1, if and only if it

set(assm(D1)) = set(assm(D2)) & concl(D1) = concl(D2) (5.2)

holds, i.e. iff D1 and D2 have the same conclusion and the same set of assumptions.
And similarly, we stipulate that D1 m-mimics D2 (denoted by D1 ≃(m) D2 ), or that
D2 is m-mimicked by D1, if and only if the assertion

assm(D1) = assm(D2) & concl(D1) = concl(D2) (5.3)

holds, i.e. thus if D1 and D2 have the same conclusion and the same multiset of
assumptions. Clearly, -, ≃(s) and ≃(m) define binary relations on the class

Der =
⋃

{Der(S) | S ∈ H ∪ Hn} (5.4)

of derivations in an AHS or n-AHS, i.e. these relations are classes of pairs that are
formed from derivations in an AHS or n-AHS. They have the following easy verifiable
properties.

Proposition 5.1 (i) The relation - on the class Der is reflexive and transitive.
And the relations ≃(s) and ≃(m) on Der are equivalence relations.

(ii) It holds that ≃(m) ⊆ ≃(s) ⊆ - .

As mentioned above, the here introduced notions of mimicking, s-mimicking and
m-mimicking derivations can be viewed as generalizations for derivations of the
notions of mimicking derivation with respect to ⊢S, with respect to ⊢

(s)
S

and with

respect to ⊢
(m)
S

for applications of rules (in some AHS or n-AHS S), which have
been defined in Section 3. To make this precise, we recall that every application
α of a rule R in an AHS S corresponds to a derivation D(α,R,S) consisting of the
(one-step) inference between the sequence of premises and the conclusion of α; such
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derivations D(α,R,S) have been defined in Definition 2.2 and in Definition 2.3. Using
this correspondence, we find that for one-step inference derivations the notions of
mimicking derivation coincide with respective earlier definitions. More precisely, for
all AHS’s S, rules R on FoS , applications α ∈ AppsR and derivations D ∈ Der(S),
it is obvious to see that the following three equivalences hold:

D mimics α w.r.t. ⊢S ⇐⇒ D mimics the derivation D(α,R,S) in S , (5.5)

D mimics α w.r.t. ⊢
(s)
S

⇐⇒ D s-mimics the derivation D(α,R,S) in S , (5.6)

D mimics α w.r.t. ⊢
(m)
S

⇐⇒ D m-mimics the derivation D(α,R,S) in S . (5.7)

In the case of n-AHS’s, (5.5), (5.6) and (5.7) hold for all n-AHS’s S, derivations
D ∈ Der(S) and applications α ∈ AppsR of rules R in S. In this way we indeed
recognize that the earlier defined notions of mimicking derivation for rule applica-
tions have now been extended to respective notions of mimicking derivation for more
general derivations than just one-step inferences.

It is an immediate consequence of the equivalences (5.5), (5.6) and (5.7) that
the definitions of rule derivability and admissibility can be restated exclusively in
terms of the notions for mimicking derivation introduced here. This is because the
alternative definitions in (3.4) of the three notions of rule derivability can now be
reformulated appropriately. For instance in the case of rule derivability, it holds for
all AHS’s and n-AHS’s S and for all rules R of S that

R is derivable in S−R ⇐⇒

⇐⇒ (∀α ∈ AppsR) (∃Dα∈Der(S−R))
[

Dα - D(α,R,S)

]

. (5.8)

Clearly, analogous reformulations of the definitions of rule s-derivability and m-deriv-
ability can be given by replacing - on the right-hand side of (5.8) by ≃(s) or ≃(m).
And in a similar way, an alternative formulation for the definition of rule admissi-
bility can take the form

R is admissible in S−R ⇐⇒

⇐⇒ (∀α ∈ AppsR)
[

(∀A ∈ set(prem(α)))[⊢S A ] ⇒

⇒ (∃D ∈ Der(S−R)) [ Dα - D(α,R,S) ]
]

for all AHS’s and n-AHS’s S and for all rules R of S (this logical equivalence remains
valid if - is replaced by ≃(s) or by ≃(m)).

Based on the three above defined notions of “mimicking derivation” for deriva-
tions, we can now stipulate three different meanings for the expression “rule elimi-
nation holds” for derivations in abstract Hilbert systems: For all AHS’s or n-AHS’s
S and for every rule R of S, we say that the applications of R can, respectively,
be eliminated , s-eliminated or m-eliminated from a derivation D ∈ Der(S) if and
only if a derivation D′ ∈ Der(S−R) exists that respectively mimics, s-mimics or
m-mimics D.

By this we are lead to the following definition, in which 4 different meanings
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are given to the term “rule elimination holds” in abstract Hilbert systems (with
or without names). For all AHS’s and n-AHS’s S and for every rule R of S, it
will be defined that “R-elimination holds in Der(S)” of derivations of S “with
respect to - ”,“with respect to ≃(s) ” or “with respect to ≃(m) ”, if and only if for all
derivations D in S the applications ofR can, respectively, be eliminated, s-eliminated
or m-eliminated from D. However, we will state these definitions directly in terms
of respective notions of “mimicking derivation”. And as a forth notion of rule
derivability, we will stipulate, for all AHS’s or n-AHS’s S and all rules R of S,
that “R-elimination holds in S” if and only if, for every derivation D in S without
assumptions , the applications of R can be eliminated from D.

Definition 5.2 (Four notions of rule elimination). Let S be an AHS or n-AHS,
and let R be a rule of S.

(i) We say that R-elimination holds in S if and only if every derivation D in S
with no assumptions can be mimicked by a derivation D′ in S−R , i.e. iff it
holds that:

(∀D∈Der(S))
[

set(assm(D)) = ∅ ⇒ (∃D′∈Der(S−R)) [D′ - D ]
]

. (5.9)

(ii) We say that R-elimination holds in Der(S) with respect to - if and only if
every derivation D of S can be mimicked by a derivation D′ of S−R, i.e. iff

(∀D∈Der(S)) (∃D′∈Der(S−R)) [D′ - D ] (5.10)

holds. Similarly, we say that R-elimination holds in Der(S) with respect to
≃(s) or that R-elimination holds in Der(S) with respect to ≃(m) if and only if,
respectively the assertions (5.11) and (5.12) hold:

(∀D∈Der(S)) (∃D′∈Der(S−R)) [D′ ≃(s) D ] , (5.11)

(∀D∈Der(S)) (∃D′∈Der(S−R)) [D′ ≃(m) D ] . (5.12)

As a rather easy consequence of Corollary 4.15, we give the following theorem,
which contains characterizations of three of the four defined notions of rule elimina-
tion in terms of respective notions of rule admissibility or rule derivability. For rule
elimination with respect to the s-mimicking relation ≃(s) only a weaker statement
holds.

Theorem 5.3 (Notions of rule elimination versus notions of rule admissi-
bility and derivability). Let S be an AHS or an n-AHS and let R be a rule

of S. Then the following logical implications and equivalences hold:

R-elimination holds in S ⇐⇒ R is admissible in S , (5.13)

R-elimination holds in Der(S) w.r.t. - ⇐⇒ R is derivable in S , (5.14)

R-elimination holds in Der(S) w.r.t. ≃(s) =⇒ R is s-derivable in S , (5.15)

R-elimination holds in Der(S) w.r.t. ≃(m) ⇐⇒ R is m-derivable in S . (5.16)
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The implication “⇐” in (5.15) does not hold in general. It is easy to see that
this is an immediate consequence of the fact that the implication “⇒” in (4.10) of
Corollary 4.15 does not hold in general (as is shown by Example C.10, which can
also provide a counterexample for “⇐” in (5.15)).

5.2 Effective rule-elimination by (s-, m-) mimicking steps in derivations of n-AHS’s

In this subsection it is our goal to investigate what implications the fact that, for
an n-AHS S and a rule R of S, R-elimination in Der(S) is possible according to
one of the above three notions of rule elimination, has for the problem of elimi-
nating applications of R from arbitrary given derivations of S in a stepwise and
effective manner . The reason, why we will only be interested in n-AHS’s for study-
ing this question, consists in the following fact: According to our definition of rules
for abstract Hilbert systems, different rules R1 and R2 may possess applications
α1 ∈ AppsR1 and α2 ∈ AppsR2 with the same sequence of premises and with the
same conclusion, i.e. with prem(α1) = prem(α2) and with concl(α1) = concl(α2).

8

Therefore the concrete problem of eliminating all applications of a rule R of S from
a derivation D in an AHS S is not well-formulated in general because the expression
“D contains applications of R” does not necessarily always have an unambiguous
meaning: It may be the case that D ∈ Der(S−R), but that D contains applications
of R, i.e. that D contains inferences D(α,R,S) for applications α of R (every such in-
ference D(α,R,S) must then also be an inference D(α′,R′,S) for an application α′ of a
rule R′ in Der(S−R)). In n-AHS’s however, this problem does not occur since rules
possess unique names and all one-step inferences within derivations are labeled by
the name of a rule according to an application of which the inference is formed. As
a consequence, for every derivation D and for every rule R of an n-AHS S it can be
determined whether D contains applications of R or not.

For motivating abstract rewrite systems of rule elimination “by mimicking steps”,
let S be an arbitrary n-AHS and let R be a rule of S such that R-elimination holds
in Der(S). Then it follows from Theorem 5.3 that R is actually derivable in S. This
entails that every application α of R can be mimicked by at least one derivation Dα

in S−R . And hence it is possible to “replace” arbitrary applications of R within
a considered derivation of S by a respective mimicking derivation. More precisely,
in every derivation D ∈ Der(S) that contains R-applications mimicking steps of
one of the two forms explained below are possible in which an application α of R
is eliminated by being replaced through a mimicking derivation Dα for α. Firstly,
elimination steps φ for zero-premise R-applications that are of the form

φ :
name(R)

(A)

D0

→(R)
mim

Dα

(A)

D0

(5.17)

where

8 It is also the case that one rule may possess two different applications with the same sequence
of premises and with the same conclusion.
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• D0 ∈ Der(S), Dα ∈ Der(S−R), A ∈ Fo , a particular occurrence of the assump-
tion A in D0 has been singled out by the expression (A);

• there exists an application α ∈ AppsR with prem(α) = () and concl(α) = A such
that
– the derivation D(α,R,S) that corresponds to α in S is substituted into the singled

out occurrence (A) of the assumption A in D0 with the result of the derivation
on the left-hand side in (5.17), and

– Dα mimics α in S−R and is substituted into the singled out occurrence (A) of
A in D0 with the result of the derivation on the right hand side in (5.17).

And secondly, elimination steps φ for R-applications with a non-zero number of
premises that are of the form

φ :

D1

A1 . . .
Dn

An name(R)
(A)

D0

→(R)
mim

Di1

(Ai1) . . .

Dik

(Aik)

Dα

(A)

D0

(5.18)

whereby

• D0,D1, . . . ,Dn ∈ Der(S), A1, . . . , An, A ∈ FoS , Dα ∈ Der(S−R), n ∈ ω\{0} and
k ∈ ω are natural numbers (or zero); furthermore we denote by D and D′ the
derivations on the left and on the right side of (5.18), respectively;

• a particular occurrence of the assumption A in D0 has been singled out by the
expression (A) such that D is the result of substituting the prooftree drawn above
(A), which ends with an application of R, into this particular occurrence of the
assumption A in D0 ; and accordingly, D′ is the result of substituting the prooftree
drawn above (A) in D0 into this particular occurrence of the assumption A in D0;

• there exists α ∈ AppsR such that prem(R)(α) = (A1, . . . , An) and conclR(α) = A
such that
– the derivation Dα ∈ Der(S−R) mimics α,
– assm(Dα) = mset((Ai1 , Ai2 , . . . , Aik)) for some i1, . . . , ik ∈ ω with the property

1 ≤ i1, i2, . . . , ik ≤ n . The expressions (Ai1), . . . , (Aik) at the top of Dα in D′

represent single occurrences of the assumptions Ai1 , . . . , Aik in Dα, which to-
gether make up all assumptions of Dα. Within D′ the derivations Dij are substi-
tuted into the occurrences (Aij ) of the assumptions Aij of Dα for j ∈ {1, . . . , k}
respectively (if assm(Dα) = ∅ , there is no need, and also no possibility, for sub-
stituting some of the derivations D1, . . . ,Dn above assumptions of Dα).

These kinds of steps give rise to the ARS →(R)
mim (S) of R-elimination by mim-

icking steps that is defined by

→(R)
mim(S) = 〈Der(S),Φ

(R)
mim(S), src, tgt〉 ,
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where the steps Φ
(R)
mim(S) of →(R)

mim(S) are formally given by

Φ
(R)
mim(S) =

{

〈D,
(A)

D0

,Dα〉
∣

∣ D,D0,D′ ∈ Der(S), Dα ∈ Der(S−R), D is the
left-hand side of a transition shown in (5.17) or (5.18),
D0 is an end-part of D with a singled out occurrence of the
assumption A in it, which in D corresponds to the
conclusion of an R-application, and the subderivation Dα

of D′ mimics the displayed application, called α, of R in D
}

(5.19)

and the source and target functions of →(R)
mim(S) by

src : Φ
(R)
mim(S) −→ Der(S) tgt : Φ

(R)
mim(S) −→ Der(S)

〈D,
(A)

D0

,Dα〉 7−→ src(〈. . .〉) = D , 〈D,
(A)

D0

,Dα〉 7−→ tgt(〈. . .〉) = D′ ,

where D′ stands for the right-hand side in (5.17) or (5.18) of a respective step of

→(R)
mim(S) given by 〈D,

(A)

D0

,Dα〉 .

Due to our assumption that R is derivable in S−R , mimicking steps (5.17) and

(5.18) of the ARS →(R)
mim(S) are always possible in derivations of S that contain

R-applications and are not possible in S-derivations that do not contain R-applica-
tions. It follows that

NF(→(R)
mim(S)) = Der(S−R) , (5.20)

where we have used the notation to denote the set of normal forms of an ARS A by
NF(A) (we will use this notation again, below; for its more formal definition, see
Appendix D.2).

And furthermore, every derivation D ∈ Der(S) can be transformed into a deriva-
tion D ∈ Der(S−R) by a finite number of successive mimicking steps in which al-
ways topmost occurrences of applications of R are considered and eliminated: No
new applications of R are introduced by a mimicking step for the elimination of a
topmost occurrence of R, and therefore D′ can be reached from D by precisely n
mimicking steps, where n is the number of applications of R in D. These arguments
sketch the proof of the following lemma.

Lemma 5.4 Let S be an n-AHS, and R be a rule of S that is derivable in S−R .

(i) A derivation of S is a normal form of →(R)
mim (S) if and only if it does not

contain applications of R, that is, (5.20) holds.

(ii) The ARS →(R)
mim (S) of R-elimination by mimicking steps is weakly normalizing.

Furthermore, we define the ARS →(R)
s-mim(S) of R-elimination by s-mimicking

steps and the ARS →(R)
s-mim(S) of R-elimination by s-mimicking steps respectively
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by

→(R)
s-mim(S) = 〈Der(S),Φ

(R)
s-mim(S), src′, tgt′〉 , (5.21)

→(R)
m-mim(S) = 〈Der(S),Φ

(R)
m-mim(S), src′′, tgt′′〉 , (5.22)

where the set of steps Φ
(R)
s-mim(S) of →(R)

s-mim(S) and Φ
(R)
m-mim(S) of →(R)

m-mim(S) are de-
fined by stipulations analogous to (5.19) in which the word “mimics” is respectively
replaced by “s-mimics” and “m-mimics”.

The two following lemmas can be proven analogously as Lemma 5.4 above.

Lemma 5.5 Let S be an n-AHS, and R be a rule of S that is s-derivable in S−R .

(i) A derivation D of S is a normal form of →(R)
s-mim (S) if and only if it does not

contain applications of R, i.e. iff D ∈ Der(S−R) holds.

(ii) The ARS →(R)
s-mim (S) of R-elimination by s-mimicking steps is weakly normal-

izing.

Lemma 5.6 Let S be an n-AHS, and R be a rule of S that is m-derivable in S−R.

(i) A derivation of S is a normal form of →(R)
m-mim (S) if and only if it does not

contain applications of R, i.e. iff D ∈ Der(S−R) holds.

(ii) The ARS →(R)
m-mim(S) of R-elimination by m-mimicking steps is weakly normal-

izing.

In our motivation for an ARS of the form →(R)
mim(S), where S is an n-AHS and

R is a rule of S, we have argued that if R-elimination holds in S with respect to
- then mimicking steps for the elimination of R-applications are always possible
in such derivations of S that actually contain R-applications. Similarly, it is easy
to see that, for an n-AHS S and a rule R of S, if R-elimination holds in S with
respect to ≃(s) , or if R-elimination holds in S with respect to ≃(m) , then eliminations
of R-applications by s-mimicking steps, or respectively by m-mimicking steps, are
always possible in derivations of S that contain R-applications.

But until now we have not considered the question whether rule elimination
by (s-, m-) mimicking steps is actually “correct” in relation to the earlier defined
notions of rule elimination with respect to - (≃(s), ≃(m)). That is, we have not
asked for an n-AHS S, a rule R of S and a derivation D ∈ Der(S): Given that a
derivation D′ in S without R-applications has been reached from D as the result
of a finite sequence of successively applied mimicking steps, does the derivation D′

actually mimick D ? And thus: Can D′ in this case really be considered to be the
result of R-elimination with respect to - ?

For a formal investigation of this question, we define a respective notion of “cor-
rectness” for each of the three kinds of ARS’s of rule elimination by mimicking steps
defined above. Let S be an n-AHS and R be a rule of S. We say that “R-elimination
by mimicking steps in Der(S) is correct with respect to - ” if and only if for all
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D,D′ ∈ Der(S)

(∃φ ∈ (Φ
(R)
mim(S))∗)

[

φ : D
∗
→

(R)

mim D′ & D′ ∈ Der(S−R)
]

=⇒

=⇒ D′ - D (5.23)

holds. And similarly, we agree to say that “R-elimination by s-mimicking steps
(by m-mimicking steps) in Der(D) is correct with respect to ≃(s) (with respect to
≃(m))” if and only if for all D,D′ ∈ Der(S) (5.24) holds (or respectively, iff (5.25)
holds):

(∃φ ∈ (Φ
(R)
s-mim(S))∗)

[

φ : D
∗
→

(R)

s-mim D′ & D′ ∈ Der(S−R)
]

=⇒

=⇒ D′ ≃(s) D (5.24)

(∃φ ∈ (Φ
(R)
m-mim(S))∗)

[

φ : D
∗
→

(R)

m-mim D′ & D′ ∈ Der(S−R)
]

=⇒

=⇒ D′ ≃(m) D (5.25)

The following lemma gathers important statements about the correctness of rule
elimination by (s-, m-) mimicking steps with respect to the relations - and ≃(m) .

It is easy to verify that, for all mimicking steps φ in →(R)
mim(S) (where S is an

n-AHS and R is a rule of S), the target tgt(φ) of φmimics the source src(φ) of φ; and
that similarly, for all m-mimicking steps, the target tgt(φ) of φ m-mimics the source
src(φ) of φ. These observations are generalized to the respective reflexive-transitive

closures of →(R)
mim(S) and →(R)

m-mim(S) in the next lemma.

Lemma 5.7 Let S be an n-AHS and R be a rule of S. Furthermore let
∗
→

(R)

mim ,
∗
→

(R)

s-mimand
∗
→

(R)

m-mim be the respective reflexive-transitive closures of the three ARS’s

→(R)
mim(S) , →(R)

s-mim(S) and →(R)
m-mim(S) .

Then for all D,D′ ∈ Der(S) it holds that:

(∃φ ∈ (Φ
(R)
mim(S))∗)

[

φ : D
∗
→

(R)

mim D′
]

=⇒ D′ - D , (5.26)

(∃φ ∈ (Φ
(R)
s-mim(S))∗)

[

φ : D
∗
→

(R)

s-mim D′
]

=⇒ D′ - D , (5.27)

(∃φ ∈ (Φ
(R)
m-mim(S))∗)

[

φ : D
∗
→

(R)

m-mim D′
]

=⇒ D′ ≃(m) D . (5.28)

However, for s-mimicking steps φ in an ARS →(R)
s-mim(S), where S is an n-AHS

and R is a rule of S, it does not hold in general that the derivation tgt(φ) s-mimics
the derivation src(φ), although tgt(φ) still always mimics src(φ). This means that
- cannot be replaced by ≃(s) in (5.27). And what is more, (5.27) in Lemma 5.7
cannot be replaced by (5.24).

Lemma 5.8 There exist n-AHS’s S such that, for some rules R of S, R-elimination
by s-mimicking steps in Der(S) is not correct with respect to ≃(s).

The questions about the correctness of ARS’s by (s-, m-) mimicking steps with
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respect to the mimicking relations - (≃(s) and ≃(m) ) are now settled by the fol-
lowing theorem, which is an immediate consequence of Lemma 5.7 and Lemma 5.8.

Theorem 5.9 (Correctness of rule elimination by (s-, m-) mimicking steps
with respect to - (with respect to -, with respect to ≃(m))). Let S be

an n-AHS and R be a rule of S. Then it holds:

(i) R-elimination by mimicking steps in Der(S) is correct with respect to - .

(ii) R-elimination in Der(S) by s-mimicking steps is correct with respect to - ; but
it is not in general also correct with respect to ≃(s) .

(iii) R-elimination in Der(S) by m-mimicking steps is correct with respect to ≃(m) .

We are now going to state a lemma that is of central importance for our results
about the introduced ARS’s of rule elimination: It asserts that for n-AHS’s S and
rules R of S that are derivable in S−R , R-elimination by mimicking steps does
always terminate for derivations D of S: This means that no matter in what order
R-elimination by mimicking steps takes place starting with a derivation D ∈ Der(S),

a normal form of →(R)
mim(S), and by Lemma 5.4 consequently a derivation in S with-

out R-applications, is reached in a finite number of steps.

Lemma 5.10 Let S be an n-AHS and let R be a rule of S that is derivable in S.
Then the ARS →(R)

mim(S) of R-elimination in Der(S) by mimicking steps is strongly
normalizing.

The proof of this lemma proceeds by reducing the termination problem of an
arbitrary ARS of rule elimination by mimicking steps to the well-foundedness of the
multiset ordening on Mf(ω). It is given in Appendix D and the necessary formal
prerequisites about ARS’s, the multiset ordening and the method for reducing the
termination problem of one ARS to the termination problem of another, are given
in three earlier sections of this appendix.

Since sub-ARS’s of strongly normalizing ARS’s are again strongly normalizing,
and since, for all AHS’s and n-AHS’s S and for all rules R of S, each of the ARS’s
→(R)

s-mim (S) and →(R)
m-mim (S) are sub-ARS’s of →(R)

mim (S), the following lemma is an
immediate consequence of Lemma 5.10.

Lemma 5.11 Let S be an n-AHS and let R be a rule of S.

(i) If R is s-derivable in S−R , then the ARS →(R)
s-mim (S) of R-elimination in

Der(S) by s-mimicking steps is strongly normalizing.

(ii) If R is m-derivable in S−R , then the ARS →(R)
m-mim (S) of R-elimination in

Der(S) by m-mimicking steps is strongly normalizing.

Based on above definitions, we are now going to introduce three notions of
“strong rule elimination”: For all n-AHS’s S and all rules R of S, we will agree
on a stipulation to the effect that “strong R-eliminations by mimicking steps holds
in S” if and only if R-elimination by mimicking steps terminates on every derivation
D of S with the result of a derivation D′ in S without R-applications. And in an
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analogous way the notions of “strong rule elimination by s-mimicking steps” and of
“strong rule elimination by m-mimicking steps” will be defined.

Definition 5.12 (Strong rule elimination by (s-, m-) mimicking steps). Let
S be an n-AHS and let R be a rule of S.

We say that strong R-elimination by mimicking steps holds in Der(S) iff

→(R)
mim(S) is strongly normalizing, and NF(→(R)

mim(S)) = Der(S−R) (5.29)

holds. And similarly, we say that strong R-elimination by s-mimicking steps holds
in Der(S), and respectively, that strong R-elimination by m-mimicking steps holds
in Der(S) if and only if, respectively, (5.30) and (5.31) holds:

→(R)
s-mim(S) is strongly normalizing, and NF(→(R)

s-mim(S)) = Der(S−R) , (5.30)

→(R)
m-mim(S) is strongly normalizing, and NF(→(R)

m-mim(S)) = Der(S−R) . (5.31)

Our main theorem below of the second part of this section characterizes each of
the three notions of strong rule elimination defined above in terms of a corresponding
notion of rule derivability.

Theorem 5.13 (Strong rule elimination by (s-, m-) mimicking steps). Let
S be an n-AHS and let R be a rule of S. Then the following three logical equivalences
hold:

Strong R-elimination by mimicking steps holds in Der(S) ⇐⇒

⇐⇒ R is derivable in S−R , (5.32)

strong R-elimination by s-mimicking steps holds in Der(S) ⇐⇒

⇐⇒ R is s-derivable in S−R , (5.33)

strong R-elimination by m-mimicking steps holds in Der(S) ⇐⇒

⇐⇒ R is m-derivable in S−R . (5.34)

As a corollary to this theorem and to Theorem 5.3 we find the following connec-
tions between notions introduced in Subsection 5.1 and in the present subsection.

Corollary 5.14 (Notions of strong rule elimination versus notions of rule
elimination). Let S be an n-AHS and let R be a rule of S. Then the following

three statements hold:

Strong R-elimination by mimicking steps holds in Der(S) ⇐⇒

⇐⇒ R-elimination holds in Der(S) w.r.t. - , (5.35)

strong R-elimination by s-mimicking steps holds in Der(S) ⇐=

⇐= R-elimination holds in Der(S) w.r.t. ≃(s) , (5.36)

strong R-elimination by m-mimicking steps holds in Der(S) ⇐⇒

⇐⇒ R-elimination holds in Der(S) w.r.t. ≃(m) . (5.37)
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We conclude this section by emphasizing a practical consequence of Corollary 5.14
and of Theorem 5.9. Let S be an n-AHS and let R be a rule of S. Then R-elimina-
tion by mimicking steps in Der(S) is “complete” for the notion of R-elimination in
Der(S) with respect to - from Subsection 5.1 in the following sense: If R-elimina-
tion holds in Der(S) with respect to - , then for every D ∈ Der(S) a derivation
D′ with

D′ ∈ Der(S−R) & D′ - D , (5.38)

i.e. an R-application-free derivation in S that mimics D, can be found effectively as
the result of applying a long enough sequence of arbitrary, but composable mimick-
ing steps to D. Or in other words, if R-elimination holds in Der(S) with respect
to - , then for every D ∈ Der(S) a derivation D′ with (5.38) can be produced by
performing the following iteration as often as necessary until termination: If the
reached derivation D̃ contains applications of R, carry out an arbitrary mimicking
step to D̃ (under our assumption this is always possible because of (5.35) and Defi-
nition 5.12), thereby eliminating a particular application of R; if D̃ does not contain
applications of R, terminate. After finitely many iterations a derivation D′ with
(5.38) will always be reached. Termination follows hereby from our assumption be-
cause of (5.35) and the definition of “strong R-elimination by mimicking steps holds
in Der(S)”; correctness, i.e. the fact that the resulting derivation D′ mimics D,
follows from Theorem 5.9.

And in an analogous sense, R-elimination by m-mimicking steps in Der(S) can
be viewed to be “complete” for the notion of R-elimination in Der(S) with respect
to the m-mimicking relation ≃(m) from Subsection 5.1.

6 Conclusion

Our aim in this report was to investigate those general aspects of the notions of
rule derivability and admissibility in Hilbert-style proof systems that can be studied
independently from assumptions about the syntax of formulas, about how rules are
given formally and in which way they determine inferences. Hereby we have only
considered Hilbert-style systems of the simplest kind, where inferences in derivations
do not depend assumptions that have (probably) been made in subderivations. In
Section 2 we introduced, by analogy with abstract rewrite systems as defined in [9],
the framework of abstract Hilbert systems (AHS’s), and the variant framework of
abstract Hilbert systems with names for rules and axioms (n-AHS’s).

In Section 3, we adapted known definitions for rule derivability and admissi-
bility to abstract Hilbert systems. In the case of rule derivability, we used three
formalizations of the term “mimicking derivation” for a rule application and intro-
duced three variants, rule derivability, s-derivability and m-derivability by stipula-
tions that amount to: A rule R is derivable (s-derivable, m-derivable) in an abstract
Hilbert system S if and only if for every application of R there exists a mimicking
(s-mimicking, m-mimicking) derivation in S. Next we gathered basic facts about
the interrelations of these (together with rule admissibility) four notions and gave
two results about characterizations of rule derivability and admissibility in terms of
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the respective other notion.

In Section 4, we looked at relations that compare AHS’s with respect to their ad-
missible, derivable, s-derivable or m-derivable rules and with respect to their relative
derivability statements. For this purpose, we introduced twelve inclusion relations
and twelve mutual inclusion relations that are induced by respective inclusion rela-
tions. As the result of a systematic examination of the relationship of these relations
towards each other, we then gave two theorems: These describe the logical impli-
cations and equivalences that hold in general, and respectively that do not hold in
general, between statements that compare two AHS’s with respect to one of the
introduced inclusion or mutual inclusion relations. And we used pictures for ‘in-
terrelation prisms’ as a means to formulate these theorems as well as to visualize
them.

In the last section, Section 5, we investigated what general consequences the
fact that a rule R is admissible, derivable, s-derivable or m-derivable in an AHS
or n-AHS S has for the possibility to eliminate R-eliminations from derivations in
S. We introduced four different abstract notions of “rule elimination”. For this, we
first defined three formalizations of the term “mimicking derivation” for a derivation
and then, for three of the four notions, used stipulations of a form like: For a rule
R in an AHS or n-AHS S, R-elimination holds for derivations in S if and only if
for every derivation in S there exists a mimicking derivation that does not contain
R-applications. As an easy consequence of the results obtained in Section 4, we
showed that there exists a direct correspondence between three of the four notions
of rule elimination with either rule admissibility or with a respective notion of rule
derivability (in the fourth case, involving s-derivability, only a weaker connection
holds).

And in the second part of Section 5, Subsection 5.2, we proved that if a rule R is
derivable in an n-AHS S then R-elimination for derivations in S can be performed
in an effective way: For a considered derivation D in S, pick an arbitrary application
of R in D and replace it (its part in D) by mimicking derivation; carry out such
mimicking steps repeatedly until no further applications of R are present. We show
correctness and termination for this nondeterministic procedure. And we find that
in n-AHS’s a similar result holds also for m-derivable rules.

Further Work

It seems straightforward to transfer our results about rule derivability and admissi-
bility in abstract Hilbert systems to similar abstractions of Gentzen systems, i.e. of
sequent-style proof systems. This is because, from an outside view, Gentzen systems
are Hilbert-style formalisms: A Gentzen system G can be ‘modeled’ by an abstract
Hilbert system SG that contains the sequents of G as its formulas.

The situation is likely to be different, however, for ‘usual formalizations’ of
natural-deduction systems that rely on the concept of assumption-discharging 9 ,
because of the following: It is easy to give examples for a natural-deduction system

9 Cf., for example, the descriptions of such systems in [10].
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S and a Hilbert system inference rule R on the formulas of S, i.e. a rule R appli-
cations of which do neither depend on nor discharge open assumptions, such that
the characterization of rule admissibility given in Proposition 3.2 (i), which can be
restated as

Th(S) is closed under applications of R ⇐⇒ S+R ∼th S , (6.1)

does not hold (but the implication “⇐” of (6.1) remains valid even in such situa-
tions). This suggests that in natural-deduction systems the notion of rule admis-
sibility might split, at least for Hilbert system rules, into a weaker and a stronger
notion that arise respectively from the assertions on the left and on the right hand
side of the equivalence in (6.1).

It is our intention to study the notions of rule derivability and admissibility
in abstractions of natural-deduction systems, both in their ‘usual formalizations’
and in their sequent-style formalizations, in a subsequent paper. For this, also the
dependence of reasonable notions of rule derivability and admissibility on the two
kinds of formalizations of natural-deduction systems will be of particular interest.
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Appendix A: Proofs for statements in Section 2

Proof of Lemma 2.12. Let S1 and S2 be two AHS’s, or two n-AHS’s, such that
S2 is an extension by enlargement of S1. Then, due to Definition 2.5, or due to
Definition 2.4, it holds that every derivation D in S1 is also a derivation in S2 with
the same conclusion and the same multiset of assumptions. From this it follows that
every relative derivability statement with respect to ⊢S1

, ⊢
(s)
S1

or ⊢
(m)
S1

that holds is,

accordingly, also a relative derivability statement with respect to ⊢S2
, ⊢

(s)
S2

or ⊢
(m)
S2

that holds.

Proof of Lemma 2.14. Let S be an AHS with set Fo of formulas, and let A ∈ Fo,
Σ,∆ ∈ P(Fo). The statement of the lemma is a consequence of the two following
easy observations about an obvious correspondence between derivations D in S+Σ
and derivations D′ in S :

• Every derivation D in S+Σ with concl(D) = A and set(assm(D)) ⊆ ∆ can be
modified into a derivation D′ in S with concl(D′) = A and set(assm(D′)) ⊆ ∆ ∪ Σ
by simply replacing every occurrence at the top of the prooftree D of an axiom C
(with C ∈ Σ) by an occurrence of the assumption C.

• Every derivation D′ in S with concl(D) = A and set(assm(D)) ⊆ ∆ ∪ Σ can be
transformed into a derivation D in S+Σ with concl(D) = A and set(assm(D)) ⊆ ∆
by simply changing occurrences of assumptions C (with C ∈ Σ) at the top of D′

into occurrences of axioms C of S+Σ.
✷

Appendix B: Proofs for statements in Section 3

Proof of Proposition 3.2. We will prove items (i), (ii) and (iii) of the proposition
in the three items (a), (b) and (c) below, respectively. For all three cases, we let S
be an arbitrary AHS and R an arbitrary rule on FoS .

(a) For showing “⇒” in the assertion (i) of the proposition, we assume that R is
admissible in S. We have to show that S+R does not possess more theorems
than S.

Due to the definition of “R is admissible in S”, for every derivation D in S+R
such that assm(D) = ∅ and such that only the bottommost rule application in
D is an application of R, there exists a derivation D′ in S with assm(D′) = ∅
and with the same conclusion as D. This has as a consequence that in arbitrary
derivations D̃ in S+R with assm(D̃) = ∅ topmost applications of R can always
by eliminated by replacing them together with the subderivations leading up to
them by derivations in S with respectively the same conclusions and without
assumptions.

Due to this, it follows that for every derivation D̃ in S+R with assm(D̃) = ∅
there exists a derivation D̃′ in S with assm(D̃′) = ∅ and with the same con-
clusion as D̃: This can be shown by induction on the depth |D̃| of D̃. As a
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consequence we find that every theorem of S+R is also a theorem of S, because
for every derivation D̃ in S+R with assm(D̃) = ∅ and with concl(D̃) = A a
derivation D̃′ in S with assm(D̃′) = ∅ and with concl(D̃′) = A can be found as
described above.

Thus S+R does not possess more theorems than S.

For showing “⇐” in the assertion (i) of the proposition, we assume that every
theorem of S+R is also a theorem of S and will show that R is admissible in
S. We have to prove (3.8).

For this, we let α ∈ AppsR be arbitrary with the property that all premises
of α are theorems of S. We have to show that also the conclusion of α is a
theorem of S. We will first consider the case arity(α) = 0 and then the case
arity(α) ∈ ω\{0}.

If arity(α) = 0, then

concl(α)

is a derivation in S+R consisting of this zero-premise application of R, and
hence concl(α) is a theorem of S+R . By our assumption that every theorem
of S+R is also a theorem of S it follows that then also concl(α) is a theorem
of S.

If arity(α) = n ∈ ω\{0} is the case, we let A,A1, . . . , An ∈ FoS be such that
prem(α) = (A1, . . . , An) and concl(α) = A . Since by our assumption about α
made above A1, . . . , An are theorems of S, there exist derivations D1, . . . ,Dn

in S with assm(Di) = ∅ and concl(Di) = Ai for all i ∈ {1, . . . , n} . As a conse-
quence the derivation D of the form

D1

A1 . . .

Dn

An

A

(with a bottommost application of R) is a derivation in S+R with assm(D) = ∅
and with concl(D) = A. Hence A is a theorem of S+R . Due to our assump-
tion that every theorem of S+R is also a theorem of S it follows now that
concl(α) = A = concl(D) is also a theorem of S.

We have thereby demonstrated that for every application α of R with the
property that all premises of α are theorems of S it also holds that the conclu-
sion of α is a theorem of S. Therefore Th(S) is closed under applications of R,
or, what is the same, (3.8) holds, which shows that R is admissible in S.

(b) We assume that R is derivable in S and will show that R is also admissible in
S. Thus we know that (3.5) holds and have to prove that (3.8) holds as well.
Given our knowledge of (3.5), (3.8) follows if we can prove

(∀α ∈ AppsR)
{

set(prem(α)) ⊢S concl(α) =⇒

=⇒
[

(∀A ∈ set(prem(α))) [ ⊢S A ] ⇒ ⊢S concl(α)
]}

. (B.1)

Therefore it remains to show (B.1). For this we let α ∈ AppsR be arbitrary
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such that

set(prem(α)) ⊢S concl(α) & (∀A ∈ set(prem(α))) [ ⊢S A ] (B.2)

holds and will prove
⊢S concl(α) . (B.3)

In case that arity(α) = 0, there is nothing to prove since then (B.2) contains
the assertion ∅ ⊢S concl(α) and hence (B.3).

We suppose now that arity(α) ∈ ω\{0} holds and let A,A1, . . . , An ∈ FoS
be such that

prem(α) = (A1, . . . , An) and concl(α) = A .

Due to (B.2), there exist derivations Dα and D1, . . . ,Dn in S such that

assm(Dα) ⊆ set(prem(α)) = set((A1, . . . , An)) , concl(Dα) = concl(α) = A ,

assm(Di) = ∅, concl(Di) = Ai (for all i ∈ {1, . . . , n})

hold. If assm(Dα) = ∅, then the conclusion concl(α) of Dα is a theorem of S and
hence (B.3) holds. If assm(Dα) 6= ∅ , then Dα can be represented as symbolic
prooftree of the form

(Ai1) . . . (Aik)

Dα

A
for some k ∈ ω\{0} and i1, . . . , ik ∈ ω with 1 ≤ i1, . . . , ik ≤ n such that

set(prem(α)) = set((Ai1 , . . . , Aik))

holds and such that the expressions (Ai1), . . . , (Aik) denote single occurrences
of assumptions in Dα ordered from left to right. It follows that the symbolic
prooftree

Di1

(Ai1) . . .

Dik

(Aik)

Dα

A
describes a derivation D′ in S that arises from Dα by substituting the deriva-
tions Di1 , . . . ,Dik respectively for the occurrences of assumptions (Ai1), . . . , (Aik)
in Dα. For D′ we find that

assm(D′) =
k

⋃

j=1

assm(Dij ) = ∅ and concl(D′) = concl(Dα) = A = concl(α)

holds. Hence the conclusion concl(α), i.e. the formula A, of the S-derivation
D′ is a theorem of S, and thus we have shown (B.3) also in this case.
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We have shown that for arbitrary α ∈ AppsR with (B.2) also (B.3) holds, and
hence we have proven (B.1). But that was what we needed for a demonstration
of (3.8), i.e. for establishing that R is admissible in S.

As a proof for the claim in item (ii) of the proposition that rule admissibility
does not imply rule derivability in general, we give the following counterexample
of a rule RB.C and an AHS SA : Let Fo = {A,B,C} be a three-element set,
and let • be an arbitrary set. We consider the two rules R.A and RB.C that
have each only one application, namely

R.A
A and

B RB.C
C

(although we argue about rule derivability and admissibility in AHS’s here, we
have annotated these two applications, for better identification, by the “names”
RA and RB.C of the respective rules as if we were to consider these applications
as derivations in an n-AHS). More precisely, we let R.A = 〈{•}, prem.A, concl.A〉

prem.A(•) = () and concl.A(•) = A ,

and we let RB.C = 〈{•}, premB.C , conclB.C〉

premB.C(•) = (B) and conclB.C(•) = C .

Furthermore, we let SA be the AHS 〈Fo, {R.A}〉 . Then Th(SA) = {A} holds,
and hence RB.C is admissible in SA: This is a consequence of the fact that for
the single application • of RB.C it holds that its premise B is not a theorem
of SA. However, RB.C is not derivable in SA, since obviously B ⊢S C is not a
relative derivability statement of SA.

(c) For showing assertion (iii) of the proposition, let S ′ be an extension by en-
largement of S and let R be derivable in S. We have to show that R is also
derivable in S ′. By definition of rule derivability, we find that for all applica-
tions α ∈ AppsR

set(prem(α)) ⊢S concl(α)

holds. By Lemma 2.12, this implies that for all α ∈ AppsR also

set(prem(α)) ⊢S′ concl(α)

holds, which means that R is derivable in S ′.

✷

Proof of Proposition 3.3. We will first prove that m-derivability implies s-deriv-
ability. That s-derivability implies derivability can be shown analogously.

Let S be an AHS, and let R be a rule on Fo that is m-derivable in S. For the
purpose of showing that R is s-derivable in S, let α ∈ AppsR be arbitrary. Since R
is m-derivable in S, it holds that

mset(prem(α)) ⊢(m)
S concl(α) .
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By Proposition 2.9 and the obvious fact set(mset(prem(α))) = set(prem(α)), the
relative derivability statement

set(prem(α)) ⊢(s)
S concl(α) (B.4)

follows. In this way we have shown that (B.4) holds for all applications α ∈ AppsR ,
and hence that R is s-derivable in S.

As a proof for the claim of Proposition 3.3 that m-derivability does not im-
ply s-derivability in general, and that s-derivability does not imply derivability
in general, we give the following counterexamples to these two implications: Let
Fo = {A,B} be a two-element set, and let • be an arbitrary set. We consider the
three rules RA.B, RAA.B and RAB.B with single applications of the respective form

A RA.B
B

A A RAA.B
B

A B RAB.B
B

(we did allow ourselves to use n-AHS-like “name labels” for these applications here).
More precisely, we let RA.B = 〈{•}, premA.B, conclA.B〉 with

premA.B(•) = (A) and conclA.B(•) = B ,

we let RAA.B = 〈{•}, premAA.B, conclAA.B〉

premAA.B(•) = (A,A) and conclAA.B(•) = B ,

and we let RAB.B = 〈{•}, premAB.B, conclAB.B〉 with

premAB.B(•) = (A,B) and conclAB.B(•) = B .

And furthermore, we let S be the AHS 〈Fo, ∅, {RAA.B}〉 . Then it is easy to verify
that RA.B is derivable and s-derivable, but not m-derivable in S; and that RAB.A is
derivable, but neither s-derivable nor m-derivable in S.

The claim of Proposition 3.3 that true statements arise if in Proposition 3.2
(iii) “derivable” is replaced by “s-derivable” and “m-derivable”, respectively, can be
shown analogously as in item (c) of the proof of Proposition 3.2 above: Both state-
ments follow from Lemma 2.12, which asserts that every holding relative derivability
statement in an AHS S with respect to either ⊢

(s)
S or ⊢

(m)
S is also a holding relative

derivability statement in every extension by enlargement S ′ of S with respect to
⊢

(s)
S′ , or respectively, with respect to ⊢

(m)
S′ .

And the claim of Proposition 3.3 that s-derivability and m-derivability imply
admissibility, but that each of the implications in the opposite direction is not true
in general, clearly follows by Proposition 3.2 (ii) and the above explained facts that
s-derivability and m-derivability imply derivability.

✷

Proof of Proposition 3.4. Let S be an AHS or an n-AHS, and let R be a rule
on FoS with R = 〈Apps, prem, concl〉 . We will show statements (i) and (ii) of the
proposition in items (a) and (b) below.
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(a) For statement (i) of the proposition, we assume that R is admissible in S and
will show (3.9): In this logical equivalence, “⇐” is obvious, since the hypotheses
of this implication asserts the existence of an application α of R that cannot
be mimicked by a derivation in S. We are left to show the implication “⇒”.
Suppose that R is not derivable in S. Then there must exist an application
α ∈ AppsR such that set(prem(α)) 6 ⊢S concl(α); let such an application α be
chosen arbitrarily. Now we are done if we can show that among the premises
of α there is at least one formula that is not a theorem of S. This must
indeed be the case because otherwise, due to the fact that R is admissible in
S, also concl(α) would be a theorem of S, i.e. ⊢S concl(α) and therefore also
set(prem(α)) ⊢S concl(α) would hold, in contradiction with our choice of the
application α.

(b) For a proof of assertion (ii) of the proposition, we let R0 = 〈Apps0, prem0, concl0〉,
where Apps0 is defined as in (3.10) and prem0 and concl0 are the respective re-
strictions of the premise function prem and of the conclusion function concl of R
to the subset Apps0 of the set of applications of R. We have to show (3.11). It
is possible to demonstrate that this is essentially a consequence of assertion (i)
of the proposition. But since such a proof uses an indirect argument, we give
a direct demonstration here.

For the implication “⇒” in (3.11), we notice the following chain of implica-
tions and logical equivalences:

R is admissible in S ⇐⇒

⇐⇒ (∀α ∈ Apps)
[

(∀A ∈ set(prem(α))) [ ⊢S A ] ⇒ ⊢S concl(α)
]

⇐⇒ (∀α ∈ Apps0)
[

⊢S concl(α)
]

=⇒ (∀α ∈ Apps0)
[

set(prem(α)) ⊢S concl(α)
]

⇐⇒ (∀α ∈ Apps0)
[

set(prem0(α)) ⊢S concl0(α)
]

⇐⇒ R0 is derivable in S .

The implications “⇒” are hereby respectively justified, following this chain of
equivalences and implications from top to bottom, by the definition of “R is
admissible in S”, by the definition of the set Apps0 of applications of R0 in
(3.10), by the definition of the conseqence relation ⊢S, by the definition of R0,
and by the definition of “R0 is derivable in S”, respectively.

For the implication “⇐” in (3.11), we argue along a slightly different chain
of logical implications and equivalences:

R0 is derivable in S ⇐⇒

⇐⇒ (∀α ∈ Apps0)
[

set(prem0(α)) ⊢S concl0(α)
]

⇐⇒ (∀α ∈ Apps0)
[

set(prem(α)) ⊢S concl(α)
]

=⇒ (∀α ∈ Apps0)
[

(∀A ∈ set(prem(α))) [ ⊢S A ] ⇒ ⊢S concl(α)
]

⇐⇒ (∀α ∈ Apps)
[

(∀A ∈ set(prem(α))) [ ⊢S A ] ⇒ ⊢S concl(α)
]

⇐⇒ R is admissible in S .
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Hereby the implications “⇒” are respectively justified by the definition of “R0

is derivable in S”, by the definitions of R0 and R, the fact that derivability of
R0 in S implies admissibility of R0 in S by Proposition 3.2 (ii), the definition
of the set Apps0 in (3.10), and the definition of “R is admissible in S”.

✷

Proof of Proposition 3.5. Let S be an AHS with formula set Fo and let R be a
rule on Fo. We will prove the equivalence of the statements (i), (ii) and (iii) in the
proposition by showing the three implications (i) ⇒ (iii), (iii) ⇒ (ii) and (ii) ⇒ (i).

(a) The implication (i) ⇒ (iii) is an immediate consequence of items (ii) and (iii)
in Proposition 3.2.

(b) The implication (iii) ⇒ (ii) is obvious because every AHS of the form S+Σ,
where Σ ∈ P(Fo) , is also an extension by enlargement of S.

(c) To prove (ii) ⇒ (i), suppose that R is admissible in every extension of S of the
form S+Σ for some Σ ∈ P(Fo). Let α be an arbitrary application of R, and let
Σ = set(prem(α)). Clearly, ⊢S+Σ A holds for all A ∈ set(prem(α)), and hence,
since R is admissible in S+Σ, it follows that ⊢S+Σ concl(α). From this we con-
clude by Lemma 2.14 that set(prem(α)) ⊢S concl(α). Since α was an arbitrary
application ofR in this argument, we have proved that set(prem(α)) ⊢S concl(α)
holds for all applications of R, which shows (3.5) and hence that R is derivable
in S.

✷

Appendix C: Proofs, auxiliary statements for Section 4

Proof of Proposition 4.3. Reflexivity and transitivity of �th, �rth, �
(s)
rth and �(m)

rth

follow immediately from the definitions of these relations. As a consequence, the
relations ∼th, ∼rth, ∼

(s)
rth and ∼(m)

rth are reflexive and transitive, too, and due to their
definitions, obviously also symmetric.

Proof of Proposition 4.4. Let S1 and S2 be arbitrary AHS’s. We will only prove
(4.3), since (4.4) is an obvious consequence of (4.3) due to the way in which ∼rth

and ∼th have been defined in terms of �rth and �th.

Both directions of the implications in (4.3) are consequences of Proposition 2.9,
and can be shown rather similarly.

For showing “⇒” in (4.3), we assume that S1 �rth S2 holds. This means that
FoS1 ⊆ FoS2 holds. We let a set Σ ⊆ FoS1 of formulas be arbitrary and need to
show that S1+Σ �th S2+Σ holds. Since we find FoS1+Σ = FoS1 ⊆ FoS2 = FoS2+Σ,
we only have to prove that every theorem of S1+Σ is also a theorem of S2+Σ. Let
A ∈ FoS1 be an arbitrary theorem of S1+Σ. Then we have ⊢S1+Σ A , which, due
to Lemma 2.14, entails Σ ⊢S1 A. From this also Σ ⊢S2 A follows because of our
assumption S1 �rth S2 . Using Lemma 2.14 again, we find that also ⊢S2+Σ A holds,
i.e. that A is a theorem of S2+Σ.
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For showing “⇐” in (4.3), we assume that that S1+Σ �th S2+Σ holds for all
Σ ∈ P(FoS1) and will prove that S1 �rth S2 holds. Since we get FoS1 ⊆ FoS2 as
a consequence of S1 �th S2 , it remains to be shown that every relative derivability
statement in S1 (with respect to ⊢S1

) is also a relative derivability statement in S2

(with respect to ⊢S2
). For demonstrating this, let Σ ∈ P(FoS1) and A ∈ FoS1 be

arbitrary such that Σ ⊢S1 A holds. By Lemma 2.14 we get that ⊢S1+Σ A holds.
Since, due to our assumption, S1+Σ �th S2+Σ holds, this implies ⊢S2+Σ A, which,
again by using Lemma 2.14, entails Σ ⊢S2 A. Since Σ and A have been arbitrary in
this argument, we have hereby shown the assertion S1 �rth S2 .

✷

Proof of Lemma 4.8. In (a) below we will first show that items (ii) and (iii) of
the lemma follow easily from item (i), which will then be proven in (b) below.

(a) Item (ii) of the lemma follows from item (i) due to two fact that hold for all
AHS’s S1 and S2 with the same set of formulas: Firstly it is the case that S2 is
a conservative extension of S1 if and only if S1 and S2 have the same theorems;
and secondly, Th(S2) ⊇ FoS1 holds if and only if S2 is inconsistent.

Item (iii) of the lemma follows easily from item (ii): Let S1 and S2 be arbi-
trary AHS’s. For showing “⇐” in (4.6), we assume S1 ∼th S2 . Then S1 and
S2 have the same set of formulas and hence we can apply (ii) to S1 ∼th S2

and to S2 ∼th S1 (∼th is symmetric by Proposition 4.3). In this way we find
that S1 �adm S2 and S2 �adm S1 hold. Hence we have shown S1 ∼adm S2 .
For showing “⇒” in (4.6), we now assume S1 ∼adm S2 . Then FoS1 = FoS2 is
the case and hence (ii) is applicable to S1 �adm S2 and to S2 �adm S1 . In
this way we either obtain S1 ∼th S2 directly, or find that both S1 and S2 are
inconsistent, which again entails S1 ∼th S2 .

(b) We show item (i) of the lemma. Let S1 and S2 be arbitrary AHS’s. The
implication “⇐” in (4.5) can be verified in a straightforward manner; therefore
we will not demonstrate this here. For proving “⇒” in (4.5), we assume that
S1 �adm S2 and Th(S2) 6⊇ FoS1 holds and will show that S2 is a conservative
extension of S1. We first notice that S2 is an extension of S1 due to the definition
of the assumption S1 �adm S2 . Hence it remains to be shown that the extension
S2 of S1 is conservative.

Because of our second assumption, the set FoS2 \ Th(S1) is non-empty. We
fix a formula B in this set for the following argument. Due to this choice, B is
not a theorem of S2, and because S2 is an extension of S1, B is not a theorem
of S1 either. For showing that S2 is conservative as an extension of S1, let A
be an arbitrary formula of S1 that is a theorem of S2; we will demonstrate that
A is then also a theorem of S1. Let R be the rule on FoS2 that has only the
single application

A
B .

Since B ∈ FoS1 , R is also a rule on FoS1 . Since ⊢S2 A and 6⊢S2 B hold, R is
not admissible in S2. Due to our assumption S1 �adm S2 , this entails that R
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cannot be admissible in S1 either. Since we have seen that B is not a theorem
of S1, it follows that A must be a theorem of S1. In this way we have proved
that every formula of S1 that is a theorem of S2 is also a theorem of S1. Hence
we can conclude now that S2 is a conservative extension of S1.

✷

Example C.1 (The relation �r/adm is not transitive). Let Fo = {A,B,C}
be a three-element set and let RA.B and RA.C be the rules on Fo each of which has
only one application, namely

A RA.B
B

A RA.C
C

(hereby we have also used RA.B and RA.C informally as “names” of these rules
to denote their respective application as if we considered derivations in n-AHS’s).
Furthermore let three AHS’s S1, S2 and S3 be determined by their axioms and rules
according to the following table:

AHS set of axioms set of rules

S1 ∅ {RA.C}

S2 ∅ {RA.B}

S3 {A} {RA.B}

Then it is easy to see that

S1 �r/adm S2 & S2 �r/adm S3 (C.1)

holds: S1 �r/adm S2 follows from the fact that Th(S2) = ∅ (and hence the single
rule RA.C of S1 is trivially admissible in S2) and S2 �r/adm S3 is obvious since the
single rule of S2, RA.B , is also a rule of S3. But furthermore we find that

S1 6�r/adm S3 (C.2)

is the case: The rule RA.C of S1 is not admissible in S3, because, as a consequence
of Th(S3) = {A,B} , the theory of S3 is not closed under applications of RA.C .

Now (C.1) and (C.2) clearly demonstrate that the relation �r/adm on H is not
transitive.

Example C.2 (The relations �(s)
r/der and ∼(s)

r/der are not transitive). We

will give a counterexample against the transitivity of both the relations �(s)
r/der and

∼(s)
r/der . For this, we choose a 4-element set Fo = {A,B,C1, C2} . We will consider

three AHS’s that have Fo as their sets of formulas, possess no axioms, and whose
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rules are among the five ones R1, R2, R3a, R3b, R4 , which have each only one appli-
cation, namely the ones of the following list:

C1 R1
A

C2 R2
A

A A R3a
B

A R3b
B

C1 C2 R4
B

(here we allowed to use R1, R2, R3a, R3b and R4 as respective “names” for these
rules as if we considered n-AHS-derivations respectively corresponding to these rule
applications). Relying on these rules, we let S1, S2 and S3 be AHS’s with set Fo of
formulas that possess no axioms and that are determined by their respective set of
rules as described by the following table:

AHS set of axioms set of rules

S1 ∅ {R1, R2, R3a, R4}

S2 ∅ {R1, R2, R3a}

S3 ∅ {R1, R2, R3b}

Now it is easy to check that the following holds:

S1 ∼
(s)
r/der S2 & S2 ∼

(s)
r/der S3 . (C.3)

The only not entirely obvious assertion to check hereby is that the rule R4 of S1 is
actually s-derivable in S2: But this a consequence of the existence of the derivation

C1 R1
A

C2 R2
A R3a

B

(C.4)

in S2. We furthermore notice that

S1 6�
(s)
r/der S3 (C.5)

holds due to the fact that the rule R4 is not s-derivable in S3: This is a consequence
of the facts (i) that every relative derivability statement holding in S3 with respect

to ⊢
(s)
S3

must be of the form {D} ⊢(s)
S3
E for some D,E ∈ Fo , since S3 has only

one-premise rules, whereas (ii) {C1, C2} ⊢(s)
S1
B is a relative derivability statement

that holds in S1 with respect to ⊢
(s)
S1

due to the presence of R4 in S1.

Now from (C.3) and (C.5) it follows immediately, in view of the definition of

∼(s)
r/der in terms of �(s)

r/der , that both of the relations �(s)
r/der and ∼(s)

r/der are not tran-
sitive.

For later reference, we also note

S2 6�(s)
rth S3 , and hence also S2 6∼(s)

rth S3 , (C.6)
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which follows from the observation (i) above, and from the fact that {C1, C2} ⊢(s)
S1
B

is also a relative derivability statement that holds in S2 with respect to ⊢
(s)
S2

, due to
the derivation (C.4) in S2.

Proof of Theorem 4.12. The statement of Theorem 4.12 consists of the assertions
of Proposition C.3, Theorem C.4 and Theorem C.5, all of which are stated, and then
successively proved, below. ✷

Proposition C.3 (‘Vertical interrelations’ between defined incl. relations).
The following containment assertions hold between the inclusion relations on H de-
fined in Definitions 4.1, Definition 4.5 and Definition 4.9:

�(m)
rth ⊆ �(s)

rth ⊆ �rth ⊆ �th , (C.7)

�(m)
der ⊆ �(s)

der ⊆ �der , (C.8)

�(m)
r/der ⊆ �(s)

r/der ⊆ �r/der ⊆ �r/adm . (C.9)

For all S1,S2 ∈ H, these assertions justify the downwards-pointing, vertical impli-
cation arrows in an ‘interrelation prism’ as shown in Figure 3 (a).

Theorem C.4 (‘Horizontal interrelations’ between defined incl. relations).

(i) For the pre-order relations �th , �r/adm and �adm on the class H of all abstract
Hilbert systems it holds: �adm is properly contained in �r/adm , which in turn
is properly contained in �th . More formally, it holds:

�adm $ �r/adm $ �th . (C.10)

(ii) The pre-order relations �r/der , �der and �rth on H coincide, and the same

is true for the pre-order relations �(m)
r/der , �

(m)
der and �(m)

rth . More formally, the
following two assertions hold:

�r/der = �der = �rth , (C.11)

�(m)
r/der = �(m)

der = �(m)
rth . (C.12)

(iii) The pre-order relations �(s)
der and �(s)

rth on H coincide. Furthermore, both rela-

tions are properly contained in the relation �(s)
r/der . Thus it holds:

�(s)
r/der % �(s)

der = �(s)
rth . (C.13)

For all S1,S2 ∈ H, the assertions in (i), (ii) and (iii) above guarantee the horizontal
implications and logical equivalences in an ‘interrelation prism’ of the form shown
in Figure 3 (a).

Theorem C.5 Each of the containment assertions in (C.7), (C.8) and (C.9) of
Proposition C.3 are proper inclusions, i.e. each inclusion symbol ⊆ used there can
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be replaced by the symbol $ . And furthermore, the relation �adm is not included

in any of the relations �der , �(s)
der and �(m)

der , nor are any of �der , �(s)
der and �(m)

der

included in �adm .

Proof of Proposition C.3. The containment assertions in (C.9) are an immediate
consequence of Proposition 3.3, the facts that m-derivability implies s-derivability
and that s-derivability implies derivability, and of Proposition 3.2 (ii), the fact that
derivability implies admissibility.

The containment assertions in (C.7) follow easily from Proposition 2.9: As an

example, we prove that �(s)
rth ⊆ �rth : Let S1 and S2 be arbitrary AHS’s such that

S1 �
(s)
rth S2 . For showing S1 �rth S2 , we let A ∈ FoS1 and Σ ∈ P(FoS1) be arbitrary

such that Σ ⊢S1 A . By the definitions of the consequence relations ⊢S1
and ⊢

(s)
S1

,

we find that Σ0 ⊢
(s)
S1
A, holds for some Σ0 ⊆ Σ. Due to S1 �

(s)
rth S2 , it follows that

Σ0 ⊢
(s)
S2
A holds, which entails Σ ⊢S2 A because of the definition of ⊢S2

. Therefore,
every relative derivability statement with respect to ⊢S1

is also a relative derivability
statement with respect to ⊢S2

. Since the assertion FoS1 ⊆ FoS2 is part of our

assumption S1 �
(s)
rth S2 , we have proven S1 �rth S2 .

For the containment assertions (C.8), we will only show �(m)
der ⊆�(s)

der in detail;

�(s)
der ⊆�der can be proven in a very similar way. To show �(m)

der ⊆�(s)
der , we have to

demonstrate

S1 �
(m)
der S2 =⇒ S1 �

(s)
der S2 (for all S1,S2 ∈ H) (C.14)

For this, we let S1 and S2 be AHS’s with the property

S1 �
(m)
der S2 . (C.15)

and we have to show
S1 �

(s)
der S2 . (C.16)

Since FoS1 ⊆ FoS2 and the fact that every m-derivable formula of S1 (and thus every
theorem or s-derivable formula of S1) is an m-derivable formula of S2 (and hence
also a theorem or s-derivable formula of S2) are part of our assumption (C.15), it
suffices to show that every s-derivable rule of S1 is also s-derivable in S2.

For showing this, we let R be an arbitrary rule on FoS1 that is s-derivable in S1;
we have to show that R is also s-derivable in S2, i.e. we must show

(∀α ∈ AppsR)
[

set(prem(R)(α)) ⊢(s)
S2

conclR(α)
]

. (C.17)

We let α ∈ AppsR be arbitrary. Since R is s-derivable in S1, we find that

set(prem(R)(α)) ⊢(s)
S1

conclR(α) (C.18)
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holds. And furthermore we find the following chain of equivalences:

set(prem(R)(α)) ⊢(s)
S1

conclR(α) =⇒

=⇒ Γ ⊢(m)
S1

conclR(α) for some Γ ∈ Mf(FoS1)
with set(Γ) = set(prem(R)(α))

=⇒ Γ ⊢(m)
S2

conclR(α) for some Γ ∈ Mf(FoS1)
with set(Γ) = set(prem(R)(α))

=⇒ set(prem(R)(α)) ⊢(s)
S2

conclR(α) . (C.19)

The first and the third implication are hereby consequences of the definitions of
the consequence relations ⊢

(s)
S1

, ⊢
(m)
S1

and ⊢
(s)
S2

, ⊢
(m)
S2

, respectively. The second
implication follows from

∆ ⊢(m)
S1

A =⇒ ∆ ⊢(m)
S2

A (for all ∆ ∈ Mf(FoS1) and A ∈ FoS1 ) (C.20)

which can be argued for in this way: Let ∆ ∈ Mf(FoS1) and A ∈ FoS1 be arbitrary

such that ∆ ⊢(m)
S1

A holds. We choose R̃ to be a rule on FoS1 that has only a single
application, which is of the form

σ
A

for some sequence σ ∈ Seqsf(FoS1) with the property mset(σ) = ∆. Owing to

∆ ⊢(m)
S1

A , R̃ is m-derivable in S1. Hence, due to our assumption (C.15), R̃ is

also m-derivable in S2, which shows ∆ = mset(σ) ⊢(m)
S2

A. Since ∆ and A were ar-
bitrary in this argument, we have shown (C.20). In this way we have now also
justified the second implication in (C.19) and hence have demonstrated whole chain
of implications (C.19). Now (C.18) and (C.19) imply

set(prem(R)(α)) ⊢(s)
S1

conclR(α) . (C.21)

Since we have considered an arbitrary application α of the rule R, we have shown
(C.17). Therefore the rule R on FoS1 , which is s-derivable in S1, is also s-derivable
in S2.

Because above R was chosen to be an arbitrary s-derivable rule of S1 in this
argument, we can conclude now that (C.16) holds. S1 and S2 having been arbi-
trary AHS’s with the property (C.15), we have also shown (C.14), and thus the

containment assertion �(m)
der ⊆�(s)

der of (C.8).

✷

Proof of Theorem C.4. Item (i) of the theorem, the assertion (C.10), is equiva-
lent to Lemma C.6, which is stated and proved immediately below this proof. For
item (ii) of the theorem, we will only show (C.12) for the reason that (C.11) can
be shown in a quite similar and to some extent formally easier way. Later we will
prove item (iii) of the theorem by showing (C.13).
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First we will prove (C.12) by demonstrating the three implications in the chain of

implications S1 �
(m)
rth S2 ⇒ S1 �

(m)
r/der S2 ⇒ S1 �

(m)
der S2 ⇒ S1 �

(m)
rth S2 in the

below three items (A), (B) and (C) respectively.

(A) [S1 �
(m)
rth S2 =⇒ S1 �

(m)
der S2 ] : Let S1 and S2 be AHS’s such that S1 �

(m)
rth S2

holds. We will show that then also S1 �
(m)
der S2 is the case. Since S1 �

(m)
rth S2

contains the statement FoS1 ⊆ FoS2 , it suffices to demonstrate that (a) all for-
mulas in FoS1 that are m-derivable in S1 are also m-derivable in S2, and that
(b) all rules on FoS1 that are m-derivable in S1 are also m-derivable in S2. We

will only show (b), since (a) is an even easier consequence of S1 �
(m)
rth S2 .

Let R be an arbitrary rule on FoS1 that is m-derivable in S1. For showing
that R is m-derivable in S2, let α be an arbitrary application of R. Since R
is m-derivable in S1, it holds that mset(prem(α)) ⊢(m)

S1
concl(α). But from this

also mset(prem(α)) ⊢(m)
S2

concl(α) follows as a consequence of S1 �
(m)
rth S2 . Since

we have considered an arbitrary application α of R, we have shown (3.7) and
therefore that R is also a m-derivable rule in S2. Because R was chosen as an
arbitrary rule on FoS1 for this argument, we can conclude that all rules on FoS1

that are m-derivable in S1 are also m-derivable in S2.

(B) [S1 �
(m)
der S2 =⇒ S1 �

(m)
r/der S2 ] : Let S1 and S2 be AHS’s with the property

S1 �
(m)
der S2 . Then we find that FoS1 ⊆ FoS2 holds, and furthermore that all

formulas of FoS1 and rules on FoS1 that are m-derivable in S1 are also m-deriv-
able in S2. From this it follows that all axioms and rules of S1 are m-derivable
in S2 because all axioms and rules of S1 are clearly m-derivable in S1. Therefore
S1 �

(m)
r/der S2 holds as well.

(C) [S1 �
(m)
r/der S2 =⇒ S1 �

(m)
rth S2 ] : Let S1 and S2 be AHS’s for which we

assume that S1 �
(m)
r/der S2 holds. Then the formula set of S1 is contained in the

formula set of S2. For showing S1 �
(m)
rth S2 , it therefore suffices to demonstrate

(∀Γ ∈ Mf(FoS1)) (∀A∈FoS1)
[

(Γ ⊢(m)
S1

A) =⇒ (Γ ⊢(m)
S2

A)
]

. (C.22)

By expanding the definitions of the two occurring relative derivability state-
ments, it is easy to see that (C.22) is equivalent with the assertion

(∀D ∈ Der(S1)) (∃D′ ∈ Der(S2))
[

assm(D′) = assm(D) &

& concl(D′) = concl(D)
]

, (C.23)

which we will prove by induction on the depth |D| of the derivation D.
For the treatment of the base case of the induction, let D be a derivation

of depth |D| = 0 in S1. Then D consists of either an assumption or of an
axiom of S1. In the first subcase, D is also a derivation in S2, and we have
found the desired derivation D′ in D. In the second subcase, assm(D) = ∅ and
concl(D) = A holds for some A ∈ AxS1 . Owing to S1 �r/der S2 , it follows that
A is m-derivable in S2, which means that ⊢S2 A holds. Hence there exists a
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derivation D′ in S2 with assm(D′) = ∅ and concl(D′) = A. By choosing an
arbitrary such derivation D′ ∈ Der(S2), we have demonstrated the base case
of the induction in the here considered subcase.

For the induction step, we consider an arbitrary derivation D ∈ Der(S1) of
depth |D| > 0. Let A ∈ FoS1 be the conclusion of D, i.e. let A = concl(D).
Then D contains at least one rule application. Let α be the bottommost rule
application in D and let R be a rule of S1 to which it belongs. We distinguish
two cases according to whether arity(α) is zero, or a natural number.

If arity(α) = 0, then D must be of the form

A

for some A ∈ FoS1 with

assm(D) = prem(α) = ∅ and concl(D) = concl(α) = A .

Due to our assumption S1 �
(m)
r/der S2 , R is derivable in S2, and hence there

exists a derivation Dα ∈ Der(S2) that mimics α with respect to ⊢
(m)
S2

, i.e. for
which

assm(Dα) = mset(prem(α)) = ∅ and concl(Dα) = concl(α) = A

holds. Let Dα be chosen as such a derivation. Since Dα has the same assump-
tions (namely none) and the same conclusion as D, we have found a desired
derivation D′ ∈ Der(S2) in Dα and have thereby shown the induction step in
this case.

Now we consider the case arity(α) = n ∈ ω \ {0}. This means that D is of
the form

D1

A1 . . .

Dn

An

A
for some A1, . . . , An ∈ FoS1 and S1-derivations D1, . . . ,Dn such that it holds:

prem(α) = (A1, . . . , An) , concl(α) = A , assm(D) =
n

⊎

i=1

assm(Di) .

As a consequence of our assumption S1 �
(m)
r/der S2 , the rule R is m-derivable in

S2, and hence its application α can be mimicked with respect to ⊢
(m)
S2

by a
derivation in S2. That is, there exists a derivation Dα ∈ Der(S2) such that

assm(Dα) = mset(prem(α)) = mset( (A1, . . . , An) ) ,

concl(Dα) = concl(α) = A .

We choose such a derivation Dα and denote it by the symbolic prooftree
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(A1) . . . (An)

Dα

A

(where each of the expressions (A1), . . . , (An) at the top designate single occur-
rences of the formulas A1, . . . , An as the assumptions of Dα ). From the induc-
tion hypotheses we conclude that there exist derivations D′

1, . . . ,D
′
n ∈ Der(S2)

with

assm(D′
i) = assm(Di) (for all i ∈ {1, . . . , n}) ,

concl(D′
i) = concl(Di) = Ai (for all i ∈ {1, . . . , n}) .

Using these S2-derivations as well as the S2-derivation Dα, we find that the
symbolic prooftree

D1

(A1) . . .

Dn

(An)

Dα

A

describes a derivation D′ in S2 that arises from Dα by substituting the deriva-
tions D1, . . . ,Dn respectively for its assumptions (A1), . . . , (An). Then it holds
for the derivation D′ :

concl(D′) = concl(Dα) = A = concl(D) ,

assm(D′) =

n
⊎

i=1

assm(D′
i) =

n
⊎

i=1

assm(Di) = assm(D) .

Thus we have found a derivation D′ in S2 that has the same conclusion and the
same assumptions as our given derivation D in S1. Therefore we have carried
out the induction step in this case.

We have shown (C.23), and thereby also (C.22). As a consequence, we can

now conclude that S1 �
(m)
rth S2 holds.

We will now show item (iii) of the theorem. We have to show (C.13). By expanding
the definitions, we see that this assertion is a consequence of the three statements

S1 �
(s)
r/der S2 ⇐= S1 �

(s)
der S2 (for all S1,S2 ∈ H) , (C.24)

¬ ( S1 �
(s)
r/der S2 =⇒ S1 �

(s)
rth S2 ) (for some S1,S2 ∈ H) , (C.25)

S1 �
(s)
der S2 ⇐⇒ S1 �

(s)
rth S2 (for all S1,S2 ∈ H) . (C.26)

Hereby (C.24) is obvious due to the fact that every axiom and every rule of an
AHS S1 is clearly s-derivable in S1. (C.25) follows from what we know from Exam-
ple C.2: For the AHS’s S2 and S3 considered there, we noted in (C.3) and (C.6)

that S2 �
(s)
r/der S3 and S2 6�

(s)
rth S3 holds.

(C.26), however, will be shown in the remaining part of this proof. For all
S1,S2 ∈ H, the implication “⇐” in (C.26) follows easily by analyzing the definitions
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of S1 �
(s)
der S2 and S1 �

(s)
rth S2 . For showing the implication “⇒” in (C.26), we let

S1,S2 ∈ H be given arbitrarily with the property S1 �
(s)
der S2 . We find FoS1 ⊆ FoS2 ,

which entails that for demonstrating S1 �
(s)
rth S2 , it remains to prove

(∀Σ ∈ P(FoS1)) (∀A∈FoS1)
[

(Σ ⊢(s)
S1
A) =⇒ (Σ ⊢(s)

S2
A)

]

. (C.27)

Let Σ ∈ P(FoS1) and A ∈ FoS1 be arbitrary such that Σ ⊢(s)
S1
A holds. Then there

exists a derivation D in S1 with set(assm(D)) = Σ and concl(D) = A . We let
σ ∈ Seqsf((FoS1)) be such that mset(σ) = assm(D). Now we let R be the rule
on FoS1 that possesses only the application of the form

σ
A .

More formally, we define R = 〈{•}, prem, concl〉 , where • denotes an arbitrary set
and where prem(•) = σ and concl(•) = A. Then R is s-derivable in S1, since for the
single application • of R

set(prem(•)) = set(σ) = set(mset(σ)) =

= set(assm(D)) = set(Σ) = Σ ⊢
(s)
S1

A = concl(•)

holds. By our assumption S1 �
(s)
der S2 , it follows that also R is s-derivable in S2 as

well and that consequently

Σ = . . . = set(prem(•)) ⊢
(s)
S2

concl(•) = A

holds. This means that the relative derivability statement Σ ⊢(s)
S2
A holds. Since

Σ ∈ P(FoS1) and A ∈ FoS1 have been arbitrary in this argument, we have shown

(C.27) and thus that S1 �
(s)
rth S2 holds.

✷

Lemma C.6 For all AHS’s S1 and S2, the following implications hold:

S1 �th S2

S1 �r/adm S2

S1 �adm S2

(C.28)

And furthermore it holds: None of the implications in the above figure can be replaced
by a logical equivalence in general.

Proof of Lemma C.6. The statement of the lemma that the implications in (C.28)
hold for all AHS’s S1 and S2 is a consequence of the two assertions

S1 �adm S2 =⇒ S1 �r/adm S2 (for all S1,S2 ∈ H), (C.29)

S1 �r/adm S2 =⇒ S1 �th S2 (for all S1,S2 ∈ H); (C.30)
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the third implication in (C.28) obviously follows from (C.29) and (C.30). And the
statement of the lemma that none of the implication arrows in (C.28) can be inverted
in general, is a consequence of the following two assertions:

S1 �th S2 6=⇒ S1 �r/adm S2 (for some S1,S2 ∈ H), (C.31)

S1 �r/adm S2 6=⇒ S1 �adm S2 (for some S1,S2 ∈ H). (C.32)

That S1 �th S2 does not imply S1 �adm S2 in general follows from (C.31) and
(C.32). Hence it suffices to demonstrate (C.29)–(C.32) to prove the lemma.

We notice first that, for all AHS’s S1 and S2, S1 �r/adm S2 is a consequence
of S1 �adm S2 in view of the definitions of the relations �r/adm and �adm . Hence
(C.29) is indeed the case.

For proving (C.30), let S1 and S2 be arbitrary AHS’s. We assume that S1 �r/adm S2

and show S1 �th S2 . Since FoS1 ⊆ FoS2 is part of the assertion S1 �r/adm S2 , it
suffices to show that every theorem of S1 is also a theorem of S2. This, however,
follows from

(∀D ∈ Der(S1))
[

assm(D) = ∅ =⇒ ⊢S2 concl(D)
]

, (C.33)

which we will prove by induction on the rule application depth |D| of D: If |D| = 0
and assm(D) = ∅ , then D consists of an axiom of S1, which due to S1 �r/adm S2 is
also a theorem of S2 . For the induction step, let D be a derivation in S1 with |D| ≥ 1
and with assm(D) = ∅ . Then the conclusion of D, which we let be the formula A,
is the conclusion of an application α of a rule R of S1. If on the one hand α is a
zero-premise application of R, then D consists only of this rule application; since
S1 �r/adm S2 holds, α can be mimicked by a derivation D′ in S2 without assumptions
and with the same conclusion as D, which shows ⊢S2 A in this case. If on the other
hand arity(α) > 0 is the case, then D is of the form

D1

A1 . . .

Dn

An

A

with the application α of R as the bottommost application in D, with derivations
D1, . . . ,Dn in S1 that have no assumptions and that have the respective conclusions
A1, . . . , An . By respectively applying the induction hypothesis to D1, . . . ,Dn , it
follows that all of A1, . . . , An are theorems of S2. Since due to S1 �r/adm S2 the
rule R of S1 is admissible in S2, we can then conclude that ⊢S2 A holds, i.e. that
A is a theorem of S2. Hence we have also carried out the induction step for (C.33)
also in this case. In this way we have shown (C.33) and have finally proven (C.30).

For demonstrating (C.31) and (C.32), we employ two examples. Let Fo = {A,B,C}
be a three-element set and let RA.B, RA.C and RB.C be the rules on Fo that have
each only one application, namely

A RA.B
B

A RA.C
C

B RB.C
C
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(in these applications we have used RA.B, RA.C andRB.C as “names” of the respective
rules as if we considered these rule applications as derivations in n-AHS’s). And we
let S1, S2 and S3 be the AHS’s with axioms and rules as described by the following
table:

AHS set of axioms set of rules

S1 ∅ {RA.C}

S2 {A} ∅

S3 {A} {RA.B}

Now we find that
S1 �th S3 & S1 6�r/adm S3 (C.34)

holds: S1 �th S3 is a consequence of Th(S1) = ∅ ⊆ {A,B} = Th(S3), and further-
more S1 6�r/adm S3 is the case since RA.C is not admissible in S3. The fact that
(C.34) holds for the AHS’s S1 and S3 as defined above now clearly shows (C.31).

Furthermore we find that

S2 �r/adm S3 & S2 6�adm S3 (C.35)

holds: S2 �r/adm S3 is obvious since S2 has no rules and its single axiom is also
an axiom of S3; and S2 6�adm S3 is a consequence of the fact that the rule RB.C

is admissible in S2 (trivially, since Th(S2) = {A}), but not in S3 (since the theory
Th(S3) = {A,B} of S3 is not closed under applications of RB.C). Hereby we have
demonstrated (C.35) for the AHS’s S2 and S3 as defined above and hence we have
shown (C.31).

We have shown (C.29), (C.30), (C.31) and (C.32) and hence we have proven the
lemma. ✷

Proof of Theorem C.5. In view of Proposition C.3 and Theorem C.4, and in
particular, of the visualization of these two statements by interrelation prisms as
shown in Figure 3 (a), and of the fact that we already know �(s)

rth $ �(s)
r/der from

Theorem C.4 (iii), we only have to show the following five assertions:

�(m)
rth 6= �(s)

rth , (C.36)

�(s)
r/der 6= �r/der , (C.37)

�r/der 6= �r/adm . (C.38)

�adm * �der . (C.39)

�(m)
der * �adm . (C.40)

We start by showing (C.36). For a two-element set Fo = {A,B} , we let S4 and S5

be the AHS’s with set Fo as their sets of formulas and with, respectively, only the
rules R3a and R3b used in Example C.2. Then it is straightforward to check that

S4 6�
(m)
rth S5 & S4 �

(s)
rth S5
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holds, which entails (C.36). Statement (C.37) is a consequence of the fact that for
the two AHS’s S1 and S3 from Example C.2 the following holds:

S1 �r/der S3 & S1 6�
(s)
r/der S3 .

Hereby we have seen S1 6�
(s)
r/der S3 already in Example C.2. And S1 �r/der S3 can

be verified easily by recognizing that the rules R4 and R3a of S1 are derivable in S3

(the fact that R4 is not s-derivable in S3 was actually the reason for S1 6�
(s)
r/der S3 ).

Finally, we show (C.38). We let a three-element set Fo = {A,B,C} be given,
and we let S6 be the AHS with set Fo of formulas and with the two rules R.A and
RB.C that each have only one application, namely

R.A
A

B RB.C
C

where we allowed to use R.A and RB.C as respective “names” for these two rule
applications as if we considered them in the context of an n-AHS. And we let S7 be
the AHS with set Fo of formulas and with the single rule R.A as described above.
Then it holds that S6 �r/adm S7 due to the fact that RB.C is admissible in S7 because
B /∈ Th(S7). But S6 �r/der S7 does not hold because the rule RB.C is obviously not
derivable in S7. We have shown

S6 �r/adm S7 & S6 6�r/der S7 ,

and therefore we can conclude that (C.38) holds.

For showing (C.39) and (C.40), we let three AHS’s S̃1, S̃2 and S̃3 be given with
set Fo = {A,B,C} of formulas and with respective set of axioms and set of rules
according to the following table:

AHS set of axioms set of rules

S̃1 {A} ∅

S̃2 {A} {RA.B}

S̃3 {A} {RB.C}

Hereby the rules RA.B and RB.C have each only one application, namely

A RA.B
B

B RB.C
C

(in these applications we have used RA.B and RB.C as “names” of the respective
rules as if we considered these rule applications as derivations in n-AHS’s). Now it
is easy to see that

S̃3 �adm S̃1 & S̃3 6�der S̃1 (C.41)

holds: S̃3 �adm S̃1 is a consequence of Th(S̃1) = {A} = Th(S̃3), and S̃3 6�der S̃1 is
due to the fact that the rule RB.C of S̃3 is obviously not derivable in S̃1. This shows
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(C.39). And we notice furthermore that

S̃1 �
(m)
der S̃2 & S̃1 6�adm S̃2 (C.42)

holds: S̃1 �
(m)
der S̃2 is obvious (since S̃1 contains no rules and the single axiom of S̃1

is also an axiom of S̃2 and hence is m-derivable in S̃2), and S̃1 6�adm S̃2 is due to
the fact that the rule RB.C is clearly admissible in S̃1, but not in S̃1. And (C.42)
now clearly shows (C.40).

✷

Proof of Theorem 4.13. The statement of Theorem 4.13 consists of the assertions
of Proposition C.7, and Theorem C.8, which are stated and then proved below. ✷

Corollary C.7 (‘Vertical’ and ‘horizontal interrelations’ between above
defined mutual inclusion relations).

(i) The following containment assertions hold between the mutual inclusion rela-
tions defined in Definitions 4.2, Definition 4.6 and Definition 4.10:

∼(m)
rth ⊆ ∼(s)

rth ⊆ ∼rth ⊆ ∼th , (C.43)

∼(m)
der ⊆ ∼(s)

der ⊆ ∼der ⊆ ∼adm , (C.44)

∼(m)
r/der ⊆ ∼(s)

r/der ⊆ ∼r/der ⊆ ∼r/adm . (C.45)

These assertions justify, for all S1,S2 ∈ H, the downwards-pointing, vertical
implication arrows in an ‘interrelation prism’ as shown in Figure 3 (b).

(ii) And the following relationships hold between these twelve mutual inclusion re-
lations:

�r/adm = �adm = �th , (C.46)

�r/der = �der = �rth , (C.47)

�(s)
r/der % �(s)

der = �(s)
rth , (C.48)

�(m)
r/der = �(m)

der = �(m)
rth . (C.49)

These assertions justify for all S1,S2 ∈ H, the horizontal logical equivalences
in an ‘interrelation prism’ as shown in Figure 3 (b).

Theorem C.8 The containment assertions (C.43), (C.44) and (C.45) in Corol-
lary C.7 are proper inclusions, i.e. each inclusion symbol ⊆ used there can be replaced
by the symbol $ .

For showing (C.46) in Corollary C.7 above, we will need the following lemma.
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Lemma C.9 For all AHS’s S1 and S2, the following equivalences hold:

S1 ∼adm S2

S1 ∼r/adm S2

S1 ∼th S2

(C.50)

Proof of Lemma C.6. The lemma is an obvious consequence of Lemma 4.8 (iii),
Lemma C.9, and the definition of the mutual inclusion relations ∼th , ∼adm , ∼r/adm

in respective terms of the inclusion relations �th , �adm , �r/adm . ✷

Proof of Corollary C.7. With the exception of its statements

∼der ⊆ ∼adm , (C.51)

∼(s)
r/der 6= ∼(s)

rth , (C.52)

which we will show below, and of (C.46), which is equivalent to the statement of
Lemma C.9 above, the corollary follows from the theorem using the following fact:

�P1,Q1 ⊆ �P2,Q2 =⇒ ∼P1,Q1 ⊆ ∼P2,Q2 (C.53)

holds for all inclusion relations �P1,Q1, �P2,Q2 and the respectively induced mutual
inclusion relations ∼P1,Q1, ∼P2,Q2 . This is, as we will show now, due to the way how
mutual inclusion relations are defined in terms of inclusion relations.

Let two inclusions relations �P1,Q1, �P2,Q2 be given such that �P1,Q1 ⊆�P2,Q2

holds, and let ∼P1,Q1 and ∼P2,Q2 be the mutual inclusion relations that are induced
by �P1,Q1 and �P2,Q2 respectively. For showing ∼P1,Q1 ⊆∼P2,Q2 , let S1,S2 ∈ H

be two AHS’s such that S1 ∼P1,Q1 S2 . By the definition of ∼P1,Q1, it follows that
S1 �P1,Q1 S2 and S2 �P1,Q1 S1 . Due to �P1,Q1 ⊆�P2,Q2 , it follows that S1 �P2,Q2 S2

and S2 �P2,Q2 S1 hold as well. By using the definition of ∼P2,Q2, these assertions
show S1 ∼P2,Q2 S2 . Since S1 and S2 have been arbitrary AHS’s with the prop-
erty S1 ∼P1,Q1 S2 , we have now proven ∼P1,Q1 ⊆∼P2,Q2 . Hence we have demon-
strated (C.53) for all inclusion relations �P1,Q1, �P2,Q2 and mutual inclusion rela-
tions ∼P1,Q1, ∼P2,Q2 that are respectively induced by �P1,Q1 and �P2,Q2.

For showing (C.51), let S1 and S2 be AHS’s such that S1 ∼der S2 holds; we
will show S1 ∼adm S2 . It is part of the assumption S1 ∼der S2 that every derivable
formula of S1 is also a derivable formula of S2, and vice versa. This implies that
S1 and S2 have the same theorems, i.e. that S1 ∼th S2 holds. But this implies
S1 ∼adm S2 by Lemma C.9. Since S1 and S2 have been arbitrary AHS’s with the
property S1 ∼der S2 for this argument, we have justified the containment assertion
(C.51).

The assertion (C.52) is an immediate consequence of what we have found in
Example C.2 about the two AHS’s S2 and S3 considered there: In (C.3) and (C.6),

we saw that S2 ∼
(s)
r/der S3 and S2 6∼(s)

rth S3 hold.

✷
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Proof of Theorem C.8. The theorem is a consequence of the fact that all of the
counterexamples given in the proof of Theorem C.5 for demonstrating (C.36), (C.37)
and (C.38) can be used again here to show the analogous assertions

∼(m)
rth 6= ∼(s)

rth , (C.54)

∼(s)
r/der 6= ∼r/der , (C.55)

∼r/der 6= ∼r/adm . (C.56)

In view of the assertion ∼(s)
rth ⊆ ∼(s)

r/der of Corollary C.7 and of the visualization of

Corollary C.7 in an ‘interrelation prism’ as shown in Figure 3 (b), the assumptions
(C.54), (C.55) and (C.56) are sufficient to demonstrate the statement of the theorem.

✷

Proof of Corollary 4.15. Let S be an AHS and R a rule on FoS . We saw earlier
that (4.8) is just a reformulation of item (i) in Proposition 3.2. And the logical
equivalence (4.9) follows from the theorem, or, more precisely, it follows easily from
the assertion �r/der = �rth of that part of Theorem 4.13, which is expressed by
Corollary C.7:

R is derivable in S ⇐⇒ S+R �r/der S by the definition of �r/der ,

⇐⇒ S+R �rth S due to the assertion �r/der = �rth

of Corollary C.7

⇐⇒ S+R ∼rth S due to the definition of ∼rth.

Analogously, (4.8) and (4.11) can be shown to be consequences of, respectively, the
assertions in (i) and (ii) of the theorem; and similarly, (4.10) can be shown to follow
from part (iii) of the theorem.

✷

Example C.10 (Counterexample to “⇒” in (4.10)). That the implication
“⇒” in (4.10) does not hold in general can be shown by a counterexample that
again relies on the AHS’s from Example C.2: For the system S2 considered there,
we saw that S2 ∼

(s)
r/der S3 holds, and for this we have used that the rule R3a of S2 is

derivable in S3. However, S3+R3a ∼(s)
rth S3 does not hold, since {C1, C2} ⊢(s)

S3+R3a
B

is clearly a relative derivability statement that holds in S3+R3a (the derivation in
(C.4) is also a derivation in S3+R3a), but on the other hand, S3 allows only holding

relative derivability statements of the form {D} ⊢(s)
S3
E for some formulas D,E ∈ Fo

due to the fact that S3 contains only one-premise rules. We have thereby shown

R3a is s-derivable in S3 & S3+R3a 6∼(s)
rth S3 ,

a counterexample to the implication “⇒” in (4.10).
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Appendix D: Auxiliary notions and proofs for statements in
Section 5

This appendix consists of six parts: Sections D.1 and D.6 contain the proofs for
Theorem 5.3 and Theorem 5.13, respectively. The biggest part, Section D.5, contains
a proof for Lemma 5.10, i.e. for termination of ARS’s of R-elimination by mimicking
steps. In this proof the termination of an ARS of rule elimination by mimicking
steps is reduced to the termination of an ARS of “multiset reduction” (which can
be viewed to underly a multiset ordening) by means of a measure function. The
necessary formal prerequisites for this proof are gathered in three earlier sections: In
Section D.2 we review the concept of “abstract rewrite system” (ARS) and formally
define basic notions for these systems such as sequences of composable steps, weak
and strong normalization, and the transitive and reflexive-transitive closure of an
ARS. In Section D.3 the concepts of “multiset reduction” and “multiset ordening”
are introduced and the most important results for these notions are gathered. And
in Section D.4 the method of reducing the termination of an ARS to the termination
of another one by means of a “measure function” is described.

D.1 Proof of Theorem 5.3.

Proof of Theorem 5.3. We will only prove the theorem for the case of AHS’s,
since for in the case of n-AHS’s it can be argued analogously. We let S be an
AHS and R a rule of S. (5.13) is a consequence of the following sequence of logical
equivalences:

R-elimination holds in S ⇐⇒

⇐⇒ (∀D∈Der(S))
[

assm(D) = ∅ ⇒ (∃D′∈Der(S−R)) [D′ - D ]
]

⇐⇒ S �th S−R

⇐⇒ S ∼th S−R

⇐⇒ S ∼r/adm S−R

⇐⇒ S �r/adm S−R

⇐⇒ R is admissible in S−R .

The 6 logical equivalences occuring hereby are justified, in their order from the
top one to the bottom one, by Definition 5.2 (i), by the definition of �th, by the
definitions of ∼th and S−R, by assertion (4.12) in Corollary 4.16, by the definitions
of ∼r/adm and S−R, and by the definition of �r/adm .

(5.15) is a consequence of the following sequence of logical implications and
equivalences:

R-elimination holds in Der(S) w.r.t. ≃(s) ⇐⇒

⇐⇒ (∀D∈Der(S)) (∃D′∈Der(S−R)) [D′ ≃(s) D ]

⇐⇒ S �(s)
rth S−R
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⇐⇒ S ∼(s)
rth S−R

=⇒ S ∼(s)
r/der S−R

⇐⇒ S �(s)
r/der S−R

⇐⇒ R is s-derivable in S−R .

The 5 logical equivalences and one implication above are justified, in their order
from the top to the bottom one, by Definition 5.2 (i), by the definition of relative

derivability statements with respect to ⊢
(s)
S

and ⊢
(s)
S−R

, by the definition of �th,

by the definitions of ∼(s)
rth and S−R, by assertion (4.14) in Corollary 4.16, by the

definitions of ∼(s)
r/der and S−R, and by the definition of �(s)

r/der .

And (5.14) as well as (5.16) can be demonstrated analogously to our argumen-
tation for (5.15) above.

✷

D.2 Abstract Rewrite Systems

In this section we review the concept of “abstract rewrite system” in the way as it
is defined in [9] on p. 317. We generally follow the definitions given there, but will
also make some adjustments for our purposes.

We recall that an abstract rewrite system A is a quadruple 〈A,Φ, src, tgt〉 con-
sisting of a set A of objects , a set Φ of steps , and of source and target functions
src, tgt : Φ → A. Various arrow-like symbols like →,❀,⇒, . . . are employed to range
over ARS’s, symbols a, b, c, . . . , will be used for objects, and φ, ψ, χ, . . . for steps.
For a given abstract rewrite system → , we write φ : a→ b to indicate that φ is a
step with source a and target b ; φ is a witness to the claim that some step from a
to b exists.

Let 〈A,Φ, src, tgt〉 be an ARS. Let φ1 and φ2 be steps. We say that φ2 is
composable with φ1 if and only if tgt(φ1) = src(φ2), i.e. iff the target of φ1 is the
source of φ2. Let I = {0, . . . , n} for some n ∈ ω , or I = ω , and let {φi}i∈I be a
sequence of steps of A, which is called finite for finite I, and infinite otherwise. We
say that {φi}i∈I is a sequence of composable steps iff it holds that

(∀i ∈ ω)
[

i+ 1 ∈ I ⇒ tgt(φi) = src(φi+1)
]

i.e. iff for each two successive steps φi and φi+1 in the sequence φi+1 is composable
with φi. We call src(φ0) the source of the sequence {φi}i∈I , and if I = {0, . . . , n} ,
we call tgt(φn) the target of this sequence.

Let A again be an ARS and let φ, ψ be two of its steps. We say that the step
ψ mimics the step φ, which assertion we abbreviate symbolically to ψ ≃ φ , if and
only if φ and ψ have respectively the same sources and the same targets, i.e. iff

src(ψ) = src(φ) & tgt(ψ) = tgt(φ)

holds. Clearly ≃ is an equivalence relation on the set of steps of A.
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An object a of an ARS A is a normal form of A if and only if a is not the source
of any step of A. We designate by

NF(A) = {a ∈ A | a is normal form of A}

the set of normal forms of A.

We say that an ARS A is weakly normalizing , or just normalizing , if and only if
for all a ∈ A there exists a finite sequence {φi}i∈I of composable steps of A with
source a and a normal form of A as target. And we say that an ARS A is strongly
normalizing , or terminating , if and only if there does not exist an infinite sequence
of composable steps in A.

In the following definition we deviate from a definition given in [9] in that we use
the term “abstract rewrite system with composition and identity” for a notion that
in [9] is just called “abstract rewrite system with composition”. This is because we
will also use the latter term for systems without explicit identity steps.

Definition D.1 (i) An abstract rewrite system with composition is a tuple 〈→, ·〉,
where → is an abstract rewrite system and · is a function from composable steps
of → to steps of → such that:
– For every pair of composable steps φ : a→ b and ψ : b→ c of →, their com-

position φ · ψ : a→ c exists.

(ii) An abstract rewrite system with composition and identity is a triple 〈→, 1, ·〉,
where → is an abstract rewrite system, 1 is a function from objects of → to
steps of →, and · is a function from composable steps of → to steps of → such
that:
– For every object a of →, its trivial step 1a : a→ a exists.
– For every pair of composable steps φ : a→ b and ψ : b→ c of →, their com-

position φ · ψ : a→ c exists.

Steps of the form 1a and (φ · ψ) are called empty and composite steps, respectively.

Now we define the “reflexive-transitive closure” of an ARS analogously as this is
done in [9], and additionally, we introduce the notion of “transitive closure” of an
ARS in an obvious and similar way.

Definition D.2 (i) The transitive closure of an abstract rewrite system of the
form →= 〈A,Φ, src, tgt〉 is the abstract rewrite system with composition 〈→+, ·〉
defined by:
– A is the set of objects of →+.
– The steps of →+ together with their source and target objects are defined as

the theorems of the following Hilbert-style proof system:

φ : a→ b ∈ Φ

φ : a→+ b

φ : a→+ b ψ : b→+ c

(φ · ψ) : a→+ c

– The composition of steps φ : a→+ b and ψ : b→+ c of →+ is (φ · ψ) : a→+ c.

(ii) The reflexive-transitive closure →∗ of an ARS →= 〈A,Φ, src, tgt〉 is the ab-
stract rewrite system with composition and identity 〈∗, 1, ·〉 definied by:
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– A is the set of objects of →∗.
– The steps of →∗ together with their source and target objects are defined as

the theorems of the following Hilbert-style proof system:

a ∈ A
1a : a→∗ a

φ : a→ b ∈ Φ

φ : a→∗ b

φ : a→∗ b ψ : b→∗ c

(φ · ψ) : a→∗ c

– The trivial step for an object a of →∗ is 1a : a→∗ a.
– The composition of steps φ : a→∗ b and ψ : b →∗ c of →∗ is (φ · ψ) : a→∗ c.

D.3 Multiset Reduction ARS’s and Multiset Ordening

In this section we review the definition of finite multisets over a given set, slightly
extend the notation used for multisets in Section 2, introduce the notions of multiset
reduction and multiset ordening, and report some of the most important results
about these notions.

We recall the definition of finite multisets over some given set that was stated in
Section 2, and we slightly extend the notation introduced there. For an arbitrary
set X, there we let

Mf(X) = {M : X → ω |M(x) 6= 0 for only finitely many x ∈ X}

the set of finite multisets over X; we stipulated that x ∈ X occurs in M ∈ Mf(X)
iff M(x) 6= 0, and that, for all n ∈ ω , x ∈ X occurs n times in M iff M(x) = n. The
union M1 ⊎M2 and the difference M1 \M2 of two finite multisets M1,M2 ∈ Mf(X)
over a set X are respectively defined by

M1 ⊎M2 : X → ω

x 7→ (M1 ⊎M2) (x) = M1(x) +M2(x) ,

M1 \M2 : X → ω

x 7→ (M1 \M2) (x) = max{0, M1(x) −M2(x)} .

For arbitrary multisets M,M1,M2 ∈ Mf(X) over a set X and arbitrary x ∈ X we
will furthermore use the following abbreviations:

x ∈M is short for M(x) > 0 ,

M1 ⊆ M2 is short for (∀x ∈ X)[M1(x) ≤M2(x) ] ,

and we will denote by ∅ the multiset in Mf(X) defined by ∅ : X → ω , x 7→ 0.
Furthermore we recall that we introduced in Section 2 an operation mset(·), which
converts finite sequences and finite sets over a set X into finite multisets over X.
That is, we thereby defined, for all sets X, a function

mset : Seqsf(X) ⊎ Pf(X) −→ Mf(X)
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that for finite sequences σ ∈ Seqsf(X) and for all finite subsets B of X is defined
by

mset(σ)(x) = number of occurrences of x in σ,

mset(B)(x) =

{

0 . . . x /∈ B

1 . . . x ∈ B

for all x ∈ X .

Let 〈A,<〉 be a strictly partially ordered set. The ARS of multiset reduction on
Mf(A) is defined by

→msr (A) = 〈Mf(A),Φmsr(A), src, tgt〉

whose objects are finite multisets over A, whose steps are given by

Φmsr(A) = {〈M1, a,X〉 |M1, X ∈ Mf(A), a ∈M1, (∀x ∈ X)[ x < a ]}

and where the source and target functions src, tgt : Φmsr(A) → Mf(A) are, for all
〈M1, a,X〉 ∈ Φmsr(A), defined by

src(〈M1, a,X〉) = M1 , and tgt(〈M1, a,X〉) = (M1 \ mset({a})) ⊎X .

For all a ∈ A and X ∈ Mf(A), we will use the notation φa,X , ψa,X , . . . for steps in
Φmsr(A) that are of the form φa,X : M →msr (M \ {a}) ⊎X (similar for ψa,X and
analogous notations) for some M ∈ Mf(A); by the definition of Φmsr(A) it follows
that a step of the form φa,X can only exist if (∀x ∈ X) [ x < a ] holds.

Let →+
msr (A) and →∗

msr (A) denote the transitive closure of →msr (A) and the
reflexive-transitive closure of →msr (A), respectively. Due to the fact that every
composite step (φ1 · φ2) · φ3 in →+

msr (A) or →∗
msr (A) can be mimicked by the step

φ1 · (φ2 · φ3), and vice versa, we will not distinguish composite steps in →+
msr (A)

or →∗
msr (A) according to in what order the composition is carried out. That is,

we will drop the brackets in steps of →+
msr (A) and →∗

msr (A) that consist of the
composition of more than two steps.

Lemma D.3 Let 〈A,<〉 be a strictly partially ordered set. In the transitive closure
→+

msr (A) of →msr (A) there do not exist steps φ with src(φ) = tgt(φ).

A consequence of this lemma is the irreflexivity of the relation <ms that will be
introduced now, which shows the well-definedness of <ms as a strict partial order.

Definition D.4 (Multiset ordening, strict multiset ordening). Let 〈A,<〉
be a set endowed with a strict partial order.

The strict multiset ordening <ms on the set Mf(A) of multisets over A is defined
for all M1,M2 ∈ Mf(A) by

M1 <ms M2 ⇐⇒ (∃φ ∈ Φ+
msr(A))

[

φ : M2 →
+
msr M1

]

. (D.1)
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And the multiset ordening ≤ms on the Mf(A) is defined by

M1 ≤ms M2 ⇐⇒ (∃φ ∈ Φ∗
msr(A))

[

φ : M2 →
∗
msr M1

]

(D.2)

for all M1,M2 ∈ Mf(A).

It is an obvious consequence of this definition that <ms is the strict part of
≤ms, and that ≤ms is the partial order induced by <ms : For all strictly partially
ordered sets 〈A,<〉, the multiset ordering ≤ms and the strict multiset ordering <ms

on Mf(A)
M1 ≤ms M2 ⇐⇒ M1 <ms M2 ∨ M1 = M2

holds for all M1,M2 ∈ Mf(A). We gather reached knowledge about <ms and ≤ms

in a lemma.

Lemma D.5 Let 〈A,<〉 be a strictly partially ordered set. Then 〈Mf(A), <ms〉 is
a strictly partially ordered set, and 〈Mf(A), <ms〉 is a partially ordered set. <ms is
the strict part of ≤ms , and vice versa, ≤ms is the partial order induced by the strict
partial order <ms.

The following lemma is an easy consequence of the definitions of ≤ms and <ms,
which we will need later.

Lemma D.6 Let 〈A,<〉 be a strictly partially ordered set. Then both the multiset
ordening ≤ms and the strict multiset ordening <ms on Mf(A) are monotone. That
is, for all M1,M2, N ∈ Mf(A) it holds that

M1 ≤ms M2 =⇒ M1 ⊎N ≤ms M2 ⊎N , (D.3)

M1 <ms M2 =⇒ M1 ⊎N <ms M2 ⊎N . (D.4)

As a digression we want to mention and sketch a proof for the fact that ‘cancel-
lation’ holds for the multiset ordenings <ms and ≤ms . That is, also the implications
“⇐” hold in (D.3) and (D.4). The fact that this is true for ≤ms follows obviously
from the statement of the following lemma about its strict part <ms .

Lemma D.7 (‘Cancellation’ for <ms). Let 〈A,<〉 be a strictly partially ordered
set. Then for all M1,M2, N ∈ Mf(A) it holds that

M1 <ms M2 ⇐= M1 ⊎N <ms M2 ⊎N . (D.5)

This lemma is an immediate consequence of Lemma D.8 and Lemma D.9, which
are stated below. Hereby Lemma D.8 asserts essentially that, for all strictly par-
tially ordered sets 〈A,<〉, every sequence (φa1,X1, . . . , φan,Xn

) of composable steps
in the ARS →msr (A) (where a1, . . . , an ∈ A and X1, . . . , Xn ∈ Mf(A) ) can be re-
placed by a sequence (ψb1,Y1, . . . , ψbm,Ym

) of composable steps of →msr (A) (for some
b1, . . . , bm ∈ A and Y1, . . . , Ym ∈ Mf(A) ) where the sequence (b1, . . . , bm) in A is
non-increasing , i.e. is such that

¬(∃ i, j ∈ {1, . . . , m})[ i < j & bi < bj ]
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holds. And Lemma D.9 states that, for all multisets M1,M2, N over a strictly par-
tially ordered set 〈A,<〉 , every sequence of composable steps of →msr (A) between
M2 ⊎N and M1 ⊎N can be replaced by a similar sequence of composable steps of
→msr (A) between M2 and M1.

Lemma D.8 Let 〈A,<〉 be a strictly partially ordered set. Then it holds for all
multisets M1,M2 ∈ Mf(A) that

M1 <ms M2 ⇐⇒ (∃n ∈ ω\{0}) (∃ a1, . . . , an ∈ A) (∃X1, . . . , Xn ∈ Mf(A))

(∃φa1,X1, . . . , φan,Xn
∈ (Φmsr(A))+)

[

(a1, . . . , an) is non-increasing &

& φa1,X1 · φa2,X2 · . . . · φan,Xn
: M2 →

+
msr M1

]

.

Lemma D.9 Let 〈A,<〉 be a strictly partially ordered set. Then it holds for all
M1,M2, N ∈ Mf(A), n ∈ ω , elements a1, . . . , an of A and multisets M1,M2 in
Mf(A) that

(a1, . . . , an) is non-increasing =⇒

(∀φa1,X1, . . . φan,Xn
∈ Φmsr(A))

[

φa1,X1 · . . . · φan,Xn
: M2 ⊎N →+

msr M1 ⊎N =⇒

=⇒ (∃ψa1,X1, . . . ψan,Xn
∈ Φmsr(A))

[ψa1,X1 · . . . · ψan,Xn
: M2 →

+
msr M1 ]

]

.

Lemma D.9 can be shown by a rather easy induction on n. And Lemma D.8
follows easily from the next lemma, which expresses that for all a, a′ ∈ A and
X,X ′ ∈ Mf(A) such that (a, a′) is non-increasing, every step φa′,X′ ∈ Φmsr(A) that
is composable with a step of the form φa,X ∈ Φmsr(A) can be permuted over φa,X ,
that is to say, the composite step φa,X · φa′,X′ of the transitive closure →+

msr (A) of
→msr (A) can be mimicked by a composite step ψa′,X′ · ψa,X of →+

msr (A) for some
ψa,X , ψa′,X′ ∈ Φmsr(A).

Lemma D.10 (Permutation of certain composable steps of →msr). Let
〈A,<〉 be a strictly partially ordered set and →msr (A) = 〈Mf(A),Φmsr(A), src, tgt〉
the ARS of multiset reduction on Mf(A). Then for all a, a′ ∈ Mf(A) it holds:

(∀φa,X , φa′,X′ ∈ Φmsr(A))
[

a < a′ ∨ (¬(a ≤ a′) & ¬(a′ ≤ a)) =⇒

=⇒ (∃ψa,X , ψa′,X′ ∈ Φmsr(A)) [φa,X · φa′,X′ ≃ ψa′,X′ · ψa,X ]
]

.

This lemma can be proved by an easy case analysis. We have hereby concluded
our digression about the proof for Lemma D.7 and continue with reviewing properties
of the multiset ordenings <ms and ≤ms .

The next lemma contains a characterization of the strict multiset ordening on
Mf(A), for some strictly partially ordered set 〈A,<〉, which by some authors (for
example by [2]) is taken as the definition of the strict multiset ordening <ms .

70



Grabmayer

Lemma D.11 (Alternative definition of <ms). Let 〈A,<〉 be a strictly partially
ordered set and let <ms be the strict multiset ordening on Mf(A). Then it holds:

M1 <ms M2 ⇐⇒ (∃X, Y ∈Mf(A))
[

∅ 6= X ⊆M1 & M1 = (M2 \X) ⊎ Y &

& (∀ y ∈ Y ) (∃x ∈ X) [ y < x ]
]

. (D.6)

Hint of Proof. “⇐” in (D.6) can be proved by a straightforward induction on
the length of a sequence (φ1, . . . , φn) of composable steps in →msr (A) between two
multisets M1 and M2, i.e. such that in →+

msr

src(φ1 · . . . · φn) = M2 and tgt(φ1 · . . . · φn) = M1

holds. The direction “⇒” in (D.6) can be proved by induction on the number of
elements of the set X, i.e. by induction on |{x ∈ X |X(x) > 0}| .

The important nontrivial property of multiset reduction is termination. 10

Lemma D.12 (Termination of multiset reduction). Let 〈A,<〉 be a strictly
partially ordered set. Then the ARS →msr (A) of multiset reduction on Mf(A) is
strongly normalizing.

A proof for this theorem can be carried out in an analogous way to a proof
given for the multiset ordering <ms in [2] on p. 23 for Theorem 2.5.5 (Baader and
Nipkow give a proof for termination of the strict multiset ordening, here denoted by
<ms, that they define according to the equivalence (D.6); this proof can easily be
adapted for a proof of Lemma D.11). A nice alternative, proof-theoretic proof for
Lemma D.11 can be found on the note [6]; that proof is due to W. Buchholz.

The following theorem about the well-foundedness of the multiset ordening is an
immediate consequence of Lemma D.12 in view of the definitions in (D.1) and (D.2)
of the ordenings <ms and ≤ms on Mf(A) for some given strictly partially ordered set
〈A,<〉. We recall the usual definition of well-foundedness for partially ordered sets:
A strictly partially ordered set 〈A,<〉 is well-founded if and only if there does not
exist an infinite chain of the form . . . < an < an−1 < . . . < a2 < a1 < a0 in 〈A,<〉.
And a partially ordered set 〈B,≤〉 is well-founded if and only if its strict part 〈B,<〉
is well-founded, where < is defined by

a < b ⇐⇒ a ≤ b & a 6= b

for all a, b ∈ B .

Theorem D.13 (Well-foundedness of the multiset ordening). Let 〈A,<〉 be
a strictly partially ordered set, that is well-founded.

Then also the strict multiset ordening <ms and the multset ordening ≤ms on the
set Mf(A) are well-founded.

10 In [2] this phrase is used in connection with the multiset ordening.
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D.4 Using measure functions to prove termination for ARS’s

In the context of their treatment of abstract reduction systems, which are of the
form 〈Ã, R̃〉 with R̃ a binary relation on Ã, [2] argue that the most basic method
for proving termination of an abstract reduction system 〈A,→〉 is to embed it into
another abstract reduction system 〈B,>〉 that is known to terminate. This requires
a measure function between 〈A,→〉 and 〈B,>〉, by which a monotone function
m : A→ B is meant, i.e. for which

a→ b =⇒ m(a) > m(b) (for all a, b ∈ A)

holds. If such a measure function m exists between 〈A,→〉 and 〈B,>〉 and if >
is terminating on B, then also 〈A,→〉 must be terminating: Every infinite reduc-
tion sequence a0 → a1 → a2 → . . . in 〈A,→〉 would namely give rise to an infinite
reduction sequence m(a0) > m(a1) > m(a2) > . . . in 〈B,>〉 .

Using the easy fact that an abstract reduction system 〈A,→〉 is terminating if
and only if 〈A,→+〉 is terminating, where →+ denotes the transitive closure of →,
the described method can be slightly generalized: If for abstract reduction systems
〈A,→〉 and 〈B,>〉 a function m : A→ B with the property

a→ b =⇒ m(a) >+ m(b) (for all a, b ∈ A)

exists (where >+ denotes the transitive closure of > on B), then termination of
〈B,>〉 also implies termination of 〈A,→〉.

We will now transfer this method for proving termination in a straightforward
way to abstract rewrite systems. For this we consider two ARS’s of the forms
→1 = 〈A1,Φ1, src1, tgt1〉 and →2 = 〈A2,Φ2, src2, tgt2〉 , and let →+

2 the transitive
closure ARS of →2 . We call a function m : A1 → A2 a measure function between
→1 and →2 if and only if it holds that

(∀φ ∈ Φ1) (∀a, b ∈ A1)
[

Φ : a→1 b ⇒ (∃φ′ ∈ Φ+
2 ) [φ′ : m(a) →+

2 m(b) ]
]

.

Based on this definition, the following lemma holds.

Lemma D.14 Let →1 and →2 be ARS’s, and let m : A1 → A2 a measure function
between →1 and →2. Then it holds that

→2 is strongly normalizing =⇒ →1 is strongly normalizing .

Sketch of Proof. If, under the assumption of the lemma, {φi}i∈ω is an infinite
sequence of composable steps in →1 , then there exists, due to the existence of a
measure function between →1 and →2 , an infinite sequence {φ′

i}i∈ω of composable
steps in →+

2 , which also entails the existence of an infinite sequence {φ′′
i }i∈ω of

composable steps in →2 . Hence →2 cannot be strongly normalizing if →1 isn’t. ✷
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D.5 Proof of Lemma 5.10

In this section we will carry out the proof for Lemma 5.10, i.e. we will demonstrate
that ARS’s of rule elimination by mimicking steps are strongly normalizing. As
mentioned before, we will reduce the termination problem for such ARS’s to the
termination problem for ARS’s of multiset reduction on Mf(ω) over 〈ω,>〉, which
ARS’s are terminating due to Lemma D.12. For the purpose of defining an appropri-
ate measure function between ARS’s of these two kinds, we will need the following
notion of R-depth of derivations in an n-AHS S with R ∈ FoS : Whereas the (rule
application) depth |D| of a derivation D in S stands for the maximal number of
rule applications in a thread of D (from a leaf at the top down to the conclusion
of D), R-depth |D|R of a derivation D will be defined so as to denote the maximal
number of applications of R in a thread of D.

Definition D.15 (R-depth of derivations). Let S = 〈Fo,Ax,R, Na, name〉 be
an n-AHS and let R be a rule of S.

We define the R-depth |D|R of arbitrary derivations D ∈ Der(S) according to
the function

| · |R : Der(S) −→ ω , D 7−→ |D|R
on the set Der(S) of derivations of D, which in its turn is defined with induction on
the (rule application) depth |D| of derivations D in S by the following clauses: 11

(i) If |D| = 0, then D consists of an axiom or of an assumption and does not
contain rules. In this case we let

|D|R = 0 .

(ii) If |D| > 0, then we distinguish two cases concerning the arity n of the bottom-
most application of a rule in D.

Case 1. n = 0: Then D is of the form

name(R′)
A

for some A ∈ Fo and a rule R′ ∈ R . Here we stipulate

|D|R =

{

1 . . . R′ = R

0 . . . R′ 6= R .

Case 2. n > 0: Here D is of the form

D1

A1 . . .

Dn

An name(R′)
A

11 The rule application depth |D| of a derivation D in an n-AHS has been defined in Definition 2.4.
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for a rule R′ ∈ R, formulas A1, . . . , An ∈ Fo and derivations D1, . . . ,Dn ∈ Der(S).
Then we set

|D|R =

{

1 + max {|Di|R | 1 ≤ i ≤ n} . . . R′ = R

max {|Di|R | 1 ≤ i ≤ n} . . . R′ 6= R .

Two easy properties of the notion of R-depth of derivations in an n-AHS with R
as a rule are given in the following lemma. These properties will be needed in the
proof of Lemma 5.10.

Lemma D.16 Let S be an n-AHS and let R be a rule of S.

(i) Let D be a derivation and D0 be a subderivation of S. Then |D0|R ≤ |D|R
holds.

(ii) For all derivations D00, D
′
00 and (A)

D0

in S, where a particular assumption

of A in D0 is symbolically singled out, it holds that

|D′
00|R ≤ |D00|R =⇒

∣

∣

∣

∣

∣

∣

D′
00

(A)

D0

∣

∣

∣

∣

∣

∣

R

≤

∣

∣

∣

∣

∣

∣

D00

(A)

D0

∣

∣

∣

∣

∣

∣

R

.

We want to mention that the assertions of Lemma D.16 hold also, if R-depth
|·|R is replaced everywhere by usual (rule application) depth |·|.

Proof of Lemma 5.10. Let S be an n-AHS and R be a rule of S that is derivable
in S−R . We have to show that the ARS →(R)

mim(S) = 〈Der(S),Φ
(R)
mim(S), src, tgt〉 of

R-elimination by mimicking steps as introduced on page 31 is strongly normalizing.

To prove this, it is sufficient due to Lemma D.14 to find a measure function
between →(R)

mim (S) and a strongly normalizing ARS. We will now define a function

m between →(R)
mim(S) and the ARS →msr (ω) of multiset reduction on Mf(ω), which is

strongly normalizing as a consequence of Lemma D.12. We define m as the function

m : Der(S) −→ Mf(ω)

D 7−→ m(D) : ω → ω

l 7→ #
{

D̃0

∣

∣ D̃0 is a subderivation of D with
∣

∣D̃0

∣

∣

R
= l

that is ending with an application of R
}

,

where we used the symbol # as a notation for an operation that gives the cardinality
of a finite set: For every finite set A, we wrote and will do so again below #A for
the cardinality of A, i.e. the finite number of elements of A. We will show that m
is indeed a measure function between →(R)

mim(S) and →msr (ω) in the remaining part
of this proof.
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To show that this is the case, we have to demonstrate

(∀φ ∈ Φ
(R)
mim(S)) (∀D,D′ ∈ Der(S))

[

Φ : D →(R)
mim D′ =⇒

=⇒ (∃φ′ ∈ Φ+
msr) [φ′ : m(D) →+

msr m(D′) ]
]

. (D.7)

For proving this, we let D,D′ ∈ Der(S) and a step φ ∈ Φ
(R)
mim(S) be arbitrary such

that φ : D →(R)
mim D′ . We have to show

m(D′) <+
ms m(D) . (D.8)

By the definition of →(R)
mim(S), the step φ is of the form (5.17) or (5.18). We will only

consider the case that φ is of the more complicated form (5.18), since the argument
to show (D.8) in the case of a step of the form (5.17) is basically just a special
situation of the following demonstration.

We will now consider the case that φ is a mimicking step φ : D → D′ (for some
D,D′ ∈ Der(S)) of the particular form

φ :

D1

A1 . . .
Dn

An name(R)
(A)

D0

→(R)
mim

Di1

(Ai1) . . .

Dik

(Aik)

Dα

(A)

D0

(D.9)

whereby

• D0,D1, . . . ,Dn ∈ Der(S), A1, . . . , An, A ∈ FoS , n ∈ ω\{0} and k ∈ ω ;

• D and D′ are the derivations in S on the left and right sides of the step shown in
(D.9), respectively;

• Dα is a mimicking derivation in S−R for the R-application

A1 . . . An name(R)
A ,

or equivalently, for this derivation D(α,R,S) corresponding to α in S ;

• for the indices i1, . . . , ik ∈ ω it holds that 1 ≤ i1, i2, . . . , ik ≤ n , the expressions
(Ai1), . . . , (Aik) at the top of Dα in D′ stand for single occurrences of the assump-
tions Ai1 , . . . , Aik in Dα, which together make up all assumptions of Dα, i.e. such
that it holds assm(Dα) = mset((Ai1 , Ai2 , . . . , Aik)).

We first notice that m(D) is of the form

m(D) = M1 ⊎ . . . ⊎ Mn ⊎ mset({|D00|R}) ⊎ M0 ⊎ M (D.10)

withM1, . . . ,Mn ∈ Mf(ω) that are defined by

Mi(l) = #
{

D̃0

∣

∣ D̃0 is a subderivation of Di that is ending

with an application of R and fulfills
∣

∣D̃0

∣

∣

R
= l

}

,
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for all i ∈ {1, . . . , n} and l ∈ ω , and M0,M ∈ Mf(ω) by

M0(l) = #
{

D̃0

∣

∣ D̃0 is a subderivation of D that ends in an
application of R in the part D0 of D below

the subderivation D00 and fulfills
∣

∣D̃0

∣

∣

R
= l

}

,

M(l) = #
{

D̃0

∣

∣ D̃0 is a subderivation of D with
∣

∣D̃0

∣

∣

R
= l

that ends in an R-application in the part D0

of D and that does not have D00 as a subderivation
}

for all l ∈ ω , respectively. And furthermore, we observe that m(D) is of a similar
form as m(D′) in (D.10), namely

m(D′) = Mi1 ⊎ . . . ⊎ Mik ⊎ M ′
0 ⊎ M , (D.11)

where M ′
0 ∈ Mf(ω) is defined by

M ′
0(l) = #

{

D̃0

∣

∣ D̃0 is a subderivation of D′ that ends in an
application of R in the part D′

0 of D below

the subderivation D′
00 and fulfills

∣

∣D̃0

∣

∣

R
= l

}

for all l ∈ ω . For eventually showing (D.8), we are going to use the assertions

Mi1 ⊎ . . . ⊎ Mik <ms M1 ⊎ . . . ⊎ Mn ⊎ mset({|D00|R}) (D.12)

M ′
0 ≤ms M0 (D.13)

which we will now demonstrate subsequently.

(D.12) is a consequence of

(∀j ∈ {1, . . . , n}) (∀m ∈Mj)
[

m < |D00|R
]

, (D.14)

since this implies

M1 ⊎ . . . ⊎ Mn ⊎ mset({|D00|R}) →msr Mi1 ⊎ . . . ⊎ Mik

(recall that i1, . . . , ik ∈ {1, . . . , n}). Hence we proceed to show (D.14). For this we
let j ∈ {1, . . . , n} and m ∈Mj be arbitrary. Then m =

∣

∣D̃0

∣

∣

R
for some subderiva-

tion D̃0 of Dj that ends in an application of R. We note that

|D00|R = 1 + max {|Di|R | 1 ≤ i ≤ n} (D.15)

follows from the definition of |·|R . By Lemma D.16 (i) and (D.15), we can now
conclude:

m =
∣

∣D̃0

∣

∣

R
≤ |Dj |R < 1 + max {|Di|R | 1 ≤ i ≤ n} = |D00|R .

Since j ∈ {1, . . . , n} and m ∈Mj were arbitrary, we have shown (D.14), and as a
consequence, (D.12).
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Next we show (D.13). First we notice that due to (D.15) and the fact that Dα

does not contain applications of R it holds

|D′
00|R = max

{

|Dil|R | 1 ≤ l ≤ k
}

≤ max {|Di|R | 1 ≤ i ≤ n} < |D00|R . (D.16)

(the equality here can be shown by induction on the (rule application) depth |Dα| of
Dα). Due to the definition of M0 and M ′

0 there is a bijective correspondence between
these two multisets that relates elements of the form

elements of the form

∣

∣

∣

∣

∣

∣

D00

(A)

D̃0

∣

∣

∣

∣

∣

∣

R

of M0 with elements

∣

∣

∣

∣

∣

∣

∣

D′
00

(A)

D̃0

∣

∣

∣

∣

∣

∣

∣

R

of M ′
0,

where D̃0 is a subderivation of D0 that ends in an application of R. Since for all
such corresponding elements of M0 and M ′

0 respectively

∣

∣

∣

∣

∣

∣

∣

D′
00

(A)

D̃0

∣

∣

∣

∣

∣

∣

∣

R

≤

∣

∣

∣

∣

∣

∣

D00

(A)

D̃0

∣

∣

∣

∣

∣

∣

R

holds as a consequence of (D.16) and Lemma D.16 (ii), (D.13) follows: By a fi-
nite (and possibly zero-length) chain of →msr-steps, every element of M0 can be
replaced by its corresponding element in M ′

0, if this is in fact smaller (otherwise no
replacement is necessary). We have shown (D.13).

Using (D.10), (D.11), (D.12), (D.13), and Lemma D.6, we now find

m(D′) = Mi1 ⊎ . . . ⊎ Mik ⊎ M ′
0 ⊎M

≤ms Mi1 ⊎ . . . ⊎ Mik ⊎ M0 ⊎M

<ms M1 ⊎ . . . ⊎ Mn ⊎ mset({|D00|R}) ⊎ M0 ⊎M

= m(D) .

By transitivity of ≤ms and <ms, we have shown that m(D′) <ms m(D′) holds and
thus, by the definition of <ms, that m(D) →+

msr m(D′) is the case, i.e. (D.8). Since
we have considered an arbitrary mimicking step φ : D → D′ of the form (5.18) and
have shown (D.8), and since this can be shown—as remarked above—in an easier
way for the case of mimicking steps of the form (5.17), we have proven (D.7) and

hence that m is a measure function between →(R)
mim(S) and →msr (ω). As argued

above, this implies that the ARS →(R)
mim(S) of R-elimination in S by mimicking steps

is strongly normalizing.

✷

D.6 Proofs for other statements in Section 5

Proof of Lemma 5.7. Let S be an n-AHS and let R be a rule of S.

77



Grabmayer

The assertion in Lemma 5.7 that the result D′ of applying a sequence of mimick-
ing (s-mimicking, m-mimicking) steps to a derivation D ∈ Der(S) has the property
that it mimics (s-mimics, m-mimics) D follows by induction on the length of the
respective sequence of applied (s-, m-) mimicking steps from the following assertion:

For every mimicking (s-mimicking, m-mimicking) step φ : D → D′ of →(R)
mim(S), the

target D′ of φ mimics (s-mimics, m-mimics) the source D of φ. More precisely, the
assertion that, for all D,D′ ∈ Der(S), (5.26), (5.27) and (5.28) hold is a consequence
of the assertion that, for all D,D′ ∈ Der(S) ,

(∃φ ∈ Φ
(R)
mim(S))

[

φ : D →(R)
mim D′

]

=⇒ D′ - D , (D.17)

(∃φ ∈ Φ
(R)
m-mim(S))

[

φ : D →(R)
m-mim D′

]

=⇒ D′ ≃(m) D . (D.18)

hold ((5.27) follows by an inductive proof based on (D.17) in which it is used that
every s-mimicking step is also a mimicking step). It therefore suffices to prove (D.17)
and (D.18).

To show (D.17), let us consider an arbitrary mimicking step φ : D →(R)
mim D′ of

the ARS →(R)
mim(S). If φ is of the form (5.17) with the denotations explained there,

then due to assm(Dα) = ∅ (this is the case because Dα is a mimicking derivation
for a zero-premise application of R) we find

assm(D′) = (assm(D0) \ {A}) ⊎ assm(Dα) = assm(D0) \ {A} = assm(D) ,

and concl(D′) = concl(Dα) = A = concl(D) .

Therefore we can conclude that
D′ - D (D.19)

holds, i.e. that the target derivation D′ of φ mimics the source derivation D of φ in
this case.

If φ is of the form (5.18) with the denotations explained there, in particular

assm(Dα) = mset((Ai1 , . . . , Aik))

holds. Due to this we find

assm(D′) = (assm(D0) \ {A}) ⊎ (assm(Dα) \ mset((Ai1 , . . . , Aik))) ⊎

⊎
k

⊎

j=1

assm(Dij )

= (assm(D0) \ {A}) ⊎
k

⊎

j=1

assm(Dij)

= (assm(D0) \ {A}) ⊎
n

⊎

i=1

assm(Di)

= D .
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Since {i1, . . . , ik} ⊆ {1, . . . , n} , it follows that

set(assm(D′)) ⊆ set(assm(D)) ,

and hence, since also

concl(D′) = concl(D0) = concl(D)

is the case, that is, D′ mimics D. Thus (D.19) holds.

Because we have now shown (D.19) for an arbitrary mimicking step φ : D →(R)
mim D′

of →(R)
mim(S) , we have proven (D.17).

To prove (D.18), let φ : D →(R)
m-mim D′ be an arbitrary m-mimicking step of the

ARS →(R)
m-mim(S). If φ is an m-mimicking step of the form (5.17) (in which a

zero-premise application of R gets replaced by an m-mimicking derivation), then
it can be argued analogously as in the proof of (D.17) above that

D′ ≃(m) D (D.20)

holds, i.e. that D′ m-mimics D.

Otherwise φ is of the form (5.18), and since φ is a m-mimicking step here, it is
in particular of the form

φ :

D1

A1 . . .

Dn

An name(R)
(A)

D0

→(R)
m-mim

D1

(A1) . . .

Dn

(An)

Dα

(A)

D0

(D.21)

for some derivation Dα ∈ Der(S−R) with

Dα ≃(m) A1 . . . An name(R)
A

(i.e. Dα m-mimics the application α of R on the right-hand side above) and with

assm(Dα) = mset((A1, . . . , An)) . (D.22)

In the symbolic prooftree for D′ on the right-hand side of (D.21) the expressions
(A1), . . . , (An) represent the occurrences of single formulas A1, . . . , An as assump-
tions at the top of the prooftree Dα (into which the derivations D1, . . . ,Dn are
respectively substituted). Using (D.22), we find here that

assm(D′) = (assm(Dα) \ {A}) ⊎ (assm(Dα) \ mset((A1, . . . , An))) ⊎

⊎
n

⊎

i=1

assm(Di)
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= (assm(Dα) \ {A}) ⊎
n

⊎

i=1

assm(Di)

= assm(D)

and
concl(D′) = concl(D0) = concl(D)

holds. Thus D′ m-mimics D and hence (D.20) is the case.

We have shown (D.20) for arbitrary steps φ : D →(R)
m-mim D′ in →(R)

m-mim(S) and
we have therefore demonstrated (D.18).

✷

Proof of Lemma 5.8. We let Fo be the four-element set {A,B,C1, C2} . And we
let S be the n-AHS that has Fo as its set of formulas, that possesses no axioms and
that contains precisely four rules, each of which has only one application, namely:

C1 R1
A

C2 R2
A

A A R3a
B

A R3b
B

(we have previously encountered these rules, and a similar argumentation as will be
given below, in Example C.2). Due to the fact that

A A R3a
B

≃(s) A R3b
B

holds, we find that

φ :
C1 R1
A

C2 R2
A R3a

B

→(R3a)
s-mim

C1 R1
A R3b
B

is an s-mimicking step of the ARS →(R)
s-mim(S), the source and target of which we

respectively denote by D and D′. Since clearly

assm(D′) = mset({C2}) 6= mset({C1, C2}) = assm(D)

is the case, we find that
D′ 6≃(s) D .

As a consequence, (5.27) does not hold for all D,D′ ∈ Der(S) and hence R3a-elim-
ination in Der(S) by s-mimicking steps is not correct with respect to ≃(s) .

✷

Proof of Theorem 5.13. Let S be an n-AHS and let R be a rule of S. We will
only show (5.33) since (5.32) and (5.34) can be shown analogously.

For showing “⇐” in (5.33), let R be s-derivable in S. Then it follows by

Lemma 5.11 (i) that the ARS →(R)
s-mim(S) is strongly normalizing. And by Lemma 5.5

it follows that NF(→(R)
s-mim(S)) = Der(S−R) . Hence in view of Definition 5.12, we

can conclude that R-elimination by s-mimicking steps holds in Der(S).
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For demonstrating “⇒” in (5.33), we assume that strongR-elimination by s-mim-
icking steps holds in Der(S). This entails

NF(→(R)
s-mim(S)) = Der(S−R) . (D.23)

To show that R is s-derivable in S, let α be an arbitrary application of R in S.
We have to establish that α can be s-mimicked by a derivation in S−R , or what
is the same in the light of (5.6), that a derivation Dα ∈ Der(S−R) exists with the
property

Dα ≃(s) D(α,R,S) , (D.24)

where D(α,R,S) is the derivation that corresponds to application α of R in S. Due
to (D.23) and D(α,R,S) /∈ Der(S−R) (this is because D(α,R,S) contains an applica-

tion of R), the derivation D(α,R,S) cannot be a normal form of →(R)
s-mim(S). Hence

there must exist an s-mimicking step in →(R)
s-mim(S) with D(α,R,S) as its source. Let

φ ∈ Φ
(R)
s-mim(S) be arbitrary such that src(φ) = D(α,R,S) and let Dα = tgt(φ), i.e. let

Dα be the result of performing the s-mimicking step φ to D(α,R,S) . Since D(α,R,S)

contains only a single rule application, namely one of R, the derivation Dα must be
an s-mimicking derivation for D(α,R,S) in S. We have thereby shown the existence
of a derivation Dα ∈ Der(S−R) with (D.24), and via the already mentioned state-
ment (5.6), that the application α of R is s-mimicked by a derivation Dα in S−R .
Since α was an arbitrary application of R in this argument, we can conclude now
that every application of R can be s-mimicked by a respective derivation in S−R .
Hence R is s-derivable in S−R .

✷

Appendix E: Relationship with Hilbert systems for conse-
quence à la Avron

In this appendix we establish a connection between our notion of abstract Hilbert
system and the notion of “Hilbert-type system for consequence” introduced by Avron
in [1]. We show the existence of natural correspondences between, on the one hand,
AHS’s that are endowed with consequence relations of the sort introduced in Defini-
tion 2.8, and on the other hand, certain systems from the sequent-style formalization
of Hilbert systems by Avron. In particular, we prove that for every AHS S there ex-
ists a “pure” and single-conclusioned sequent-style “Hilbert system for consequence”
H such that the consequence relations ⊢

(m)
S

,⊢
(s)
S

and ⊢S on S are respectively
“axiomatized” by H, by the extension of H with the contraction rule, and by the
extension of H with contraction and weakening rules. And we will also formulate a
similar ‘reverse statement’.

As a byproduct of these correspondences, it becomes apparent that, apart from
the consequence relations of Definition 2.8, another consequence relation that is
similarly definable on AHS’s does naturally fit into our correspondence results: One
that is axiomatized by a “Hilbert system for consequence” containing weakening,
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but not contraction rules. We will formally introduce this additional consequence
relation ⊢

(mw) and show its corresondence with a respective sequent-style system.
Furthermore we will prove that, for all sets Fo, a relation  between sets on Fo and
Fo, or between multisets on Fo and Fo is “naturally axiomatizable” by a HSC if
and only if it is one of the consequence relations ⊢S, ⊢

(s)
S

, ⊢
(mw)
S

and ⊢
(m)
S

on an
AHS S with formula set Fo.

In the following definition, a language L is understood (in the sense of [1] recalled
at the start of Section 2) to consist of several syntactic categories, among which there
is the category of ‘well-formed formulae’ (wff). The class of wff of a language L will
be denoted by wff(L). Furthermore, for every language L, by a sequent in L we
will mean an expression of the form Γ ⇒ ∆ for some Γ,∆ ∈ Mf(wff(L)), i.e. finite
multisets over L. In a sequent Γ ⇒ ∆ we call Γ the antecedens and ∆ the succedens .
In writing sequents we will furthermore conform to some standard abbreviations
from proof theory. For example, a sequent A⇒ A over L with A ∈ wff(L) stands
short for the sequent mset({A}) ⇒ mset({A}), and a sequent A,Γ1Γ2 ⇒ B,C,∆
with A,B,C ∈ wff(L) and Γ1,Γ2,∆ ∈ Mf(wff(L)) stands short for the sequent

mset({A}) ⊎ Γ1 ⊎ Γ2 ⇒ mset({B}) ⊎ mset({C}) ⊎ ∆ .

For multisets Γ1, . . . ,Γn of wff, we will abbreviate their union
⊎n

i=1 Γi by Γ1 . . .Γn .

The definition of “Hilbert systems for consequence” given below follows the def-
inition of what Avron in [1] calls “Hilbert-type systems for consequence”. 12

Definition E.1 (Hilbert systems for consequence). A Hilbert system for con-
sequence (a HSC) H in the language L is an axiomatic system such that:

(i) The formulas of H are sequents in L.

(ii) The axioms of H include A⇒ A for all A. All other axioms of H are of the
form ⇒ A.

(iii) Every rule R of H is an n-premise rule for some n ∈ ω ; that is, for every rule
R of H there exists n ∈ ω such that all applications of R have arity n .

(iv) With the exception of the (optionally present) structural rules weakening and
contraction

Γ ⇒ ∆ Weakl
A,Γ ⇒ ∆

Γ ⇒ ∆ Weakr
Γ ⇒ ∆, A

A,A,Γ ⇒ ∆
Contrl

A,Γ ⇒ ∆

Γ ⇒ ∆, A, A
Contrr

Γ ⇒ ∆, A

(Weakl, Weakr and Contrl, Contrr will symbolically be gathered under the
respective ‘names’ Weak and Contr) and of the (optionally present) cut rule

Γ ⇒ ∆, A A,Γ′ ⇒ ∆′

Cut
ΓΓ′ ⇒ ∆∆′ ,

12 In order to avoid an unwanted allusion to type theory here, we prefer not to speak of ‘Hilbert-type
systems’.
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all rules of H fulfill the left-hand side property : The set of formulas which
appear on the left-hand side of the conclusion of a rule is the union of the sets
of formulas which appear on the left-hand side of the premises.

The language of a HSC H will be denoted by L(H). For a HSC H and a sequent
Γ ⇒ ∆ in L(H), the formal expression ⊢H Γ ⇒ ∆ stands for the assertion that
there exists a derivation in H with conclusion (end-formula) Γ ⇒ ∆ and without
unproven assumptions.

We call a HSC H single-conclusioned if and only if, for every sequent Γ ⇒ ∆
that occurs as an axiom of H or that occurs in an application of a rule of H, the
succedens ∆ consists only of a single wff. Furthermore, we denote by HC the class of
all Hilbert systems for consequence, and by HC1 the class of all single-conclusioned
HSC’s.

For the sake of clarity, we want to describe the left-hand side property for rules
in an HSC more formally. This is done in the following remark, which also contains
an elegant characterization by Avron of the above defined systems.

Remark E.2 Let H be a Hilbert system for consequence with language L.

(a) Condition (iii) on HSC’s in Definition E.1 is not an explicit part of the stipula-
tions in [1]. However, it seems to be assumed there, and because it constitutes
a formal difference with rules in AHS’s (where a rule may possess applications
of different arities), it was taken up into the definition of an HSC here. This mi-
nor conceptual difference with AHS’s has to be taken into account for defining
correspondences between AHS’s and HSC’s.

(b) A zero-premise rule R of H fulfills the left-hand side property if and only if all
applications of R are of the form

⇒ ∆

for some ∆ ∈ Mf(wff(L)). An n-premise rule R (where n ∈ ω\{0}) in a Hilbert
system for consequence has the left-hand side property if and only if for all
applications

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
the assertion set(Γ) =

n
⋃

i=1

set(Γi)

holds.

(c) The presence of the right-weakening and right-contraction rules Weakr and
Contrr in all HSC’s is perhaps debatable [I am not certain about how to inter-
pret [1] on this point correctly, C.G.]. However, Weakr and Contrr will play no
role below since we will only be interested in single-conclusioned HSC’s here.

(d) Avron sums up his characterization of Hilbert systems in sequent-style format
in the following succinct way: “If we take axioms as rules with 0 premises
then Hilbert representations can be characterized as those systems which have
besides the basic reflexivity and transitivity rules only structural rules and/or
rules with the left-hand side property” ([1, p. 26], emphasis in the original).
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In [1] the subclass of “pure” sequent-style Hilbert systems is introduced in es-
sentially the following way (a minor difference will be explained below).

Definition E.3 (Pure rules and pure Hilbert systems for consequence).

(i) Let H be a Hilbert system for consequence with language L.
A rule R of H is called pure if and only if the following property holds

with respect to its applications: Whenever, for some n ∈ ω\{0} and multisets
Γ,Γ1, . . . ,Γn,∆1, . . . ,∆n ∈ Mf(wff(L)),

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆
(E.1)

is an application of R, then
Γ = Γ1 . . .Γn (E.2)

holds, and for all Γ′
1, . . . ,Γ

′
n ∈ Mf(wff(L)), also

Γ′
1 ⇒ ∆1 . . . Γ′

n ⇒ ∆n

Γ′
1 . . .Γ

′
n ⇒ ∆

(E.3)

is an application of R (hence zero-premise rules are pure trivially).

(ii) A HSC H is called pure if and only if all rules of H are pure.

(iii) We denote by HC
pure the class of pure HSC’s, and by HC

pure
1 the class of pure,

single-conclusioned HSC’s.

For an inference rule R of a HSC to be “pure”, in [1] it is only demanded that for
every application of R of the form (E.1) also all applications of the form (E.3) are
applications of R; there the condition (E.2) does not have to be fulfilled necessarily.
Because we do not want to admit pure rules with inbuilt contraction or weakening
(in the interest of results given below that distinguish between HSC’s as to whether
weakening and/or contraction rules are present or not) we use a stricter definition
of “pure” inference rules.

Due to their special property, pure rules can be represented by schemes consisting
only of the formulas in the antecedents of the premises and the conclusion. For
example, a rule with applications of the form (E.1) can be communicated in the
form

∆1 . . . ∆n

∆ .
The following proposition, which is not mentioned in [1], is not very difficult to

prove. However, we do not include its proof here.

Proposition E.4 (Cut-elimination in HC
pure
1 ). Cut-elimination holds in ev-

ery pure, single-conclusioned Hilbert system for consequence. That is, for every
HSC H ∈ HC

pure
1 with language L, it holds for all A ∈ wff(L) and Γ ∈ Mf(wff(L)): 13

⊢H Γ ⇒ A ⇐⇒ ⊢H−Cut Γ ⇒ A .

13 If H contains the cut rule, then by H−Cut we mean the result of dropping the cut rule from
H; otherwise H−Cut is just H.
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Figure 4 Definition of the Hilbert system for consequence H(S) for every abstract
Hilbert system S = 〈Fo,Ax,R〉.

The axioms of H(S):

(Assm) A⇒ A (for all A ∈ Fo) (Ax) ⇒ A (for all A ∈ Ax)

The rules of H(S):

For all rules R = 〈Apps, prem, concl〉 of S, if R has zero-premise applications then
rules R(0), and for all n ∈ ω\{0} such that R has at least an application of arity n,
rules R(n). These rules have the respective applications

R(0)

⇒ concl(α)

Γ1 ⇒ prem1(β) . . . Γn ⇒ premn(β)
R(n)

Γ1 . . .Γn ⇒ concl(β)

for all α, β ∈ AppsR with arity(α) = 0 and arity(β) = n, and for all Γ1, . . . ,Γn mul-
tisets of formulas over Fo.

And moreover, every derivation D in an HSC H ∈ HC
pure
1 can effectively be trans-

formed into a derivation D′ in H that has the same conclusion as D and that does
not contain applications of Cut.

We want to mention that this result can easily be generalized to the assertion
that cut-elimination also holds for all pure HSC’s (i.e. also for ‘multiple-conclusioned’
systems in HC

pure) that do not contain right-weakening or right-contraction rules.

We will now define a pure and single-conclusioned HSC H(S) for every AHS S.
The principal idea consists in modelling relative derivability statements in S with
respect to the consequence relation ⊢

(m)
S

by derivable sequents, i.e. theorems, of
H(S). In this way, every axiom A of S gives rise to an axiom ⇒ A in H(S), and
every application

A1 . . . An

A
of a rule R in S gives rise to applications of the form

Γ1 ⇒ A1 . . . Γn ⇒ An

Γ1 . . .Γn ⇒ A

(for all Γ1, . . . ,Γn multisets of formulas) of a rule in H(S).

Definition E.5 (Mapping H(·) from AHS’s to HSC’s). We define a function

H(·) : H −→ HC
pure
1 , S 7−→ H(S)

between the class H of Hilbert systems for consequence and the class HC
pure
1 of pure,

single-conclusioned Hilbert systems for consequence: For every AHS S = 〈Fo,Ax,R〉,
the HSC H(S) has a language L with wff(L) = Fo, and its axioms and rules are
defined in Figure 4; we say that H(S) is the HSC that is induced by the AHS S.

The following proposition sums up obvious properties of the mapping H(·) and
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justifies that the range of H(·) is indeed contained in the class HC
pure
1 .

Proposition E.6 Let S be an AHS. Then the image H(S) of S under the mapping
H(·) as defined in Definition E.5 is a pure, single-conclusioned Hilbert system for
consequence, which neither contains structural rules nor Cut.

As a consequence of this proposition, the HSC H(S) defined for a given AHS S
according to the mapping H(·) possesses only rules that fulfill the left-hand side
property.

In the following definition we will define an AHS S(H) for every pure, single-
conclusioned HSC H. For its motivation, we observe the following: Due to the
definition of “pure rule” in an HSC H, it is sufficient (as we have argued earlier) to
retain, for a pure n-premise rule R of H (where n > 0), from every application

Γ1 ⇒ A1 . . . Γn ⇒ An

Γ ⇒ A
(E.4)

of R only the part
A1 . . . An

A
(E.5)

consisting of the inference between the respective formulas in the succedents of the
premises and the conclusion of (E.4). Since Γ = Γ1 . . .Γn must hold in (E.4) due
to purity of R, the original application (E.4) can always be found among all those
HSC-applications that result from building applications of a pure HSC-rule from the
‘AHS-rule application’ (E.5). In this way we have gained an idea of how to define
an AHS-rule Ř for every rule R in an HSC in a natural and faithful way . This
is worked out precisely in the following definition of an AHS S(H) for every pure,
single-conclusioned HSC H.

Definition E.7 (Mapping S(·) from HSC’s to AHS’s). We define a function

S(·) : HC
pure
1 −→ H, H 7−→ S(H)

between the class HC
pure
1 of pure, single-conclusioned Hilbert systems for consequence

and the class H of abstract Hilbert systems: For every HSC H with language L, the
AHS S(H) is defined in Figure 5; we will call S(H) the AHS that is induced by by
the HSC H.

As an obvious property of the mapping S(·), we find the following proposition.

Proposition E.8 Let H1,H2 ∈ HC
pure
1 be such that H1 and H2 differ only by the

presence or absence of (one or all of) the structural rules or of Cut. Then

S(H1) = S(H2)

holds, i.e. H1 and H2 have the same image under S(·).

As a further basic observation, the next lemma formulates and generalizes the
observation that, for HSC’s in HC

pure
1 without structural rules and without cut, the

mapping H(·) is the inverse of the mapping S(·).
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Figure 5 Definition of an abstract Hilbert system S(H) for every pure, single-
conclusioned Hilbert system for consequence H with language L.

S(H) is defined as the AHS 〈Fo,Ax,R〉 with

Fo = wff(L) ,

Ax = {A ∈ Fo | ⇒ A is an axiom of H} ,

R =
{

Ř |R is a rule of H
}

,

whereby for all rules R of H the rule Ř of S(H) is defined as follows: If R is an
n-premise rule for some n ∈ ω , then Ř has only n-premise applications and it holds
for all A,A1, . . . , An ∈ Fo that (depending on whether n = 0 or n ≥ 1)

A
or respectively

A1 . . . An

A

is an application of Ř if and only if there exists an application

⇒ A
or respectively

Γ1 ⇒ A1 . . . Γn ⇒ An

Γ1 . . .Γn ⇒ A

of R for some multisets Γ1, . . . ,Γn of formulas over Fo.

Lemma E.9 Let H be a pure, single-conclusioned HSC that does not contain the
cut rule.

(i) If H contains neither weakening nor contraction, then H(S(H)) = H holds.

(ii) If H contains weakening, but not contraction, then H(S(H))+Weak = H holds.

(iii) If H contains contraction, but not weakening, then H(S(H))+Contr = H holds.

(iv) If H contains weakening and contraction, then H(S(H))+Weak +Contr = H
holds.

Sketch of Proof. Assertion (i) of the lemma can be checked easily. Assertions (ii),
(iii) and (iv) are immediate consequences of the fact that

H(S(H)) = H−{Weak, Contr, Cut} (for all H ∈ HC
pure
1 )

holds, which follows by (i) from the consequence

S(H−{Weak, Contr, Cut}) = S(H) (for all H ∈ HC
pure
1 ).

of Proposition E.8. ✷

It turns out that a fourth kind of consequence relation on AHS’s (next to the
consequence relations of Definition 2.8) is able to fill a ‘gap’ that would otherwise
arise in correspondence assertions given below. For being able to state our results
without this ‘gap’, we first define this consequence relation ⊢

(mw) , which is not
treated otherwise in this report. For an arbitrary AHS or n-AHS S, ⊢

(mw) relates
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to ⊢
(m)
S

in an analogous way as ⊢S does to ⊢
(s)
S

.

Definition E.10 (The consequence relation ⊢
(mw) for AHS’s and n-AHS’s

and relative derivability statements w.r.t. ⊢
(mw)).

Let S be an AHS or n-AHS with formula set Fo. We define the consequence relation
⊢

(mw)
S

, where ⊢
(mw)
S

⊆ Mf(Fo) × Fo by stipulating for all A ∈ Fo and multisets
Γ ∈ Mf(Fo):

〈Γ, A〉 ∈ ⊢
(mw)
S

⇐⇒ (∃D∈Der(S))
[

assm(D) ⊆ Γ & concl(D) = A
]

.

And we define relative derivability statements with respect to this consequence rela-
tion: For all Γ ∈ Mf(Fo) and A ∈ Fo , the statement Γ ⊢(mw)

S A holds if and only

if 〈Γ, A〉 ∈ ⊢
(mw)
S

.

We will now give our main theorem about the correspondence H(·) between
AHS’s and pure, single-conclusioned HSC’s. It gives a characterization of the conse-
quence relations ⊢

(m) , ⊢
(mw) , ⊢

(s) and ⊢ on an AHS S through respective variant
systems of the HSC H(S) that is induced by S.

Theorem E.11 Let S be an AHS, and let H(S) be the Hilbert system for conse-
quence that is induced by S. Then the following four logical assertions hold for all
A ∈ FoS and Γ ∈ Mf(FoS):

Γ ⊢(m)
S A ⇐⇒ ⊢H(S) Γ ⇒ A , (E.6)

Γ ⊢(mw)
S A ⇐⇒ ⊢H(S)+Weak Γ ⇒ A , (E.7)

set(Γ) ⊢(s)
S A ⇐= ⊢H(S)+Contr Γ ⇒ A , (E.8)

set(Γ) ⊢S A ⇐⇒ ⊢H(S)+Weak+Contr Γ ⇒ A . (E.9)

And furthermore, for all A ∈ FoS and Σ ∈ Pf(FoS) it holds:

Σ ⊢(s)
S A ⇐⇒ ⊢H(S)+Contr mset(Σ) ⇒ A , (E.10)

Σ ⊢S A ⇐⇒ ⊢H(S)+Weak+Contr mset(Σ) ⇒ A . (E.11)

Idea of the Proof. All implications in the assertions (E.6)–(E.11) of the theo-
rem can be shown by straightforward inductions on the depth of derivations in S,
H(S), H(S)+Weak, H(S)+Contr, and H(S)+Weak+Contr, respectively. The im-
plications “⇐” in (E.10) and (E.11) are special cases of the respective implications
“⇐” in (E.8) and (E.9).

The implication “⇒” in (E.8) does actually not hold in general as can be seen
in this way: Let, for a non-empty set Fo, S = 〈Fo, ∅, ∅〉 be an AHS with no axioms
and no rules. Then H(S) contains only the axioms A⇒ A (for all A ∈ Fo), but
no rules. As a consequence both H(S) and H(S)+Contr have only sequents of the
form A⇒ A (for A ∈ Fo) as theorems. Hence, for all A ∈ Fo , ⊢H(S)+Contr Γ ⇒ A
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only holds for Γ = {A} ; but set(Γ) ⊢(s)
S A clearly holds for other multisets Γ over

Fo as well (for instance, for Γ = mset((A,A)) ).

We continue by giving our main theorem about the correspondence S(·) between
pure, single-conclusioned HSC’s and AHS’s. This theorem gives a characterization
of the theorems, i.e. the derivable sequents, of a pure, single-conclusioned HSC H
using a respective one of the consequence relation of ⊢

(m) , ⊢
(mw) , ⊢

(s) and ⊢ on
the AHS S(H) that is induced by H.

Theorem E.12 Let H be a pure, single-conclusioned Hilbert system for consequence
with language L, and let S(H) be the AHS that is induced by H. Then the following
four assertions hold for all A ∈ wff(L) , Γ ∈ Mf(wff(L)) and Σ ∈ Pf(wff(L)) :

(i) If H does neither contain weakening nor contraction, then

Γ ⊢(m)
S(H) A ⇐⇒ ⊢H Γ ⇒ A .

(ii) If H contains weakening, but not contraction, then

Γ ⊢(mw)
S(H) A ⇐⇒ ⊢H Γ ⇒ A .

(iii) If H contains contraction, but not weakening, then

set(Γ) ⊢(s)
S(H) A ⇐= ⊢H Γ ⇒ A ,

Σ ⊢(s)
S(H) A ⇐⇒ ⊢H mset(Σ) ⇒ A . (E.12)

(iv) If H contains both weakening and contraction, then

set(Γ) ⊢S(H) A ⇐⇒ ⊢H Γ ⇒ A ,

Σ ⊢S(H) A ⇐⇒ ⊢H mset(Σ) ⇒ A

Proof. All assertions of the theorem follow in analogous ways from respective asser-
tions of Theorem E.11 by using appropriate statements from Proposition E.9. For
example, to show (E.12) let H ∈ HC

pure
1 be such that it contains contraction, but

not weakening, and let H0 = H−Cut. Then we find that for all A ∈ wff(L) and
Σ ∈ Pf(wff(L))

Σ ⊢(s)
S(H) A ⇐⇒ Σ ⊢(s)

S(H0)
A

⇐⇒ ⊢H(S(H0))+Contr mset(Σ) ⇒ A

⇐⇒ ⊢H0 mset(Σ) ⇒ A

⇐⇒ ⊢H mset(Σ) ⇒ A

holds, due to the consequence S(H) = S(H0) of Proposition E.8, the equivalence
(E.10) of Theorem E.11, item (iii) of Proposition E.9, and the cut-elimination the-
orem Proposition E.4. In this way we have shown (E.12).

✷
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In the remaining part of this appendix, we give applications of the two theorems
above to the question of when a relation between sets, or multisets, of formulas and
formulas can actually be “axiomatized” by a pure, single conclusioned HSC. First,
we stipulate what we mean by saying that a HSC “axiomatizes” such a relation.

Definition E.13 Let Fo be a set, and let H be a Hilbert system for consequence
with language L such that wff(L) = Fo holds.

(i) Let (mset)⊆ Mf(Fo) × Fo be a relation between finite multisets of formulas of
Fo and formulas of Fo. We say that H axiomatizes the relation (mset) if and
only if for all A ∈ Fo and all Γ ∈ Mf(Fo) it is the case that:

Γ (mset) A ⇐⇒ ⊢H Γ ⇒ A .

(ii) Let (set)⊆ Pf(Fo) × Fo be a relation between finite sets of formulas of Fo and
formulas of Fo. We say that H axiomatizes the relation (set) if and only if it
holds for all A ∈ Fo and all Σ ∈ Pf(Fo):

Σ (set) A ⇐⇒ ⊢H mset(Σ) ⇒ A .

By restating the assertions of Theorem E.11 using these definitions, we find the
following corollary.

Corollary E.14 Let S be an AHS, and let H(S) be the HSC that is induced by S.
Then the following four assertions hold:

(i) H(S) axiomatizes the consequence relation ⊢
(m)
S

on S.

(ii) H(S)+Weak axiomatizes the consequence relation ⊢
(mw)
S

on S.

(iii) H(S)+Contr axiomatizes the consequence relation ⊢
(s)
S

on S.

(iv) H(S)+Weak +Contr axiomatizes the consequence relation ⊢S on S.

And similarly, by restating the assertions of Theorem E.12 in the light of the
terminology from Definition E.13, we also find the following corollary.

Corollary E.15 Let H be a pure, single-conclusioned HSC, and let S(H) be the
AHS that is induced by H. Then it holds:

(i) If H does neither contain weakening nor contraction, then it axiomatizes the

consequence relation ⊢
(m)
S(H) on S(H).

(ii) If H contains weakening, but not contraction, then it axiomatizes the conse-

quence relation ⊢
(mw)
S(H) on S(H).

(iii) If H contains contraction, but not weakening, then it axiomatizes the conse-

quence relation ⊢
(s)
S(H) on S(H).

(iv) If H contains contraction as well as weakening, then it axiomatizes the conse-
quence relation ⊢S(H) on S(H).

Corollary E.14 asserts that, for every AHS S, each of the consequence relations
⊢S, ⊢

(s)
S

, ⊢
(mw)
S

and ⊢
(m)
S

on S is “axiomatizable” by a HSC. As our last result in
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this appendix, we will now give an inverse assertion to this fact: Under a reasonable
restriction of the term “axiomatizable”, we find that every relation that is axiomati-
zable by a HSC is actually equal to one of the consequence relations ⊢S, ⊢

(s)
S

, ⊢
(mw)
S

and ⊢
(m)
S

for some AHS S. The restriction mentioned hereby is that we exclude, on
the one hand, relations ⊆ Mf(Fo)×Fo (for some set Fo) from being axiomatized
by HSC’s with contraction, and on the other hand, relations ⊆ Pf(Fo) × Fo (for
some set Fo) from being axiomatized by HSC’s without contraction. The reason is
that consequence relations between sets of formulas and formulas lean themselves
naturally to being axiomatized by HSC’s with contraction, whereas consequence re-
lations between multisets of formulas and formulas are certainly more appropriately
axiomatized by systems without contraction.

As a formalization of this curtailed notion of “axiomatizable” relation, we intro-
duce the notion of “naturally axiomatizable” relation.

Definition E.16 Let Fo be a set, and let  be a relation with either ⊆ Mf(Fo)×
Fo or with ⊆ Pf(Fo) × Fo . Let furthermore H be a HSC with language L such
that wff(L) = Fo holds.

We say that  is naturally axiomatizable by a HSC if and only if there exists a
HSC H such that:

(i) H has a language L such that wff(L) = Fo holds.

(ii) H axiomatizes .

(iii) If ⊆ Mf(Fo)×Fo is the case, then H does not contains the contraction rule.

(iv) If ⊆ Pf(Fo) × Fo is the case, then H contains the contraction rule.

With this notion, the following corollary is an easy consequence of Theorem E.11
and Theorem E.12.

Corollary E.17 Let Fo be a set, and let  be a relation with either ⊆ Mf(Fo)×
Fo or with ⊆ Pf(Fo) × Fo . Then the following logical equivalence holds:

 is naturally axiomatizable by a pure, single-conclusioned HSC ⇐⇒

⇐⇒ (∃S AHS with FoS = Fo )
[

 is equal to one of the consequence relations

⊢S, ⊢
(s)
S

, ⊢
(mw)
S

and ⊢
(m)
S

on S
]

.

Due to this result, it can be said that in this report three (namely ⊢, ⊢
(s) and

⊢
(m)) out of those four consequence relations on AHS’s (the mentioned three plus

⊢
(mw)) are studied that are naturally axiomatizable by pure, single conclusioned

Hilbert systems for consequence.
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