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Abstract
Milner (1984) defined a process semantics for regular expres-
sions. He formulated a sound proof system for bisimilarity
of process interpretations of regular expressions, and asked
whether this system is complete.

We report conceptually on a proof that shows thatMilner’s
system is complete, by motivating and describing all of its
main steps.We substantially refine the completeness proof by
Grabmayer and Fokkink (2020) for the restriction of Milner’s
system to ‘1-free’ regular expressions. As a crucial complica-
tion we recognize that process graphs with empty-step tran-
sitions that satisfy the layered loop-existence/elimination
property LLEE are not closed under bisimulation collapse
(unlike process graphs with LLEE that only have proper-step
transitions). We circumnavigate this obstacle by defining a
LLEE-preserving ‘crystallization procedure’ for such process
graphs. By that we obtain ‘near-collapsed’ process graphs
with LLEE whose strongly connected components are either
collapsed or of ‘twin-crystal’ shape. Such near-collapsed pro-
cess graphs guarantee provable solutions for bisimulation
collapses of process interpretations of regular expressions.

CCS Concepts: • Theory of computation Ñ Process cal-
culi; Regular languages.
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Kleene [14] (1951) introduced regular expressions, which
are widely studied in formal language theory. In a typical
formulation, they are constructed from constants 0, 1, letters
𝑎 from some alphabet (interpreted as the formal languages
∅, t𝜖u, and t𝑎u, where 𝜖 is the empty word) and binary
operators ` and ¨, and the unary Kleene star ˚ (which are
interpreted as language union, concatentation, and iteration).

Milner [15] (1984) introduced a process semantics for regu-
lar expressions. He defined an interpretation Cp𝑒q of regular
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expressions 𝑒 as charts (finite process graphs): the interpre-
tation of 0 is deadlock, of 1 is successful termination, letters
𝑎 are atomic actions, the operators ` and ¨ stand for choice
and concatenation of processes, and (unary) Kleene star p¨q˚

represents iteration with the option to terminate successfully
before each execution of the iteration body. He then defined
the process semantics of ‘star expressions’ (regular expres-
sions in this context) 𝑒 as ‘star behaviors’ ⟦𝑒⟧𝑃 :“ rCp𝑒qsØ,
that is, as equivalence classes of chart interpretations with
respect to bisimilarity Ø. Milner was interested in an ax-
iomatization of equality of ‘star behaviors’. For this purpose
he adapted Salomaa’s complete proof system [16] for lan-
guage equivalence on regular expressions to a system Mil
(see Def. 2.6) that is sound for equality of denoted star behav-
iors. Recognizing that Salomaa’s proof strategy cannot be
followed directly, he left completeness as an open question.
Over the past 38 years, completeness results have been

obtained for restrictions of Milner’s system to the follow-
ing subclasses of star expressions: (a) without 0 and 1, but
with binary star iteration 𝑒1

f𝑒2 instead of unary star [6],
(b) with 0, with iterations restricted to exit-less ones p¨q˚ ¨ 0,
without 1 [5] and with 1 [4], (c) without 0, and with only
restricted occurrences of 1 [3], and (d) ‘1-free’ expressions
formed with 0, without 1, but with binary instead of unary
iteration [13]. By refining concepts developed in [13] for the
proof of (d) we can finally establish completeness of Mil.
The aim of this article. We provide an outline of the com-
pleteness proof for Mil. Hereby our focus is on the main
new concepts and results. While details are sometimes only
hinted at in this article, we think that the crystallization
technique we present opens up a wide space for other appli-
cations (we suggest one in Sect. 9). We want to communicate
this technique it in summarized form to the community in
order to stimulate its further development.
A note of caution. Reviewers of this article have been given
access to the kernel of a monograph on the completeness
proof that we are writing. But not all details could not be re-
viewed in the time available. We want to cite the circumspect
statement by Reviewer 1: ‘The present work is buried deep
under layers of combinatorial constructions and definitions
to the extent that producing a fully comprehensive review of
the technical details of the proof would require much more
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time than is allotted for the review of a conference-style
article, even for LICS. It is for this reason that it would be wise
for the community to wait until the proof has been reviewed for
publication in journal or book form to let out the long awaited
sigh of relief that this decades old question has been answered.’

1 Motivation for the chosen proof strategy
We explain the main obstacle we encountered for developing
our proof strategy through explaining shortcomings of ex-
isting approaches. Finally we describe crucial new concepts
that we use for adapting the collapse strategy from [12, 13].
Obstacle for the ‘bisimulation chart’ proof strategy.
Milner [15] recognized that completeness of the proof sys-
temMil cannot be established along the lines of Salomaa’s
completeness proof for his proof system F1 of language equiv-
alence of regular expressions [16]. The reason is as follows.
Adopting Salomaa’s proof strategy would mean (i) to link
given bisimilar chart interpretations Cp𝑒1q and Cp𝑒2q of star
expressions 𝑒1 and 𝑒2 via a chart B that represents a bisim-
ulation between Cp𝑒1q and Cp𝑒2q, (ii) to use this link via
functional bisimulations from B to Cp𝑒1q and Cp𝑒2q to prove
equal in Mil the provable solutions 𝑒1 of Cp𝑒1q, and 𝑒2 of
Cp𝑒2q, (iii) to extract from B a star expression 𝑒 that prov-
ably solves B, and then is provably equal to 𝑒1 and 𝑒2. Here
a ‘provable solution’ of a chart C is a function 𝑠 from its
set of vertices to star expressions such that the value 𝑠p𝑣q at
a vertex 𝑣 can be reconstructed, provably in Mil, from the
transitions to, and the expressions at, immediate successor
vertices of 𝑣 in C, and (non-)termination at 𝑣 . By the ‘prin-
cipal value’ of a provable solution we mean its value at the
start vertex. In pictures we write ‘𝑒 is solution’ for ‘𝑒 is the
principal value of a solution’.

B

Cp𝑒1q Cp𝑒2q(assm)
𝑒𝑖 is solution of Cp𝑒𝑖q (𝑖 P t1, 2u)

ò

𝑒1 is solution of B
𝑒2 is solution of B

) ?
ùñ 𝑒1 “Mil 𝑒2

First by (i) star expressions 𝑒1 and 𝑒2 can be shown to be the
principal values of provable solutions of their chart inter-
pretations Cp𝑒1q and Cp𝑒2q, respectively. These solutions can
be transferred backwards by (ii) over the functional bisim-
ulations from the bisimulation chart B to Cp𝑒1q and Cp𝑒2q,
respectively. It follows that 𝑒1 and 𝑒2 are the principal values
of two provable solutions of B. However, now the obstacle
appears, because the extraction procedure in (iii) of a proof
of 𝑒1 “ 𝑒2 inMil cannot work, like Salomaa’s, for all chartsB
irrespective of the actions of its transitions. An example that
demonstrates that is the chart C12 in Ex. 4.1 in [12, 13]. This
is because some charts are unsolvable (“[In] contrast with
the case for languages—an arbitrary system of guarded equa-
tions in [star]-behaviours cannot in general be solved in star
expressions” [15]), but turn into a solvable one if all actions
in it are replaced by a single one. The reason for the failure

of Salomaa’s extraction procedure is then that the absence
inMil of the left-distributivity law 𝑥 ¨ p𝑦`𝑧q “ 𝑥 ¨𝑦`𝑥 ¨𝑧 (it
is not sound under bisimilarity) frequently prevents applica-
tions of the fixed-point rule RSP˚ inMil unlike for the system
F1 that Salomaa proved complete. We conclude that such a
bisimulation-chart proof strategy, inspired by Salomaa [16],
is not expedient for showing completeness of Mil.

However, if the fixed-point rule RSP˚ in Milner’s system is
replaced inMil by a general unique-solvability rule scheme
USP for guarded systems of equations, then a proof system
arises to which the bisimulation-chart proof strategy is ap-
plicable. That system can therefore be shown to be complete
comparatively easily (as noted in [9]).
Loop existence and elimination. A sufficient structural
condition for solvability of a chart, and correspondingly of a
linear system of recursion equations, by a regular expression
modulo bisimilarity was given by Grabmayer and Fokkink
in [13]: the ‘loop existence and elimination’ condition LEE,
and its ‘layered’ specialization LLEE, which is independent
of the specific actions in a chart. These properties are re-
finements for graphs of ‘well-behaved specifications’ due to
Baeten and Corradini in [2] that single out a class of ‘palm
trees’ (trees with back-links) that specify star expressions
under the process interpretation. For showing that the tai-
lored restriction BBP of Milner’s system Mil to ‘1-free’ star
expressions (without 1, but with binary instead of unary star
iteration) is complete, the following properties were estab-
lished in [13]: (I1) Chart interpretations of 1-free star expres-
sions are LLEE-charts. (S1) Every 1-free star expression 𝑒

is the principal value of a provable solution of its chart in-
terpretation Cp𝑒q. (E1) From every LLEE-chart C a provable
solution of C (by 1-free star expressions) can be extracted.
(SE1) All provable solutions of a LLEE-chart are provably
equal. (P1) Every provable solution can be pulled back from
the target to the source chart of a functional bisimulation
to obtain a provable solution of the source chart. (C1) The
bisimulation collapse of a LLEE-chart is again a LLEE-chart.
As a consequence of these properties, a finite chart C is

expressible by a 1-free star expression modulo bisimilarity if
and only if the bisimulation collapse of C satisfies LLEE.
The ‘bisimulation collapse’ proof strategy forBBP ([13]).
For the completeness proof of the tailored restriction BBP of
Milner’s system Mil to 1-free star expressions, Grabmayer
and Fokkink in [13] linked bisimilar chart interpretations
Cp𝑒1q and Cp𝑒2q of 1-free star expressions 𝑒1 and 𝑒2 via the
joint bisimulation collapse C0. That argument, which we
recapitulate below, can be illustrated as follows:

Cp𝑒1q
LLEE

Cp𝑒2q
LLEE

C0
LLEE

(assm)𝑒1 is solution
𝑒0 is solution
loooooomoooooon

ó
𝑒1 “BBP 𝑒0

𝑒2 is solution
𝑒0 is solution
loooooomoooooon

ó
𝑒0 “BBP 𝑒2

ó
𝑒1 “BBP 𝑒2

has
solution 𝑒0
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By (S1), the star expressions 𝑒1 and 𝑒2 are the principal values
of provable solutions 𝑠1 and 𝑠2 of their chart interpretations
Cp𝑒1q and Cp𝑒2q, respectively. Furthermore, by (I1) the chart
interpretations of the 1-free star expressions Cp𝑒1q and Cp𝑒2q
have the property LLEE. Since LLEE is preserved under the
operation of bisimulation collapse due to (C1), the joint bisim-
ulation collapse C0 of Cp𝑒1q and Cp𝑒2q is again a LLEE-chart.
Therefore a provable solution 𝑠0 can be extracted from C0
due to (E1). Let 𝑒0 be its principal value. The solution 𝑠0 can
be pulled back from C0 conversely over the functional bisim-
ulations from Cp𝑒1q and Cp𝑒2q to C0 due to (P1), and thereby
defines provable solutions 𝑠1 of Cp𝑒1q and 𝑠2 of Cp𝑒2q, both
with 𝑒0 as the principal value. Now having provable solu-
tions 𝑠1 and 𝑠1 of the LLEE-chart Cp𝑒1q, these solutions are
BBP-provably equal by (SE1), and hence also their principal
values 𝑒1 and 𝑒0, that is 𝑒1 “BBP 𝑒0. Analogously 𝑒1 “BBP 𝑒0
can be established. Then 𝑒1 “BBP 𝑒2 follows by applying
symmetry and transitivity proof rules of equational logic.
Obstacles for a ‘bisimulation collapse’ strategy for Mil.
A generalization of this argument for arbitrary star expres-
sions runs into two problems that can be illustrated as:

Cp𝑒qLLEE(I): C
LLEE(C):

C0
LLEEany 1-bisimulation collapse of C

First, see (I), there are star expressions 𝑒 whose chart inter-
pretation Cp𝑒q satisfies neither LEE nor LLEE, as was noted
in [11]. In order to still be able to utilize LLEE, in [11] a
variant chart interpretation Cp𝑒q was defined for star expres-
sions 𝑒 such that Cp𝑒q is ‘LLEE-1-chart’, that is, a chart with
‘1-transitions’ (explicit empty-step transitions) that satisfies
LLEE, and Cp𝑒q is ‘1-bisimilar’ to the chart interpretation
Cp𝑒q. Hereby ‘1-bisimulations’ and ‘1-bisimilarity’ are adap-
tations of bisimulations and bisimilarity to 1-charts.
However, use of the variant chart interpretation encoun-

ters the second obstacle (C) as illustrated above. A part of
it that was also observed in [11] is that LLEE-1-charts are
not closed under bisimulation collapse, unlike LLEE-charts.
While this renders the bisimulation collapse proof strategy
unusable, we here show that an adaptation to a ‘1-bisimu-
lation collapse’ strategy is not possible, either, if it is based
on ‘1-bisimulation collapsed’ 1-charts in which none of its
vertices are 1-bisimilar. In particular we show (C) as the first
of our key observations and concepts as listed below:
1 LLEE -1-charts are not in general collapsible to (collapsed)

LLEE -1-charts. Nor do 1-bisimilar LLEE-1-charts always
have a joint (1-bisimilarity) minimization. We demon-
strate this by an example (see Fig. 4).

The second part of 1 also prevents the generalization of a
variation of the proof in [13] sketched above that uses that
any two bisimilar LLEE-charts (thus without 1-transitions)

are jointly minimizable under bisimilarity (which was shown
by Schmid, Rot, and Silva in [17]).
How we recover the collapse proof strategy forMil.We
define ‘crystallized’ approximations with LLEE of collapsed
LLEE-1-charts in order to show that bisimulation collapses
of LLEE-1-charts have provable solutions. For this purpose
we combine the following concepts and their properties:
2 Twin-Crystals: These are 1-charts with a single strongly

connected comTonent (scc) that exhibit a self-inverse
symmetry function that links 1-bisimilar vertices. Twin-
Crystals abstract our example that demonstrates 1 .

3 Near-Collapsed 1-charts: These are 1-charts in which 1-bi-
similar vertices appear as pairs that are linked by a self-
inverse function that induces a ‘grounded 1-bisimulation
slice’. Twin-Crystals are near-collapsed LLEE-1-charts.

4 Crystallization: By this we understand a process of step-
wise minimization of LLEE-1-charts under 1-bisimilarity
that produces 1-bisimilar ‘crystallized’ LLEE-1-charts in
which all strongly connected comTonents are collapsed
or of twin-crystal shape. This process uses the connect-
through operation from [13] for 1-bisimilar vertices. We
show that crystallized 1-charts are near-collapsed.

5 CompleteMil-provable solution of a 1-chart C: This is a
Mil-provable solution of C with the property that its val-
ues for 1-bisimilar vertices of C areMil-provably equal.
Any completeMil-provable solution of a 1-chart C yields
aMil-provable solution of the bisimulation collapse of C.

6 Elevation of vertex sets above 1-charts: This is a concept
of partially unfolding 1-charts that facilitates us to show
that near-collapsed weakly guarded LLEE-1-charts have
completeMil-provable solutions.

With these conceptual tools we will be able to recover the
collapse proof strategy for LLEE-1-charts. The idea is to es-
tablish, for given 1-bisimilar LLEE-1-charts C1 and C2, a link
via which solutions of C1 and C2 with the same principal
value can be obtained. We create such a link via the crystal-
lized LLEE-1-chart C10 of (one of them, say) C1 and the joint
bisimulation collapse C0 of C1 and C2. Then a solution of C10
can obtained, transferred first to C0, and then to C1 and to C2.
This argument will be illustrated in Fig. 3 in Section 4, where
we give the completeness proof for Mil based on lemmas.

2 Preliminaries
Let𝐴 be a set whosememberswe call actions. The set StExpp𝐴q

of star expressions over actions in𝐴 is defined by the following
grammar, where 𝑎 P 𝐴 :

𝑒, 𝑒1, 𝑒2 ::“ 0 | 1 | 𝑎 | 𝑒1 ` 𝑒2 | 𝑒1 ¨ 𝑒2 | 𝑒˚

Definition 2.1 (1-charts and 1-LTSs). A 1-chart is a 6-tuple
x𝑉 ,𝐴, 1, 𝑣s,Ñ, Óy with 𝑉 a finite set of vertices, 𝐴 a finite set
of (proper) action labels, 1 R 𝐴 the specified empty step label,
𝑣s P 𝑉 the start vertex (hence 𝑉 ‰ ∅), Ñ Ď 𝑉 ˆ 𝐴 ˆ𝑉 the
labeled transition relation, where 𝐴 :“ 𝐴 Y t1u is the set of
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action labels including 1, and Ó Ď 𝑉 a set of vertices with
immediate termination (or terminating vertices). In such a
1-chart, we call a transition in Ñ X p𝑉 ˆ𝐴 ˆ𝑉 q (labeled by
a proper action in 𝐴) a proper transition, and a transition in
Ñ X p𝑉 ˆ t1u ˆ𝑉 q (labeled by 1) a 1-transition. Reserving
non-underlined action labels like 𝑎, 𝑏, . . . for proper actions,
we use highlighted underlined action label symbols like 𝑎
for actions labels in the set 𝐴 that includes the label 1.

A 1-LTS (a labeled transition system with 1-transitions and
immediate termination) is a 5-tuple x𝑉 ,𝐴, 1,Ñ, Óy with con-
cepts as explained above but without a start vertex. For ev-
ery 1-chart C “ x𝑉 ,𝐴, 1, 𝑣s,Ñ, Óy we denote by LpCq “

x𝑉 ,𝐴, 1,Ñ, Óy the 1-LTS underlying C (or that underlies C).
We say that a 1-chartC (a 1-LTSL) isweakly guarded (w.g.)

if C (resp. L) does not have an infinite path of 1-transitions.
By an induced 𝑎-transition 𝑣

p𝑎s
ÝÑ 𝑤 , for a proper action

𝑎 P 𝐴, in a 1-chart C (in a 1-LTS L) we mean a path of the
form 𝑣

1
ÝÑ ¨ ¨ ¨

1
ÝÑ ¨

𝑎
ÝÑ 𝑤 in C (in L) that consists of a finite

number of 1-transitions that ends with a proper 𝑎-transition.
By induced termination 𝑣Óp1q, for 𝑣 P 𝑉 we mean that there is
a path 𝑣

1
ÝÑ ¨ ¨ ¨

1
ÝÑ 𝑣 with 𝑣Ó in C (in L).

By a chart (a LTS) we mean a 1-transition free 1-chart (a
1-transition free LTS). Let C “ x𝑉 ,𝐴, 1, 𝑣s,Ñ, Óy be a 1-chart.
We define by C

p¨sp¨sp¨s
:“ x𝑉 ,𝐴, 1, 𝑣s,

p̈ s
ÝÑ, Óp1qy the induced chart of

C whose transitions are the induced transitions of C, and
whose terminating vertices are the vertices of C with induced
termination. Note that C

p¨sp¨sp¨s
is 1-transition free. Also, for every

vertex 𝑤 P 𝑉 we denote by CÓ𝑤˚ :“ x𝑉 ,𝐴, 1,𝑤,Ñ, Óy the
generated sub(-1)-chart of C at𝑤 .

Definition 2.2 (1-bisimulating slices, 1-bisimulations for
1-LTSs). Let L𝑖 “ x𝑉𝑖 , 𝐴, 1,Ñ𝑖 , Ó𝑖y for 𝑖 P t1, 2u be 1-LTSs.

A 1-bisimulating slice between L1 and L2 is a binary re-
lation 𝐵 Ď 𝑉1 ˆ𝑉2, with active domain𝑊1 :“ domactp𝐵q “

𝜋1p𝐵q, and active codomain𝑊2 :“ codactp𝐵q “ 𝜋2p𝐵q, where
𝜋𝑖 : 𝑉1 ˆ𝑉2 Ñ 𝑉𝑖 , 𝜋𝑖px𝑣1, 𝑣2yq “ 𝑣𝑖 , for 𝑖 P t1, 2u, such that
𝐵 ‰ ∅, and for all x𝑣1, 𝑣2y P 𝐵 the three conditions hold:

(forth)s @𝑎 P 𝐴 @𝑣 1
1 P 𝑉1

`

𝑣1
p𝑎s
ÝÑ1 𝑣

1
1 ^ 𝑣 1

1 P 𝑊1

ùñ D𝑣 1
2 P 𝑉2

`

𝑣2
p𝑎s
ÝÑ2 𝑣

1
2 ^ x𝑣 1

1, 𝑣
1
2y P 𝐵 q

˘

,

(back)s @𝑎 P 𝐴 @𝑣 1
2 P 𝑉2

`

𝑣2
p𝑎s
ÝÑ2 𝑣

1
2 ^ 𝑣 1

2 P 𝑊2

ùñ D𝑣 1
1 P 𝑉1

`

𝑣1
p𝑎s
ÝÑ1 𝑣

1
1 ^ x𝑣 1

2, 𝑣
1
1y P 𝐵 q

˘

,

(termination) 𝑣1Óp1q

1 ðñ 𝑣2Ó
p1q

2 .

Here (forth)s entails 𝑣 1
2 P 𝑊2, and (back)s entails 𝑣 1

1 P 𝑊1.
A 1-bisimulation between L1 and L2 is a 1-bisimulation

slice 𝐵 between L1 and L2 such that the active domain
of 𝐵, and the active codomain of 𝐵, are transition-closed
(that is, closed under Ñ1 and Ñ2, respectively), or equiv-
alently, a non-empty relation 𝐵 Ď 𝑉1 ˆ 𝑉2 such that for
every x𝑤1, 𝑤2y P 𝐵 the conditions (forth), (back), (termina-
tion) hold, where (forth), and (back) result from (forth)s and
(back)s by dropping the underlined conjuncts.

By a 1-bisimulation slice between L1 and L2 we mean a
1-bisimulating slice between L1 and L2 that is contained in
a 1-bisimulation between L1 and L2.
A 1-bisimulating slice (a 1-bisimulation slice, a 1-bisimu-

lation) on a 1-LTS L is a 1-bisimulating slice (and resp., a
1-bisimulation slice, a 1-bisimulation) between L and L.

Definition 2.3 ((funct.) 1-bisimulation between 1-charts).
We consider 1-charts C𝑖 “ x𝑉𝑖 , 𝐴, 1, 𝑣s,𝑖 ,Ñ𝑖 , Ó𝑖y for 𝑖 P t1, 2u.

A 1-bisimulation between 1-charts C1 and C2 is a 1-bisi-
mulation 𝐵 Ď 𝑉1 ˆ𝑉2 between the 1-LTSs LpC1q and LpC2q
underlying C1 and C2, respectively, such that additionally:
(start) x𝑣s,1, 𝑣s,2y P 𝐵 (𝐵 relates start vertices of C1 and C2)
holds; thus 𝐵 must satisfy (start), and, for all x𝑤1, 𝑤2y P 𝐵,
the conditions (forth), (back), (termination) from Def. 2.2.
By a functional 1-bisimulation from C1 to C2 we mean

a 1-bisimulation between C1 and C2 that is the graph of a
partial function from 𝑉1 to 𝑉2. By C1 Ø C2 (by C1 Ñ C2)
we denote that there is a 1-bisimulation between C1 and C2
(respectively, a functional 1-bisimulation from C1 to C2).

Definition 2.4. Let C “ x𝑉 ,𝐴, 1, 𝑣s,Ñ, Óy be a 1-chart.
By ØC we denote 1-bisimilarity on C, the largest 1-bisi-

mulation (which is the union of all 1-bisimulations) between
C and C itself. If 𝑤1 ØC 𝑤2 holds for vertices 𝑤1,𝑤2 P 𝑉 ,
then we say that𝑤1 and𝑤2 are 1-bisimilar in C.
We call C 1-collapsed, and a 1-bisimulation collapse, if

ØC “ id𝑉 holds, that is, if 1-bisimilar vertices of C are iden-
tical. If, additionally, C does not contain any 1-transitions,
then we call C collapsed, and a bisimulation collapse.

Let𝑤1,𝑤2 P 𝑉 . We say that𝑤1 is a substate of𝑤2, denoted
by𝑤1 ĎC 𝑤2, if the pair x𝑤1, 𝑤2y forth-progresses to 1-bisi-
milarity on C in the sense of the following conditions:

(prog-forth) @𝑤 1
1 P 𝑉1@𝑎 P 𝐴

`

𝑤1
p𝑎s
ÝÑ 𝑤 1

1

ùñ D𝑤 1
2 P 𝑉2

`

𝑤2
p𝑎s
ÝÑ 𝑤 1

2 ^ 𝑤 1
1 Ø

C 𝑤 1
2 q

˘

,

(prog-termination) 𝑤1Ó
p1q ùñ 𝑤2Ó

p1q .

Definition 2.5. The chart interpretation of a star expres-
sion 𝑒 P StExpp𝐴q is the (1-tr. free) chart Cp𝑒q “ x𝑉p𝑒q, 𝐴, 1, 𝑒,
Ñ X p𝑉p𝑒qˆ𝑉p𝑒qq, ÓX𝑉p𝑒qy where𝑉p𝑒q consists of all star ex-
pressions that are reachable from 𝑒 via transitions of the
labeled transition relation Ñ Ď StExpp𝐴q ˆ 𝐴 ˆ StExpp𝐴q,
which is defined, together with the imm.-termination rela-
tion Ó Ď StExpp𝐴q, by derivability in the transition system
specification (TSS) T p𝐴q, where 𝑎 P 𝐴, 𝑒, 𝑒1, 𝑒2, 𝑒 1 P StExpp𝐴q:

1Ó

𝑒𝑖Ó

p𝑒1 ` 𝑒2qÓ

𝑒1Ó 𝑒2Ó

p𝑒1 ¨ 𝑒2qÓ p𝑒˚qÓ

𝑎
𝑎
ÝÑ 1

𝑒𝑖
𝑎
ÝÑ 𝑒 1

𝑖

𝑒1 ` 𝑒2
𝑎
ÝÑ 𝑒 1

𝑖

𝑒
𝑎
ÝÑ 𝑒 1

𝑒˚ 𝑎
ÝÑ 𝑒 1 ¨ 𝑒˚

𝑒1
𝑎
ÝÑ 𝑒 1

1

𝑒1 ¨ 𝑒2
𝑎
ÝÑ 𝑒 1

1 ¨ 𝑒2

𝑒1Ó 𝑒2
𝑎
ÝÑ 𝑒 1

2

𝑒1 ¨ 𝑒2
𝑎
ÝÑ 𝑒 1

2



Milner’s Proof System for Regular Expressions Modulo Bisimilarity is Complete LICS 2022, 2–5 August, 2022, Haifa, Israel

Definition 2.6. Milner’s proof system Mil on star expres-
sions has the following axioms (here numbered differently):
(A1) 𝑒 ` p𝑓 ` 𝑔q “ p𝑒 ` 𝑓 q ` 𝑔 (A7) 𝑒 “ 1 ¨ 𝑒

(A2) 𝑒 ` 0 “ 𝑒 (A8) 𝑒 “ 𝑒 ¨ 1
(A3) 𝑒 ` 𝑓 “ 𝑓 ` 𝑒 (A9) 0 “ 0 ¨ 𝑒

(A4) 𝑒 ` 𝑒 “ 𝑒 (A10) 𝑒˚ “ 1 ` 𝑒 ¨ 𝑒˚

(A5) 𝑒 ¨ p𝑓 ¨ 𝑔q “ p𝑒 ¨ 𝑓 q ¨ 𝑔 (A11) 𝑒˚ “ p1 ` 𝑒q˚

(A6) p𝑒 ` 𝑓 q ¨ 𝑔 “ 𝑒 ¨ 𝑔 ` 𝑓 ¨ 𝑔

The rules ofMil are the basic inference rules of equational
logic (reflexivity, symmetry, transitivity of “, compatibility
of “ with `, ¨, p¨q˚) as well as the fixed-point rule RSP˚:

𝑒 “ 𝑓 ¨ 𝑒 ` 𝑔
RSP˚ (if 𝑓 ↓̸)

𝑒 “ 𝑓 ˚ ¨ 𝑔

By 𝑒1 “Mil 𝑒2 we denote that 𝑒1 “ 𝑒2 is derivable inMil.
By Mil´ we denote the purely equational part of Mil that

results by dropping the rule scheme RSP˚ from Mil.

Definition 2.7. While we formulate the stipulations below
for 1-LTSs, we will use them also for 1-charts. So we let
L “ x𝑉 ,𝐴, 1,Ñ, Óy be a 1-LTS, and we let S P tMil,Mil´u.
By a star expression function on L we mean a function

𝑠 : 𝑉 Ñ StExpp𝐴q on the vertices of L. Now we let 𝑣 P 𝑉 .
We say that such a star expression function 𝑠 on L is an
S-provable solution of L at 𝑣 if it holds that:

𝑠p𝑣q “S 𝜏Lp𝑣q `

𝑛
ÿ

𝑖“1
𝑎𝑖 ¨ 𝑠p𝑣𝑖q

given that 𝑇𝑟Lp𝑣q “
␣

𝑣
𝑎𝑖
ÝÑ 𝑣𝑖

ˇ

ˇ 𝑖 P t1, . . . , 𝑛u
(

is a (possibly
redundant) list representation of transitions from 𝑣 in L,
and where 𝜏Lp𝑣q is the termination constant 𝜏Lp𝑣q of L at 𝑣
defined as 0 if 𝑣↓̸, and as 1 if 𝑣Ó. This definition does not de-
pend on the specifically chosen list representation of 𝑇𝑟Lp𝑣q,
because S contains the associativity, commutativity, and
idempotency axioms for `.

By an S-provable solution of L (with principal value 𝑠p𝑣sq
at the start vertex 𝑣s) we mean a star expression function 𝑠 on
L that is an S-provable solution of L at every vertex of L.

We say that an S-provable solution 𝑠 of L is S-complete if:
𝑤1 ØL 𝑤2 ùñ 𝑠p𝑤1q “S 𝑠p𝑤2q , (concept 5 )

holds for all𝑤1,𝑤2 P 𝑉 , that is, if values of the solution 𝑠 at
1-bisimilar vertices of L are S-provably equal.

The following lemma gathers preservation statements of
(complete) provable solutions under (functional) 1-bisimila-
rity that are crucial for the completeness proof.

Lemma 2.8. On weakly guarded 1-charts, the following state-
ments hold for all star expressions 𝑒 P StExp :
(i) Mil-Provable solvability with principal value 𝑒 is pre-

served under converse functional 1-bisimilarity.

(ii) Mil-CompleteMil-provable solvability with principal value
𝑒 of a w.g. 1-chart C impliesMil-provable solvability with
principal value 𝑒 of the bisimulation collapse ofC. (See 5 .)

(iii) Mil-CompleteMil-provable solvability with principal value
𝑒 is preserved under 1-bisimilarity.

3 LLEE-1-Charts
We use the adaptation of the ‘loop existence and elimination
property’ LEE from [13] to 1-charts as described in [7, 9].
Here we only briefly explain the concept by examples, and re-
fer to [7, 9] and to the appendix for the definitions. Crucially,
we gather statements from [7, 9] that we need for the proof.

LEE is defined by a stepwise elimination process of ‘loop
sub-1-charts’ from a given 1-chart C. A run of this process is
illustrated in Fig. 1. Hereby a 1-chartLC “ x𝑉 ,𝐴, 1, 𝑣s,Ñ, Óy

is called a loop 1-chart if it satisfies three conditions:
(L1) There is an infinite path from the start vertex 𝑣s.
(L2) Every infinite path from 𝑣s returns to 𝑣s after a positive

number of transitions.
(L3) Immediate termination is only permitted at the start

vertex, that is, Ó Ď t𝑣su.
A loop sub-1-chart of a 1-chart C is a loop 1-chart LC that
is a sub-1-chart of C with some vertex 𝑣 P 𝑉 of C as start
vertex, such that LC is constructed, for a nonempty set 𝑈
of transitions of C from 𝑣 , by all paths that start with a
transition in𝑈 and continue onward until 𝑣 is reached again
(so the transitions in𝑈 are the loop-entry transitions of LC).
Eliminating a loop sub-1-chart LC from a 1-chart C consists
of removing all loop-entry transitions of LC from C, and
then also removing all vertices and transitions that become
unreachable. Fig. 1 shows a successful three-step run of the
loop elimination procedure. A 1-chart C has the loop existence
and elimination property (LEE) if the procedure, started on C,
of repeated eliminations of loop sub-1-charts results in a
1-chart without an infinite path. If, in a successful elimination
process from a 1-chart C, loop-entry transitions are never
removed from the body of a previously eliminated loop sub-
1-chart, then we say that C satisfies layered LEE (LLEE), and
is a LLEE -1-chart. LLEE-1-LTSs are 1-LTSs that are defined
analogously. While the property LLEE leads to a formally
easier concept of ‘witness’, it is equivalent to LEE. Since the
resulting 1-chart C3 in Fig. 1 does not have an infinite path,
and no loop-entry transitions have been removed from a
previously eliminated loop sub-1-chart, we conclude that the
initial 1-chart C satisfies LLEE as well as LEE.

A LLEE-witness Ĉ of a 1-chart C is the recording of a suc-
cessful run of the loop elimination procedure by attaching
to a transition 𝜏 of C the marking label 𝑛 for 𝑛 P N` (in pic-
tures indicated as r𝑛s, in steps as Ñr𝑛s) forming a loop-entry
transition if 𝜏 is eliminated in the 𝑛-th step, and by attaching
marking label 0 to all other transitions of C (in pictures ne-
glected, in steps indicated as Ñbo) forming a body transition.
Formally, LLEE-witnesses arise as entry/body-labelings from
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C 𝑣

𝑣1

𝑣11

𝑣2

𝑣21

𝑣

𝑣1

𝑣11

𝑣2

𝑣21

elim 𝑣

𝑣1

𝑣11

𝑣2

𝑣21

elim

C3

𝑣
elim

Figure 1. A successful run of the loop elimination procedure.
The start vertex is indicated by , immediate termination by
a boldface ring. Loop-entry transitions of loop sub-1-charts
eliminated in the next step are marked in bold. Action labels
are neglected, however dotted arrows indicate 1-transitions.

Ĉ1
𝑣

r3s

r3s

𝑣1

r1s

𝑣11

𝑣2

r2s

𝑣21

Ĉ2
𝑣

r4s

r3s

𝑣1

r2s

𝑣11

𝑣2

r1s

𝑣21

Ĉ3
𝑣

r2s

r2s

𝑣1

r1s

𝑣11

𝑣2

r1s

𝑣21

Figure 2. Three LLEE-witnesses of the 1-chart C in Fig. 1.
Ĉ1 is a recording of the successful procedure run in Fig. 1 of
the order inwhich loop-entry transitions have been removed.

1-charts, and are charts in which the transition labels are
pairs of action labels over 𝐴, and marking labels in N.
The LLEE-witness Ĉ1 in Fig. 2 arises from the run of the

loop elimination procedure in Fig. 1. The LLEE-witnesses Ĉ2
and Ĉ3 of C in Fig. 2 record two other successful runs of
the loop elimination procedure of length 4 and 2, respec-
tively, where for Ĉ3we have permitted to eliminate two loop
subcharts at different vertices together in the first step.

Definition 3.1 (1-charts with LLEE–1-lim). LetC be a 1-chart.
Let Ĉ be a LLEE-witness of C. We say that Ĉ is 1-transition

limited if every 1-transition of C lifts to a backlink (a transi-
tion from the body of a loop sub-1-chart back to its start) in
Ĉ. Fixing also a weaker property, we say that Ĉ is guarded if
all of its loop-entry transitions are proper transitions.
We say that C satisfies LLEE–1-lim, and is 1-transition

limited, if C has a 1-transition limited LLEE-witness. We say
that C is guarded if C has a guarded LLEE-witness.

We note that 1-transition limited LLEE-1-charts are guarded
(since loop-entry transition are not backlinks), and guarded
LLEE-1-charts are weakly guarded (since in a guarded LLEE-
witness every 1-transition path is a body transition path,
which as in every LLEE-witness is guaranteed to be finite).

Lemma 3.2. Every weakly guarded LLEE-1-chart is 1-bisi-
milar to a (guarded) 1-chart with LLEE–1-lim.

Two crucial properties of LLEE-1-charts that motivate
their use, like for LLEE-charts earlier in [12, 13], are their
provable solvability and unique solvability modulo prov-
ability in Mil. The two lemmas below that express these
properties are generalizations to LLEE-1-charts of Prop. 5.5
and Prop. 5.8 in [12, 13]), and have been proved in [8, 9].

Lemma 3.3. From every guarded LLEE-witness Ĉ of a (weak-
ly guarded) LLEE-1-chart C a Mil´-provable solution 𝑠 Ĉ of
C can be extracted effectively.

Lemma 3.4. For every guarded LLEE -1-chart C it holds that
any two Mil-provable solutions of C are Mil-provably equal.

In Sect. 8 we will need a consequence of Lem. 3.4, namely
provable invariance of provable solutions under ‘transfer
functions’, which define functional 1-bisimulations. While
this statement holds also for LLEE-1-charts, we have to for-
mulate it for LLEE-1-LTSs for use later in Sect. 8.

Definition 3.5. A transfer (partial) function between 1-LTSs
L1 and L2, for L𝑖 “ x𝑉𝑖 , 𝐴, 1,Ñ𝑖 , Ó𝑖y where 𝑖 P t1, 2u, is a
partial function𝜙 : 𝑉1 á 𝑉2 whose graph tx𝑣, 𝜙p𝑣qy | 𝑣 P 𝑉1u
is a 1-bisimulation between L1 and L2.

Lemma 3.6. Let 𝜙 : 𝑉1 á 𝑉2 be a transfer function between
LLEE -1-LTS L𝑖 “ x𝑉𝑖 , 𝐴, 1,Ñ𝑖 , Ó𝑖y, for 𝑖 P t1, 2u. Then for all
Mil-provable solutions 𝑠1 ofL1, and 𝑠2 ofL2 it holds that 𝑠1 co-
incidesMil-provably with the precomposition 𝑠2˝𝜙 of 𝑠2 and 𝜙 :

𝑠1p𝑤q “Mil 𝑠2p𝜙p𝑤qq , for all𝑤 P domp𝜙q .

A substantial obstacle for the use of LLEE-1-charts was
already recognized in [13]: the chart interpretation of star
expressions does not in general define LLEE-charts. This
obstacle can, however, be navigated successfully by using
the result from [7, 11] that a variant chart interpretation can
be defined that produces 1-bisimilar LLEE-1-charts instead.

Lemma 3.7. For every star expression 𝑒 , there is a 1-chart
interpretation Cp𝑒q of 𝑒 that has the following properties:

(i) Cp𝑒q is a 1-transition limited (guarded) LLEE -1-chart,
(ii) Cp𝑒q Ñ Cp𝑒q, and hence also Cp𝑒q Ø Cp𝑒q.
(iii) 𝑒 is the principal value of aMil-provable solution of Cp𝑒q.

4 Completeness proof based on lemmas
We anticipate the completeness proof for Milner’s system
by basing it on the following lemmas, which are faithful
abbreviations of statements as formulated in other sections.
The chosen acronyms for these lemmas stem from the letters
that are typeset in boldface italics in their statements:
(IV) For every star expression 𝑒 , there is a 1-chart interpre-

tation (variant) Cp𝑒q of 𝑒 with the properties (i), (ii),
and (iii) in Lem. 3.7 (see above).

(T) Provable solutions can be transferred backwards over
a transfer function between weakly guarded 1-charts.
(See Lem. 2.8, (i)).
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Cp𝑒1q Cp𝑒2qchart interpretations

Cp𝑒1q
𝑒1 “Mil 𝑒10 ðù

(SE)

# guarded, LLEE
𝑒1 is solution

(by (T)) 𝑒10 is solution

Cp𝑒2q LLEE, guarded
𝑒2 is solution

(by (T)) 𝑒10 is solution

,

.

-

ùñ
(SE)

𝑒10 “Mil 𝑒2

Finally:
𝑒1 “Mil 𝑒10
𝑒10 “Mil 𝑒2

)

ùñ 𝑒1 “Mil 𝑒2 .

1-chart interpretations

C10guarded, LLEE
(by (NC), (CN)) 𝑒10 is complete solution

crystallized 1-chart

C0
𝑒10 is solution (by (CC))bisimulation collapse

(assm)

(IV) (IV)

(CR)

Figure 3. Structure of the completeness proof (see proof of Thm. 4.1): The argument starts from the assumption Cp𝑒1q Ø Cp𝑒2q,
that the chart interpretations of 𝑒1 and 𝑒2 are bisimilar. It uses 1-bisimilarity with the 1-chart interpretations Cp𝑒1q and Cp𝑒2q
of 𝑒1 and 𝑒2 (which expand the chart interpretations), the crystallization C10 of Cp𝑒1q (which arises by LLEE-preservingly
minimizing Cp𝑒1q and crystallization operations), and the joint bisimulation collapse C0 of all of these (1-)charts. The conclusion
is 𝑒1 “Mil 𝑒2, that 𝑒1 and 𝑒2 are provably equal in Milner’s systemMil. By “𝑓 is (complete) solution of C” we here mean that “𝑓
is the principal value of a (complete) provable solution of C”. The indicated lemmas are explained in Sect. 4.

(E) From every guarded LLEE-1-chart C a provable solu-
tion of C can be extracted. (See Lem. 3.3.)

(CR) Every guarded LLEE-1-chart can be transformed into a
1-bisimilar (guarded) crystallized (LLEE-)1-chart. (See
Thm. 7.9, based on Def. 7.5.)

(CN) Every crystallized 1-chart is near-collapsed. (Lem. 7.8.)
(NC) Solutions extracted fromnear-collapsed guarded LLEE-

1-charts are complete provable solutions. (See Lem. 8.2.)
(CC) If a weakly guarded 1-chart C has a complete provable

solution with principal value 𝑒 , then also the (1-tran-
sition free) bisimulation collapse of C has a provable
solution with principal value 𝑒 . (See Lem. 2.8, (ii).)

(SE) All provable solutions of a guarded LLEE-1-chart are
provably equal. (See Lem. 3.4.)

Theorem 4.1. Milner’s proof system Mil is complete with
respect to the process semantics equality of regular expressions.

Proof. (See Fig. 3 for an illustration.) Let 𝑒1, 𝑒2 P StExpp𝐴q

be star expressions such that ⟦𝑒1⟧𝑃 “ ⟦𝑒2⟧𝑃 holds, that is,
their process interpretations coincide. This means that the
behaviors rCp𝑒1qsØ and rCp𝑒2qsØ of the chart interpretations
Cp𝑒1q of 𝑒1 and Cp𝑒2q of 𝑒2 coincide. Therefore Cp𝑒1q Ø Cp𝑒2q
holds, that is, Cp𝑒1q and Cp𝑒2q are bisimilar. We have to show
𝑒1 “Mil 𝑒2, that is, that 𝑒1 “ 𝑒2 can be proved in Mil.

Due to (IV), the 1-chart interpretations Cp𝑒1q of 𝑒1 and
Cp𝑒2q of 𝑒2 are guarded LLEE-1-charts that are 1-bisimilar
to Cp𝑒1q and to Cp𝑒2q, respectively. As a consequence we get
Cp𝑒1q Ø Cp𝑒2q, that is, Cp𝑒1q and Cp𝑒2q are 1-bisimilar. By
part (iii) of (IV), 𝑒1 and 𝑒2 are the principal values of provable
solutions 𝑠1 and 𝑠2 of Cp𝑒1q and Cp𝑒2q, respectively.
We now focus on Cp𝑒1q, leaving aside Cp𝑒2q for the mo-

ment. (Equally we could start from Cp𝑒2q, and build up a

symmetrical argument). Due to (CR) the guarded LLEE-
1-chart Cp𝑒1q can be transformed into a 1-bisimilar crystal-
lized 1-chart C10, which is a guarded LLEE-1-chart. Then
C10 Ø Cp𝑒1q holds. Due to (CN), C10 is also near-collapsed.
Now we can apply (NC) to C10 in order to conclude that the
provable solution 𝑠10 that is extracted from C10 by (E) is a
complete provable solution of the near-collapsed 1-chart C10.
Let 𝑒10 be the principal value of 𝑠10.

Now let C0 be the (1-transition free) bisimulation collapse
of C10. By applying (CC) to the complete provable solution
𝑠10 of C10, which is weakly guarded since it is guarded, we
obtain a provable solution 𝑠0 of C0 that also has the principal
value 𝑒10. Due to Cp𝑒1q Ø Cp𝑒2q, C0 is the joint bisimulation
collapse of Cp𝑒1q and Cp𝑒2q. It follows that there are func-
tional 1-bisimulations from Cp𝑒1q and from Cp𝑒2q to C0, that
is, Cp𝑒1q Ñ C0 Ð Cp𝑒2q. Now we can use (T) to transfer
the provable solution 𝑠0 from C0 to Cp𝑒1q and to Cp𝑒2q. We
obtain provable solutions 𝑠1 of Cp𝑒1q, and 𝑠2 of Cp𝑒2q, both
of which have 𝑒10 as their principal value.

Since both 𝑠1 and 𝑠1 are provable solutions of the guarded
LLEE-1-chart Cp𝑒1q, we can apply (SE) to find that 𝑠1 and 𝑠1
are provably equal. In particular, the principal values 𝑒1 of 𝑠1
and 𝑒10 of 𝑠1 are provably equal. That is, 𝑒1 “Mil 𝑒10 holds.
Analogously, as both 𝑠2 and 𝑠2 are provable solutions of the
guarded LLEE-1-chart Cp𝑒2q, (SE) also entails that 𝑠2 and 𝑠2
are provably equal. Therefore also the principal values 𝑒2 of
𝑠2 and 𝑒10 of 𝑠2 are provably equal. That is, 𝑒2 “Mil 𝑒10 holds.

From 𝑒1 “Mil 𝑒10 and 𝑒2 “Mil 𝑒10 we obtain 𝑒1 “Mil 𝑒2, and
hence that 𝑒1 “ 𝑒2 is provable in Milner’s system Mil. □

5 Failure of LLEE-preserving 1-collapse
Here we expand on observation 1 , due to which we have
realized in Sect. 1 that the bisimulation collapse strategy in
[13] cannot be extended directly to a 1-bisimulation collapse
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Figure 4. A 1-chart C with LLEE-witness Ĉ (colored loop-
entry transitions of level 1, green, of level 2, blue) that is not
1-bisimulation collapsed: the correspondences via the
‘counterpart function cp’ indicate a (grounded) functional
1-bisimulation slice on C. C is not LLEE-preservingly 1-col-
lapsible. The result C1 (small) of connecting through𝑤1 to𝑤2
in C is a 1-bisimulation collapse of C, but not a LLEE-1-chart.
The colored regions explain C as a twin-crystal, see Sect. 6.

strategy for showing completeness of Mil. We define the
properties ‘collapsible’, ‘1-collapsible’, and ‘jointly minimiz-
able’ formally, formulate their failure for LLEE-1-charts, and
suggestively explain the reason by means of an example.
Let C be a LLEE-1-chart. We say that C is LLEE-pre-

servingly 1-collapsible (LLEE-preservingly collapsible) if C
has a 1-bisimulation collapse that is a LLEE-1-chart (and re-
spectively, the bisimulation collapse of C is a LLEE-1-chart).

We say that two LLEE-1-charts C1 and C2 that are 1-bisi-
milar (that is, with C1 Ø C2) are LLEE-preservingly jointly
minimizable (under functional 1-bisimilarity Ñ) if there is a
LLEE-1-chart C0 such that C1 Ñ C0 Ð C2.

Proposition 5.1 ( 1 ). The following two statements hold:
(i) W.g. LLEE -1-charts are not in general LLEE-preservingly

1-collapsible, hence not in general LLEE-pres. collapsible.
(ii) Two 1-bisimilar w.g. LLEE-1-charts are not in general

LLEE-preservingly jointly minimizable under Ñ.
Statement (i) is witnessed by the LLEE-1-chart C in Fig. 4.
Statement (ii) is witnessed by the 1-bisimilar generated sub-
LLEE -1-charts CÓ

𝑤1
˚ and CÓ

𝑤2
˚ of the LLEE -1-chart C in Fig. 4.

That the LLEE-1-chart C in Fig. 4 is not 1-collapsible is
suggested there by exhibiting a natural 1-bisimulation col-
lapse that is not a LLEE-1-chart: the 1-bisimilar 1-chart C1
that results by ‘connecting through’ all incoming transitions
at 𝑤1 in C over to 𝑤2. From C1 it is easy to intuit that the
bisimulation collapse of C cannot be a LLEE-1-chart, either,
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𝑓
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1

𝑑

𝑒

𝑒

cp𝑃

cp𝑃

Figure 5. Two copies of a simplified version C𝑠 (with LLEE-
witness Ĉ𝑠) of the 1-chart C in Fig. 4, linked by a local transfer
function cp𝑃 (ÞÑ links) whose graph (a grounded 1-bisimula-
tion slice) is extended to a 1-bisimulation (added links). Like
C in Fig. 4, also C𝑠 is a twin-crystal shaped LLEE-1-chart.

and hence that C is not LLEE-preservingly collapsible. While
that is only part of the (remaining) proof of Prop. 5.1, (i),
it is also easy to check that the connect-𝑤2-through-to-𝑤1
1-chart C1 of C cannot be a LLEE-1-chart, either. For the
proof that CÓ

𝑤1
˚ and CÓ

𝑤2
˚ are not LLEE-preservingly jointly

minimizable it is crucial to realize that a function that maps
𝑤1 to 𝑤2, and 𝑤2 to 𝑤1 cannot be extended into a transfer
function on C. (That function, however, defines a ‘grounded’
1-bisimulation slice on C, see Def. 6.1 later, and Fig. 5).

For motivating concepts in the next sections we will use
the simplified version C𝑠 in Fig. 5 of the LLEE-1-chart C
in Fig. 4. We emphasize, however, that although C𝑠 is not
collapsible, it is 1-collapsible. Hence C𝑠 does not witness
statement (i), nor can it be used for showing (ii) in Prop. 5.1.

6 Twin-Crystals
The 1-chart C in Fig. 4 and Prop. 5.1 will turn out to be proto-
typical for strongly connected comTonents in LLEE-1-charts
that are ‘nearly collapsed’ but not LLEE-preservingly col-
lapsible any further. By isolating a number of its properties
from C, and from its simplified version C𝑠 in Fig. 5, we de-
fine the central concept of ‘twin-crystal’. Each of the LLEE-
1-charts C and C𝑠 consists of a single scc that is of ‘twin-crys-
tal shape’, which exhibits a certain kind of symmetry with
respect to 1-bisimilarity. Our proof utilizes this symmetry for
proving uniqueness of provable solutions for LLEE-1-charts
of which all scc’s are 1-collapsed or of twin-crystal shape.
Before describing twin-crystals, we first define, also moti-
vated by the two examples, ‘grounded 1-bisimulation slices’,
‘local transfer functions’, and ‘near-collapsed’ 1-charts.
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On both of the LLEE-1-charts C in Fig. 4, and C𝑠 in Fig. 5
there are non-trivial functional 1-bisimulation slices, which
are suggested by the magenta links. These 1-bisimulation
slices cannot be extended to 1-bisimulations that are defined
by transfer functions. However, they have an expedient ad-
ditional property that will permit us to work with ‘local
transfer functions’ instead. Namely, that induced transitions
from a vertex 𝑤1 of pair x𝑤1, 𝑤2y of a slice 𝐵 to a vertex
𝑤 1

1 outside of the domain of 𝐵 can be joined by an induced
transition with the same label from𝑤2 to𝑤1, and vice versa.
We call 1-bisimulation slices with this property ‘grounded’,
and functions that induce them ‘local transfer functions’.
Definition 6.1. Let L “ x𝑉 ,𝐴, 1,Ñ, Óy be a 1-LTS.

By a grounded 1-bisimulation slice on L we mean a 1-bisi-
mulating slice 𝐵 Ď 𝑉 ˆ𝑉 on L such that for all x𝑤1, 𝑤2y P 𝐵

the following additional forth/back conditions hold:

(forth)g @𝑎 P 𝐴 @𝑤 1
1 P 𝑉1

`

𝑤1
p𝑎s
ÝÑ 𝑤 1

1 ^ 𝑤 1
1 R 𝑊1

ùñ 𝑤2
p𝑎s
ÝÑ 𝑤 1

1 ^ 𝑤 1
1 R 𝑊2

˘

,

(back)g @𝑎 P 𝐴 @𝑤 1
2 P 𝑉1

`

𝑤1
p𝑎s
ÝÑ 𝑤 1

2 ^ 𝑤 1
2 R 𝑊1

ðù 𝑤2
p𝑎s
ÝÑ 𝑤 1

2 ^ 𝑤 1
2 R 𝑊2

˘

.

where𝑊1 :“ domactp𝐵q, and𝑊2 :“ codactp𝐵q are the active
domain, and the active codomain of 𝐵, respectively.
Lemma 6.2. For every grounded bisimulation slice 𝐵 Ď 𝑉 ˆ𝑉

on a 1-LTS L “ x𝑉 ,𝐴, 1,Ñ, Óy, the relation 𝐵“ :“ 𝐵 Y “““ is
a 1-bisimulation on L.

Definition 6.3. A local-transfer function on a 1-LTS L “

x𝑉 ,𝐴, 1,Ñ, Óy is a partial function 𝜙 : 𝑉 á 𝑉 whose graph
tx𝑣, 𝜙p𝑣qy | 𝑣 P 𝑉 u is a grounded 1-bisimulation slice on L.
Example 6.4. Both of the functions cp𝑃 on the 1-charts C in
Fig. 4, and cp𝑃 on C𝑠 in Fig. 5 are local transfer functions: in
particular in Fig. 5 it can be checked easily that cp𝑃 defines a
grounded 1-bisimulation slice. Neither of these local transfer
functions can be extended into a transfer function. For C𝑠

this can be checked in Fig. 4: all pairs of the identity function
have to be added in order to extend graphpcp𝑃q into a 1-bisi-
mulation, thereby violating functionality of the relation.

Wewill say that a 1-chartC (and respectively, a 1-LTSL) is
‘near-collapsed’ if 1-bisimilarity on C (on L) is the reflexive–
symmetrical closure of the union of the graphs of finitely
many local transfer functions on L.
Definition 6.5 ( 3 ). Let L be a 1-LTS with state set 𝑉 , and
let 𝑃 Ď 𝑉 be a subset of the vertices of L. We say that L is
locally near-collapsed for 𝑃 if there are local transfer functions
𝜙1, . . . , 𝜙𝑛 : 𝑉 á 𝑉 on L such that:

ØL X p𝑃 ˆ 𝑃q Ď Ø“
𝑅
, for 𝑅 “

Ť𝑛
𝑖“1 graphp𝜙𝑖q ,

where Ø“
𝑅
means the reflexive-symmetric closure of 𝑅. We

say that L is near-collapsed if L is near-collapsed on 𝑉 .
A 1-chart C is (locally for 𝑃) near-collapsed if the 1-LTS

LpCq underlying C is (locally for 𝑃 ) near-collapsed.

piv

𝑃1

top

𝑃2

𝑃

𝐸2

BAm1

Un1

Am1

/ BAm2
Un2

Am2/

cp𝑃

cp𝑃

Figure 6. Structure schema of a twin-crystal with carrier 𝑃 ,
with part 𝑃1 of pivot vertex piv, and part 𝑃2 of top vertex top,
where 𝑃2 is generated by the top entry transitions in 𝐸2.

Example 6.1. Each of the 1-charts C in Fig. 4, and C𝑠 in
Fig. 5 contains only one pair of distinct non-1-bisimilar ver-
tices. Since these vertices are related, respectively, by the
appertaining transfer function cpC , it follows that C and C𝑠

are locally near-collapsed for the sets 𝑃 of all their vertices,
respectively. Therefore C and C𝑠 are near-collapsed.

For vertices𝑤 and 𝑣 in a LLEE-witness Ĉwe write𝑤 ü
𝑣 ,

𝑤 loops-back-to 𝑣 , if 𝑣 Ñr𝑛s ¨ Ñ˚
bo 𝑤 Ñ

`

bo 𝑣 holds with 𝑛 P

N` and such that 𝑣 is only encountered again at the end. We
fix p

ü˚ 𝑣q :“ t𝑤 | 𝑤
ü˚ 𝑣u, the loops-back-to part of 𝑣 .

The structure of the LLEE-1-charts C and C𝑠 above can
be described by the illustration in Fig. 6, together with the
following eight properties that define when a vertex set 𝑃
in a LLEE-1-chart C “ x𝑉 ,𝐴, 1, 𝑣s,Ñ, Óy is the carrier of a
twin-crystal (and that the sub-LTS induced by 𝑃 in C is a
twin-crystal) with respect to vertices top, piv P 𝑃 Ď 𝑉 , sets
𝑃2, 𝑃1 Ď 𝑃 , a LLEE-witness Ĉ of C with binary loops-back-to
relation ü, and a non-empty set 𝐸2 of transitions from top :
(tc-1) 𝑃 “ p

ü˚ topq is a maximal loops-back-to part. Then
top is ü-maximal, and 𝑃 is an scc.

(tc-2) 𝑃 “ 𝑃1 Z𝑃2 for 𝑃1 :“ p
ü˚ pivq and 𝑃2 :“ p𝐸2ü˚ topq,

the loops-back-to part generated by transitions in 𝐸2.
We call piv pivot vertex and top top vertex. Then piv P

𝑃1 Ď 𝑃 , top P 𝑃2 Ď 𝑃 , and t𝑃𝑖u𝑖Pt1,2u is a partition of 𝑃 .
(tc-3) C is not 1-collapsed for 𝑃 . Hence 𝑃 contains 1-bisimi-

larity redundancies.
(tc-4) (Using terminology from Def. 7.1 later:) All ‘reduced’

1-bisimilarity redundancies in 𝑃 are of ‘precrystalline’
form (R3.4), with one vertex in 𝑃1, and the other in 𝑃2.

(tc-5) Proper transitions from piv favor 𝑃1: whenever a prop-
er transition from piv is 1-bisimilar to a vertex in 𝑃1,
then its target is in 𝑃1.

(tc-6) Proper transitions from top favor 𝑃2 (confer (tc-5)).
(tc-7) 𝑃 is squeezed in C: no vertex in 𝑃 is 1-bisimilar to a

vertex outside of 𝑃 .
(tc-8) 𝑃 is grounded in C: any two transitions from 𝑃 with

1-bisimilar targets outside of 𝑃 have the same target.
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For carrier sets 𝑃 of a twin-crystal in C it can be shown
that 1-bisimilarity redundancies in 𝑃 occur with one vertex
in 𝑃1, and the other in 𝑃2. Hence a vertex in 𝑃1 may have a
1-bisimilar counterpart, which can only be in 𝑃2; and vice
versa. Then the following derived concepts can be introduced
(see Fig. 6). The pivot part 𝑃1 partitions into the sets Un1 and
Am1 of unambiguous, and ambiguous vertices, in 𝑃 that are
unique, and respectively, are not unique up to ØC . The top
part 𝑃2 partitions into the sets Un2 and Am2 of unambiguous,
and ambiguous vertices, respectively. The boundary vertices
BAm1 of 𝑃1 have 1-transition paths to piv, and the boundary
vertices BAm2 of 𝑃2 have 1-transition paths to top. There
are no transitions directly from Am1zBAm1 to Un1, and no
transitions directly from Am2zBAm2 to Un2.
1-Bisimilar vertices in Am1 and Am2 are related by the

counterpart (partial) function cp𝑃 : 𝑉 á 𝑉 on C with domain
and range contained in 𝑃 that is defined, for all𝑤 P 𝑉 , by:

cp𝑃 p𝑤q :“

$

&

%

𝑤 if𝑤 P Am, and𝑤 the 1-bisimilar
counterpart of𝑤 in 𝑃 ,

undefined if𝑤 R Am .

Example 6.6. Each of the 1-transition limited LLEE-1-charts
C in Fig. 4 and C2 in Fig. 5 consists of a single scc that is car-
rier of a twin-crystal. In the appertaining figures, the parts
𝑃1 and 𝑃2 are colored blue and green, respectively.

The picture in Fig. 6 suggests the symmetric nature of
twin-crystals: if in the underlying LLEE-witness the loop-en-
try transitions from 𝑃2 to 𝑃1 (maximum level𝑚) are relabeled
into body transitions, and the body transitions from 𝑃1 to 𝑃2
into loop-entry transitions (level𝑚), then a twin-crystal with
permuted roles of piv and top arises. But for the completeness
proof only the properties of twin-crystal shaped scc’s that
are formulated by the two lemmas below are crucial.

Lemma 6.7. The counterpart function on the carrier 𝑃 of a
twin-crystal in a LLEE -1-chart C is a local transfer function.

Lemma 6.8. If 𝑃 is the carrier of a twin-crystal in a LLEE-
1-chart C, then C is locally near-collapsed for 𝑃 .

7 Crystallization of LLEE-1-charts
For this central part of the proof we sketch how every weakly
guarded LLEE-1-chart can be minimized under 1-bisimila-
rity far enough to obtain a LLEE-1-chart in ‘crystallized’
form. By that we mean that the resulting 1-bisimilar LLEE-
1-chart is 1-collapsed apart from that some of its scc’s may be
twin-crystals. A ‘groundedness’ clause in the definition will
ensure that every crystallized 1-chart is also near-collapsed.

The minimization process we describe here is a refinement
of the process for LLEE-charts (without 1-transitions) that
was defined in [12, 13]. We first find that if a LLEE-1-chart C
is not 1-collapsed, then C contains a ‘1-bisimilarity redun-
dancy’ from one of three ‘reduced kinds’ (with subkinds).
This is stated below by Lem. 7.1, which is a generalization of

(R1.1)

𝑤1 𝑤2

𝑤1,𝑤2 not
normed

{{{

(R1.2)
(R1)

𝑤1

𝑤1 𝑤2

𝑤1,𝑤2 normed
{{{

(R2)

𝑤1

𝑤2

𝑤2

(R3.1)

𝑣

𝑤1

𝑤1

𝑤2{{{

𝑤2

(R3.2)

𝑣

𝑤1

𝑤1

𝑤2{{{

𝑤2

{{{

(R3.3)

𝑣

𝑤1
{{{

𝑤1

{{ {

𝑤2

𝑤2

(R3.4)

(R3) 𝑣

{{{

{{{

𝑤1

𝑤1

𝑤2

𝑤2

Figure 7. Reduced 1-bisimilarity redundancies, see Lem. 7.1.
Upward dotted arrows: body 1-transition backlinks. Upward
dashed double arrows: body transition paths of (direct) loops-
back-to links. Dashed double arrows: paths of body transi-
tions. Struck out red arrows: prohibited body-transitions and
body-tr.-paths. Dashed links, bottom: assumed 1-bisimilarity.

Prop. 6.4 in [12, 13]. Second, we argue that every reduced 1-bi-
similarity redundancy can be eliminated LLEE-preservingly
except if it belongs to a subkindwhich can be found in the not
1-collapsible LLEE-1-chart in Fig. 4. Third, we define a few
further transformations for cutting scc’s into twin-crystals.
Lemma 7.1 (kinds of reduced 1-bisimilarity redundancies).
Let C be a 1-chart, and let Ĉ a 1-transition limited LLEE-wit-
ness of C. Suppose that C is not a bisimulation collapse.

Then C contains a 1-bisimilarity redundancy x𝑤1, 𝑤2y (dis-
tinct 1-bisimilar vertices𝑤1 and𝑤2 in C) that satisfies, with
respect to Ĉ, one of the position conditions (kinds) (R1) (with
subkinds (R1.1), (R1.2)) (R2), or (R3) (with subkinds (R3.1),
(R3.2), (R3.3), (R3.4)) that are illustrated in Fig. 7. Note that
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(R3.4)
(R3.4.1)

𝑣
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𝑣
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𝑢2{{{

𝑢2

Figure 8. A precrystalline 1-bisimil. redundancy x𝑤1, 𝑤2y is
crystalline if it is neither of form (R3.4.1) nor of form (R3.4.2).

the vertices 𝑤1 and 𝑤2 are in the same scc for position kinds
(R2) and (R3), but in different scc’s for position kind (R1).

Definition 7.2. We consider a 1-bisimilarity redundancy
x𝑤1, 𝑤2y in C under the assumptions of Lem. 7.1 on Ĉ and C.

We say that x𝑤1, 𝑤2y is reduced (with respect to Ĉ) if it is of
one of the kinds (R1)–(R3) in Fig. 7. We say that x𝑤1, 𝑤2y is
simple if it is of (sub-)kind (R1), (R2), (R3.1), (R3.2), or (R3.3) in
Fig. 7. We say that x𝑤1, 𝑤2y is precrystalline if it is of subkind
(R3.4) in Fig. 7. We say that x𝑤1, 𝑤2y is crystalline if it is pre-
crystalline, but neither of subkind (R3.4.1) nor (R3.4.2) in Fig. 8.

Example 7.3. In the LLEE-1-charts C in Fig. 4, and C𝑠 in
Fig. 5,the pair x 𝑎𝑏𝑐𝑑1 , 𝑎𝑏𝑐𝑑2 y of vertices forms a crystalline
reduced 1-bisimilarity redundancy, since it is of kind (R3.4),
hence precrystalline, but not of kind (R3.4.1) nor (R3.4.2).

From a LLEE-1-chart, every reduced 1-bisimilarity redun-
dancy that is not crystalline can be eliminated LLEE-pre-
servingly by which we mean that the result is a 1-bisimilar
LLEE-1-chart. The transformations needed are adaptations
of the connect-𝑤1-through-to-𝑤2 operation from [12, 13] in
which the incoming transitions at vertex𝑤1 are redirected to
a 1-bisimilar vertex𝑤2. Here this operation typically requires
an unraveling step in which loop levels above 𝑤1 that are
reachable by 1-transitions are removed by similar transition
redirections. In an example we illustrate the elimination of a
reduced 1-bisimilarity redundancy of kind (R3.2) in Fig. 9.

Lemma7.4. Every reduced 1-bisimilarity redundancy x𝑤1, 𝑤2y
can be eliminated LLEE-preservingly from a 1-transition lim-
ited LLEE -1-chart provided it is of either of the following kinds:

(i) x𝑤1, 𝑤2y is simple, or
(ii) x𝑤1, 𝑤2y is precrystalline, but not crystalline.

In order to cut twin-crystals in scc’s we also need to safe-
guard that the joining loop vertices of crystalline reduced
1-bisimilarity redundancies are ‘parsimoniously insulated’
from above. The top vertices 𝑣 of 1-bisimilarity redundancies

𝑣

𝑤1

𝑤1

𝑤2

𝑤2
(R3.2)

𝑣

𝑤1

𝑤1
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𝑣
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𝑤2

restored

LLEE–1-lim
𝑣

𝑤1

𝑤2

𝑤2

conn-through

𝑤1 to𝑤2

Figure 9. Example for the LLEE-preserving elimination of a
red. 1-bisim. red. of kind (R3.2) by redirecting transitions to
1-bisimilar targets. Here all proper action labels are the same.

𝑢

𝑣

𝑤1

𝑤1

𝑤2

𝑤2

(R3.4.1)

𝑢

𝑣

𝑤1

𝑤1

𝑤2

𝑤2

(R3.4.1)

insulatep𝑣q

𝑢

𝑣

𝑤2

𝑤2

(R2)

makep𝑣q

parsimonious 𝑢

𝑣
(R1.1)

elim

𝑢

elim

Figure 10. LLEE-Preserving parsimonious insulation from
above of a red. 1-bisimilarity redundancy (R3.4.1) that here
leads to its elimination, and permits further minimization.

of kind (R3.3) and (R3.4) are, due to the occurring 1-transi-
tions, substates of 𝑤1 and 𝑤2. Therefore any such vertex 𝑣
can be insulated from above, that is, turned into a ü-maximal
vertex, by redirecting all induced transitions from 𝑣 into the
loops-back-to part of 𝑣 or below. In the example in Fig. 10,
where all proper transitions have the same action label, in an
insulation step (first step) the transition from 𝑣 to 𝑢 is redi-
rected to the 1-bisimilar target𝑤2. In the arising 1-chart 𝑣 is
not yet parsimonious, because the loop-entry transition from
𝑣 to 𝑤1 can be redirected to 1-bisimilar target 𝑤2 (second
step), thereby making less use of the loops-back-to part of 𝑣 ,
and eliminating it (and permitting further minimization).

We now define ‘crystallized’ (LLEE-1-)charts as follows.

Definition 7.5 (crystallized 1-chart ( 4 )). Let C be a 1-chart.
We say that C is crystallized if there is a LLEE-witness Ĉ

of C such that the following four conditions hold:
(cr-1) C is a (finite) 1-chart with LLEE–1-lim, and specifi-

cally, C is 1-transition limited with respect to Ĉ.
(cr-2) Every Ĉ-reduced 1-bisim. redundancy is crystalline.
(cr-3) Every crystalline Ĉ-reduced 1-bisimilarity redundancy

in C is parsimoniously insulated from above.
(cr-4) Every carrier of an scc in C is grounded in C.
Then we also say that C is crystallized with respect to Ĉ.

The lemma below gathers properties of crystallized 1-charts.
The subsequent proposition justifies the term ‘crystallized
1-chart’ by explaining the connection with twin-crystals.
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Figure 11. Lifting of the local transfer function cp𝑃 on C𝑠

from Fig. 5 with domain and range𝑊 to a transfer function
cp𝑃

p1qon the elevation E𝑊pC𝑠q of𝑊 , which is a LLEE-1-LTS.

Lemma 7.6. Every 1-chart C that is crystallized with respect
to a LLEE-witness Ĉ with loops-back-to relation ü, satisfies:

(i) C is 1-collapsed apart from within scc’s, i.e. 1-collapsed
for loops-back-to parts of Ĉ-maximal loop vertices of Ĉ.

(ii) C is 1-collapsed for every loops-back-to part of a loop
vertex of Ĉ that is not ü-maximal.

Proposition 7.7 (crystallized ñ 1-coll./twin-crystal scc’s).
For every carrier 𝑃 of a scc in a 1-chart C that is crystallized,
either C is 1-collapsed for 𝑃 , or 𝑃 is the carrier of a twin-crystal.

Lemma 7.8 ( 4 ). Every crystallized 1-chart is near-collapsed.

By combining LLEE-preserving eliminations of precrystal-
line 1-bisimilarity redundancies, of parsimonious insulation
of crystalline 1-bisimilarity redundancies, and of grounding
of scc’s we are able to prove our main auxiliary statement.

Theorem 7.9 (crystallization, nearcollapse, ( 3 , 4 )). Every
weakly guarded LLEE -1-chart C can be transformed, together
with a LLEE-witness Ĉ of C, into a 1-bisimilar LLEE -1-chart C1

with 1-transition limited LLEE-witness Ĉ1 such that C is crys-
tallized with respect to Ĉ1, and C1 is near-collapsed.

8 Near-collapsed LLEE-1-charts have
complete solutions

We show that near-collapsed LLEE-1-charts have complete
solutions by linking local transfer functions, as in the defini-
tion of ‘near-collapsed’, to transfer functions in order to be
able to use the transfer-property (T) for provable solutions.

Local-Transfer functions can be linked to transfer func-
tions via the concept of the 1-LTS’ E𝑊pLq that is the ‘eleva-
tion of a set𝑊 of vertices above’ a 1-LTS L “ x𝑉 ,𝐴, 1,Ñ, Óy,
which is constructed as follows. The set of vertices of E𝑊pLq

consists of two copies of its set 𝑉 of vertices, the ‘ground
floor’𝑉ˆt0u, and the ‘first floor’𝑉ˆt1u. These two copies of
the set of vertices ofL are linked by copies of the correspond-
ing transitions of L with the exception that proper x𝑣1, 𝑎, 𝑣2y
ofL do not give rise to a proper transition xx𝑣1, 1y, 𝑎, x𝑣2, 1yy

on the first floor if the vertex 𝑣2 is not contained in𝑊 . Those
transitions get redirected as transitions xx𝑣1, 1y, 𝑎, x𝑣2, 0yy to
target the corresponding copy x𝑣2, 0y of 𝑣2 on the ground
floor. Note that such redirections from the first floor to the
ground floor do not happen for 1-transitions. The sub-1-LTS
of E𝑊pLq that consists of all transitions between vertices on
the ground floor is an exact copy of the original 1-LTS L.
Yet within the elevation E𝑊pLq of𝑊 above L, a number of
vertices on the ground floor will have additional incoming
proper-action transitions from vertices on the first floor.

Example 8.1. Fig. 11 contains two copies of the elevation
E𝑊pC𝑠q of the set𝑊 :“

␣

𝑎𝑏𝑐𝑑1 , 𝑎𝑏𝑐𝑑2
(

of vertices of the
1-chart C𝑠 in Fig. 5 above C𝑠 .

Indeed, Fig. 11 also shows how the local transfer function
cp𝑃 on 1-chart C𝑠 in Fig. 5 can be lifted to a transfer function
cp𝑃

p1qon the elevation E𝑊pC𝑠q of 𝑊 above C𝑠 : namely by
defining cp𝑃

p1qas cp𝑃 on the first floor, and as the identity
function on the ground floor of E𝑊pC𝑠q.

In general the following statement holds, which is a gener-
alization to 1-charts of Prop. 2.4 in [10]. Every local transfer
function 𝜙 : 𝑉 á 𝑉 on a 1-LTS L with𝑊 :“ domp𝜙q X

ranp𝜙q lifts to a transfer function 𝜙 p1qon the elevation E𝑊pLq

of𝑊 over L, via the projection transfer function 𝜋1 from
E𝑊pLq to L, such that the diagram below commutes for
vertices on the first floor of E𝑊pLq:

L L

E𝑊pLq E𝑊pLq

𝜙

𝜙
p1q

𝜋1 𝜋1

for all𝑤 P domp𝜙q:

p𝜋1 ˝ 𝜙qpx𝑤, 1yq

“

p𝜙
p1q

˝ 𝜋1qpx𝑤, 1yq

(1)

Together with preservation of LLEE for elevations, the
possibility to lift local transfer functions to transfer functions
on elevations facilitates us to use invariance of provable
solutions under transfer functions between LLEE-1-LTSs for
proving invariance of provable solutions under local transfer
functions on LLEE-1-LTSs. Then we can use this fact to show
complete solvability of near-collapsed LLEE-1-charts.

Lemma 8.1. Let 𝜙 : 𝑉 á 𝑉 be a local transfer function on
a w.g. LLEE-1-LTS L “ x𝑉 ,𝐴, 1,Ñ, Óy. Then every Mil-pro-
vable solution 𝑠 of L isMil-provably invariant under 𝜙 :

𝑠p𝑤q “Mil 𝑠p𝜙p𝑤qq (for all𝑤 P domp𝜙q) . (2)
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Proof (Sketch). We use the diagram in (1), and that E𝑊pLq is
also a LLEE-1-LTS. Since 𝜋1 and 𝜙 p1q

˝ 𝜋1 are transfer func-
tions, by Lem. 3.6 p𝑠 ˝ 𝜋1q and p𝑠 ˝ 𝜋1 ˝ 𝜙

p1q
q are Mil-pro-

vably equal. Then by using we diagram commutativity on
the first floor in (1) we get: 𝑠p𝑤q “ p𝑠 ˝ 𝜋1qpx𝑤, 1yq “Mil
p𝑠 ˝ 𝜋1 ˝ 𝜙

p1q
qpx𝑤, 1yq “ p𝑠 ˝ 𝜙 ˝ 𝜋1qpx𝑤, 1yq “ 𝑠p𝜙p𝑤qq, for

all𝑤 P domp𝜙q. In this way we have obtained (2). □

Lemma 8.2 ( 6 ). Every w.g. LLEE-1-chart that is near-col-
lapsed has aMil-complete Mil-provable solution.

9 Conclusion
As a consequence of the crystallization process for LLEE-
1-charts and of Thm. 7.9 we also obtain a new characteriza-
tion of expressibility of finite process graphs in the process
semantics. For this purpose we say that a 1-chart C is ex-
pressible by a regular expression modulo 1-bisimilarity if C is
1-bisimilar to the chart interpretation of a star expression.

Corollary 9.1. A 1-chart C is expressible modulo 1-bisimila-
rity if and only if C is 1-bisimilar to a crystallized, and hence
to a near-collapsed, LLEE -1-chart.

Since the size of a crystallized 1-chart is bounded by at
most double the size of an 1-bisimulation collapse (as every
vertex is 1-bisimilar to at most one other vertex in twin-crys-
tals, and crystallized 1-charts), this characterization raises
the hopes for a polynomial algorithm for recognizing ex-
pressibility of finite process graphs. Such a recognition algo-
rithm would substantially improve on the superexponential
algorithm for deciding expressibility in [1].
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