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Abstract. We give an overview of results, presented in the form of a
poster at CSL03/KGC, about a general study of the notions of rule
derivability and admissibility in Hilbert-style proof systems. The basis
of our investigation consists in the concept of “abstract Hilbert system”,
a framework for Hilbert-style proof systems in which it is abstracted
from the syntax of formulas and the operational content of rules. We
adapt known definitions of rule derivability and admissibility to abstract
Hilbert systems, propose two variant notions of rule derivability, s-deriv-
ability and m-derivability, and investigate how these four notions are re-
lated. Furthermore, we consider relations that compare abstract Hilbert
systems with respect to rule admissibility or with respect to one of the
three notions of rule derivability, and study their interrelations. Finally,
we report of a theorem that describes a correspondence between ab-
stract notions of rule elimination and the notions of rule admissibility
and derivability.

This paper intends to give a short overview of results presented in the form of
a poster with the same title at the 8th Kurt Gödel Colloquium that was jointly
held with the conference CSL 2003 in Vienna, Austria, August 25–30, 2003. As
it was the case for the poster, also this overview follows closely the report [2] to
which we refer the reader for the proofs, for more details and for related results.

1 Introduction

The notions of derivability and admissibility of inference rules are usually studied
in the context of concrete systems of formal logic. A rule R is generally called
‘derivable’ (or ‘derived’) in a formal system S if all applications (instances) of R

can, in some sense, be mimicked by appropriate derivations in S. And a rule R

is called ‘admissible’ in a formal system S if the class of theorems of S is closed
under applications of R. Our aim is to collect a number of basic results about
these notions that are applicable to all Hilbert-style systems of simplest kind.

By this we mean systems, sometimes just called ‘axiom systems’, in which
each rule application α within a derivation D is the inference of a single con-
clusion from a finite sequence of premises; a rule application α does not depend



on the presence or absence of assumptions in subderivations of D leading to
α. There is a correspondence (cf. [2, Appendix E]) between systems of this na-
ture, endowed with consequence relations as considered below, and ‘pure’, single-
conclusioned ‘Hilbert-style systems for consequence’ in the characterization of
Hilbert systems in sequent-style formalization due to Avron in [1]. For study-
ing general properties of the notions of rule derivability and admissibility, we
introduce an abstract framework for Hilbert systems of the kind outlined above.

2 Abstract Hilbert Systems

For a formal concept embracing all Hilbert systems of the kind sketched in the
Introduction, we abstract away, by analogy with the notion of ‘abstract rewriting
systems’ (cf. [6,5]), from the syntax of the formula language, and consequently
also from specific ways in which rules can be defined syntactically. In an “abstract
Hilbert system” a rule is a set of applications (inference steps) that is endowed
with a premise and a conclusion function, which respectively assign a finite
sequence of premises and a conclusion to every application. Every such system
consists of a set of formulas, a set of axioms and a set of rules. In the coming
definitions we denote, for all sets X , by Pf(X), Mf(X), and Seqsf(X) the sets
of finite sets , finite multisets , and finite sequences over X , respectively.

Definition 1. (An abstract notion of rule). Let Fo be a set. An AHS-rule R

on Fo (later just called a rule R on Fo) is a triple 〈Apps, prem, concl〉 where

– Apps is the set of applications of R,
– prem : Apps → Seqsf(Fo) is the premise function of R,
– concl : Apps → Fo is the conclusion function of R.

Definition 2. (Abstract Hilbert systems). An abstract Hilbert system (an
AHS) S is a triple 〈Fo, Ax,R〉 consisting of sets Fo, Ax and R such that

– the elements of Fo, Ax and R are respectively called the formulas, axioms
and rules of S,

– Ax ⊆ Fo holds, i.e. all axioms of S are formulas of S, and
– every rule R ∈ R is an AHS-rule on Fo.

We denote by H the class of all AHS’s. For referring to the sets of formulas, of
axioms, and of rules belonging to an AHS S, we will use the denotations FoS ,
AxS , and RS , respectively.

For some purposes, the variant concept of abstract Hilbert system with names
(n-AHS) is useful, where additionally a name function is present that assigns
names to axioms and to rules. For this concept, and the straightforward inductive
definition of derivations in an AHS (or n-AHS), which may start from unproven
assumptions, we refer to [2]. For all AHS’s S, we denote by Der(S) the set of
derivations in S (or, of S), and for all derivations D ∈ Der(S) , we denote by

– assm(D) ∈ Mf(FoS) the multiset of assumptions of D, and by



– concl(D) ∈ FoS the conclusion of D.

Based on these notions, we introduce three consequence relations for every AHS,
and three mimicking relations between derivations in (possibly different) AHS’s.
Here and later we denote by set(·) the operation that assigns to every finite
multiset or sequence the set of all occurring elements.

Definition 3 (Three consequence relations on an AHS). Let S be an AHS

with set Fo of formulas. We define the consequence relations `S , `
(s)
S

and `
(m)
S

on S, where `S ,`
(s)
S

⊆ Pf(Fo) × Fo and `
(m)
S

⊆ Mf(Fo) × Fo , by stipulating

Σ `S A ⇐⇒ (∃D∈Der(S))
[

set(assm(D)) ⊆ Σ & concl(D) = A
]

,

Σ `
(s)
S

A ⇐⇒ (∃D∈Der(S))
[

set(assm(D)) = Σ & concl(D) = A
]

,

Γ `
(m)
S

A ⇐⇒ (∃D∈Der(S))
[

assm(D) = Γ & concl(D) = A
]

,

for all formulas A ∈ Fo , finite sets Σ on Fo and finite multisets Γ on Fo .

Definition 4 (Three mimicking relations between AHS-derivations).
Let S1 and S2 be AHS’s, and let D1 ∈ Der(S1) and D2 ∈ Der(S2) be deriva-
tions. We say that D1 mimics D2 (denoted by D1 - D2 ) if and only if

set(assm(D1)) ⊆ set(assm(D2)) & concl(D1) = concl(D2) .

Furthermore, we stipulate that D1 s-mimics D2 (denoted by D1 '(s) D2 ), and
that D1 m-mimics D2 (denoted by D1 '(m) D2 ) if and only if respectively (1)
and (2) hold:

set(assm(D1)) = set(assm(D2)) & concl(D1) = concl(D2) , (1)

assm(D1) = assm(D2) & concl(D1) = concl(D2) . (2)

3 Rule Derivability and Admissibility in AHS’s

Now we adapt well-known definitions (e.g. [3, p.70]) of the notions of rule deriv-
ability and admissibility to abstract Hilbert systems. For rule derivability, we
base our definition on the three kinds of consequence relations from Definition 3
and accordingly formulate three versions. We denote by mset(·) the operation
that assigns, for all sets X , to every finite sequence σ over X that finite multiset
over X in which every element of X occurs precisely as often as in σ.

Definition 5. (Rule admissibility and three versions of rule derivability
in AHS’s). Let S be an AHS and let R = 〈Apps, prem, concl〉 be a rule on FoS .

(i) The rule R is admissible in S if and only if it holds that1

(∀α ∈ Apps)
[

(∀A ∈ set(prem(α))) [ `S A ] =⇒ `S concl(α)
]

.

1 For every AHS S and for all formulas A of S, we use the customary abbreviation
`S A for ∅ `S A .



(ii) The rule R is derivable in S if and only if

(∀α ∈ Apps)
[

set(prem(α)) `S concl(α)
]

holds. Similarly, we say that R is s-derivable or that R is m-derivable if and
only if, respectively, the assertions (3) and (4) hold:

(∀α ∈ Apps)
[

set(prem(α)) `
(s)
S

concl(α)
]

, (3)

(∀α ∈ Apps)
[

mset(prem(α)) `
(m)
S

concl(α)
]

. (4)

For every AHS S and all formulas A ∈ FoS , we call A admissible as well as
derivable, s-derivable, and m-derivable in S if and only if `S A holds, i.e. iff A

is a theorem of S.
There is an obvious connection between the three notions of rule derivability

defined above and the three notions of mimicking derivation from Definition 4:
A rule R is derivable (s-derivable, m-derivable) in an AHS S if and only if for
every (one-step derivation corresponding to an) application of R there exists a
mimicking (s-mimicking, m-mimicking) derivation in S.

Theorem 1 below, which in its main part is only a reformulation applicable
to AHS’s of Lemma 6.14 in [3, p.70], gathers basic facts about the interrelations
of these four notions. For its statement, we vary the terminology used in [4] for
extensions of ‘first-order theories’: For all AHS’s S and S ′, we call S ′ an extension
by enlargement of S iff S ′ results from S by adding new formulas, axioms, and/or
rules. And for all AHS’s S, rules R on FoS (and sets Σ ∈ Pf(FoS)), we denote
by S+R (by S+Σ) the extension by enlargement of S by adding the rule R (by
adding the formulas of Σ as new axioms).

Theorem 1 (Reformulation of a lemma by Hindley, Seldin). Let S be
an AHS and let R be a rule on FoS . Then the following statements holds:

(i) R is admissible in S iff S+R does not possess more theorems than S.
(ii) If R is derivable in S, then R is also admissible in S. The implication in the

opposite direction does not hold in general.
(iii) If R is derivable in S, then R is derivable in every ext. by enlargement of S.
(iv) If R is m-derivable in S, then R is also s-derivable in S; and if R is s-deriv-

able in S, then R is also derivable in S. But for neither of these two impli-
cations does the reverse implication hold in general.

The next theorem establishes a link between parts (ii) and (iii) of Theorem 1,
and it gives a characterization of rule derivability in an AHS S in terms of rule
admissibility in extensions by enlargement of S.

Theorem 2. Let S be an AHS with set Fo of formulas, and let R be a rule on
Fo. Then the following three statements are equivalent:

(i) R is derivable in S.
(ii) R is admissible in every AHS S+Σ with Σ ∈ Pf(Fo) arbitrary.
(iii) R is admissible in every extension by enlargement of S.



4 (Mutual) Inclusion Relations between AHS’s

Inspired by another lemma of Hindley and Seldin, Lemma 6.16 on p. 71 in [3],
we consider relations that compare AHS’s with respect to the introduced no-
tions of rule derivability and admissibility, and with respect to the three kinds of
consequence relations on them. That is, we consider the question: What kind of
relationships hold for all AHS’s S1 and S2 between assertions like, for example,
“every rule of S1 is derivable in S2, and vice versa”, “S1 and S2 have the same
m-derivable rules”, and “S1 and S2 have the same theorems”? For this purpose,
we introduce, in the three following definitions, a total of twelve “inclusion rela-
tions” between AHS’s, and twelve “mutual inclusion relations” that are induced
by respective inclusion relations.

Definition 6 (Relations between abstract Hilbert systems (I)). The in-
clusion relation �th, a binary relation on the class H of all AHS’s, is defined by
stipulating, for all S1,S2 ∈ H ,

S1 �th S2 ⇐⇒ FoS1
⊆ FoS2

& (∀A ∈FoS1
)[ (`S1

A) ⇒ (`S2
A) ] .

And the inclusion relations �rth, �
(s)
rth, and �

(m)
rth are binary relations on H that

are defined, for all S1,S2 ∈ H , by stipulating respectively

S1�rthS2 ⇐⇒ FoS1
⊆FoS2

& (∀Σ∈Pf(FoS1
), A∈FoS1

)
[

(Σ `S1
A) ⇒ (Σ `S2

A)
]

,

S1�
(s)
rthS2 ⇐⇒ FoS1

⊆FoS2
& (∀Σ∈Pf(FoS1

), A∈FoS1
)
[

(Σ `
(s)
S1

A) ⇒ (Σ `
(s)
S2

A)
]

,

S1�
(m)
rth S2 ⇐⇒ FoS1

⊆FoS2
& (∀Γ∈Mf(FoS1

), A∈FoS1
)
[

(Γ `
(m)
S1

A) ⇒ (Γ `
(m)
S2

A)
]

.

These four inclusion relations induce respective mutual inclusion relations: �th

induces the binary relation ∼th on H that is defined, for all S1,S2 ∈ H , by

S1 ∼th S2 ⇐⇒ S1 �th S2 & S2 �th S1 ; (5)

if, for some S1,S2 ∈ H , S1 ∼th S2 holds, we say that S1 and S2 are (theorem-)

equivalent. And the inclusion relations �rth, �
(s)
rth and �

(m)
rth induce respectively,

by stipulations analogous to (5), the mutual inclusion relations ∼rth , ∼
(s)
rth and

∼
(m)
rth .

Definition 7 (Relations between Abstract Hilbert Systems (II)). The
inclusion relation �adm , a binary relation on the class H, is defined by stipulat-
ing, for all S1,S2 ∈ H ,

S1 �adm S2 ⇐⇒ FoS1
⊆FoS2

& (∀A∈FoS1
)
[

A is adm. in S1 ⇒ A is adm. in S2

]

& (∀R rule on FoS1
)
[

R is adm. in S1 ⇒ R is adm. in S2

]

.

The inclusion relations �der , �
(s)
der and �

(m)
der are defined analogously by using

“derivable”, “s-derivable” and “m-derivable” instead of “admissible”. These four
inclusion relations induce, by respective stipulations analogous to (5), the four

mutual inclusion relations ∼adm , ∼der , ∼
(s)
der and ∼

(m)
der .



Definition 8 (Relations between Abstract Hilbert Systems (III)). We
define the inclusion relation �r/adm , also a binary relation on the class H, by
stipulating for all S1,S2 ∈ H :

S1 �r/adm S2 ⇐⇒ FoS1
⊆ FoS2

& (∀A ∈ AxS1
)
[

A is admissible in S2

]

&

& (∀R ∈ RS1
)
[

R is admissible in S2

]

.

The inclusion relations �r/der , �
(s)
r/der and �

(m)
r/der are defined analogously by us-

ing “derivable”, “s-derivable” and “m-derivable” instead of “admissible”. These
four relations induce, by respective stipulations analogous to (5), the mutual

inclusion relations ∼r/adm , ∼r/der , ∼
(s)
r/der and ∼

(m)
r/der .

The following theorem is the outcome of a systematic examination of the
relationship towards each other of the twelve inclusion relations, and of the
twelve mutual inclusion relations.

Theorem 3 (Interrelations between (mutual) inclusion relations). The
following three statements hold about interrelations between the relations defined
in Definitions 6–8:

(i) The implications and equivalences in the two interrelations prisms shown in
Figure 1 hold, for all AHS’s S1 and S2, between statements S1 � S2 , where
� is an introduced inclusion relation, and respectively, between statements
S1 ∼ S2 , where ∼ is an introduced mutual inclusion relation.

(ii) Each implication arrow in Figure 1 that is not inverted indicates that an
implication in the opposite direction does not hold in general.

(iii) In the case of the interrelations prism for the inclusion relations, in gen-
eral no implication holds between an assertion S1 �r/adm S2 and any of

S1 �r/der S2 , S1 �
(s)
r/der S2 or S1 �

(m)
r/der S2 .

5 Notions of Rule Elimination from Derivations in AHS’s

On the poster, we also investigated the following question: What consequences
does the fact that a rule R is admissible, derivable, s-derivable or m-derivable in
an AHS S have for the possibility to eliminate applications of R from derivations
in S+R ? For this purpose, we introduced four abstract notions of rule elimina-
tion with respect to derivations in AHS’s, using the three mimicking relations
of Definition 4. For example, we stipulated that, for a rule R of an AHS S,
R-elimination holds for derivations in S if and only if for every derivation D in
S there exists a derivation D′ in S without R-applications that mimics D.

And then we gave a theorem that asserts a direct correspondence of three of
the four notions of rule elimination with respective notions of rule derivability
and admissibility (in the fourth case only a weaker connection holds). E.g., the
theorem states that, for a rule R of an AHS S, R-elimination holds for derivations
in S if and only if R is derivable in the AHS S−R that results from S by removing
the rule R. – We refer the reader to the report-version [2] for the definition of
the (three other) notions of rule elimination, for the mentioned theorem, and for
a theorem concerning related notions of “strong rule elimination”.



S1 �rth S2

S1 �th S2

S1 �
(m)
rth S2

S1 �
(s)
rth S2

S1 �
(m)
r/der S2

S1 �
(s)
r/der S2

S1 �r/der S2

S1 �r/adm S2

S1 �adm S2

S1 �der S2

S1 �
(s)
der S2

S1 �
(m)
der S2 S1 ∼

(m)
r/der S2

S1 ∼
(m)
der S2

S1 ∼
(s)
der S2

S1 ∼der S2

S1 ∼adm S2

S1 ∼th S2

S1 ∼rth S2

S1 ∼
(s)
rth S2

S1 ∼
(m)
rth S2

S1 ∼
(s)
r/der S2

S1 ∼r/der S2

S1 ∼r/adm S2

Figure 1. ‘Interrelation prisms’ between assertions involving the twelve inclu-
sion relations (on the left-hand side), and involving the twelve mutual inclusion
relations (on the right-hand side).
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