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Abstract. In the specific situation of formal reasoning concerned with
“regular expression equivalence” we address instances of more general
questions such as: how can coinductive argumentation be formalised log-
ically and be applied effectively, as well as how is it linked to traditional
forms of proof. For statements expressing that two regular expressions
are language equivalent, we demonstrate that proofs by coinduction can
be formulated in a proof system based on equational logic, where effec-
tive proof-search is possible. And we describe a proof-theoretic method
for translating derivations in this proof system into a “traditional” axiom
system: namely, into a “reverse form” of the axiomatisation of “regular
expression equivalence” due to Salomaa. Hereby we obtain a coinductive
completeness proof for the traditional proof system.

1 Introduction

Coalgebraic methods have been applied with much success in many areas of
mathematics and computer science, contributing important new concepts as well
as introducing fresh viewpoints at established theories. This has frequently led
to the discovery of elegant new proofs of known results. Contrasting with the
interest in applications, much less attention has been directed to formalising
coalgebraic concepts, such as coinduction and corecursion, by using the tools of
logic, and to relating these techniques with traditional methods, such as induc-
tion and recursion. This concerns also more specific questions such as whether
proofs by coinduction that are formalised in an appropriate logical framework
can be translated into formalised “conventional” proofs.

In this paper we consider the concrete example of a coinduction principle
for proving that two regular expressions are language equivalent. We reformu-
late such a principle into one that can be used to decide equivalence of regular
expressions effectively, and we give a logical formalisation. Furthermore, we de-
scribe a method that allows to translate proofs based on the coinduction prin-
ciple into derivations in a “traditional” axiom system close to the well-known
axiomatisation F1 of “the algebra of regular events” due to Salomaa in [7].

In [6] Rutten formulates a coinduction principle for showing equality of formal
languages: to show that two languages L1 and L2 are equal, it suffices to prove
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that L1 and L2 are bisimilar in the “automaton of formal languages”. Based on
the differential calculus for regular expressions due to Brzozowski in [2], Rutten
applies this principle to give coinductive demonstrations for a number of iden-
tities between regular expressions, and stresses the generality of this method.
However, Rutten’s proofs for exemplary identities use set-theoretical concepts
in an essential way and do not lend themselves directly towards a formalisation
in a proof system of equational logic comparable to Salomaa’s axiomatisations.
And to the author of the present paper some details have not been clear about
why such a principle does in fact yield a generally applicable decision procedure.

Here we first introduce, by following and refining Rutten’s approach, a “fini-
tary” coinduction principle for “regular expression equivalence”: to show that
two regular expressions E and F are equivalent, prove that they are related
by a finite bisimulation in a certain automaton on regular expressions whose
transition function is based on the “Brzozowski derivative”. We show that this
principle is effective and lends itself to being mechanised. Next we introduce a
natural-deduction style proof system cREG0 of equational logic with the prop-
erty that derivations in cREG0 formalise, and correspond to, arguments by the
finitary coinduction principle. It turns out that cREG0 is sound and complete
with respect to regular expression equivalence. Finally, we describe an effective
proof-theoretic transformation from derivations in cREG0 into derivations in a
variant system REG of Salomaa’s F1, where REG is the result of reversing all
multiplicative parts of regular expressions in the axioms and in the rules of F1.

The proof system cREG0 we introduce is analogous in kind to an axioma-
tisation of “recursive type equality” introduced by Brandt and Henglein in [1]
(together with its coinductive foundations) and to a system for “bisimilarity of
normed recursive BPA-processes” due to Stirling given in [4] (without a coin-
ductive motivation). All of these systems (and a number of similar, more recent
ones) have in common the presence of inference rules that formalise “cyclic”
forms of reasoning. Applications of such rules allow, roughly speaking, to de-
tect that a bisimulation-building process that is formalised by a derivation has
reached a subtask which it has already solved before. The transformation be-
tween cREG0-derivations and REG-derivations that we develop here was in-
spired by a transformation given in [5, Ch.8, Sect.8.1], where proof-theoretic
relations between proof systems for “recursive type equality” are investigated.

We give a short overview of the paper: In Section 2 we define basic notions
concerning regular expressions and finite automata (such as the relation “regular
expression equivalence” and the notion of bisimulation). Then in Section 3 we
formulate the mentioned variant system REG of Salomaa’s axiomatisation F1
and define three weaker systems. In Section 4, we review the most basic notions
of the “differential calculus” for formal languages and of that for regular expres-
sions; and we relate the coinduction principle due to Rutten. Subsequently in
Section 5, we formulate and prove our “finitary” version of a conduction princi-
ple for regular expression equivalence, and argue that it can be used effectively.
As a formalisation of this principle, we introduce the proof system cREG0 in
Section 6 and show that it is sound and complete. Finally in Section 7 we de-



Using Proofs by Coinduction to Find “Traditional” Proofs 177

scribe an effective proof-theoretic transformation. from cREG0-derivations into
REG-derivations. In the Conclusion, Section 8, we summarise our findings and
explain how similar results can be obtained that apply directly to Salomaa’s F1.

The proofs in this paper are generally only hinted or sketched, and the meth-
ods used are instantiated in supporting examples. However, the most important
proofs can be found in a technical appendix that is contained in the electronic
version of this paper which is available at http://www.cs.vu.nl/~clemens/
coind2tradproofs.pdf .

2 Regular Expressions and Deterministic Automata

Let Σ be a finite nonempty set, called alphabet ; elements of Σ are called letters .
By Σ∗ we denote the set of (finite) words over Σ. The empty word is designated
by ε. Concatenation of words w and w′ is denoted multiplicatively as w.w′ . A
language over Σ is any subset of Σ∗. By L(Σ) we denote the set of languages
over Σ. On L(Σ) we define the regular operators + (sum), . (product), and ∗

(star), where + and . are binary, and ∗ is unary: for all L1, L2 ∈ L(Σ) we let

L1 + L2 =def L1 ∪ L2 , L1.L2 =def {w1.w2 | w1 ∈ L1, w2 ∈ L2} ,

L∗ =def

⋃

n∈ω

Ln , where L0 =def {ε} , and

Li+1 =def L.Li (for all i ∈ ω)

(by ω we denote, here and below, the natural numbers including zero).
Let Σ = {a1, . . . , an} be an alphabet (from now on, such a description is

generally assumed for alphabets Σ). The set R(Σ) of regular expressions over Σ
is defined as the set of those words over Σ that are generated by the grammar

E ::= 0 | a1 | . . . | an | E + E | E.E | E∗

We designate the regular expression 0∗ by the symbol 1. By ≡ we denote the
binary relation “syntactical equality” between regular expressions. By

∑n
i=1 Ei

we denote, for all n ∈ ω\{0} and E1, . . . , En ∈ R(Σ) , the regular expression
E1 + (E2 + . . . + (En+1 + En)) . By a context C over R(Σ) we mean the result
of replacing a single letter in a regular expression by a hole [ ] ; by C[E] we
denote the result of hole-filling in C with the regular expression E. Every regular
expression E denotes a language L(E) via the function L : R(Σ) → L(Σ) that
is inductively defined by

L(0) = ∅ ,

L(E + F ) = L(E) ∪ L(F ) ,

L(ai) = {ai} (1 ≤ i ≤ n) ,

L(E.F ) = L(E).L(F ) L(E∗) = L(E)∗ .

(for all E, F ∈ R(Σ) ). Two regular expressions E, F ∈ R(Σ) are called equiv-
alent (denoted by E =L F ) if and only if E and F denote the same formal
language, i.e. iff L(E) = L(F ). In accordance with the notation just stipulated,
we define a binary relation =L on R(Σ) , called regular expression equivalence,
by =L =def {〈E, F 〉 ∈ R(Σ) × R(Σ) | L(E) = L(F )} .
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Let A be a (possibly) infinite set of input symbols . A (deterministic) automa-
ton with input alphabet A is a triple S = 〈S, o, t〉 consisting of a set S of states ,
an output function o : S → 2, and a transition function t : S → SA , where SA

denotes the set of all functions from A to S, and 2 = {0, 1} (in this set 0 and
1 are usually numbers, but for convenience1 we agree to consider them as regu-
lar expressions here). The output function o indicates whether a state s is S is
accepting (if o(s) = 1) or not (if o(s) = 0). The transition function t assigns to
a state s a function t(s) : A → S which defines the state t(s)(a) that is reached
by S after reading input symbol a. Sometimes we write s↓ for o(s) = 1, s↑ for
o(s) = 0, and s

a→ s′ for t(s)(a) = s′ .
Let S = 〈S, o, t〉 and S′ = 〈S, o′, t′〉 be automata. A homomorphism between

S and S′ is a function f : S → S′ such that, for all s ∈ S and a ∈ A , o(s) =
= o′(f(s)) and f(t(s)(a)) = t′(f(s))(a) holds. A bisimulation between S and S′

is a nonempty relation R ⊆ S × S′ such that for all s ∈ S , s′ ∈ S′ , and a ∈ A

s R s′ =⇒ o(s) = o′(s) and t(s)(a) R t′(s′)(a)

holds. For s ∈ S and s′ ∈ S′ we write s ∼ s′ if there exists a bisimulation R
with sRs′ ; if there exists a finite bisimulation R with sRs′ , we write s ∼fin s′ .

3 The Axiom System REG

The first complete axiomatisations of regular expression equivalence were given
by Salomaa in [7]. Here, our investigations will be based on Salomaa’s first
system F1. However, we introduce a variant system REG that arises from F1

essentially2 by reversing all multiplicative expressions in axioms and rules. The
reason is that, while having analogous properties as F1, the system REG will
turn out to lend itself much better to establish a connection with the differential
calculus for regular expressions in its usual form (as described in Section 4).

Let Σ be an alphabet. The axiom system REG(Σ) is defined as follows: its
formulas are equations E = F between regular expression E and F on Σ; its
axioms are the formulas that belong to one of the schemes (B1)–(B11) listed in
Figure 1; and its inference rules are the four rules SYMM, TRANS, CTXT, and
FIX whose applications are schematically defined in Figure 1 (reflexivity axioms
are not used in this definition as they can easily be recognised to be derivable).

Derivations in REG(Σ) are prooftrees, that is, finite upwards-growing la-
beled trees such that: all nodes are labeled by formulas of REG(Σ), the leaves
at the top carry axioms of REG(Σ), and each internal node ν is labeled by
a formula that is the conclusion of an application of a REG(Σ)-rule with the
formula(s) that label(s) the immediate successor(s) of ν as premises; the bottom-
most formula of a prooftree is called its conclusion. For E, F ∈ R(Σ), we denote
by �REG(Σ) E = F the statement that there exists a derivation in REG(Σ)

1 We want to be able to view outcomes of output functions as regular expressions.
2 A less important change consists in dropping the substitution rule R2 specific to F1

in favour of the symmetry, transitivity, and context rules of equational logic.
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The axioms of REG(Σ) :

(B1) E + (F + G) = (E + F ) + G (B7) E.1 = E

(B2) (E.F ).G = E.(F.G) (B8) E.0 = 0

(B3) E + F = F + E (B9) E + 0 = E

(B4) (E + F ).G = E.G + F.G (B10) E∗ = 1 + E.E∗

(B5) E.(F + G) = E.F + E.G (B11) E∗ = (1 + E)∗

(B6) E + E = E

The inference rules of REG(Σ) :

E = F SYMM
F = E

E = F CTXT
C[E] = C[F ]

E = G G = F TRANS
E = F

E = F.E + G FIX (if o(F ) = 0
[cf. Sect. 4])E = F ∗.G

Fig. 1. The axiom system REG(Σ) for regular expression equivalence, which results
from Salomaa’s system F1 by reversing multiplicative expressions

with conclusion E = F . (We sometimes write REG in place of REG(Σ).)
The following theorem can be proved analogously to Salomaa’s result for F1.

Theorem 1. The system REG(Σ) is sound and complete with respect to regular
expression equivalence. More formally, it holds:

for all E, F ∈ R(Σ) :
[

�REG(Σ) E = F ⇐⇒ E =L F
]

. (1)

For later use, we define three systems that are weaker than REG(Σ), but
closely related: by REG−(Σ) we designate the axiom system that results from
REG(Σ) by excluding the rule FIX; by ACI(Σ) we denote the subsystem of
REG−(Σ) that contains only the axioms (B1), (B3), and (B6) for associativity,
commutativity, and idempotency of +; and by ACI+(Σ) we denote the extension
of ACI(Σ) that contains of all the axioms (B1)–(B9) and furthermore

(B7)R 1.E = E and (B8)R 0.E = 0 ,

but that does not contain the rule FIX. For each of these three systems, we define
binary relations on R(Σ) that denote “equality is derivable” in the respective
system: for instance, we stipulate, for all E, F ∈ R(Σ) ,

E ≡ACI+ F ⇐⇒def �ACI+(Σ) E = F ; (2)

the relations ≡ACI and ≡REG− are defined analogously. It is easy to verify
that all three relations are congruence relations on R(Σ). For all E ∈ R(Σ), we
respectively denote by [E]ACI, [E]ACI+ , and [E]REG− the ≡ACI-, ≡ACI+ - and
≡REG− -equivalence classes of E. And by R(Σ)ACI, R(Σ)ACI+ , and R(Σ)REG−

we denote by factor sets of R(Σ) with respect to ≡ACI, ≡ACI+ , and ≡REG− .
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4 The Differential Calculus for Regular Expressions

In this section we review the basic notions of a differential calculus for formal
languages, as for example described by Conway [3, Ch.5], and for regular expres-
sions, due to Brzozowski in [2]. We also state two coinduction principles.

Let Σ be an alphabet, and L ∈ L(Σ) . For all words w ∈ Σ∗ , the w-derivative
of L is Lw =def {v ∈ Σ∗ | w.v ∈ L} . In the special case of letters a ∈ Σ the
a-derivative La can be used to turn the set L(Σ) of languages over Σ into an
automaton 〈L(Σ), oL, tL〉 by defining, for all L ∈ L(Σ) and a ∈ Σ ,

oL(L) =def

{
1 . . . ε ∈ L

0 . . . ε /∈ L
and tL(L)(a) =def La .

In [6, Section 4] Rutten shows the coinduction principle for proving equality
of formal languages that is stated by the following proposition.

Proposition 1. For all L1, L2 ∈ L(Σ) it holds:

L1 ∼ L2 in L(Σ) =⇒ L1 = L2 . (3)

That is: to show L1 = L2 for two languages L1 and L2 over Σ, it suffices to
demonstrate that L1 and L2 are bisimilar in the automaton L(Σ).

From Proposition 1 a similar proof principle for showing equivalence of reg-
ular expressions can be extracted by using the “Brzozowski derivative”. This
concept, here just called “derivative”, allows to mimic language derivatives on
regular expressions. Let again Σ be an alphabet. For all a ∈ Σ , and G ∈ R(Σ),
the a-derivative Ga of a regular expression G over Σ is defined inductively by

0a =def 0 , (E + F )a =def Ea + Fa , (E∗)a =def Ea.E∗ ,

ba =def

{
1 . . . b = a

0 . . . b �= a
(E.F )a =def

{
Ea.F + Fa . . . o(E) = 1
Ea.F . . . o(E) = 0

(for all b ∈ Σ and E, F ∈ R(Σ)). In a similar way, the function o : R(Σ) → 2
is inductively defined by (for all b ∈ Σ and E, F ∈ R(Σ))

o(0) =def 0 , o(b) =def 0 , o(E + F ) =def

{
0 . . . o(E) = o(F ) = 0
1 . . . else

o(E.F ) =def

{
1 . . . o(E) = o(F ) = 1
0 . . . else ,

o(E∗) =def 1 .

We also define, for all w ∈ Σ and E ∈ R(Σ) , the w-derivative of E inductively:
we let Eε =def E , and, for all w0 ∈ Σ∗ and a ∈ Σ , Ew0.a =def (Ew0)a .

Now an automaton R(Σ) = 〈R(Σ), o, t〉 can be formed by letting o as above
and t : R(Σ) → R(Σ)Σ be defined by t(E)(a) =def Ea for all a ∈ Σ , E ∈ R(Σ).
The function L is a homomorphism from R(Σ) to L(Σ) because, for E ∈ R(Σ)
and a ∈ Σ , L(Ea) = (L(E))a and o(E) = oL(L(E)) hold (as is simple to prove).
Due to this, the following statement is an easy consequence of Proposition 1.
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Proposition 2. The following coinduction principle holds for proving equiva-
lence of regular expressions: for all E, F ∈ R(Σ) it holds

E ∼ F in R(Σ) =⇒ E =L F (4)

Although this principle can often be applied successfully in an informal man-
ner (cf. the examples in [6, Section 6]), it does not itself define a general mecha-
nisable method for deciding whether two regular expressions are equivalent. The
reason is that the set of iterated derivatives of a regular expression is frequently
infinite3, and that therefore bisimulations in R(Σ) can be infinite.

5 A Finitary Coinduction Principle for =L

One possible way of adopting the coinduction principle in Proposition 2 for
deciding regular expression equivalence consists in refining it into a statement
that only refers to finite bisimulations. As mentioned above, Proposition 2 relies
on infinite bisimulations in an essential way since the number of derivatives of a
regular expression may be infinite. However, it turns out that already “modulo”
provability in the system ACI the number of derivatives of a regular expression
is finite. This is stated by the second of the following two lemmas.

Lemma 1. Let Σ be an alphabet, and let ≡S be one of the relations ≡ACI or
≡ACI+ on R(Σ). Then for all E, F ∈ R(Σ) and for all a ∈ Σ it holds:

E ≡S F =⇒
(
o(E) = o(F ) & Ea ≡S Fa

)
. (5)

Proof (Sketch). In a first step, it can be verified in a straightforward way that
(5) holds for all a ∈ Σ , and for all E, F ∈ R(Σ) such that E = F is an axiom
of ACI or ACI+. The statement obtained hereby can then be “lifted” to apply
to all E, F ∈ R(Σ) such that E = F is a theorem of ACI, or of ACI+, by
using induction on the depth of derivations in ACI, or respectively, in ACI+.

Lemma 2. For all E ∈ R(Σ) , the set
{
[Ew ]ACI

∣∣ w ∈ Σ∗} is finite. As a con-
sequence, also

{
[Ew ]ACI+

∣∣ w ∈ Σ∗} is finite for arbitrary E ∈ R(Σ) .4

Proof (Hint). The lemma can be shown by induction on the syntactical structure
of regular expressions in R(Σ), using representation statements for w-derivatives
of composite expressions like, in the case of an outermost product,

(∀w ∈ Σ∗) (∃V ⊆ Suff(w))
[
(F.G)w ≡ACI Fw.G +

∑

v∈V

Gv

]

(for all F, G ∈ R(Σ) ), where Suff(w) means the set of all suffixes of w.
3 For instance, by starting from a∗ and computing the a-derivative repeatedly one is

led to 1.a∗ , 0.a∗ + 1.a∗ , . . . , 0.a∗ + . . . (0.a∗ + 1.a∗) , . . . .
4 The part of Lemma 2 referring to ACI is comparable to Theorem 5.3 by Brzozowski

in [2], which statement, however, is wrong (as Salomaa rightly points out in [7]).
But the reason can easily be recognised in the fact that the derivative for multi-
plicative expressions is defined differently in [2] than in Section 4 here: there, for all
E, F ∈ R(Σ) and a ∈ Σ , (E.F )a = Ea.F + o(E).Fa is stipulated.
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We have formulated these lemmas also with respect to ACI+, on which sys-
tem we base ourselves from now on, because it seems natural to apply also other
identities than those of ACI to simplify derivatives.5 Relying on Lemma 1, we
can now define the “factor automaton” R(Σ)ACI+ =〈R(Σ)ACI+ , oACI+ , tACI+〉
of R(Σ) with respect to ≡ACI+ by letting

oACI+ : R(Σ)ACI+ → 2, tACI+ : R(Σ)ACI+ → (R(Σ)ACI+)Σ

[E]ACI+ �→ o(E) , [E]ACI+ �→ (a �→ [Ea ]ACI+) .

And we are finally able to formulate the following finitary coinduction principle
for proving or disproving that two given regular expressions are equivalent.

Theorem 2. For all E, F ∈ R(Σ) it holds:

[E]ACI+ ∼fin [F ]ACI+ in R(Σ)ACI+ ⇐⇒ E =L F . (6)

Proof (Sketch). Let E, F ∈ R(Σ) . The implication “⇒” in (6) is a consequence
of Proposition 1 in view of the fact that the function L∗ : R(Σ)ACI+ → L(Σ)
which is defined by L∗([G]ACI+) �→ L(G) is a homomorphism. For the implica-
tion “⇐” in (6), assume E =L F . Then

{
〈[Ew ]ACI+ , [Fw ]ACI+〉 | w ∈ Σ∗}

is a
bisimulation between [E]ACI+ and [F ]ACI+ in R(Σ)ACI+ (as is not difficult to
verify); this bisimulation can easily be recognised to be finite by using Lemma 2.

As running example in this paper we consider (a + b)∗ = (a∗b)∗a∗ , a simple
instance of the axiom scheme “sumstar” in a system due to Conway in [3, p.25].
We let E∗ ≡ (a + b)∗ , F1 ≡ (a∗b)∗a∗ , and F2 ≡ ((a∗b)(a∗b))∗a∗ + a∗ . We find

(F1)a ≡ (((1.a∗).b + 0).(a.b)∗).a∗ + 1.a∗ ≡ACI+ F2 ,

and in a similar way, the other entries in the following tables can be verified:

[(·)a ]ACI+ [(·)b ]ACI+ oACI+(·)
E [E]ACI+ [E]ACI+ ↓

[(·)a ]ACI+ [(·)b ]ACI+ oACI+(·)
F1 [F2 ]ACI+ [F1 ]ACI+ ↓
F2 [F2 ]ACI+ [F1 ]ACI+ ↓

From this it follows that R = {〈[E]ACI+ , [F1 ]ACI+〉, 〈[E]ACI+ , [F2 ]ACI+〉} is a
finite bisimulation in R(Σ)ACI+ between [E]ACI+ and [F1 ]ACI+ . Using Theo-
rem 2, this demonstrates (a + b)∗ =L (a∗b)∗a∗ .

Based on the next lemma it is possible to extract an effective decision proce-
dure for regular expression equivalence from our finitary coinduction principle.

Lemma 3. For all alphabets Σ, the relation ≡ACI is decidable in R(Σ).

5 There is some arbitrariness in choosing a system of “basic” identities that one wants
to have available for simplifying derivations. For instance, REG− could be used as
well. ACI+ has been chosen here partly because of the running example we employ.
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Proof (Hint). Equations between ≡ACI-equivalent sums of regular expressions
can be decomposed into equations between ≡ACI-equivalent parts of the sums.
For example, for all E1, E2, F1, F2, F3 ∈ R(Σ) that are not additive expressions,

E1 + E2 ≡ACI (F1 + F2) + F3 ⇐⇒
⇐⇒ (∃f : {1, 2} → {1, 2, 3}) (∃g : {1, 2, 3} → {1, 2})

(∀i ∈ {1, 2}) (∀j ∈ {1, 2, 3}) [ Ei ≡ACI Ff(i) & Eg(j) ≡ACI Fj ]

holds. An obvious generalisation of this statement can be shown by structural in-
duction on ACI(Σ)-derivations, and it can be used to construct an effective (but
clearly not efficient) search-algorithm that decides whether or not E ≡ACI F
holds for given regular expressions E, F ∈ R(Σ) .

Corollary 1. Let Σ be an alphabet. Regular expression equivalence on R(Σ) can
be decided by checking for the existence of finite bisimulations in R(Σ)ACI+ .

Proof (Sketch). Let E, F ∈ R(Σ) be arbitrary. It is an easy consequence of
Proposition 2 that E =L F holds iff R =def

{
〈[Ew ]ACI+ , [Fw ]ACI+〉 | w ∈ Σ∗}

is a bisimulation. Lemma 2 entails that R is always finite and that it can be deter-
mined effectively whether R is a bisimulation: for all pairs 〈Ew, Fw〉 with w ∈ Σ∗

and w=b1 . . . bm such that the list 〈[E]ACI+ , [F ]ACI+〉, 〈[Eb1 ]ACI+ , [Fb1 ]ACI+〉,
〈[Eb1b2 ]ACI+ , [Fb2b2 ]ACI+〉, . . . , 〈[Ew ]ACI+ , [Fw ]ACI+〉 does not contain a loop
(this can be decided due to Lemma 3) check whether oACI+([Ew ]ACI+) =
= o(Ew) = o(Fw) = oACI+([Fw ]ACI+) holds. Because of Lemma 2 and König’s
lemma namely only finitely many such checks have to be performed. If one such
check detects a mismatch, then R is not a bisimulation, and E �=L F holds; if
no mismatch is found, then R is a (finite) bisimulation and E =L F follows.

6 The Coinductively Motivated Proof System cREG0

Now we introduce a natural-deduction style proof system cREG0(Σ) based on
equational logic that allows to formalise arguments using the finitary coinduction
principle for regular expression equivalence as finite derivations.

For the definition of cREG0(Σ), we assume a countably infinite set ∆ of
assumption markers such that Σ ∩ ∆ = ∅ , and refer to the schemata listed in
Figure 2: the formulas of cREG0(Σ) are the equations between regular expres-
sions over Σ; possible assumptions are formulas that have an assumption marker
from the set ∆ attached to them; and the rules of cREG0(Σ) are the four rules
ApprAxACI+ , ApplAxACI+ , COMP, and COMP/FIX that are schematically de-
fined in Figure 2. Applications of the rule COMP/FIX have the special feature
that at least one inhabited class of open assumptions is discharged (the marker
of the assumptions belonging to this class is attached to the application).

Displaying this characteristic feature of proofs formalised in the format of
natural-deduction systems (cf. the description of “N-systems” in [8]), namely
the use of assumptions that may be “closed” (discharged) at a later stage in a
deduction, derivations in cREG0(Σ) are prooftrees such that: the leaves at the
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Fig. 2. A coinductively motivated, natural-deduction style proof system cREG0(Σ)
for regular expression equivalence, given that Σ = {a1, . . . , an}

top are labeled by assumptions such that different markers are attached to differ-
ent formulas6; assumptions may be open (undischarged) or closed (discharged);
formulas at an internal node ν arise through applications of cREG0(Σ)-rules
from the formulas in the immediate successors of ν, whereby in the case of
COMP/FIX-applications some open assumptions are discharged; the bottom-
most formula is called the conclusion. Hereby an occurrence of an assumption
(E = F )d at the top of a derivation D is called open iff on the path down to the
conclusion of D there does not exist an application of COMP/FIX at which this
assumption is discharged; otherwise the occurrence of (E = F )d is called closed .
Assumptions in a derivation that are occurrences of the same formula with the
same marker together form an assumption class .

For all E, F ∈ R(Σ), we denote by �cREG0(Σ) E = F the statement that
there exists a derivation D in cREG0(Σ) without open assumptions such that D
has conclusion E = F (i.e. that E = F is a theorem of cREG0(Σ)). (Sometimes
we write cREG0 instead of cREG0(Σ).)

Unlike as this is the case for the system REG, the basic axioms and rules of
equational logic (the reflexivity axioms and the rules SYMM, TRANS, CTXT)
are neither present nor in fact derivable in cREG0.7 However, it turns out that
these additional axioms rules are admissible in cREG0 in the following sense:

6 The main reason for this proviso is that it is important for establishing a smooth
proof-theoretical relationship (stated by Lemma 4 below) between cREG0(Σ) and
its annotated version ann-cREG0(Σ, ∆) defined in Section 7.

7 In Remark 1, we comment on an extension of cREG0 with these axioms and rules.

Possible assumptions in cREG0(Σ) and the inference rules of cREG0(Σ) :

(Assm) (E = F )d (with d ∈ ∆ )

D1

C[Ẽ] = F
ApplAx

ACI+

C[F̃ ] = F

D1

E = C[Ẽ]
ApprAx

ACI+

E = C[F̃ ]

(if Ẽ = F̃ or F̃ = Ẽ is an axiom of ACI+)

D1

Ea1 = Fa1 . . .

Dn

Ean = Fan
COMP (if o(E) = o(F ))

E = F

[E = F ]d

D1

Ea1 = Fa1 . . .

[E = F ]d

Dn

Ean = Fan
COMP/FIX, d (if o(E) = o(F ))

E = F
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if their use is limited to situations in which subderivations do not contain open
assumptions, then no more theorems (than those of cREG0) become derivable.8

This is an easy consequence of the fact, which is stated formally below, that the
theorems of cREG0 are precisely the identities of regular expression equivalence.

Theorem 3. The proof system cREG0(Σ) is sound and complete with respect
to regular expression equivalence; more formally, for all E, F ∈ R(Σ) it holds:

�cREG0(Σ) E = F ⇐⇒ E =L F . (7)

Proof (Sketch). Let E, F ∈ R(Σ) be arbitrary. For the direction “⇒” in (7), let
D be a derivation in cREG0(Σ) without open assumptions and with conclusion
E = F . Then

{
〈[Ẽ ]ACI+ , [F̃ ]ACI+〉 | Ẽ = F̃ is formula in D

}
is a finite bisim-

ulation between E and F in R(Σ)ACI+ . Hence Theorem 2 entails E =L F . For
the direction “⇐” in (7), suppose E =L F . Then, again by Theorem 2, there
exists a finite bisimulation between E and F in R(Σ)ACI+ . From such a finite
bisimulation a derivation in cREG0(Σ) without open assumptions and with
conclusion E = F can be extracted in a rather straightforward way.

We consider again our running example E ≡ (a + b)∗ =L (a∗b)∗a ≡ F1 . From
the finite bisimulation given in Section 5, it is easy to extract the following deriva-
tion in cREG0({a, b}) that does not contain open assumptions (double lines
indicate multiple successive applications of ApplAxACI+ and/or ApprAxACI+):

(E = F2)e

Ea = (F2)a

(E = F1)d

Eb = (F2)bCOMP/FIX, e
E = F2

Ea = (F1)a

(E = F1)d

Eb = (F1)bCOMP/FIX, d
E = F1

(8)

Remark 1. The fact that the system cREG0 does not contain the characteristic
rules of equational logic is not absolutely necessary for showing a soundness
and completeness theorem comparable to Theorem 3. In fact, for all alphabets
Σ, the extension cREG(Σ) of cREG0(Σ) by adding reflexivity axioms and the
rules SYMM, TRANS, and CTXT is also sound and complete with respect to =L

(but the soundness part requires a rather more involved proof, cf. the comparable
situation treated in [1]). However, cREG(Σ) lacks a nice property of the system
cREG0(Σ): derivations in cREG0(Σ) without open assumptions correspond,
as reflected in the proof of Theorem 3, to finite bisimulations in R(Σ)ACI+ ; this
is not the case for derivations in cREG(Σ) (due to, above all, the presence of
the transitivity rule). Hence the system cREG0 is much more directly related to
the finitary coinduction principle than the system cREG. But there is a second
8 Note that admissibility in this sense does not demonstrate the soundness with respect

to =L of the extension of cREG0 with the mentioned equational axioms and rules.
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D̂(2)

F = G

D̂(1)

E = G

Combination StepExtraction StepAnnotation Step

REG-derivations
without

assumptions

ann-cREG0-deriva-
tion without open

assumptions
REG-derivation (D̂)′

without assumptions

cREG0-derivation
without open
assumptions

D
E = F

D̂(1)

E = G

D̂(2)

F = G
SYMM

G = F
TRANS

E = F

D̂
G : E = F

Fig. 3. Illustration of the three main steps in the transformation from an arbitrary
derivation D in cREG0 without open assumptions into a derivation (D̂)′ in REG with
the same conclusion and without assumptions as D

(although connected) reason for why we base ourselves on the system cREG0

here: it turns out that cREG0-derivations lend themselves much better to being
transformed into REG-derivations than cREG0-derivations.9

7 A Transformation of cREG0- into REG-Derivations

In this section we sketch a proof-theoretic transformation of derivations in the
coinductively motivated system cREG0(Σ) into derivations in the variant sys-
tem REG(Σ) of Salomaa’s axiomatisation F1. The three steps of this transfor-
mation are the annotation step, the extraction step, and the combination step
that are illustrated together in Figure 3 and that are described below separately.

7.1 The Annotation Step

In the annotation step, a given derivation D in cREG0(Σ) is “analysed” by
assigning to each formula a regular expression as an annotation. In this way a
derivation D̂ in an annotated version ann-cREG0(Σ, ∆) of cREG0(Σ) is built.

For an alphabet Σ and an infinite set ∆ of assumption markers such that
Σ ∩ ∆ = ∅ holds, the system ann-cREG0(Σ, ∆) is defined as follows: the
formulas of ann-cREG0(Σ, ∆) are expressions of the form G : E = F with
E, F ∈ R(Σ) and G ∈ R(Σ ∪ ∆); possible assumptions in ann-cREG0(Σ, ∆)
are of the form (d : E = F )d with E, F ∈ R(Σ) and d ∈∆ ; and the rules of
ann-cREG0(Σ, ∆) are the four rules ApprAxACI+ , ApplAxACI+ , COMP, and
COMP/FIX that are schematically defined in Figure 4; for both of the appli-
cations of COMP and COMP/FIX shown in Figure 4,

⋃n
i=1 Ji = {1, . . . , m} is

9 A possibility for extending the transformation from cREG0- into REG-deriva-
tions that is described in the next section to a transformation from cREG- into
REG-derivations consists in the use of an elimination method for basic equational
rules similar to one that is developed in [5, Ch.8].
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Possible assumptions and the inference rules in ann-cREG0(Σ, ∆) :

(Assm) (1.d : E = F )d (with d ∈ ∆ ; it is assumed: Σ ∩ ∆ = ∅ )

D1

G : C[Ẽ] = F
ApplAxACI+

G : C[F̃ ] = E

D1

G : E = C[Ẽ]
ApprAxACI+

G : E = C[F̃ ]

(given that Ẽ = F̃ or F̃ = Ẽ is an axiom of ACI+)

D1

(G10+)
�
j∈J1

G1j .dj : Ea1 = Fa1 . . .

Dn

(Gn0+)
�
j∈Jn

Gnj .dj : Ean = Fan

COMP
(if o(E) = o(F ))�

o(E) +
n�

i=1, Gi0 occurs

Gi0

�
+

m�
j=1

� n�
i=1, j∈Ji

ai.Gij

�
.dj : E = F

[1.dl : E = F ]dl

D1

(G10+)
�
j∈J1

G1j .dj : Ea1 = Fa1 . . .

[1.dl : E = F ]dl

Dn

(Gn0+)
�

j∈Jn

Gnj .dj : Ean = Fan

COMP/FIX, dl

(if o(E) = o(F ))
here: 1 ≤ l ≤ m

� n�
i=1, l∈Ji

ai.Gil

�∗
.
�
o(E) +

n�
i=1 ,Gi0 occurs

ai.Gi0

�
+

+
m�

j=1, j �=l

�� n�
i=1, l∈Ji

ai.Gil

�∗
.
� n�

i=1, j∈Ji

ai.Gij

��
.dj : E = F

Fig. 4. The annotated version ann-cREG0(Σ, ∆) of cREG0(Σ)

assumed as well as that Gij ∈ R(Σ) holds (i.e. that the Gij do not contain letters
from ∆), for all i ∈ {1, . . . , n} and j ∈ Ji ∪ {0}. (We comment on the motiva-
tion for the specific way how the annotations have been chosen for the rules of
the system ann-cREG0(Σ, ∆) in Remark 2 at the end of this subsection.)

As in the system cREG0(Σ), every application of the rule COMP/FIX dis-
charges precisely one inhabited class of open assumptions (and the marker of
this assumption class is attached to the application). Derivations in the system
ann-cREG0(Σ, ∆) are defined analogously as in cREG0(Σ), and a similar
proviso on the use of assumption markers is stipulated: in assumptions distinct
equations must be annotated by distinct letters from ∆, i.e. if in a derivation the
assumptions (d1 : E1 = F1)d1 and (d2 : E2 = F2)d2 occur, then d1 = d2 must
entail E1 ≡ E2 and F1 ≡ F2 .10

The following lemma states the basic proof-theoretic relationship between
the systems cREG0(Σ) and ann-cREG0(Σ, ∆).

10 This condition is necessary for the extraction step (i.p. for the proof of Lemma 6).
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� ˇ̃D =
�

{[Ei = Fi]di}i=1,...,m

D
E = F

(̂·)�−→←− �

(̌·)

{[1.di : Ei = Fi]di}i=1,...,m

D̃
(G0+)

�m
j=1 Gj .dj : E = F

�
= D̂

�

cREG0(Σ)-derivation ann-cREG0(Σ, ∆)-derivation

Fig. 5. Proof-theoretic relation betw. cREG0(Σ) and ann-cREG0(Σ, ∆)

Lemma 4. Every derivation D in ann-cREG0(Σ, ∆) is of the form of the right
derivation in Figure 5, for some m ∈ ω , E, F, G0 ∈ R(Σ) , Ei, Fi, Gi ∈ R(Σ)
for all i ∈ {1, . . . , m} , and distinct d1, . . . , dn ∈ ∆ ; the expression at the top of
this derivation denotes the family of all open assumption classes in D.

Every derivation in cREG0(Σ) that is of the form left in Figure 5 (for
some E, F, E1, F1, . . . , Em, Fm ∈ R(Σ), d1, . . . , dm ∈ ∆) can effectively be trans-
formed, by assigning an appropriate annotating regular expression in R(Σ∪∆) to
each formula in D, into a derivation D̂ in ann-cREG0(Σ, ∆) that is, for some
G0, . . . , Gm ∈ R(Σ) , of the form of the derivation D̃ on the right in Figure 5.

And vice versa, every derivation D̃ in ann-cREG0(Σ, ∆) that is of the form
on the right in Figure 5 can be transformed, by stripping annotated formulas in
D̃ of the annotating regular expressions, into a derivation ˇ̃D that is of the form
of the left derivation in Figure 5.

Proof (Hint). All three statements of the lemma can be shown by straightforward
induction on the structure (or the depth) of derivations in ann-cREG0(Σ, ∆),
and respectively, by induction on the structure of derivations in cREG0(Σ).

It is easy to verify that the result of annotating the cREG0({a, b})-derivation
D in (8) for our running example is the following ann-cREG0({a, b}, ∆)-deriva-
tion D̂ without open assumptions (a number of annotations appear simplified):

(1.e : E = F2)e

1.e : Ea = (F2)a

(1.d : E = F1)d

1.d : Eb = (F2)bCOMP/FIX, e
a∗ + a∗b.d : E = F2

a∗ + a∗b.d : Ea = (F1)a

(1.d : E = F1)d

1.d : Eb = (F1)bCOMP/FIX, d
(aa∗b + b)∗(1 + aa∗) : E = F1

(9)

Remark 2. Informally, the principal idea underlying the system ann-cREG0

and its relation with cREG0 is the following: annotating a cREG0(Σ)-deriva-
tion D with conclusion E = F and without open assumptions into a derivation
D̂ in ann-cREG0(Σ, ∆) with conclusion G : E = F amounts to extracting
from D a description as the regular expression G of the bisimulation between
[E]ACI+ and [F ]ACI+ in the automaton R(Σ)ACI+ that is formalised by D
(cf. the proof of Theorem 3). For this regular expression G ∈ R(Σ) , [G]ACI+ is
bisimilar in R(Σ)ACI+ to both [E]ACI+ and [F ]ACI+ ; moreover, the “generated
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subautomaton” of [G]ACI+ in R(Σ)ACI+ is a “common unfolding” of the subau-
tomata in R(Σ)ACI+ that are generated by [E]ACI+ and [F ]ACI+ , respectively.
These facts form the deeper reasons for why the extraction step (described in
Subsection 7.2) of our transformation from cREG0(Σ) to REG(Σ) is possible.

However, in the conclusion G : E = F of an ann-cREG0(Σ, ∆)-derivation
D̃ with open assumptions, the annotation G ∈ R(Σ ∪ ∆) only describes what
could be called a “partial bisimulation” in R(Σ)ACI+ between [E]ACI+ and
[F ]ACI+ . But nevertheless, and slightly apart from this, the annotation G in the
conclusion of such a derivation D̃ also specifies the common structure of a pair
of “valid” equations that link the regular expressions on either side of “=” in
the conclusion of D̃ with the regular expressions on respectively the same side
of “=” in the open assumptions of D̃. More precisely, if D̃ is a derivation in
ann-cREG0(Σ, ∆) of the form

{[1.di : Ei = Fi]di}i=1,...,m

D̃
(G0+)

∑m
j=1 Gj .dj : E = F

(10)

for some m ∈ ω , E, F, E1, F1, . . . , Em, Fm, G0, . . . , Gm ∈ R(Σ), d1, . . . , dm ∈ ∆,
and with the expression at the top denoting the family of all inhabited open
assumptions classes of D̃ (due to Lemma 4 all ann-cREG0(Σ, ∆)-derivations
can be represented in this way), then the equations E = (G0+)

∑m
j=1 Gj .Ej and

F = (G0+)
∑m

j=1 Gj .Fj are valid with respect to =L, i.e. it holds:

E =L (G0+)
∑m

j=1 Gj .Ej and F =L (G0+)
∑m

j=1 Gj .Fj . (11)

This property of ann-cREG0-derivations is essential for the extraction step. The
annotations in the rules of ann-cREG0(Σ, ∆) have been chosen accordingly for
this purpose, utilising the fundamental relation between regular expressions and
their single-letter derivatives as formulated in Lemma 5 below.

7.2 The Extraction Step

In the extraction step, from a given derivation D̃ in ann-cREG0 with conclusion
G : E = F two derivations D̃(1) and D̃(2) are constructed that, in case that D̃
does not contain open assumptions, demonstrate respectively that E and F are
equivalent with the annotating regular expression G. This is justified by Lemma 6
below; the proof of this lemma depends on Lemma 5, a version appropriate for
regular expressions of the sometimes so called “fundamental theorem of formal
languages” (due to the analogy with the “fundamental theorem of calculus”).

Lemma 5. For all E ∈ R(Σ) , E ≡REG− o(E) +
∑n

i=1 ai.Eai holds. What is
more, for every given E ∈ R(Σ) , a derivation D(E) in REG−(Σ) with conclu-
sion E = o(E) +

∑n
i=1 ai.Eai can effectively be constructed.
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Proof (Hint). The lemma can be shown by induction on the syntactical structure
of regular expressions in R(Σ). For the treatment of the case E = F ∗ in the
induction step (for E, F ∈ R(Σ)) the axioms (B10), (B11) of REG− are needed.

Lemma 6. From every derivation D̃ in ann-cREG0(Σ, ∆) of the form (10),
where m ∈ ω , d1, . . . , dm ∈ ∆ distinct markers, E, F, G0 ∈ R(Σ) , and, for all
i ∈ {1, . . . , m}, Ei, Fi, Gi ∈ R(Σ) , it is possible to construct effectively deriva-
tions in REG(Σ) of the respective forms

D̃(1)

E = (G0+)
∑m

j=1 Gj .Ej ,
and D̃(2)

F = (G0+)
∑m

j=1 Gj .Fj .
(12)

Proof (Hint). The lemma can be demonstrated by defining an effective extrac-
tion procedure of the two derivations D̃(1) and D̃(2) in REG(Σ) with the re-
spective forms in (12) from an arbitrary derivation D̃ in ann-cREG0(Σ, ∆)
of the form (10), where m ∈ ω , E, F, G0 ∈ R(Σ) , Ei, Fi, Gi ∈ R(Σ) for all
i ∈ {1, . . . , m} , and d1, . . . , dm ∈ ∆ are distinct. Such a procedure can be built
by using induction on the structure (or on the depth) of the derivation D̃.

Let us demonstrate the induction step for the extraction of the derivation
D̂(1) from the annotated derivation D̂ in (9) relating to our running example.
D̂(1) can be written as of the form

[1.d : E = F1]d

D̂1

a∗ + a∗b.d : Ea = (F1)a

[1.d : E = F1]d

D̂2

1.d : Eb = (F1)b COMP/FIX
(aa∗b + b)∗(1 + aa∗) : E = F1

with D̂1 and D̂2 being the immediate left and right subderivations of D̂ ; to
increase readability in this example, we suppress some “.”-signs and brackets.
We want to construct a derivation D̂(1) in REG({a, b}) with conclusion E = (aa∗

b + b)∗(1 + aa∗) . By the induction hypothesis there exist derivations D̂(1)
1 and

D̂(1)
2 in REG({a, b}) with the conclusions Ea = a∗ + a∗b.E and Eb = E . By

temporarily using additional rules, from D̂(1)
1 and D̂(1)

2 the derivation D̂(1)
0,ar

D̂(1)
1

Ea = a∗ + a∗b.E
CTXT

a.Ea = a.(a∗ + a∗b.E)

D̂(1)
2

Eb = E
CTXT

b.Eb = b.E
+

a.Ea + b.Eb = a.(a∗ + a∗b.E) + b.E
CTXT

1 + a.Ea + b.Eb = 1 + a.(a∗ + a∗b.E) + b.E
ApprAx

ACI+

1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)

can be constructed. This derivation can be extended, by using the fixed-point
rule FIX in REG({a, b}) in an essential way, into the derivation D̂(1)

ar

D(E)
ar

E = o(E) + a.Ea + b.Eb

D̂(1)
0,ar

1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)
TRANS

E = (aa∗b + b).E + (1 + aa∗)
FIX

E = (aa∗b + b)∗(1 + aa∗)



Using Proofs by Coinduction to Find “Traditional” Proofs 191

D(E)

E = 1 + a.Ea + b.Eb

D(E)

E = 1 + a.Ea + b.Eb

REFL, ApprAx
ACI+

E = 1.EApplAx
ACI+

Ea = E
CTXT

a.Ea = a.E

REFL, ApprAx
ACI+

E = 1.E ApplAx
ACI+

Eb = E
CTXT

b.Eb = b.E
+

a.Ea + b.Eb = a.E + b.E
CTXT

1 + a.Ea + b.Eb = 1 + a.E + b.E
TRANS

E = 1 + a.E + b.E
ApprAx

ACI+

E = a.E + (1 + b.E)
FIX

E = a∗(1 + b.E)
Appl/rAx

ACI+

Ea = a∗ + a∗b.E
CTXT

a.Ea = a.(a∗ + a∗b.E)

REFL, ApprAx
ACI+E = 1.E ApplAx

ACI+
Eb = E

CTXT
b.Eb = b.E

+
a.Ea + b.Eb = a.(a∗ + a∗b.E) + b.E

CTXT
1 + a.Ea + b.Eb = 1 + a.(a∗ + a∗b.E) + b.E

ApprAx
ACI+1 + a.Ea + b.Eb = (aa∗b + b).E + (1 + aa∗)

TRANS
E = (aa∗b + b).E + (1 + aa∗)

FIX
E = (aa∗b + b)∗(1 + aa∗)

Fig. 6. Abbreviated result D̂(1)
ar of extracting the REG({a, b})-derivation D̂(1) from

the ann-cREG0-deriv. D̂ in (9) (some REG-derivable rules are used)

where the derivation D(E)
ar is guaranteed by Lemma 5 and can be chosen as

(B10)

(a + b)∗ = 1 + (a + b)(a + b)∗
ApplAx

ACI+

(a + b)∗ = 1 + a(a + b)∗ + b(a + b)∗
ApplAx

ACI+

E = 1 + a (1 + 0)(a + b)∗︸ ︷︷ ︸
Ea

+ b (0 + 1)(a + b)∗︸ ︷︷ ︸
Eb

The desired derivation D̂(1) in REG({a, b}) can then be found as the result of
eliminating from D̂(1)

ar all applications of the additional rules “+”, ApplAxACI+ ,
and ApprAxACI+ , which can easily be recognised to be derivable in REG({a, b}).

The result of the entire extraction process of D̂(1) from D̂ is displayed in
Figure 6 as the derivation D̂(1)

ar in which applications of additional rules occur
and the derivation D(E) is abbreviated. In an analogous way, also the derivation
D̂(2) in REG({a, b}) with conclusion F = (aa∗b + b)∗(1 + aa∗) can be extracted
from D̂; similar to D̂(1)

ar , it is given as the abbreviated derivation D̂(2)
ar in Figure 7.

7.3 The Combination Step

The last step of the transformation is easy and consists in combining the two
REG(Σ)-derivations D̂(1) and D̂(2), which were extracted from the annotated
version D̂ of a cREG0-derivation D on which the transformation was started.
Building from D̂(1) and D̂(2) a REG(Σ)-derivation (D̂)′ with the same conclu-
sion as D only requires the use of each an application of SYMM and TRANS, as
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D(F1)

F1 = 1 + a.(F1)a + b.(F1)b

D(F2)

F2 = 1 + a.(F2)a + b.(F2)b

REFL, ApprAx
ACI+

F2 = 1.F2ApplAx
ACI+

(F2)a = F2
CTXT

a.(F2)a = a.F2

REFL, ApprAx
ACI+F1 = 1.F1 ApplAx

ACI+

(F1)b = F1
CTXT

b.(F1)b = b.F1
+

a.(F2)a + b.(F2)b = a.F2 + b.F1
CTXT

1 + a.(F2)a + b.(F2)b = 1 + a.F2 + b.F1
TRANS

F2 = 1 + a.F2 + b.F1 ApprAx
ACI+

F2 = a.F2 + (1 + b.F1)
FIX

F2 = a∗(1 + b.F1)
Appl/rAx

ACI+

(F1)a = a∗ + a∗b.F1
CTXT

a.(F1)a = a.(a∗ + a∗b.F1)

REFL, ApprAx
ACI+

F1 = 1.F1 ApplAx
ACI+

(F1)b = F1
CTXT

b.(F1)b = b.F1
+

a.(F1)a + b.(F1)b = a.(a∗ + a∗b.F1) + b.F1
CTXT

1 + a.(F1)a + b.(F1)b = 1 + a.(a∗ + a∗b.F1) + b.F1
TRANS

F1 = 1 + a.(a∗ + a∗b.F1) + b.F1
ApprAx

ACI+

F1 = (aa∗b + b).F1 + (1 + aa∗)
FIX

F1 = (aa∗b + b)∗(1 + aa∗)

Fig. 7. Abbreviated result D̂(2)
ar of extracting the REG({a, b})-derivation D̂(2) from

the ann-cREG0-deriv. D̂ in (9) (some REG-derivable rules are used)

illustrated in Figure 3. Due to this, Lemma 4 and Lemma 6 together yield the
transformation theorem below. In view of Theorem 3, this theorem facilitates
an alternative completeness proof for REG and therefore entails the subsequent
corollary, which is a restatement of the completeness part of Theorem 1.

Theorem 4. Every derivation D in cREG0(Σ) without open assumptions can
effectively be transformed into a derivation D′ in REG(Σ) with the same con-
clusion as D.

Corollary 2. REG(Σ) is complete with respect to =L.

8 Conclusion

Using a coinduction principle for language equality given by Rutten in [6], we
introduced a “finitary” coinduction principle for proving equivalence of regular
expressions: for showing that two regular expressions E and F are equivalent,
prove that, up to applying laws including associativity, commutativity and idem-
potency of +, E and F are bisimilar in an automaton of regular expressions whose
transition function is based on the “Brzozowski derivative”. We recognised that
this principle can be used to decide regular expression equivalence in an effective
way, and hence, that it can be implemented in principle (further considerations
lead us to the belief that this is indeed a practical possibility).

Subsequently we introduced a proof system cREG0 of equational logic that
formalises proofs using the finitary coinduction principle as finite derivations:
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its soundness and completeness proof directly reflects the fact that a deriva-
tion in cREG0 (without open assumptions) corresponds to a finite bisimulation
between the regular expressions in its conclusion. Finally, we showed that deriva-
tions in cREG0 can be transformed into derivations in a variant system REG
of Salomaa’s axiomatisation F1 in a very straightforward and “natural” way.
Hereby we obtained a coinductive completeness proof for the system REG.

Our constructions, and in particular the transformation we sketched, can
be adapted to yield also a coinductive completeness proof for Salomaa’s F1.
This is because an alternative differential calculus for formal languages and
regular expressions can be introduced, in which derivatives take away letters
from the end of words: one can define, for letters a, the language derivative
(·)′a : L(Σ) → L(Σ) by L �→ (L)′a =def {v | v.a ∈ L} . Based on corresponding
versions of derivatives for regular expressions, one can formulate an effective fini-
tary coinduction principle analogous to Theorem 2, a sound and complete proof
system cREG′

0 for =L analogous to cREG0, and an effective transformation
of cREG′

0-derivations into F1-derivations analogous to the one described here.
An effective completeness proof for F1 can directly be based on these elements.
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